JP3483394B2 - Air-fuel ratio control device for internal combustion engine - Google Patents
Air-fuel ratio control device for internal combustion engineInfo
- Publication number
- JP3483394B2 JP3483394B2 JP10589796A JP10589796A JP3483394B2 JP 3483394 B2 JP3483394 B2 JP 3483394B2 JP 10589796 A JP10589796 A JP 10589796A JP 10589796 A JP10589796 A JP 10589796A JP 3483394 B2 JP3483394 B2 JP 3483394B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- amount
- fuel ratio
- egr
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Exhaust-Gas Circulating Devices (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、内燃機関の空燃比
制御装置に関し、特にリーン空燃比燃焼とEGR制御と
の併用中に、空燃比を目標値に近づける制御技術に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control system for an internal combustion engine, and more particularly to a control technique for bringing the air-fuel ratio close to a target value during the combined use of lean air-fuel ratio combustion and EGR control.
【0002】[0002]
【従来の技術】近年、ガソリン機関等の火花点火式機関
においても燃焼室内に直接噴射して層状燃焼を行わせ、
以て大幅にリーン化された空燃比での燃焼を可能にし
て、排気浄化性能、燃費を大きく改善することが試みら
れている。また、吸気系に燃料を噴射供給する通常方式
の機関でも、空燃比をできる限りリーン化して燃焼させ
るようにしたものがある。2. Description of the Related Art In recent years, even in a spark ignition type engine such as a gasoline engine, direct injection into a combustion chamber is performed to cause stratified combustion,
Therefore, it has been attempted to enable combustion at a significantly leaner air-fuel ratio and greatly improve exhaust gas purification performance and fuel efficiency. Further, even in a normal type engine for injecting fuel into the intake system, there is one in which the air-fuel ratio is made as lean as possible for combustion.
【0003】一方、通常の車両用機関では、NOx浄化
対策として周知のように排気中の一部を吸気系に還流し
て燃焼温度を低減させることによりNOxを低減するE
GR装置を備えている。On the other hand, in a normal vehicle engine, as is well known as a NOx purification measure, NOx is reduced by recirculating a part of the exhaust gas to the intake system to reduce the combustion temperature.
It is equipped with a GR device.
【0004】[0004]
【発明が解決しようとする課題】上記リーン化された空
燃比で燃焼を行う機関で、該リーン空燃比燃焼中に前記
EGR制御を併用すると、EGRガス中に大量の空気が
含まれるため、大気から吸入された空気量の検出値のみ
に基づいて目標空燃比が得られるように燃料量を制御す
ると、実際の空燃比は目標空燃比より大幅にリーンされ
ることとなり、失火の発生等により運転不調を招くおそ
れがある。In the engine that burns at the lean air-fuel ratio, if the EGR control is also used during the lean air-fuel ratio combustion, a large amount of air is contained in the EGR gas. If the fuel amount is controlled so that the target air-fuel ratio is obtained only based on the detected value of the amount of air taken in from the engine, the actual air-fuel ratio will be significantly leaner than the target air-fuel ratio, and the engine will run due to misfiring. May cause upset.
【0005】この場合、排気中の特定成分、例えば酸素
の濃度を検出することにより空燃比をリニアに検出でき
る空燃比センサを設けて、検出された空燃比に基づいて
燃料量をフィードバック制御すれば、EGRガス中の空
気も含めた混合気の燃焼空燃比が検出されるので、定常
運転時は目標空燃比に制御することが可能である。しか
し、吸入空気量の検出は、スロットル弁をバイパスする
補助空気流量等も含めて検出する必要等のため、吸気系
の上流部、例えばエアクリーナの直後にエアフローメー
タを設置して検出しているため、過渡運転時には、該検
出される空気量はシリンダに吸入される空気量に対して
位相遅れを生じるため、前記空燃比センサによる空燃比
検出値に基づいたフィードバック制御では、目標空燃比
とのずれが大きくなりすぎる。In this case, if an air-fuel ratio sensor capable of linearly detecting the air-fuel ratio by detecting the concentration of a specific component in the exhaust gas, for example, oxygen, is provided and the fuel amount is feedback-controlled based on the detected air-fuel ratio. Since the combustion air-fuel ratio of the air-fuel mixture including air in the EGR gas is detected, it is possible to control to the target air-fuel ratio during steady operation. However, it is necessary to detect the intake air amount including the auxiliary air flow rate that bypasses the throttle valve, etc., so the air flow meter is installed upstream of the intake system, for example, immediately after the air cleaner. During the transient operation, the detected air amount causes a phase delay with respect to the air amount sucked into the cylinder. Therefore, in the feedback control based on the air-fuel ratio detection value by the air-fuel ratio sensor, the deviation from the target air-fuel ratio is caused. Is getting too big.
【0006】このため、EGRガス中の空気量をEGR
ガス量と目標空燃比とに基づいて算出し、前記吸入空気
量と合計した総空気量に対して、位相遅れ補償を行い、
該補償された空気量に対して目標空燃比となるように燃
料量を制御して空燃比のずれを抑制することが考えられ
る。しかし、EGRガスについては、EGRガス量が検
出されるEGR弁部からシリンダに至る間のEGRガス
量の位相遅れが、前記吸入空気量の位相遅れとは異なる
ため、吸入空気量とEGRガス量を合計した空気量に対
して吸入空気量の位相遅れに合わせた位相遅れ補正を行
って燃料量を設定しても、正しいシリンダ吸入空気量に
見合った燃料量が設定されないことになる。Therefore, the amount of air in the EGR gas is changed to EGR.
Calculated based on the gas amount and the target air-fuel ratio, with respect to the total air amount summed with the intake air amount, phase delay compensation is performed,
It is conceivable to control the fuel amount so that the target air-fuel ratio becomes the target air-fuel ratio with respect to the compensated air amount and suppress the deviation of the air-fuel ratio. However, regarding the EGR gas, since the phase delay of the EGR gas amount from the EGR valve portion where the EGR gas amount is detected to the cylinder is different from the phase delay of the intake air amount, the intake air amount and the EGR gas amount are Even if the fuel amount is set by performing the phase delay correction according to the phase delay of the intake air amount on the total air amount, the fuel amount corresponding to the correct cylinder intake air amount will not be set.
【0007】本発明は、このような様々の観点からなさ
れたもので、リーン空燃比燃焼とEGR制御とが併用さ
れている状態で、過渡時においても、目標空燃比とのず
れを抑制した良好な空燃比制御が行えるようにすること
を目的とする。The present invention has been made from various viewpoints as described above, and in a state where lean air-fuel ratio combustion and EGR control are used together, it is possible to suppress deviation from the target air-fuel ratio even during a transient state. The purpose is to enable various air-fuel ratio control.
【0008】[0008]
【課題を解決するための手段】このため、請求項1に係
る発明は図1に示すように、所定の機関運転条件で、排
気の一部をEGR弁を介して吸気系に還流するEGR制
御が行われると共に、理論空燃比よりリーンな混合気が
燃焼される内燃機関の空燃比制御装置において、大気か
ら吸入される空気の量を吸気系の所定の箇所で検出し、
該検出値に該検出箇所からシリンダまでの位相遅れに対
する補償を行ってシリンダに吸入される空気量を算出す
る吸入空気量算出手段と、前記EGR制御時に、EGR
弁からのEGRガス中の空気量に、該EGR弁からシリ
ンダまでの位相遅れに対する補償を行ってシリンダに吸
入されるEGRガス量を算出すると共に、排気通路に設
けた空燃比センサにより検出される空燃比の該空燃比セ
ンサから前記EGR弁までの排気伝達遅れ時間前の値
を、EGRガスの燃焼時における空燃比として算出し、
前記算出したEGRガス量と空燃比とを用いて、該EG
Rガス中の空気量を算出するEGRガス中空気量算出手
段と、前記大気からの吸入空気量とEGRガス中の空気
量とを合計した総空気量に対して機関に供給される燃料
量を、目標空燃比となるように算出する燃料量算出手段
と、を含んで構成したことを特徴とする。また、請求項
2に係る発明は、 請求項1の発明と同じく吸入空気量算
出手段を備えると共に、 前記EGR制御時に、EGR弁
からのEGRガス中の空気量に、該EGR弁からシリン
ダまでの位相遅れに対する補償を行ってシリンダに吸入
されるEGRガス量を算出すると共に、シリンダから前
記EGR弁に至るまでの排気の伝達遅れ時間前の制御空
燃比を、EGRガスの燃焼時における空燃比として算出
し、前記算出したEGRガス量と空燃比とを用いて、該
EGRガス中の空気量を算出するEGRガス中空気量算
出手段と、 前記大気からの吸入空気量とEGRガス中の
空気量とを合計した総空気量に対して機関に供給される
燃料量を、目標空燃比となるように算出する燃料量算出
手 段と、 を含んで構成したことを特徴とする。Therefore, as shown in FIG. 1, the invention according to claim 1 is an EGR control in which a part of exhaust gas is recirculated to an intake system via an EGR valve under a predetermined engine operating condition. Is performed, in the air-fuel ratio control device of the internal combustion engine in which the air-fuel mixture leaner than the stoichiometric air-fuel ratio is burned, the amount of air sucked from the atmosphere is detected at a predetermined position of the intake system,
Intake air amount calculating means for calculating the amount of air taken into the cylinder by compensating the detected value for the phase delay from the detected portion to the cylinder; and EGR during the EGR control.
The amount of air in the EGR gas from the valve is compensated for the phase delay from the EGR valve to the cylinder to calculate the amount of EGR gas sucked into the cylinder, and the amount of EGR gas in the exhaust passage is set.
Of the air-fuel ratio detected by the digitized air-fuel ratio sensor.
Value before the exhaust transmission delay time from the sensor to the EGR valve
Is calculated as the air-fuel ratio at the time of burning the EGR gas,
Using the calculated EGR gas amount and air-fuel ratio, the EG
EGR gas air amount calculation means for calculating the air amount in the R gas, and the fuel amount supplied to the engine with respect to the total air amount obtained by summing the intake air amount from the atmosphere and the air amount in the EGR gas. And a fuel amount calculation means for calculating the target air-fuel ratio. Also, the claims
The invention according to 2 is the same as the invention according to claim 1,
And an EGR valve is provided during the EGR control.
The amount of air in the EGR gas from the
Inject into the cylinder by compensating for the phase delay up to
The EGR gas amount to be calculated and
The control space before the exhaust transmission delay time up to the EGR valve
Calculates the fuel ratio as the air-fuel ratio when EGR gas is burned
Then, using the calculated EGR gas amount and air-fuel ratio,
EGR gas air amount calculation for calculating the air amount in EGR gas
The discharge means, the amount of intake air from the atmosphere and the EGR gas
Supply to the engine for the total amount of air
Fuel amount calculation to calculate the fuel amount to the target air-fuel ratio
Characterized by being configured to include a hand stage, the.
【0009】作用・効果
大気から吸入されシリンダに供給される空気量は、吸入
空気量の検出値に検出箇所からシリンダまでの位相遅れ
補償を施して求められ、EGRガス中に含まれてシリン
ダに供給される空気量は、EGR弁部のEGRガス中の
空気量にEGR弁からシリンダまでの位相遅れ補償を施
して求められる。[0009] The amount of air supplied to the cylinder is sucked from the operation and effect air is asked subjected to phase lag compensation to the cylinder from the detection position to the detection value of the intake air amount, is contained in the EGR gas into the cylinder The amount of air supplied is obtained by performing phase delay compensation from the EGR valve to the cylinder on the amount of air in the EGR gas of the EGR valve section.
【0010】このように、それぞれ大気からの吸入空気
量又はEGRガス中の空気量に、検出箇所又はEGR弁
部からシリンダまでの位相遅れに対する補償を独立して
行うことで、過渡時に、前記検出箇所又はEGR弁部に
おける空気量と、実際にシリンダに供給される空気量と
が相違する場合でも、シリンダに供給されるそれぞれの
空気量を実際値に近い値として求めることができる。As described above, the intake air amount from the atmosphere or the air amount in the EGR gas is independently compensated for the phase delay from the detection location or the EGR valve portion to the cylinder, so that the detection can be performed during the transition. Even when the amount of air at the location or the EGR valve portion and the amount of air actually supplied to the cylinder are different, the amount of each air supplied to the cylinder can be obtained as a value close to the actual value.
【0011】したがって、前記各空気量を合計したシリ
ンダに供給される総空気量に対して目標空燃比が得られ
るように燃料量を算出することにより、過渡時において
も空燃比を目標値に十分近づける良好な空燃比制御を行
うことができ、排気浄化性能、燃費性能を可及的に高め
ることができる。また、前記EGR弁からのEGRガス
中の空気量が、該EGRガス量と、空燃比検出値または
制御空燃比に基づいて算出される該EGRガスの燃焼時
の空燃比と、に基づいて算出される。 Therefore, by calculating the fuel amount so that the target air-fuel ratio can be obtained with respect to the total air amount supplied to the cylinder, which is the sum of the air amounts, the air-fuel ratio is sufficiently set to the target value even in the transient state. It is possible to perform good air-fuel ratio control that approaches the exhaust gas, and it is possible to improve exhaust gas purification performance and fuel efficiency performance as much as possible. In addition, the EGR gas from the EGR valve
The amount of air in the inside is the amount of EGR gas and the air-fuel ratio detection value or
During combustion of the EGR gas calculated based on the control air-fuel ratio
And the air-fuel ratio of
【0012】すなわち、理論空燃比で燃焼したときのE
GRガス中の空気量を理論的には0であるので、実際の
空燃比で燃焼したときのEGRガス中の空気量の割合が
定まり、以てEGRガス量とEGRガス燃焼時の空燃比
とに基づいてEGRガス中の空気量を求めることができ
る。 That is, E when burning at the stoichiometric air-fuel ratio
Since the air amount in the GR gas is theoretically 0, the ratio of the air amount in the EGR gas at the time of combustion at the actual air-fuel ratio is determined, and thus the EGR gas amount and the air-fuel ratio at the time of EGR gas combustion are determined. The air amount in the EGR gas can be calculated based on
【0013】また、請求項3に係る発明は、前記EGR
弁からのEGR量は、EGRガス導入部の吸気圧と排気
圧との差圧と、EGR弁の開度制御量と、に基づいて得
ることを特徴とする。作用・効果
EGR弁からのEGRガス量を直接検出することなく、
吸・排気圧の差圧と、EGR弁の開度制御量に基づいて
得ることができ、低コストで済む。Further, the invention according to claim 3 is the EGR.
The EGR amount from the valve is characterized in that it is obtained based on the differential pressure between the intake pressure and the exhaust pressure of the EGR gas introducing portion and the opening control amount of the EGR valve. Action / effect Without directly detecting the EGR gas amount from the EGR valve,
The cost can be obtained based on the differential pressure between the intake and exhaust pressures and the opening control amount of the EGR valve, and the cost is low.
【0014】[0014]
【0015】また、請求項4に係る発明は、機関運転状
態に基づいて目標トルクを設定し、該目標トルクに応じ
て機関に供給される空気量と燃料量とを同時に制御する
ことを特徴とする。作用・効果
目標トルクを設定して、空気量と燃料量とを同時に制御
するものに適用することにより、過渡運転時に所望の目
標トルクが設定されると、前記目標空燃比に良好に追従
させる空燃比制御を確保しつつ、それによって目標トル
クにも応答性良く追従して、良好な過渡運転性能を確保
することができる。The invention according to claim 4 is characterized in that a target torque is set based on the engine operating state, and the amount of air and the amount of fuel supplied to the engine are controlled simultaneously in accordance with the target torque. To do. By setting the action / effect target torque and applying it to the one for controlling the air amount and the fuel amount at the same time, when the desired target torque is set during the transient operation, the air-fuel ratio that follows the target air-fuel ratio favorably is obtained. While ensuring the fuel ratio control, it is possible to follow the target torque with good responsiveness, thereby ensuring good transient operation performance.
【0016】また、請求項5に係る発明は、前記大気か
らの吸入空気量又はEGRガス中の空気量に対してなさ
れる位相遅れ補償は、それぞれ検出箇所又はEGR弁部
における空気量の加重平均値を演算する処理であること
を特徴とする。作用・効果
検出箇所又はEGR弁部おける空気量の最新値と過去の
値とを適切な重み付けで加重平均することにより、位相
遅れを良好に補償した実際にシリンダへ供給される空気
量に近い空気量を得ることができる。Further, in the invention according to claim 5 , the phase delay compensation performed for the intake air amount from the atmosphere or the air amount in the EGR gas is a weighted average of the air amounts at the detection points or the EGR valve section, respectively. It is characterized in that it is a process of calculating a value. Air that is close to the actual amount of air supplied to the cylinder with well-compensated phase delay by weighted averaging the latest value and the past value of the amount of air at the action / effect detection location or EGR valve section with appropriate weighting. You can get the quantity.
【0017】また、請求項6に係る発明は、前記大気か
らの吸入空気量又はEGRガス中の空気量に対してなさ
れる位相遅れ補償は、それぞれ検出箇所又はEGR弁部
おける空気量の一次遅れ値を演算する処理であることを
特徴とする。作用・効果
検出箇所又はEGR弁部おける空気量の一次遅れ値を位
相遅れ補償値として演算することにより、より実際値に
近いシリンダへの供給空気量を得ることができる。Further, in the invention according to claim 6 , the phase delay compensation performed for the intake air amount from the atmosphere or the air amount in the EGR gas is the primary delay of the air amount at the detection location or the EGR valve portion, respectively. It is characterized in that it is a process of calculating a value. Operation / Effect By calculating the primary delay value of the air amount at the detection location or the EGR valve portion as the phase delay compensation value, the air supply amount to the cylinder that is closer to the actual value can be obtained.
【0018】また、請求項7に係る発明は、燃料が機関
のシリンダ内に直接供給されることを特徴とする。作用・効果
燃料を直接シリンダ内に噴射することにより、層状燃焼
が行われて空燃比を大幅にリーン化した燃焼が行われる
ため、EGRガス中の空気による影響が大きいので、特
に位相遅れ補償を各空気量で独立して行う効果が大き
い。In addition,Claim 7The invention according to
It is characterized in that it is directly supplied into the cylinder.Action / effect
Stratified combustion by injecting fuel directly into the cylinder
Is performed and combustion with a significantly lean air-fuel ratio is performed.
Therefore, the effect of air in the EGR gas is large, so
The effect of performing phase delay compensation independently for each air volume is large.
Yes.
【0019】[0019]
【発明の実施の形態】以下、本発明の実施形態を図に基
づいて説明する。図2は、本発明の一実施形態のシステ
ム構成 (後述する各制御の実施形態に共通) を示す。ア
クセル開度センサ1は、ドライバによって踏み込まれた
アクセルペダルの踏込み量を検出する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows a system configuration of one embodiment of the present invention (common to each control embodiment described later). The accelerator opening sensor 1 detects the depression amount of the accelerator pedal depressed by the driver.
【0020】クランク角センサ2は、単位クランク角毎
のポジション信号及び気筒行程位相差毎の基準信号を発
生し、前記ポジション信号の単位時間当りの発生数を計
測することにより、あるいは前記基準信号発生周期を計
測することにより、機関回転速度を検出できる。エアフ
ローメータ3は、機関4への吸入空気量 (単位時間当り
の吸入空気量=吸入空気流量) を検出する。The crank angle sensor 2 generates a position signal for each unit crank angle and a reference signal for each cylinder stroke phase difference, and measures the number of generated position signals per unit time, or the reference signal generation. The engine speed can be detected by measuring the cycle. The air flow meter 3 detects the amount of intake air to the engine 4 (intake air amount per unit time = intake air flow rate).
【0021】水温センサ5は、機関の冷却水温度を検出
する。機関4には、燃料噴射信号によって駆動し、燃料
を直接燃焼室内に噴射供給する燃料噴射弁6、燃焼室に
装着されて点火を行う点火栓7が設けられる。該燃焼室
内への直接噴射方式により、層状燃焼によるリーン化が
可能となり、空燃比を広範囲に可変制御することができ
る。また、機関4の吸気通路8には、スロットル弁9が
介装され、該スロットル弁9の開度を電子制御可能なス
ロットル弁制御装置10が備えられている。The water temperature sensor 5 detects the cooling water temperature of the engine. The engine 4 is provided with a fuel injection valve 6 that is driven by a fuel injection signal and directly injects fuel into the combustion chamber, and a spark plug 7 that is mounted in the combustion chamber and ignites. The direct injection method into the combustion chamber enables lean formation by stratified combustion, and the air-fuel ratio can be variably controlled over a wide range. A throttle valve 9 is provided in the intake passage 8 of the engine 4, and a throttle valve control device 10 capable of electronically controlling the opening of the throttle valve 9 is provided.
【0022】また、車速を検出する車速センサ11が設け
られる。前記各種センサ類からの検出信号は、コントロ
ールユニット12へ入力され、該コントロールユニット12
は、前記センサ類からの信号に基づいて検出される運転
状態に応じて前記スロットル弁制御装置10を介してスロ
ットル弁9の開度を制御し、前記燃料噴射弁6を駆動し
て燃料噴射量 (燃料供給量) を制御し、点火時期を設定
して該点火時期で前記点火栓7を点火させる制御を行
う。A vehicle speed sensor 11 for detecting the vehicle speed is also provided. Detection signals from the various sensors are input to the control unit 12 and the control unit 12
Controls the opening degree of the throttle valve 9 via the throttle valve control device 10 according to the operating state detected based on the signals from the sensors and drives the fuel injection valve 6 to drive the fuel injection amount. (Fuel supply amount) is controlled, ignition timing is set, and control is performed to ignite the spark plug 7 at the ignition timing.
【0023】また、機関1の排気通路21と吸気通路8と
を接続するEGR通路22と、該EGR通路22に介装され
るステップモータ等で構成されるEGR弁23とが設けら
れ、前記コントロールユニット12により、機関回転速度
Neと機関負荷 (燃料噴射量等で代表される) とで表さ
れる所定の領域でEGRを行い、目標EGR率 (EGR
量/吸入空気流量) が得られるようにEGR弁23の開度
を制御する。An EGR passage 22 connecting the exhaust passage 21 and the intake passage 8 of the engine 1 and an EGR valve 23 composed of a step motor or the like installed in the EGR passage 22 are provided, and the control is performed. The unit 12 performs EGR in a predetermined region represented by the engine speed Ne and the engine load (represented by the fuel injection amount, etc.) to obtain the target EGR rate (EGR
The opening degree of the EGR valve 23 is controlled so as to obtain (amount / intake air flow rate).
【0024】前記排気通路21には、排気中の特定成分例
えば酸素の濃度を検出して混合気の空燃比を検出する空
燃比センサ24が設けられる。まず、スロットル弁制御
を、図3のフローチャートに従って説明する。ステップ
1では、前記アクセル開度センサ1によって検出された
アクセル操作量 (アクセルペダル踏込み量) Accと、
車速センサ2によって車速VSPとに基づいて、車両の
目標駆動力を得るのに要求される機関の目標トルクtT
eを演算する。The exhaust passage 21 is provided with an air-fuel ratio sensor 24 which detects the concentration of a specific component in the exhaust gas such as oxygen to detect the air-fuel ratio of the air-fuel mixture. First, the throttle valve control will be described according to the flowchart of FIG. In step 1, the accelerator operation amount (accelerator pedal depression amount) Acc detected by the accelerator opening sensor 1 and
The target torque tT of the engine required to obtain the target driving force of the vehicle based on the vehicle speed VSP by the vehicle speed sensor 2
Calculate e.
【0025】ステップ2では、前記機関の目標トルクt
Teと、クランク角センサ2からの検出信号に基づいて
算出された機関回転速度Neとに基づいて、図示のよう
なマップからの検索等により、目標燃料量tQfを演算
する。ステップ3では、前記目標トルクtTeと、機関
回転速度Neとに基づいて、図示のようなマップからの
検索等により、目標空燃比tA/Fを演算する。In step 2, the target torque t of the engine is set.
Based on Te and the engine rotation speed Ne calculated based on the detection signal from the crank angle sensor 2, the target fuel amount tQf is calculated by searching a map as shown in the figure or the like. In step 3, the target air-fuel ratio tA / F is calculated based on the target torque tTe and the engine rotation speed Ne by searching a map as shown in the figure.
【0026】ステップ4では、前記目標燃料量tQf
と、前記目標空燃比tA/Fとを乗算して、シリンダに
吸入される目標空気量tQaを算出する。ステップ5で
は、前記機関回転速度Neと、前記目標空気量tQaと
に基づいて、図示のようなマップからの検索等により、
スロットル弁の目標開口面積tAaが演算する。In step 4, the target fuel amount tQf
And the target air-fuel ratio tA / F are multiplied to calculate the target air amount tQa taken into the cylinder. In step 5, based on the engine rotation speed Ne and the target air amount tQa, by a search from a map as shown, or the like,
The target opening area tAa of the throttle valve is calculated.
【0027】ステップ6では、前記目標開口面積tAa
が得られるスロットル弁の開度制御量tTVOを、図示
のようなマップからの検索等により演算する。ステップ
7では、このようにして求められた開度制御量tTVO
の信号をスロットル弁制御装置10に出力する。これによ
り、スロットル弁9が設定された開度tTVOに制御さ
れ、目標空気量が得られる。In step 6, the target opening area tAa is set.
The opening control amount tTVO of the throttle valve that obtains is calculated by searching a map as shown in the figure or the like. In step 7, the opening control amount tTVO thus obtained is obtained.
Is output to the throttle valve control device 10. As a result, the throttle valve 9 is controlled to the set opening degree tTVO and the target air amount is obtained.
【0028】次に、本発明に係る空燃比制御を、図4の
フローチャートに従って説明する。ステップ11では、前
記エアフローメータ3で検出された吸入空気量Q1 を読
み込む。ステップ12では、前記吸入空気量の検出値Q1
に対して、前記エアフローメータ3による検出箇所から
シリンダまでの位相遅れ補償を施して、シリンダに吸入
される空気量Q1 ’を算出する。Next, the air-fuel ratio control according to the present invention will be described with reference to the flowchart of FIG. In step 11, the intake air amount Q 1 detected by the air flow meter 3 is read. In step 12, the detected value Q 1 of the intake air amount
On the other hand, the phase lag compensation from the position detected by the air flow meter 3 to the cylinder is performed to calculate the air amount Q 1 ′ sucked into the cylinder.
【0029】具体的には、次の(1) 式のように吸入空気
量Q1 の最新の検出値と過去の値との加重平均値をシリ
ンダ吸入空気量Q1 ’として演算するか、(2)式のよう
に検出値Q1 の一次遅れ値をシリンダ吸入空気量Q1 ’
として演算する。
Q1 ’=Q1 ・x+Q1 ’(-1)・ (1−x) ・・・(1)
Q1 ’=Q1(-1) + (Q1 −Q1(-1) ) × (1−e-t/T) ・・・(2)
但し、xは1より小の正数,添字 (−1) は前回値、T
は時定数を示す。[0029] Specifically, either calculated as the following equation (1) the cylinder intake air quantity Q 1 a weighted average of the latest detection value and past values of the intake air quantity Q 1 as' ( 2) The first-order lag value of the detected value Q 1 is calculated by the formula 2) and the cylinder intake air amount Q 1 '
Calculate as. Q 1 '= Q 1 x x Q 1 ' (-1)・ (1-x) ・ ・ ・ (1) Q 1 '= Q 1 (-1) + (Q 1 −Q 1 (-1) ) × ( 1-e- t / T ) (2) where x is a positive number less than 1, subscript (-1) is the previous value, T
Indicates a time constant.
【0030】ステップ13では、機関運転状態 (機関回転
速度Ne,機関負荷例えば基本燃料噴射量TP ) に応じ
てEGRガスが導入される吸気通路部分の吸気圧と排気
圧との差圧を推定する。あるいは、これらの圧力を検出
するセンサを設けて検出値から差圧を求めてもよいが、
推定による方がセンサを設けなくてよいので低コストで
済む。In step 13, the differential pressure between the intake pressure and the exhaust pressure in the intake passage where EGR gas is introduced is estimated according to the engine operating state (engine speed Ne, engine load such as basic fuel injection amount T P ). To do. Alternatively, a sensor for detecting these pressures may be provided to obtain the differential pressure from the detected value,
The estimation does not require a sensor, so that the cost is low.
【0031】ステップ14では、前記差圧とEGR弁の開
度制御量とに基づいてEGR弁からのEGRガス量QE
を推定する。ステップ15では、前記推定されたEGR弁
からのEGRガス量QE と、該EGRガスの燃焼時にお
ける空燃比とに基づいて、該EGRガス中の空気量Q2
を算出する。ここで、EGRガスの燃焼時における空燃
比は、簡易には現在の制御空燃比 (目標空燃比) を用れ
ばよく、またシリンダからEGR弁までの排気 (EGR
ガス) の伝達遅れ時間を考慮して、該遅れ時間前の制御
空燃比を用いれば、より高精度に空気量を検出すること
ができる。In step 14, the EGR gas amount Q E from the EGR valve is calculated based on the differential pressure and the EGR valve opening control amount.
To estimate. In step 15, based on the estimated EGR gas amount Q E from the EGR valve and the air-fuel ratio at the time of combustion of the EGR gas, the air amount Q 2 in the EGR gas is increased.
To calculate. Here, the current control air-fuel ratio (target air-fuel ratio) may be simply used as the air-fuel ratio at the time of combustion of the EGR gas, and the exhaust from the cylinder to the EGR valve (EGR valve)
If the control air-fuel ratio before the delay time is used in consideration of the transmission delay time of (gas), the air amount can be detected with higher accuracy.
【0032】前記制御空燃比を用いたEGRガス中の空
気量Q2 の演算式を次に示す。
Q2 =QE × (λ−1) /λ λは空気過剰率
=QE × (制御空燃比−理論空燃比) /制御空燃比 ・・・(3)
ステップ16では、前記EGR弁からのEGRガス中の空
気量Q2 に、EGR弁からシリンダまでの位相遅れに対
する補償を行って、シリンダに吸入されるEGRガス中
の空気量Q2 ’を算出する。An arithmetic expression of the air amount Q 2 in the EGR gas using the control air-fuel ratio is shown below. Q 2 = Q E × (λ -1) / λ λ is the excess air ratio = Q E × - In (control air stoichiometric air-fuel ratio) / control the air-fuel ratio (3) Step 16, from the EGR valve The air amount Q 2 in the EGR gas is compensated for the phase delay from the EGR valve to the cylinder, and the air amount Q 2 ′ in the EGR gas sucked into the cylinder is calculated.
【0033】具体的には、吸入空気量の場合と同様、次
の(4) 式のようにEGR弁部の空気量Q2 の最新の推定
値と過去の値との加重平均値をシリンダに供給されるE
GRガス中の空気量Q2 ’として演算するか、あるいは
(5) 式のようにQ2 の一次遅れ値をQ2 ’として演算す
る。
Q2 ’=Q2 ・y+Q2 ’(-1)・ (1−y) ・・・(4)
Q2 ’=Q2(-1) + (Q2 −Q2(-1) ) × (1−e-t/T1) ・・・(5)
但し、yは1より小の正数,添字 (−1) は前回値、T
1は時定数を示す。Specifically, as in the case of the intake air amount, the weighted average value of the latest estimated value and the past value of the air amount Q 2 of the EGR valve is stored in the cylinder as shown in the following equation (4). E supplied
Calculate as air volume Q 2 'in GR gas, or
(5) the first-order lag value Q 2 'is calculated as Q 2' as equation. Q 2 '= Q 2・ y + Q 2 ' (-1)・ (1-y) ・ ・ ・ (4) Q 2 '= Q 2 (-1) + (Q 2 -Q 2 (-1) ) × ( 1-e- t / T1 ) (5) where y is a positive number less than 1, subscript (-1) is the previous value, T
1 indicates a time constant.
【0034】ここで、加重平均値演算における重みy
と、一次遅れ値演算における時定数Tとは、EGR弁6
からシリンダまで容積 (固定値) 及びEGRガス量 (変
数) によって決まるのでEGRガス量 (EGR率) に応
じて演算又はマップからの検索により求めた値を用い
る。ステップ17では、前記大気から吸入されシリンダに
供給される空気量Q1 ’とシリンダに供給されるEGR
ガス中の空気量Q2 ’とを、合計して、シリンダに供給
される総空気量Q’を算出する。Here, the weight y in the weighted average value calculation
And the time constant T in the first-order lag value calculation are the EGR valve 6
Since it is determined from the volume (fixed value) to the cylinder and the EGR gas amount (variable) from the cylinder to the cylinder, the value obtained by calculation or search from the map is used according to the EGR gas amount (EGR rate). In step 17, the amount of air Q 1 'inhaled from the atmosphere and supplied to the cylinder and the EGR supplied to the cylinder.
The air amount Q 2 'in the gas is summed up to calculate the total air amount Q'supplied to the cylinder.
【0035】ステップ18では、前記シリンダに供給され
る総空気量Q’ (単位時間当りの流量) に対して目標空
燃比が得られるように燃料噴射弁6からの燃料噴射量T
I を次式により算出する。
TI =kQ’・COEF+TS ・・・(6)
但し、kは定数、COEFは水温等に基づく各種補正係
数、TS はバッテリ電圧により設定される無効噴射パル
ス分である。In step 18, the fuel injection amount T from the fuel injection valve 6 is set so that the target air-fuel ratio can be obtained with respect to the total air amount Q '(flow rate per unit time) supplied to the cylinder.
I is calculated by the following formula. T I = kQ ′ · COEF + T S (6) where k is a constant, COEF is various correction factors based on water temperature, etc., and T S is an invalid injection pulse amount set by the battery voltage.
【0036】このようにすれば、大気からシリンダに吸
入される空気量Q1 ’とEGRガス中の空気量Q2 ’と
を、それぞれ検出箇所又はEGR弁での空気量Q1 又は
Q2に対してシリンダまでの位相遅れに対して補償を行
って求める構成としたため、各シリンダ供給空気量
Q1 ’、Q2 ’を高精度に求めることができ、以てリー
ン空燃比制御とEGR制御を併用した場合の過渡運転時
においても、空燃比を高精度に目標空燃比に追従させる
ことができ、排気浄化性能と燃費とを可及的に向上させ
ることができる。In this way, the air amount Q 1 'intaken into the cylinder from the atmosphere and the air amount Q 2 ' in the EGR gas are set as the air amount Q 1 or Q 2 at the detection point or the EGR valve, respectively. On the other hand, the configuration is such that the phase delay up to the cylinder is compensated for, so that each cylinder supply air amount Q 1 ′, Q 2 ′ can be obtained with high accuracy, and thus lean air-fuel ratio control and EGR control are performed. The air-fuel ratio can be made to follow the target air-fuel ratio with high accuracy even during transient operation when used together, and exhaust purification performance and fuel consumption can be improved as much as possible.
【0037】第2の実施形態に係る空燃比制御を、図5
のフローチャートに示す。前記図4と異なるのは、EG
R弁からのEGRガス中の空気量を算出する際に、空燃
比センサ24の検出値を用いることである。即ち、ステッ
プ14でEGR弁からのEGRガス量QE を推定した後、
ステップ21で空燃比センサ24により検出される排気中の
空燃比を読み込み、ステップ15で前記(3) 式によってE
GRガス中の空気量Q2 ’を算出する際に、制御空燃比
の項に前記空燃比検出値を代入して使用する。このよう
にすれば、EGRガスの空燃比としてを実際に検出され
た高精度な値を用いるため、EGRガス中の空気量Q2
の算出精度が向上する。なお、実際には、空燃比センサ
で検出される部分の排気とEGR弁6からのEGRガス
とでは、排気の伝達遅れがあるため、該伝達遅れ前に空
燃比センサで検出された空燃比を用いれば、より精度が
向上する。FIG. 5 shows the air-fuel ratio control according to the second embodiment.
It is shown in the flowchart. The difference from FIG. 4 is that the EG
The value detected by the air-fuel ratio sensor 24 is used when calculating the amount of air in the EGR gas from the R valve. That is, after estimating the EGR gas amount Q E from the EGR valve in step 14,
In step 21, the air-fuel ratio in the exhaust gas detected by the air-fuel ratio sensor 24 is read, and in step 15, E
When calculating the air amount Q 2 'in the GR gas, the air-fuel ratio detection value is substituted for the term of the control air-fuel ratio and used. With this configuration, since the highly accurate value that is actually detected is used as the air-fuel ratio of the EGR gas, the air amount Q 2 in the EGR gas is increased.
The calculation accuracy of is improved. Actually, since there is a transmission delay of the exhaust gas between the exhaust gas detected by the air-fuel ratio sensor and the EGR gas from the EGR valve 6, the air-fuel ratio detected by the air-fuel ratio sensor before the transmission delay is If used, the accuracy is further improved.
【0038】なお、本実施形態のように目標トルクを設
定するものでは、過渡運転性能をより高めることができ
るが、本発明は、目標トルクを設定しないものに適用し
ても十分効果的である。また、目標空燃比を可変制御す
るもの、特に直接燃料噴射式により空燃比を広範囲に可
変制御するものにおいて、実際の空燃比を可変される目
標空燃比に高精度に追従させることができる点で特に有
利であるが、空燃比の制御範囲が限られたものに適用し
ても十分効果的である。It should be noted that although the one in which the target torque is set as in this embodiment can further improve the transient operation performance, the present invention is sufficiently effective even when applied to the one in which the target torque is not set. . Further, in the case of variably controlling the target air-fuel ratio, particularly in the case of variably controlling the air-fuel ratio by a direct fuel injection system, the actual air-fuel ratio can be made to follow the variable target air-fuel ratio with high accuracy. Although it is particularly advantageous, it is sufficiently effective when applied to a device having a limited air-fuel ratio control range.
【図1】本発明の構成・機能を示すブロック図。FIG. 1 is a block diagram showing the configuration and functions of the present invention.
【図2】本発明の一実施形態のシステム構成を示す図。FIG. 2 is a diagram showing a system configuration of an embodiment of the present invention.
【図3】同上実施形態のスロットル弁制御ルーチンを示
すフローチャート。FIG. 3 is a flowchart showing a throttle valve control routine of the above embodiment.
【図4】第1の実施形態に係る空燃比制御ルーチンを示
すフローチャート。FIG. 4 is a flowchart showing an air-fuel ratio control routine according to the first embodiment.
【図5】第2の実施形態に係る空燃比制御ルーチンを示
すフローチャート。FIG. 5 is a flowchart showing an air-fuel ratio control routine according to a second embodiment.
2 クランク角センサ 3 エアフローメータ 4 機関 6 燃料噴射弁 9 スロットル弁 10 スロットル弁制御装置 11 車速センサ 12 コントロールユニット 21 排気通路 22 EGR通路 23 EGR弁 2 crank angle sensor 3 Air flow meter 4 institutions 6 Fuel injection valve 9 Throttle valve 10 Throttle valve control device 11 Vehicle speed sensor 12 Control unit 21 Exhaust passage 22 EGR passage 23 EGR valve
フロントページの続き (56)参考文献 特開 平8−61112(JP,A) 特開 平6−2597(JP,A) 特開 平5−187288(JP,A) 特開 平9−21340(JP,A) 特開 平5−99048(JP,A) 特開 平9−242595(JP,A) 特開 平1−290940(JP,A) 特開 昭60−237139(JP,A) (58)調査した分野(Int.Cl.7,DB名) F02D 41/00 - 45/00 Continuation of the front page (56) Reference JP-A-8-61112 (JP, A) JP-A-6-2597 (JP, A) JP-A-5-187288 (JP, A) JP-A-9-21340 (JP , A) JP 5-99048 (JP, A) JP 9-242595 (JP, A) JP 1-290940 (JP, A) JP 60-237139 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F02D 41/00-45/00
Claims (7)
R弁を介して吸気系に還流するEGR制御が行われると
共に、理論空燃比よりリーンな混合気が燃焼される内燃
機関の空燃比制御装置において、 大気から吸入される空気の量を吸気系の所定の箇所で検
出し、該検出値に該検出箇所からシリンダまでの位相遅
れに対する補償を行ってシリンダに吸入される空気量を
算出する吸入空気量算出手段と、 前記EGR制御時に、EGR弁からのEGRガス中の空
気量に、該EGR弁からシリンダまでの位相遅れに対す
る補償を行ってシリンダに吸入されるEGRガス量を算
出すると共に、排気通路に設けた空燃比センサにより検
出される空燃比の該空燃比センサから前記EGR弁まで
の排気伝達遅れ時間前の値を、EGRガスの燃焼時にお
ける空燃比として算出し、前記算出したEGRガス量と
空燃比とを用いて、該EGRガス中の空気量を算出する
EGRガス中空気量算出手段と、 前記大気からの吸入空気量とEGRガス中の空気量とを
合計した総空気量に対して機関に供給される燃料量を、
目標空燃比となるように算出する燃料量算出手段と、 を含んで構成したことを特徴とする内燃機関の空燃比制
御装置。1. A portion of exhaust gas is EG under predetermined engine operating conditions.
In an air-fuel ratio control device for an internal combustion engine in which EGR control is performed to recirculate to the intake system via an R valve, and an air-fuel mixture leaner than the stoichiometric air-fuel ratio is burned, the amount of air taken in from the atmosphere is controlled by the intake system. Intake air amount calculation means for detecting at a predetermined position and calculating the amount of air taken into the cylinder by compensating the detected value for the phase delay from the detected position to the cylinder; and during the EGR control, from the EGR valve The amount of air in the EGR gas is compensated for the phase delay from the EGR valve to the cylinder, and the amount of EGR gas sucked into the cylinder is calculated.
The air-fuel ratio sensor installed in the exhaust passage.
From the air-fuel ratio sensor of the emitted air-fuel ratio to the EGR valve
The value before the exhaust transmission delay time of
Calculated as the air-fuel ratio, and the calculated EGR gas amount and
Using the air-fuel ratio, the EGR gas air amount calculating means for calculating the air amount in the EGR gas, and the total air amount obtained by summing the intake air amount from the atmosphere and the air amount in the EGR gas The amount of fuel supplied to the engine
An air-fuel ratio control device for an internal combustion engine, comprising: a fuel amount calculation means that calculates a target air-fuel ratio.
R弁を介して吸気系に還流するEGR制御が行われると
共に、理論空燃比よりリーンな混合気が燃焼される内燃
機関の空燃比制御装置において、 大気から吸入される空気の量を吸気系の所定の箇所で検
出し、該検出値に該検出箇所からシリンダまでの位相遅
れに対する補償を行ってシリンダに吸入される空気量を
算出する吸入空気量算出手段と、 前記EGR制御時に、EGR弁からのEGRガス中の空
気量に、該EGR弁からシリンダまでの位相遅れに対す
る補償を行ってシリンダに吸入されるEGRガス量を算
出すると共に、シリンダから前記EGR弁に至るまでの
排気の伝達遅れ時間前の制御空燃比を、EGRガスの燃
焼時における空燃比として算出し、前記 算出したEGR
ガス量と空燃比とを用いて、該EGRガス中の空気量を
算出するEGRガス中空気量算出手段と、 前記大気からの吸入空気量とEGRガス中の空気量とを
合計した総空気量に対して機関に供給される燃料量を、
目標空燃比となるように算出する燃料量算出手段と、 を含んで構成したことを特徴とする内燃機関の空燃比制
御装置 。2. A portion of exhaust gas is EG under predetermined engine operating conditions.
When EGR control is performed to recirculate to the intake system via the R valve
Both are internal combustion that burns a leaner mixture than the stoichiometric air-fuel ratio
In an air-fuel ratio control system for an engine, the amount of air taken in from the atmosphere is detected at a specified point in the intake system.
The phase delay from the detection point to the cylinder
The amount of air taken into the cylinder is compensated for by
Intake air amount calculating means for calculating and the air in the EGR gas from the EGR valve during the EGR control.
To the phase delay from the EGR valve to the cylinder
The amount of EGR gas drawn into the cylinder is calculated by
From the cylinder to the EGR valve
The control air-fuel ratio before the exhaust transmission delay time is set to the
EGR calculated as the air-fuel ratio during firing
By using the gas amount and the air-fuel ratio, the air amount in the EGR gas can be calculated.
An EGR gas air amount calculating means for calculating the intake air amount from the atmosphere and the EGR gas air amount;
The amount of fuel supplied to the engine with respect to the total amount of total air
An air-fuel ratio control of an internal combustion engine, comprising: a fuel amount calculation means for calculating so as to obtain a target air-fuel ratio.
Your device .
ス導入部の吸気圧と排気圧との差圧と、EGR弁の開度
制御量と、に基づいて得ることを特徴とする請求項1ま
たは請求項2に記載の内燃機関の空燃比制御装置。3. EGR amount from the EGR valve, according to claim, wherein the differential pressure between the intake pressure and the exhaust pressure of the EGR gas introduction portion, and the opening control amount of the EGR valve, that may be based on the 1
Alternatively, the air-fuel ratio control device for an internal combustion engine according to claim 2 .
し、該目標トルクに応じて機関に供給される空気量と燃
料量とを同時に制御することを特徴とする請求項1〜請
求項3のいずれか1つに記載の内燃機関の空燃比制御装
置。 4. Based on the engine operating state to set the target torque, claim 1請, characterized in that at the same time controlling the air amount and the fuel amount supplied to the engine in response to the target torque
The air-fuel ratio control device for an internal combustion engine according to any one of claim 3 .
中の空気量に対してなされる位相遅れ補償は、それぞれ
検出箇所又はEGR弁部における空気量の加重平均値を
演算する処理であることを特徴とする請求項1〜請求項
4のいずれか1つに記載の内燃機関の空燃比制御装置。 5. A phase-lag compensation made to the amount of intake air amount or an EGR gas from the atmosphere, it is a process of calculating a weighted average value of the air amount in each detection point or EGR valve unit Claim 1 to Claim characterized by
4. The air-fuel ratio control device for an internal combustion engine according to any one of 4 above.
中の空気量に対してなされる位相遅れ補償は、それぞれ
検出箇所又はEGR弁部おける空気量の一次遅れ値を演
算する処理であることを特徴とする請求項1〜請求項5
のいずれか1つに記載の内燃機関の空燃比制御装置。 6. The phase lag compensation made to the amount of intake air amount or an EGR gas from the atmosphere, it is a process for calculating the first-order lag value of the respective detection points or EGR valve unit definitive amount of air Claim 1-Claim 5 characterized by
5. An air-fuel ratio control device for an internal combustion engine according to any one of 1.
ことを特徴とする請求項1〜請求項6のいずれか1つに
記載の内燃機関の空燃比制御装置。 7. The air-fuel ratio control apparatus according to any one of claims 1 to 6 in which the fuel is characterized in that it is supplied directly into the cylinder of the engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10589796A JP3483394B2 (en) | 1996-04-25 | 1996-04-25 | Air-fuel ratio control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10589796A JP3483394B2 (en) | 1996-04-25 | 1996-04-25 | Air-fuel ratio control device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09287510A JPH09287510A (en) | 1997-11-04 |
JP3483394B2 true JP3483394B2 (en) | 2004-01-06 |
Family
ID=14419693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10589796A Expired - Fee Related JP3483394B2 (en) | 1996-04-25 | 1996-04-25 | Air-fuel ratio control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3483394B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3557928B2 (en) * | 1998-12-22 | 2004-08-25 | トヨタ自動車株式会社 | Internal combustion engine having lean NOx catalyst |
JP2006291871A (en) * | 2005-04-12 | 2006-10-26 | Honda Motor Co Ltd | Controller of internal combustion engine |
CN104487690B (en) * | 2012-07-18 | 2017-09-29 | 日产自动车株式会社 | Internal combustion engine |
EP2924272A4 (en) * | 2012-11-26 | 2015-12-09 | Toyota Motor Co Ltd | Control device of internal combustion engine |
KR102406117B1 (en) * | 2016-12-14 | 2022-06-07 | 현대자동차 주식회사 | Apparatus and method for controlling fuel injection |
CN115288865B (en) * | 2022-08-10 | 2024-01-16 | 潍柴动力股份有限公司 | EGR flow obtaining method and device |
-
1996
- 1996-04-25 JP JP10589796A patent/JP3483394B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09287510A (en) | 1997-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3521632B2 (en) | Control device for internal combustion engine | |
JPH1122533A (en) | Control device for direct injection spark ignition internal combustion engine | |
EP0924420B1 (en) | Torque controller for internal combustion engine | |
US6773374B2 (en) | Brake negative pressure control apparatus and method, and engine control unit for internal combustion engine | |
JP3467455B2 (en) | Air-fuel ratio estimator for each cylinder of internal combustion engine | |
JP3284395B2 (en) | Throttle valve control device for internal combustion engine | |
JP3445500B2 (en) | Idle rotation learning control device for electronically controlled throttle internal combustion engine | |
JP3483394B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3303274B2 (en) | Control device for electronically controlled throttle internal combustion engine | |
JP3504067B2 (en) | Engine control device | |
JP3892071B2 (en) | Fuel supply control device for internal combustion engine | |
JP3843492B2 (en) | Engine intake control device | |
JP3061277B2 (en) | Air-fuel ratio learning control method and device | |
JP3536596B2 (en) | Fuel injection control device for direct injection spark ignition type internal combustion engine | |
JP3511849B2 (en) | Engine intake control device | |
JP3331118B2 (en) | Throttle valve control device for internal combustion engine | |
JPH06264808A (en) | Control device for engine | |
JP3511807B2 (en) | Engine intake control device | |
JPH1162658A (en) | Control device for internal combustion engine | |
JPH1136926A (en) | Cylinder injection type engine | |
JPH10184408A (en) | Intake control device for engine | |
JP3617714B2 (en) | In-cylinder fuel control system | |
JP4529306B2 (en) | Engine actual torque calculation device | |
JPH1162674A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH1018918A (en) | Exhaust gas reflux control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |