JP3483406B2 - Counter-hydraulic forming method of Al-Mg based aluminum alloy sheet - Google Patents
Counter-hydraulic forming method of Al-Mg based aluminum alloy sheetInfo
- Publication number
- JP3483406B2 JP3483406B2 JP29163596A JP29163596A JP3483406B2 JP 3483406 B2 JP3483406 B2 JP 3483406B2 JP 29163596 A JP29163596 A JP 29163596A JP 29163596 A JP29163596 A JP 29163596A JP 3483406 B2 JP3483406 B2 JP 3483406B2
- Authority
- JP
- Japan
- Prior art keywords
- hydraulic pressure
- hydraulic
- final
- aluminum alloy
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明はMgを2.0重量%
以上含有するAl−Mg系アルミニウム合金板の対向液
圧成形方法に関し、特に自動車用外板等のように外観が
良好であることを必要とし、ポンチ側に凹形状を有する
部材を成形する際に高成形性を有し、S−Sマークを抑
制することができるAl−Mg系アルミニウム合金板の
対向液圧成形方法に関する。
【0002】
【従来の技術】CAFE(Corporate Average FueI Eco
nomy)規制等に適合させるため、自動車産業において
は、自動車の軽量化及び低燃費化を実現すべく素材のア
ルミニウム化が推進されてきている。しかし、アルミニ
ウム合金板は鋼板に比べて成形性が悪く、かつ、特にM
gを2%以上含有するアルミニウム合金板においては、
強度が高いものの、成形後のサンプル表面にS−Sマー
クといわれる表面欠陥が発生し、製品の外観性を悪化さ
せるという問題が生じている。
【0003】そこで、自動車用外板及び内板等の複雑な
形状の成形に関して、成形性が優れた対向液圧成形法の
適用が注目されている(例えば、特公昭57−7809
号、特公平3−32406号)。この対向液圧成形方法
は、しわ押さえとポンチと液圧ドームにより成形する方
法であり、ダイを使用せずに液圧によって成形するもの
である。この液圧成形法においては、液圧を付加するこ
とにより、素材とポンチとの間の摩擦抵抗が大きくなる
摩擦保持効果と、素材とブランクホルダとの間の摩擦抵
抗が低減される摩擦低減効果とが得られ、前者の摩擦保
持効果により素材の均一変形が促進され、後者の摩擦低
減効果により素材の流れ込みが促進されるため、成形性
を向上させることができる。
【0004】しかし、現状の実部品の対向液圧成形にお
いては、液圧の最適パタ−ンが未だ確立されておらず、
このため、下死点でのみ液圧を付加するパターンが通常
となっている。
【0005】また、S−Sマークを抑制するために、ア
ルミニウム合金板の素材面からも対策がとられており、
例えば、特開平2−290953号、特開平4−147
952等に開示されているように、組成の調整及び中間
焼鈍の実施により、S−Sマークを抑制する技術が公知
である。また、レベラ−などによる予備ストレッチによ
り、加工ひずみを与えておくことによりS−Sマークを
抑制する方法も公知である。
【0006】
【発明が解決しようとする問題点】しかしながら、対向
液圧成形方法によるアルミニウム合金板の成形は、対称
形のポンチを使用した小型プレスにおける成形条件を研
究した報告例はあるが、実機レベルでの対向液圧成形技
術に関する最適な成形条件は未だ不明である。
【0007】前述のごとく、自動車外板の対向液圧成形
で成形終了後の下死点にて液圧を付加する液圧パターン
を用いた場合には、成形品表面、特にポンチ側に凹形状
を有する部位においてS−Sマークが顕著に発生すると
いう問題点が生じている。
【0008】一方、素材の面からのS−Sマーク防止対
策としては、中間焼鈍及び予備ストレッチ等が実施され
ているが、中間焼鈍の実施により固溶Mgが減少して強
度が低下したり、予備ストレッチを行うことにより強度
が過度に増加してしまい成形性が低下する等の問題が生
じてしまい、素材面の改善のみでは十分にS−Sマーク
を抑制できていないのが現状である。
【0009】本発明はかかる問題点に鑑みてなされたも
のであって、アルミニウム合金板の成形性向上に有効で
ある対向液圧成形方法を使用して、複雑な形状を有する
製品を高成形性で加工することができ、特にポンチ側に
凹形状を有する部材を成形する際に高成形性を有しS−
Sマークを十分に抑制することが可能なAl−Mg系合
金板の対向液圧成形方法を提供することを目的とする。
【0010】
【課題を解決するための手段】本発明に係るAl−Mg
系合金板の対向液圧成形方法は、Mgを2.0重量%以
上含有するAl−Mg系アルミニウム合金板を対向液圧
成形する方法において、最終液圧をPe、最終成形深さ
をDeとしたとき、最終液圧Peを30kg/cm2以
上とし、成形深さDに対して液圧Pを、(20Pe)D
/De−19Pe≦P≦(5Pe)D/(4De)及び
0≦P≦Peの関係を満たして減圧しないように変化さ
せると共に、前記液圧Pは成形深さDが0.9De以上
De未満になるまで0.1Pe以下の液圧で成形し、そ
の後、液圧Pを最終液圧Peまで上昇させて最終成形深
さDeまで成形することを特徴とする。
【0011】
【0012】
【0013】上記条件で対向液圧成形法によりアルミニ
ウム合金板を成形することにより、複雑な形状であって
もS−Sマークの発生が防止され、成形性が向上する。
【0014】
【発明の実施の形態】本願発明者等は、対向液圧成形方
法によりポンチ側に凹形状を有するアルミニウム合金部
材を成形する際に、高成形性を保持しつつS−Sマーク
を抑制するための成形条件を検討した結果、その成形深
さDに対する液圧Pのパターンが下記範囲に入るもので
ある場合に、成形性が向上すると共に、S−Sマークを
防止できることを見いだした。即ち、横軸に成形深さD
をとり、縦軸に液圧Pをとって、成形開始点を原点とす
る座標軸を考えた場合、液圧Pが最終液圧Pe(kg/
cm2)まで増加し、成形深さDが最終成形深さDeに
到達するまでに、液圧Pは下記数式で表される範囲内に
ある必要がある。
【0015】
【数1】P≦(5Pe)D/(4De)
【0016】
【数2】P≧(20Pe)D/De−19Pe
【0017】
【数3】0≦P≦Pe
【0018】但し、最終液圧Peとは、対向液圧成形を
行う際の最大液圧値であり、プレスの下死点(最終成形
深さDe)に至る途中で最終液圧に達した場合は、その
圧力がプレス下死点Deまで保持される。
【0019】図1は数式1〜3の条件を図示したグラフ
図である。この図1にハッチングにて囲んだ領域内で、
成形深さDに対して液圧Pを変化させることにより、S
−Sマークの発生を防止することができる。
【0020】また、最終液圧Peは30kg/cm2以
上とする必要がある。上記範囲内で、30kg/cm2
以上の最終液圧Peになるまで連続したパターンで液圧
が変化することにより、成形性が向上し、S−Sマーク
の発生が防止される。
【0021】液圧Pが数式1の範囲を超えたパターンで
変化すると、過大な液圧を印加されたために、摩擦低減
効果が大きくなりすぎ、これにより、素材の流れ込みが
多くなり、しわが発生する。このしわが素材の流れ込み
を抑制することにより割れが発生し、成形が不能になっ
てしまう。また、金型及び液圧付加のタイミングによ
り、逆張り出し現象が発生し、それにより割れが発生し
てしまう。
【0022】一方、液圧Pが数式2の範囲を下回ると、
摩擦低減効果が低下することにより割れが発生しやすく
なる。また、液圧を付加するタイミングが遅れることに
より、特に、ポンチ側に凹形状を有する部位において
は、ポンチにより対向液圧成形法ではない通常の成形法
の場合と同様に、素材に歪みが加わる。そして、ポンチ
による押圧力に遅れて、液圧の付加により、更に凹部の
成形が行われることになり、実質的な凹部近傍の歪み速
度が低下し、S−Sマークが発生しやすい条件となる。
実際上、成形品の表面にはS−Sマークが部分的に発生
してしまった。
【0023】なお、液圧Pは正圧(0kg/cm2以
上)であることが必要であり、更に対向液圧成形法にお
いては、最終液圧Peが最大液圧であることから、液圧
Pは前記数式3を満たす必要がある。
【0024】一方、最終液圧Peを30kg/cm2以
上としたのは、最終液圧Peが30kg/cm2未満で
あると、複雑な形状の加工が困難になると共に、素材と
金型との間の摩擦保持効果及び摩擦低減効果が不足して
割れが発生しやすくなる。このため、最終液圧Peは3
0kg/cm2以上とする。
【0025】また、上記範囲内の液圧パターンは、液圧
の特異点がないように連続的に変化し、又は一定を保持
するものであり、更に、液圧の変化は減圧しないもので
ある。即ち、液圧は上記範囲内で、増大させるか、又は
一定のままであり、減圧させないことが必要である。液
圧パターンの中に、液圧が減少するパターンが加わる
と、素材と金型との摩擦保持効果及び摩擦低減効果が減
少し、割れが発生しやすくなり、アルミニウム合金板の
成形が困難となる。
【0026】例えば、この液圧パターンとしては、成形
深さDが0.8De以上De未満になるまで液圧Pを連
続的に最終液圧Peまで増大させ、その後、最終液圧P
eを保持して最終成形深さDeまで成形するものがあ
る。この液圧パターンを使用すると、十分な摩擦保持効
果と摩擦低減効果により、高成形性が得られる。また、
特に、凹型形状を有する金型の場合、凹部と素材が早期
に密着することにより歪み速度が増加し、S−Sマーク
が顕著に低減される。
【0027】また、前記液圧Pのパターンとして、成形
深さDが0.9De以上De未満になるまで0.1Pe
以下の液圧で成形し、その後、液圧Pを最終液圧Peま
で上昇させて最終成形深さDeまで成形するようにする
こともできる。特に、ポンチとダイスのクリアランスが
大きい場合、ポンチ側壁部に極端な凹凸がある金型の場
合、及び素材強度が高くしわが発生しやすい場合は、初
期から液圧を上昇させると、しわが成長したり、凹凸部
にて素材の流れが止まってしまい、割れが発生してしま
うが、この液圧パターンを使用すると、しわの発生及び
素材の流れ込みの抑制が無く、高成形性が得られ、S−
Sマークの低減を図ることができる。
【0028】なお、成形対象のアルミニウム合金板の組
成は、Mgを2.0重量%以上含有するものである。M
g含有量が2.0重量%未満の場合には、液圧パターン
が上記範囲内でなくてもS−Sマークが発生することが
なく、しかも部材としての強度が低いため、自動車用外
板及び内板等の用途に供し得ないからである。
【0029】
【実施例】以下、本発明の実施例について比較例と比較
して説明する。下記表1に示すMg含有量及び機械的特
性を有する3種類のAl−Mg系合金を供試材とし、幅
が500mm、長さが800mm、深さが50mmで中
央部に凹型形状を有する自動車用フードアウターモデル
金型を使用し、防錆油の粘度が4cSt/40℃、歪み
速度が1×10-3/秒というS−Sマークが発生しやす
い条件下で対向液圧成形法により供試材を成形した。こ
の試験に使用したプレスは複動式油圧プレスであり、そ
の仕様は最大ポンチ荷重が1000トン、最大しわ押さ
え荷重が400トン、最大増圧能力が240kg/cm
2である。
【0030】
【表1】【0031】上記条件にて、図1に示す1〜5の各液圧
パターンにて成形試験を行った結果を下記表2に示す。
但し、各液圧パターンは以下のとおりである。
パターン1(実施例):成形深さ0.8Deまで数式1
及び2を満足するようにして液圧を緩やかに連続的に増
大させながら、成形し、その後、下死点まで最終液圧P
eを保持して成形したパターンである。
パターン2(実施例):数式1、2に示す範囲内で、成
形深さ0.9Deまで液圧を微増させ、液圧の上昇は
0.1Peに止め、0.9Deから下死点まで液圧を最
終液圧Peまで急激に増加させて成形する。
パターン3(比較例):ほぼ下死点まで液圧を微増さ
せ、そのまま急激に液圧を増加させながら成形したパタ
ーンである。
パターン4(比較例):成形初期から下死点近傍まで前
記数式1、2の範囲内で液圧を微増させ、最終液圧を3
0kg/cm2未満としたパターンである。
パターン5(比較例):成形深さ0.4Deまで数式
1、2にて示す範囲内で液圧を増大させ、その後、成形
深さ0.4Deから0.8Deまで液圧を急激に連続し
て最終液圧Peまで増大させて下死点まで最終液圧を保
持して成形したパターンである。
【0032】
【表2】
【0033】表2において、評価欄に記載の割れは、割
れが発生しなかったものを○、割れが発生したものを×
とし、S−Sマ−クは割れが発生していないサンプルに
おいて目視で5段階で評価し、S−Sマークの発生が顕
著なものを5レベル、S−Sマークの発生が無いものを
1レベルとし、1,2レベルを○、3,4レベルを△,
5レベルを×として評価した。また、強度は素材強度に
て評価を行い、190N/mm2以上のものを○、それ
未満のものを×とした。
【0034】この表2及び図1から明らかなように、本
発明の実施例1〜3は、成形品に割れがなく、かつS−
Sマークの発生が抑制された良好なものである。
【0035】これに対して、比較例4〜9は、液圧パタ
ーンが本発明の特許請求の範囲から外れるものであるた
めに、成型品に割れが発生し、又はS−Sマークが発生
した。なお、比較例6は、液圧パターンの最終液圧が3
0kg/cm2未満であることにより、割れが発生した
ものである。
【0036】
【発明の効果】本発明に係るアルミ合金板の対向液圧成
形方法によれば、成形品に割れが生じることを防止でき
ると共に、S−Sマークの発生を抑制することができ、
2.0重量%以上のMgを含有するアルミニウム合金板
を対象として複雑な形状の成形が可能になるという優れ
た効果を奏する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention
Regarding the facing hydraulic forming method of the Al-Mg-based aluminum alloy sheet containing the above, particularly when it is necessary to have a good appearance such as a car outer plate, when forming a member having a concave shape on the punch side The present invention relates to a facing hydraulic forming method of an Al-Mg-based aluminum alloy plate having high formability and capable of suppressing SS marks. [0002] CAFE (Corporate Average FueI Eco
In order to comply with regulations and the like, in the automobile industry, the use of aluminum as a material has been promoted in order to realize lighter weight and lower fuel consumption of automobiles. However, the formability of the aluminum alloy plate is poorer than that of the steel plate.
g in an aluminum alloy plate containing 2% or more,
Although the strength is high, a surface defect called an SS mark occurs on the surface of the sample after molding, which causes a problem of deteriorating the appearance of the product. In view of the above, with respect to molding of complicated shapes such as an outer plate and an inner plate for automobiles, attention has been paid to the application of an opposing hydraulic forming method having excellent formability (for example, Japanese Patent Publication No. 57-7809).
No., Tokuhei 3-32406). This opposing hydraulic forming method is a method of forming with a wrinkle retainer, a punch and a hydraulic dome, and is formed by hydraulic pressure without using a die. In this hydraulic forming method, by applying a hydraulic pressure, a friction holding effect in which the frictional resistance between the material and the punch is increased, and a friction reducing effect in which the frictional resistance between the material and the blank holder is reduced. The uniform deformation of the material is promoted by the former friction holding effect, and the flow of the material is promoted by the latter friction reducing effect, so that the formability can be improved. However, in the current opposing hydraulic molding of actual parts, the optimal pattern of hydraulic pressure has not yet been established.
For this reason, a pattern in which the hydraulic pressure is applied only at the bottom dead center is common. In order to suppress the SS mark, measures have also been taken from the material side of the aluminum alloy plate.
For example, JP-A-2-290953, JP-A-4-147
As disclosed in U.S. Pat. No. 952, etc., a technique for suppressing the SS mark by adjusting the composition and performing intermediate annealing is known. Further, a method of suppressing the SS mark by giving a processing strain by preliminary stretching using a leveler or the like is also known. [0006] However, in the case of forming an aluminum alloy plate by the facing hydraulic forming method, there is a report example in which the forming conditions in a small press using a symmetrical punch have been studied, but there is a report example. The optimal molding conditions for counter-hydraulic molding technology at the level are still unknown. As described above, when a hydraulic pattern for applying a hydraulic pressure at the bottom dead center after the completion of molding in the facing hydraulic molding of the automobile outer plate is used, a concave shape is formed on the surface of the molded product, particularly on the punch side. However, there is a problem that the SS mark is remarkably generated in a portion having the following. On the other hand, as measures for preventing SS marks from the surface of the material, intermediate annealing and pre-stretching have been carried out. However, by performing intermediate annealing, solid-solution Mg decreases and strength decreases. By performing the pre-stretching, problems such as an excessive increase in strength and a decrease in formability occur, and at present, the SS mark cannot be sufficiently suppressed only by improving the material surface. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and uses a facing hydraulic forming method, which is effective for improving the formability of an aluminum alloy plate, to produce a product having a complicated shape with high formability. In particular, when molding a member having a concave shape on the punch side, it has high formability and S-
It is an object of the present invention to provide a facing hydraulic forming method of an Al-Mg based alloy plate capable of sufficiently suppressing the S mark. [0010] According to the present invention, there is provided an Al-Mg according to the present invention.
The opposing hydraulic forming method for a system-based alloy plate is a method for opposing hydraulic forming an Al-Mg-based aluminum alloy plate containing 2.0% by weight or more of Mg, wherein the final hydraulic pressure is Pe and the final forming depth is De. Then, the final hydraulic pressure Pe is set to 30 kg / cm 2 or more, and the hydraulic pressure P is set to (20 Pe) D with respect to the forming depth D.
/ De-19Pe≤P≤ (5Pe) D / (4De) and 0≤P≤Pe and the pressure is changed so as not to reduce the pressure, and the hydraulic pressure P is such that the molding depth D is 0.9 De or more.
It is molded with a liquid pressure of 0.1 Pe or less until it becomes less than De.
After that, the hydraulic pressure P is increased to the final hydraulic pressure Pe, and the final forming depth is increased.
It is characterized by being molded up to De . By forming an aluminum alloy plate by the opposing hydraulic forming method under the above conditions, the occurrence of SS marks is prevented even in a complicated shape, and the formability is improved. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have found that when forming an aluminum alloy member having a concave shape on the punch side by a facing hydraulic forming method, the SS mark is formed while maintaining high formability. As a result of studying the molding conditions for suppressing, it was found that when the pattern of the hydraulic pressure P with respect to the molding depth D falls within the following range, the moldability is improved and the SS mark can be prevented. . That is, the molding depth D is plotted on the horizontal axis.
And taking the hydraulic pressure P on the vertical axis and considering a coordinate axis with the origin at the molding start point, the hydraulic pressure P becomes the final hydraulic pressure Pe (kg /
cm 2 ), and the hydraulic pressure P needs to be within the range represented by the following formula before the forming depth D reaches the final forming depth De. ## EQU1 ## P≤ (5Pe) D / (4De) ## EQU2 ## P≥ (20Pe) D / De-19Pe ## EQU3 ## where 0≤P≤Pe. The final hydraulic pressure Pe is a maximum hydraulic pressure value at the time of performing the opposing hydraulic forming. When the final hydraulic pressure is reached on the way to the bottom dead center of the press (final forming depth De), the pressure is equal to the final hydraulic pressure Pe. Is held until the press bottom dead center De. FIG. 1 is a graph showing the conditions of equations (1) to (3). In the area surrounded by hatching in FIG. 1,
By changing the hydraulic pressure P with respect to the forming depth D, S
-The generation of the -S mark can be prevented. Further, the final hydraulic pressure Pe needs to be 30 kg / cm 2 or more. Within the above range, 30 kg / cm 2
By changing the hydraulic pressure in a continuous pattern until the final hydraulic pressure Pe is reached, the formability is improved and the occurrence of the SS mark is prevented. If the hydraulic pressure P changes in a pattern exceeding the range of the formula 1, the excessive hydraulic pressure is applied, so that the friction reducing effect becomes too large, whereby the material flows more and wrinkles occur. I do. When the wrinkles suppress the material from flowing, cracks occur and molding becomes impossible. Also, depending on the timing of the mold and the application of the hydraulic pressure, a reverse overhang phenomenon occurs, thereby causing cracking. On the other hand, when the hydraulic pressure P falls below the range of Expression 2,
When the friction reducing effect is reduced, cracks are easily generated. In addition, since the timing of applying the hydraulic pressure is delayed, the material is distorted by the punch, particularly in a portion having a concave shape on the punch side, similarly to the normal molding method which is not the opposing hydraulic molding method. . Then, after the pressing force by the punch, the formation of the concave portion is further performed by the application of the liquid pressure, and the strain rate near the concave portion is substantially reduced, which is a condition in which the SS mark is easily generated. .
Actually, the SS mark was partially generated on the surface of the molded product. The hydraulic pressure P needs to be a positive pressure (0 kg / cm 2 or more). Further, in the opposed hydraulic forming method, since the final hydraulic pressure Pe is the maximum hydraulic pressure, P needs to satisfy the above equation (3). On the other hand, the reason why the final hydraulic pressure Pe is set to 30 kg / cm 2 or more is that if the final hydraulic pressure Pe is less than 30 kg / cm 2 , it becomes difficult to process a complicated shape, and the material and the die In this case, the friction holding effect and the friction reducing effect are insufficient, and cracks are likely to occur. Therefore, the final hydraulic pressure Pe is 3
0 kg / cm 2 or more. The hydraulic pressure pattern within the above range changes continuously or keeps constant so that there is no singular point of the hydraulic pressure, and the change of the hydraulic pressure does not decrease. . That is, the hydraulic pressure must be increased or kept constant within the above range, and must not be reduced. When a pattern in which the hydraulic pressure is reduced is added to the hydraulic pressure pattern, the friction holding effect and the friction reducing effect between the material and the mold are reduced, cracks are easily generated, and it becomes difficult to form an aluminum alloy plate. . For example, as the hydraulic pressure pattern, the hydraulic pressure P is continuously increased to the final hydraulic pressure Pe until the molding depth D becomes 0.8 De or more and less than De.
There is a type in which e is maintained to form a final forming depth De. When this hydraulic pattern is used, high formability can be obtained due to a sufficient friction holding effect and a friction reducing effect. Also,
In particular, in the case of a mold having a concave shape, the deformation speed increases due to the early contact between the concave portion and the material, and the SS mark is significantly reduced. The pattern of the hydraulic pressure P is 0.1 Pe until the molding depth D becomes 0.9 De or more and less than De.
The molding may be performed with the following hydraulic pressure, and thereafter, the hydraulic pressure P may be increased to the final hydraulic pressure Pe to perform molding to the final molding depth De. In particular, when the clearance between the punch and the die is large, in the case of a mold having extreme irregularities on the side wall of the punch, and when the material strength is high and wrinkles are likely to occur, increasing the liquid pressure from the beginning will cause wrinkles to grow. Or the flow of the material stops at the uneven part, and cracks occur.However, when this hydraulic pressure pattern is used, there is no suppression of wrinkles and the flow of the material, and high moldability is obtained, S-
The S mark can be reduced. The composition of the aluminum alloy sheet to be formed contains Mg in an amount of 2.0% by weight or more. M
When the g content is less than 2.0% by weight, the SS mark does not occur even if the hydraulic pressure pattern is not within the above range, and the strength as a member is low. And it cannot be used for applications such as inner plates. EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. Three types of Al-Mg alloys having Mg content and mechanical properties shown in Table 1 below are used as test materials, and have a width of 500 mm, a length of 800 mm, a depth of 50 mm, and a concave shape in the center. Using a hood outer model mold, the counter-hydraulic molding method is used under the condition that the SS mark with the viscosity of the rust preventive oil is 4 cSt / 40 ° C. and the strain rate is 1 × 10 −3 / sec. The test material was formed. The press used in this test was a double-acting hydraulic press, which was designed to have a maximum punch load of 1000 tons, a maximum wrinkle holding load of 400 tons, and a maximum pressure increase capacity of 240 kg / cm.
2 [Table 1] Table 2 below shows the results of molding tests performed under the above conditions with each of the hydraulic patterns 1 to 5 shown in FIG.
However, each hydraulic pressure pattern is as follows. Pattern 1 (Example): Equation 1 up to a molding depth of 0.8 De
While gradually increasing the hydraulic pressure so as to satisfy the conditions (1) and (2), and then forming the final hydraulic pressure P to the bottom dead center.
This is a pattern formed while holding e. Pattern 2 (Example): Within the range shown in Expressions 1 and 2, slightly increase the hydraulic pressure to a molding depth of 0.9 De, stop increasing the hydraulic pressure to 0.1 Pe, and increase the liquid pressure from 0.9 De to the bottom dead center. The pressure is sharply increased to the final hydraulic pressure Pe for molding. Pattern 3 (Comparative Example): A pattern formed by slightly increasing the liquid pressure almost to the bottom dead center and rapidly increasing the liquid pressure as it is. Pattern 4 (Comparative Example): From the initial stage of molding to the vicinity of the bottom dead center, slightly increase the hydraulic pressure within the range of Expressions 1 and 2 and set the final hydraulic pressure to 3
The pattern is less than 0 kg / cm 2 . Pattern 5 (Comparative Example): The hydraulic pressure is increased within the range shown by Formulas 1 and 2 to a molding depth of 0.4 De, and thereafter, the hydraulic pressure is rapidly continued from the molding depth of 0.4 De to 0.8 De. This is a pattern formed by increasing the final hydraulic pressure to the final hydraulic pressure Pe and maintaining the final hydraulic pressure until the bottom dead center. [Table 2] In Table 2, as for the cracks described in the evaluation column, ○ indicates that no crack occurred, and × indicates that crack occurred.
The SS mark was visually evaluated on a five-point scale for samples in which cracks did not occur, and a sample with remarkable SS mark generation was rated at 5 levels, and a sample without SS mark generation was rated as 1 level. Level, 1 and 2 levels are ○, 3 and 4 levels are Δ,
Five levels were evaluated as x. The strength was evaluated based on the material strength, and those having a strength of 190 N / mm 2 or more were rated as ○, and those less than 190 N / mm 2 were rated as x. As is apparent from Table 2 and FIG. 1, in Examples 1 to 3 of the present invention, the molded product had no cracks,
This is a good one in which the occurrence of S marks is suppressed. On the other hand, in Comparative Examples 4 to 9, since the hydraulic pattern was out of the scope of the claims of the present invention, cracks were generated in the molded product, or SS marks were generated. . In Comparative Example 6, the final hydraulic pressure of the hydraulic pressure pattern was 3
When it was less than 0 kg / cm 2 , cracks occurred. According to the method for counter pressure hydraulic forming of an aluminum alloy sheet according to the present invention, it is possible to prevent the occurrence of cracks in the molded product and to suppress the occurrence of SS marks.
The present invention has an excellent effect that a complicated shape can be formed for an aluminum alloy plate containing 2.0% by weight or more of Mg.
【図面の簡単な説明】
【図1】本発明の対向液圧成形方法を説明するグラフ図
である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph illustrating a facing hydraulic forming method of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 章仁 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (72)発明者 玉田 健二 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 平5−7943(JP,A) 特開 平8−90091(JP,A) 特開 昭57−44423(JP,A) 特開 平9−24424(JP,A) 実開 昭57−70724(JP,U) (58)調査した分野(Int.Cl.7,DB名) B21D 22/20 B21D 22/26 B21D 26/02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akihito Sato 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Kenji Tamada 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation ( 56) References JP-A-5-7943 (JP, A) JP-A-8-90091 (JP, A) JP-A-57-44423 (JP, A) JP-A-9-24424 (JP, A) 57-70724 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B21D 22/20 B21D 22/26 B21D 26/02
Claims (1)
Mg系アルミニウム合金板を対向液圧成形する方法にお
いて、最終液圧をPe、最終成形深さをDeとしたと
き、最終液圧Peを30kg/cm2以上とし、成形深
さDに対して液圧Pを、(20Pe)D/De−19P
e≦P≦(5Pe)D/(4De)及び0≦P≦Peの
関係を満たして減圧しないように変化させると共に、前
記液圧Pは成形深さDが0.9De以上De未満になる
まで0.1Pe以下の液圧で成形し、その後、液圧Pを
最終液圧Peまで上昇させて最終成形深さDeまで成形
することを特徴とするAl−Mg系アルミニウム合金板
の対向液圧成形方法。(57) [Claims 1] Al-containing at least 2.0% by weight of Mg.
In the method of opposing hydraulic forming of a Mg-based aluminum alloy plate, when the final hydraulic pressure is Pe and the final forming depth is De, the final hydraulic pressure Pe is 30 kg / cm 2 or more, and Pressure P is set to (20Pe) D / De-19P
satisfy the relation of e ≦ P ≦ (5Pe) D / (4De) and 0 ≦ P ≦ Pe with changing so as not to vacuum, before
The hydraulic pressure P is such that the molding depth D becomes 0.9 De or more and less than De.
Up to a hydraulic pressure of 0.1 Pe or less, and then increase the hydraulic pressure P
Increase to final hydraulic pressure Pe and mold to final molding depth De
Opposed hydraulic forming method of Al-Mg series aluminum alloy sheet, characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29163596A JP3483406B2 (en) | 1996-11-01 | 1996-11-01 | Counter-hydraulic forming method of Al-Mg based aluminum alloy sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29163596A JP3483406B2 (en) | 1996-11-01 | 1996-11-01 | Counter-hydraulic forming method of Al-Mg based aluminum alloy sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10137860A JPH10137860A (en) | 1998-05-26 |
JP3483406B2 true JP3483406B2 (en) | 2004-01-06 |
Family
ID=17771511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29163596A Expired - Fee Related JP3483406B2 (en) | 1996-11-01 | 1996-11-01 | Counter-hydraulic forming method of Al-Mg based aluminum alloy sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3483406B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2289201T3 (en) | 2003-04-08 | 2008-02-01 | Hydro Aluminium Deutschland Gmbh | SEMI-ELABORATED PRODUCT LAMINATED FROM AN ALUMINUM ALLOY. |
CN107262583A (en) * | 2017-07-12 | 2017-10-20 | 上海理工大学 | Ultra-large type thin plate curved surface part numerical control hydromechanical deep drawing manufacturing process |
-
1996
- 1996-11-01 JP JP29163596A patent/JP3483406B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10137860A (en) | 1998-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1007608B1 (en) | Lubrication system for hot forming | |
JP3483406B2 (en) | Counter-hydraulic forming method of Al-Mg based aluminum alloy sheet | |
RU2718370C1 (en) | Aluminum alloy and aerosol can from said alloy | |
JP2002282952A (en) | Method for press forming aluminum alloy panel molded product | |
JPH0938728A (en) | Method for press-drawing metallic plate | |
JP3144496B2 (en) | Aluminum plate material for forming and lubricant for forming aluminum | |
CN108118216A (en) | A kind of vacuum pump on automobile power assisted braking system housing 5754 aluminum alloy base materials and its production method | |
JPH06330077A (en) | Lubricant for cryogenic temperature working of aluminum and its alloy and method for cryogenic temperature working | |
JP3477546B2 (en) | Material press molding method using cereal powder suspension | |
JPH0890091A (en) | Method for forming al-mg alloy sheet with less generation of stretcher strain mark | |
JPH0584525A (en) | Method for pressing aluminum alloy plate | |
JP2799114B2 (en) | Aluminum alloy plate with excellent press workability | |
JP4962114B2 (en) | Frame part press molding method and vehicle frame part manufactured thereby | |
JPH0924424A (en) | Opposed hydraulic forming method of aluminum sheet | |
JPH08311625A (en) | Working method of aluminium-magnesium alloy excellent in formability | |
JP2500215B2 (en) | Thin steel sheet for enamel with good press wrinkle resistance | |
JP3765607B2 (en) | Method of forming aluminum or aluminum alloy plate | |
JP2010194587A (en) | Method for press drawing aluminum plate material | |
JP3866062B2 (en) | Stainless coated steel sheet with excellent formability and welding workability | |
JP2530908B2 (en) | Steel plate with excellent paint clarity | |
KR20040091285A (en) | Method for forming Al-Mg-Si aluminum alloy sheet | |
JPH0687029A (en) | Forming method excellent in deep drawing performance | |
JPH05337560A (en) | Thin plate excellent in drawing formability for press | |
JPH07103389B2 (en) | Aluminum alloy plate for automobile body panel | |
JP3138282B2 (en) | Aluminum alloy plate for automobile body panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071017 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081017 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081017 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091017 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |