[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3478561B2 - Sputter deposition method - Google Patents

Sputter deposition method

Info

Publication number
JP3478561B2
JP3478561B2 JP12423393A JP12423393A JP3478561B2 JP 3478561 B2 JP3478561 B2 JP 3478561B2 JP 12423393 A JP12423393 A JP 12423393A JP 12423393 A JP12423393 A JP 12423393A JP 3478561 B2 JP3478561 B2 JP 3478561B2
Authority
JP
Japan
Prior art keywords
sputtering
film
power
substrate
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12423393A
Other languages
Japanese (ja)
Other versions
JPH06330305A (en
Inventor
敦士 山上
智 高木
信行 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12423393A priority Critical patent/JP3478561B2/en
Publication of JPH06330305A publication Critical patent/JPH06330305A/en
Application granted granted Critical
Publication of JP3478561B2 publication Critical patent/JP3478561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学部材や電子部材に用
いられる薄膜のスパッタ成膜技術に関し、更に詳しくは
対向ターゲット式スパッタ成膜方法の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film sputter film forming technique used for optical members and electronic members, and more particularly to improvement of a facing target type sputter film forming method.

【0002】[0002]

【従来の技術】各種材料の薄膜化手法の一つとしてスパ
ッタ方法は知られ、用途に応じて種々の改良がなされて
おり、マグネトロンスパッタ方法等多くの提案がある。
その中でも、特開昭57−158380等で公知の対向
ターゲット式スパッタ成膜方法は、高速・低温の成膜が
可能であり、更に、磁性材料にも適用できるものとして
注目されている。従来の対向ターゲット式スパッタ成膜
方法を図を参照しながら説明する。図1は対向ターゲッ
ト式スパッタ装置の構成を示した模式図である。
2. Description of the Related Art A sputtering method is known as one of thinning methods for various materials, and various improvements have been made according to the application, and many proposals such as a magnetron sputtering method have been made.
Among them, the facing target type sputtering film forming method known in Japanese Patent Laid-Open No. 57-158380 or the like is capable of high speed and low temperature film forming, and is attracting attention as being applicable to a magnetic material. A conventional facing target type sputtering film forming method will be described with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of a facing target type sputtering apparatus.

【0003】この装置では、真空槽1内に絶縁性の電極
支持台2A,2Bを介して一対の対向するカソード電極
3A,3Bが配置され、カソード電極上にはスパッタ面
が空間を隔てて平行に対向するようにターゲット4A,
4Bが保持されている。カソード電極の回りには、カソ
ード電極の側部と真空槽1との間で放電が発生しないよ
うにアースシールド5A,5Bが配置されており、カソ
ード電極にはスパッタ電力供給源6A,6Bが接続され
ている。そして、真空槽1の回りにはターゲットのスパ
ッタ面に垂直方向の磁界Hを電極間に印加するための磁
界コイル7が配置されている。スパッタ膜を形成する基
板8はターゲット4A,4Bの側方に配置された基板ホ
ルダー9に保持され、基板温度制御手段(図示せず)に
より所望する温度に保たれる。この装置を使用した場合
の対向ターゲット式スパッタ成膜は以下のように行われ
る。真空槽1を真空排気手段10によって高真空まで排
気した後、ガス供給手段11によってアルゴンなどのス
パッタガスを真空槽に導入し、数ミリトールから数十ミ
リトールの圧力に維持する。スパッタ電力供給源より同
程度のスパッタ電力をカソード電極3A,3Bに供給
し、磁界コイル7により前述の磁界Hを印加することに
より電極間にプラズマが発生し、イオン化したスパッタ
ガスによりターゲットはスパッタされ、所望する温度に
保たれた基板8上にスパッタ粒子が堆積し薄膜が形成さ
れる。
In this apparatus, a pair of facing cathode electrodes 3A and 3B are arranged in a vacuum chamber 1 via insulating electrode supporting bases 2A and 2B, and sputtering surfaces are parallel to each other with a space on the cathode electrodes. Target 4A to face
4B is held. Ground shields 5A and 5B are arranged around the cathode electrode so as not to generate discharge between the side portion of the cathode electrode and the vacuum chamber 1, and sputter power supply sources 6A and 6B are connected to the cathode electrode. Has been done. A magnetic field coil 7 for applying a magnetic field H perpendicular to the sputtering surface of the target between the electrodes is arranged around the vacuum chamber 1. The substrate 8 on which the sputtered film is formed is held by a substrate holder 9 arranged on the side of the targets 4A and 4B and kept at a desired temperature by a substrate temperature control means (not shown). Opposing target type sputtering film formation using this apparatus is performed as follows. After the vacuum chamber 1 is evacuated to a high vacuum by the vacuum evacuation unit 10, a sputtering gas such as argon is introduced into the vacuum chamber by the gas supply unit 11 to maintain a pressure of several millitorr to several tens of millitorr. A similar amount of sputtering power is supplied from the sputtering power supply source to the cathode electrodes 3A and 3B, and the magnetic field coil 7 applies the above-mentioned magnetic field H to generate plasma between the electrodes, and the target is sputtered by the ionized sputtering gas. The sputtered particles are deposited on the substrate 8 kept at a desired temperature to form a thin film.

【0004】この対向ターゲット式スパッタ成膜方法に
は以下に述べる特徴があることが知られている。
It is known that the facing target type sputtering film forming method has the following features.

【0005】1.ターゲットのスパッタ面に垂直に磁界
が印加されているので、対向するターゲット間の空間内
に高エネルギー電子が閉じ込められ、スパッタガスのイ
オン化が促進されてスパッタ速度が高くなり、高速の膜
形成ができる。
1. Since a magnetic field is applied perpendicularly to the sputtering surface of the target, high-energy electrons are confined in the space between the opposing targets, the ionization of the sputtering gas is promoted, the sputtering speed is increased, and high-speed film formation is possible. .

【0006】2.基板はターゲットの側方に配置されて
いるので、イオンや電子の衝突が少なく、ターゲットか
らの熱輻射も小さく、基板の成膜時の温度上昇が小さい
ので、低温の膜形成ができる。
2. Since the substrate is arranged on the side of the target, collisions of ions and electrons are small, heat radiation from the target is small, and the temperature rise during film formation of the substrate is small, so that a low temperature film formation can be performed.

【0007】3.磁界はターゲットの垂直方向に印加し
てあるので、ターゲットに磁性材料を用いても有効に磁
界が作用し、高速の膜形成ができる。
3. Since the magnetic field is applied in the vertical direction of the target, even if a magnetic material is used for the target, the magnetic field effectively acts and high-speed film formation can be performed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
対向ターゲット式スパッタ成膜法では、基板はターゲッ
トの側方に配置されているので、通常のスパッタ成膜法
のような基板がターゲットに対向してる場合よりも、基
板表面近傍のプラズマ密度は小さくなり、膜表面へのイ
オンの入射量も減少する。その結果、いわゆるプラズマ
ダメージは低減する反面、膜表面に到達したスパッタ粒
子に付与されるアシストイオンエネルギーも低減し、堆
積粒子マイグレーションが不十分になり、堆積膜の結晶
性や緻密性などの膜質が悪化し易いという問題がある。
However, in the conventional facing target type sputter deposition method, since the substrate is arranged on the side of the target, the substrate does not face the target as in the ordinary sputter deposition method. The plasma density in the vicinity of the substrate surface is smaller than that in the case where the number of ions is incident on the film surface. As a result, while so-called plasma damage is reduced, assist ion energy applied to the sputtered particles reaching the film surface is also reduced, the migration of deposited particles becomes insufficient, and the film quality such as crystallinity and denseness of the deposited film is reduced. There is a problem that it tends to get worse.

【0009】次に、スパッタガスに酸素や窒素などの反
応性ガスを混入して、対向ターゲット式スパッタ成膜法
で反応性スパッタを行う場合、基板表面近傍のプラズマ
密度は小さいので、プラズマで励起された活性な反応性
ガスの基板表面への供給は不足し、酸化、窒化などの反
応が不十分になり易く、高品質の化合物薄膜を安定して
得られないという問題がある。
Next, when reactive gas such as oxygen or nitrogen is mixed in the sputter gas and reactive sputtering is performed by the facing target type sputtering film forming method, the plasma density in the vicinity of the substrate surface is small, so that it is excited by plasma. There is a problem in that the supplied active reactive gas is insufficiently supplied to the substrate surface, reactions such as oxidation and nitriding are likely to be insufficient, and a high-quality compound thin film cannot be stably obtained.

【0010】また、スパッタ電力として高周波電力を用
いる場合は、周波数は通常13.56MHzであるの
で、膜表面へのイオンの入射量は少ないが、通常のマグ
ネトロンスパッタ成膜法で13.56MHzの高周波電
力を用いる場合と同様に、100eV程度のエネルギー
を持った高エネルギーイオンを入射する場合があり、膜
質が悪化し易いという問題がある。
When a high frequency power is used as the sputtering power, the frequency is usually 13.56 MHz, so the amount of ions incident on the film surface is small, but a high frequency of 13.56 MHz is obtained by the ordinary magnetron sputtering film forming method. Similar to the case of using electric power, high-energy ions having energy of about 100 eV may be incident, and there is a problem that the film quality is likely to deteriorate.

【0011】本発明の目的は、良い膜質の堆積膜を形成
し、高品質な化合物薄膜を形成するとともに、反応性ス
パッタの応答性を向上したスパッタ成膜方法を提供する
ことにある。
An object of the present invention is to provide a sputtering film forming method which forms a deposited film of good film quality, forms a high quality compound thin film, and improves the response of reactive sputtering.

【0012】[0012]

【課題を解決するための手段】本発明は、上述した従来
技術の問題点を解決すべく本発明者らが鋭意研究を重ね
て完成に至ったものである。本発明の好ましい態様は次
のとおりのものである。
The present invention has been completed by the inventors of the present invention through intensive research to solve the above-mentioned problems of the prior art. Preferred embodiments of the present invention are as follows.

【0013】即ち、対向ターゲット式スパッタ成膜法に
おいて、ターゲットに供給するスパッタ電力として、3
0〜300MHzの高周波電力及び直流電力を供給する
ことを特徴とするものである。
That is, in the facing target type sputtering film forming method, the sputtering power supplied to the target is 3
It is characterized by supplying high-frequency power and DC power of 0 to 300 MHz.

【0014】本発明によれば、スパッタ電力として従来
の13.56MHzよりも高い周波数の電力をターゲッ
トに供給するので、プラズマ中の電子とスパッタガス分
子との衝突確率は大きくなりターゲット間のプラズマ密
度は従来よりも増加し、前述した対向ターゲット式スパ
ッタ成膜法の特徴である高速成膜性を更に向上でき、ま
た、反応性スパッタを行う場合はプラズマ中の電子と反
応性ガスとの衝突確率も大きくなるので反応性ガスの励
起確率は高くなる。
According to the present invention, as the sputtering power, a power having a frequency higher than the conventional 13.56 MHz is supplied to the target, so that the probability of collision between electrons in the plasma and the sputtering gas molecules is increased, and the plasma density between the targets is increased. Is higher than that of the conventional method, and the high-speed film-forming property, which is the feature of the facing target type sputtering film-forming method described above, can be further improved. In the case of reactive sputtering, the collision probability of electrons in plasma and reactive gas is increased. , The probability of excitation of the reactive gas also increases.

【0015】また、周波数が高くなると、理由は明らか
ではないが、放電領域が広がり、ターゲット側方に配置
された基板表面近傍のプラズマ密度は従来よりも増加す
る。そして、周波数が高くなると、イオンが基板表面に
形成されるプラズマのシース電界の変動に十分に追随で
きなくなるため、基板に入射するイオンのエネルギー値
は小さくなり、かつエネルギー分布は鋭くなり、堆積膜
への高エネルギーイオンによるプラズマダメージは低減
する。その結果、基板表面近傍のプラズマ密度が増加す
ることにより堆積膜への入射イオン量が増加してもプラ
ズマダメージを与えることなく堆積粒子にソフトなアシ
ストエネルギーを付与できる。また、反応性スパッタを
行う場合は、反応性ガスの基板表面近傍での励起確率は
高くなる。
Although the reason is not clear when the frequency becomes higher, the discharge region expands, and the plasma density near the surface of the substrate disposed on the side of the target increases more than before. Then, when the frequency becomes high, the ions cannot sufficiently follow the fluctuation of the sheath electric field of the plasma formed on the substrate surface, so that the energy value of the ions incident on the substrate becomes small and the energy distribution becomes sharp, so that the deposited film Damage to the plasma due to high energy ions is reduced. As a result, even if the amount of ions incident on the deposited film increases due to an increase in the plasma density near the substrate surface, soft assist energy can be applied to the deposited particles without causing plasma damage. When reactive sputtering is performed, the probability of exciting the reactive gas near the substrate surface is high.

【0016】図2のグラフは、図1の装置を用いてアル
ゴンプラズマを生成した場合の、基板表面近傍のプラズ
マ密度の電力周波数依存性、および基板へ入射してくる
Arイオンの入射エネルギー値の電力周波数依存性の一
例を示したものである。放電ガスにアルゴンを用い、放
電圧力は3ミリトールとし、ターゲット間に磁束密度が
280ガウスになるように垂直方向の磁界を印加し、各
々のカソード電極に1KWの高周波電力を供給し、プラ
ズマ密度は基板表面近傍でプローブ法により計測した。
また、基板への入射イオンエネルギーは基板ホルダー中
央部にオリフィスを設け、基板ホルダー裏面に静電レン
ズ型のイオンエネルギーアナライザーを配置して計測
し、Arイオンの入射量が最大になるエネルギー値をA
rイオンの入射エネルギー値とした。図2のグラフから
明らかなように電力周波数の増加とともに、基板表面近
傍のプラズマ密度は増加する傾向を示し、入射エネルギ
ー値は減少する傾向を示した。特に、30MHz以上で
プラズマ密度は急激に大きくなり、入射エネルギー値は
急激に小さくなった。
The graph of FIG. 2 shows the power frequency dependence of the plasma density in the vicinity of the substrate surface and the incident energy value of Ar ions incident on the substrate when argon plasma is generated using the apparatus of FIG. It shows an example of power frequency dependence. Argon was used as the discharge gas, the discharge pressure was 3 mTorr, a vertical magnetic field was applied between the targets so that the magnetic flux density was 280 gauss, and high-frequency power of 1 KW was supplied to each cathode electrode, and the plasma density was It was measured by the probe method near the surface of the substrate.
The ion energy incident on the substrate is measured by providing an orifice in the center of the substrate holder and arranging an electrostatic lens type ion energy analyzer on the back surface of the substrate holder.
The incident energy value of r ion was used. As is clear from the graph of FIG. 2, as the power frequency increased, the plasma density near the substrate surface tended to increase, and the incident energy value tended to decrease. In particular, the plasma density rapidly increased and the incident energy value rapidly decreased at 30 MHz or higher.

【0017】本発明においては、高周波電力の周波数は
30〜300MHzが好適である。即ち、周波数が30
MHz以上になると前述したように放電が広がり、ター
ゲット側方に配置された基板表面近傍のプラズマ密度は
飛躍的に増加する。ところが、周波数を高くしていくと
周波数の増加に伴い高周波電力を伝送ロスが増加して電
力利用効率が悪くなり、また、整合回路などの回路設計
も困難になるという問題もあるので、実用上300MH
z程度が周波数の上限となる。
In the present invention, the frequency of the high frequency power is preferably 30 to 300 MHz. That is, the frequency is 30
When the frequency is higher than MHz, the discharge spreads as described above, and the plasma density near the surface of the substrate arranged on the side of the target increases dramatically. However, as the frequency increases, the transmission loss of high-frequency power increases as the frequency increases, and the power utilization efficiency deteriorates, and there is also the problem that circuit design such as matching circuits becomes difficult. 300 MH
The z is the upper limit of the frequency.

【0018】また、電力周波数が30MHz以上になる
と、ターゲットに発生するセルフバイアス電位は急激に
減少するので、効率よくターゲットをスパッタするため
には、スパッタ電力として高周波電力とともに直流電力
も供給する必要がある。
When the power frequency is 30 MHz or more, the self-bias potential generated in the target sharply decreases. Therefore, in order to efficiently sputter the target, it is necessary to supply DC power as well as high frequency power as sputter power. is there.

【0019】本発明に用いる対向ターゲット式スパッタ
装置は、スパッタ電力供給源が図3に示すように、高周
波電源12と整合回路13及び高周波カットフィルター
14と直流電源15で構成されていればよく、従って、
このスパッタ電力供給源を備えておれば図1に示すよう
な従来の構成のものでもよい。
In the facing target type sputtering apparatus used in the present invention, the sputtering power supply source may be composed of a high frequency power source 12, a matching circuit 13, a high frequency cut filter 14 and a DC power source 15, as shown in FIG. Therefore,
As long as the sputtering power supply source is provided, the conventional configuration as shown in FIG. 1 may be used.

【0020】本発明においてターゲットとしては主とし
て金属が用いられ、例えば、元素周期表の1A〜7A,
8,1B,2Bに属する金属元素や、3B,4Bに属す
る半金属・半導体元素で構成されたものが用いられる。
なお、Siなど抵抗率の高いものは不純物をドープする
ことにより導電性を高めて用いられる。
In the present invention, a metal is mainly used as a target. For example, 1A to 7A in the periodic table of elements,
A metal element belonging to 8, 1B, 2B or a semimetal / semiconductor element belonging to 3B, 4B is used.
It should be noted that a material having a high resistivity such as Si is used by increasing the conductivity by doping an impurity.

【0021】本発明において反応性ガスとしては、任意
の公知の物が選択的に使用できる。例えば、窒化膜を形
成する場合であれば、窒素、アンモニア等の窒素原子を
含むガス、酸化膜を形成する場合であれば、酸素、酸化
窒素、酸化二窒素、一酸化炭素、二酸化炭素等の酸素原
子を含むガス、炭化膜を形成する場合であれば、メタ
ン、エタン、エチレン、プロパン等の炭素原子を含むガ
ス、水素化膜を形成する場合であれば、水素、水蒸気等
の水素原子を含むガス、フッ化膜を形成する場合であれ
ば、フッ素、フッ化水素、四フッ化珪素、六フッ化二珪
素、等のフッ素原子を含むガス等が挙げられる。
In the present invention, any known gas can be selectively used as the reactive gas. For example, in the case of forming a nitride film, a gas containing nitrogen atoms such as nitrogen and ammonia, and in the case of forming an oxide film, oxygen, nitrogen oxide, dinitrogen oxide, carbon monoxide, carbon dioxide, etc. A gas containing an oxygen atom, a gas containing a carbon atom such as methane, ethane, ethylene, or propane when forming a carbonized film, and a hydrogen atom such as hydrogen or water vapor when forming a hydrogenated film. In the case of forming a gas containing a fluorine film, a gas containing a fluorine atom such as fluorine, hydrogen fluoride, silicon tetrafluoride, and disilicon hexafluoride can be used.

【0022】[0022]

【実施例】以下、具体的な実施例を挙げて本発明を更に
詳しく説明するが、本発明はこれらの実施例に限定され
るものではない。
The present invention will be described in more detail with reference to specific examples, but the present invention is not limited to these examples.

【0023】実施例1 図1に示した構成の対向ターゲット式スパッタ装置を用
い、ターゲットとして純鉄を、基板としてガラス基板を
用い、ターゲット間の中央部の磁束密度が300ガウス
になるように磁界を印加し、スパッタ電力として各ター
ゲットに13.56〜300MHzの高周波電力2kW
の直流電力0.3kWを供給し、スパッタガスとしてア
ルゴンを用いて圧力を1ミリトールに維持し、50℃に
保ったガラス基板上に純鉄膜を形成し、純鉄膜の飽和磁
束密度と保磁力を測定した。但し、上記には従来の方法
である13.56MHzの高周波電力の場合をも含めて
記載した。
Example 1 A facing target sputtering apparatus having the structure shown in FIG. 1 was used, pure iron was used as a target, a glass substrate was used as a substrate, and a magnetic field was set so that the magnetic flux density in the central portion between the targets was 300 gauss. Is applied to each target as the sputtering power, and the high-frequency power of 13.56 to 300 MHz is 2 kW.
DC power of 0.3 kW is supplied, the pressure is maintained at 1 mTorr using argon as a sputtering gas, and a pure iron film is formed on the glass substrate kept at 50 ° C. The magnetic force was measured. However, the above description includes the case of the high-frequency power of 13.56 MHz which is the conventional method.

【0024】図4は、測定した飽和磁束密度と保磁力の
スパッタ電力周波数依存性を示したグラフである。同図
において、〇印と●印は本発明のスパッタ成膜法で形成
した純鉄膜の飽和磁束密度と保磁力に相当し、△印と▲
印は従来のスパッタ成膜法で形成した純鉄膜の飽和磁束
密度と保磁力に相当する。同図から明らかなように、本
発明のスパッタ成膜法で形成した純鉄膜は、飽和磁束密
度は2(T)以上と従来法で形成したものよりも高く、
保磁力は20(Oe)以下と従来法で形成したものより
も飛躍的に低い値であり、本発明のスパッタ成膜法で、
磁気ヘッド材料等に好適な優れた軟磁性特性を持つ純鉄
膜を形成することができた。
FIG. 4 is a graph showing the dependence of the measured saturation magnetic flux density and coercive force on the sputtering power frequency. In the figure, the ◯ mark and the ● mark correspond to the saturation magnetic flux density and the coercive force of the pure iron film formed by the sputtering film forming method of the present invention, and the Δ mark and the ▲ mark
The marks correspond to the saturation magnetic flux density and the coercive force of the pure iron film formed by the conventional sputtering film forming method. As is clear from the figure, the pure iron film formed by the sputtering film forming method of the present invention has a saturation magnetic flux density of 2 (T) or higher, which is higher than that formed by the conventional method.
The coercive force is 20 (Oe) or less, which is a value significantly lower than that formed by the conventional method.
It was possible to form a pure iron film having excellent soft magnetic properties suitable for magnetic head materials and the like.

【0025】比較例1 実施例1と比較するために、スパッタ電力以外は前述し
た実施例1の成膜条件を用い、スパッタ電力として各タ
ーゲットに2.3kWの直流電力だけを供給して従来法
によって純鉄膜を形成し、飽和磁束密度と保磁力を測定
したところ、飽和磁束密度は1.3(T)であり、保磁
力は170(Oe)であった。
Comparative Example 1 In order to compare with Example 1, the film forming conditions of Example 1 described above were used except the sputtering power, and only 2.3 kW of DC power was supplied to each target as the sputtering power. When a pure iron film was formed by and the saturation magnetic flux density and the coercive force were measured, the saturated magnetic flux density was 1.3 (T) and the coercive force was 170 (Oe).

【0026】比較例2 また、実施例1と比較するために、スパッタ電力以外は
前述した実施例1の成膜条件を用い、スパッタ電力とし
て各ターゲットに13.56MHzの高周波電力2.3
kWだけを供給して従来法によって純鉄膜を形成し、飽
和磁束密度と保磁力を測定したところ、飽和磁束密度は
1.5(T)であり、保磁力は140(Oe)であっ
た。
Comparative Example 2 Further, in order to compare with Example 1, the film forming conditions of Example 1 described above were used except for the sputtering power, and 13.56 MHz high frequency power 2.3 was applied to each target as the sputtering power.
A pure iron film was formed by a conventional method by supplying only kW, and the saturation magnetic flux density and the coercive force were measured. The saturation magnetic flux density was 1.5 (T) and the coercive force was 140 (Oe). .

【0027】実施例2 図1に示した構成の対向ターゲット式スパッタ装置を用
い、ターゲットとして純鉄を、基板としてガラス基板を
用い、ターゲット間の中央部の磁束密度が450ガウス
になるように磁界を印加し、スパッタ電力として各ター
ゲットに100MHzの高周波電力1.5kWと0.5
kWの直流電力を供給し、スパッタガスとしてアルゴン
に窒素を20%混入して用い、成膜圧力を0.8ミリト
ールに維持し、60℃に保ったガラス基板上に窒素の反
応性スパッタにより窒化鉄膜を形成し、窒化鉄膜の飽和
磁束密度と保磁力を測定したところ、飽和磁束密度は
2.6(T)と非常に高い値を示し、また、保磁力は4
(Oe)と非常に低い値を示した。また、スパッタ電力
以外は前述した成膜条件を用い、スパッタ電力として各
ターゲットに250MHzの高周波電力1.5kWと
0.5kWの直流電力を供給して反応性スパッタにより
窒化鉄膜を形成し、飽和磁束密度と保磁力を測定したと
ころ、飽和磁束密度は2.7(T)と100MHzの場
合よりも更に高い値を示し、保磁力は4(Oe)と非常
に低い値を示し、本発明のスパッタ成膜法で、磁気ヘッ
ド材料等に好適な優れた軟磁性特性を持つ窒化鉄膜を形
成することができた。
Example 2 Using a facing target type sputtering apparatus having the structure shown in FIG. 1, using pure iron as a target and a glass substrate as a substrate, a magnetic field was set so that the magnetic flux density in the central portion between the targets was 450 gauss. Is applied, and high frequency power of 100 MHz and 0.5 kW of 100 MHz is applied to each target as sputtering power.
Nitrogen was reactively sputtered on a glass substrate maintained at 60 ° C by supplying DC power of kW, using argon mixed with 20% of nitrogen as a sputtering gas, maintaining a film forming pressure of 0.8 mTorr. When an iron film was formed and the saturation magnetic flux density and coercive force of the iron nitride film were measured, the saturation magnetic flux density showed a very high value of 2.6 (T), and the coercive force was 4
(Oe), which was a very low value. In addition, except the sputtering power, the above-mentioned film forming conditions are used, and high frequency power of 250 MHz of 1.5 kW and DC power of 0.5 kW are supplied to each target as sputtering power to form an iron nitride film by reactive sputtering and saturate. When the magnetic flux density and the coercive force were measured, the saturated magnetic flux density was 2.7 (T), which was a higher value than that at 100 MHz, and the coercive force was 4 (Oe), which was a very low value. By the sputtering film formation method, it was possible to form an iron nitride film having excellent soft magnetic properties suitable for magnetic head materials and the like.

【0028】比較例3 実施例2と比較するために、スパッタ電力以外は前述し
た実施例2の成膜条件を用い、スパッタ電力として各タ
ーゲットに13.56MHzの高周波電力1.5kWと
0.5kWの直流電力を供給して反応性スパッタにより
窒化鉄膜を形成し、飽和磁束密度と保磁力を測定したと
ころ、飽和磁束密度は0.9(T)であり、保磁力は1
20(Oe)であった。
Comparative Example 3 In order to compare with Example 2, the film forming conditions of Example 2 described above were used except for the sputtering power, and the high frequency power of 13.56 MHz was 1.5 kW and 0.5 kW for each target as the sputtering power. When an iron nitride film was formed by reactive sputtering while supplying the DC power of, and the saturation magnetic flux density and coercive force were measured, the saturation magnetic flux density was 0.9 (T) and the coercive force was 1
It was 20 (Oe).

【0029】実施例3 図1に示した構成の対向ターゲット式スパッタ装置を用
い、ターゲットとしてアルミニウムを、基板としてガラ
ス基板を用い、ターゲット間の中央部の磁束密度が10
0ガウスになるように磁界を印加し、スパッタ電力とし
て周波数が105MHzの高周波電力2kWと直流電力
0.6kWを各ターゲットに供給し、スパッタガスとし
てアルゴンに酸素を50%混入して用い、成膜圧力を1
ミリトールに維持し、60℃に保ったガラス基板上に酸
素の反応性スパッタにより酸化アルミニウム膜を形成し
たところ、堆積速度は0.5(nm/S)であった。ま
た、こうして形成された膜の光学特性を調べたところ、
波長230nm以上の紫外光及び可視光に対する吸収は
無く、波長250nm及び550nmの光に対しての膜
の屈折率はそれぞれ1.8及び1.72であり、サファ
イヤ(Al23 )の光学特性に近い緻密な酸化アルミ
ニウム膜が得られた。
Example 3 A facing target sputtering apparatus having the structure shown in FIG. 1 was used, aluminum was used as a target, a glass substrate was used as a substrate, and the magnetic flux density in the central portion between the targets was 10
A magnetic field was applied so as to obtain 0 Gauss, 2 kW of high frequency power having a frequency of 105 MHz and 0.6 kW of direct current power were supplied to each target as sputtering power, and 50% oxygen was mixed with argon as a sputtering gas to form a film. Pressure 1
When an aluminum oxide film was formed by reactive sputtering of oxygen on a glass substrate maintained at 60 ° C. and maintained at millitorr, the deposition rate was 0.5 (nm / S). Moreover, when the optical characteristics of the film thus formed were examined,
There is no absorption for ultraviolet light and visible light with wavelengths of 230 nm or more, and the refractive indices of the films for light with wavelengths of 250 nm and 550 nm are 1.8 and 1.72, respectively, and the optical characteristics of sapphire (Al 2 O 3 ). As a result, a dense aluminum oxide film was obtained.

【0030】比較例4 実施例3と比較するために、スパッタ電力以外は前述し
た実施例3の成膜条件を用い、スパッタ電力として周波
数が13.56MHzの高周波電力2kWと直流電力
0.6kWを各ターゲットに供給して反応性スパッタに
より酸化アルミニウム膜を形成したところ、堆積速度は
0.3(nm/S)であり、本発明のスパッタ成膜法の
堆積速度の6割であった。また、光学特性は、約350
nm以下の紫外光に対して吸収のある膜であり、波長2
50nm及び550nmの光に対しての屈折率はそれぞ
れ1.7及び1.65と本発明のスパッタ成膜法のもの
より小さく、膜の緻密性が低下しているものと観察され
た。
Comparative Example 4 In order to compare with Example 3, the film forming conditions of Example 3 described above were used except for the sputtering power, and as the sputtering power, a high frequency power 2 kW having a frequency of 13.56 MHz and a direct current power 0.6 kW were used. When an aluminum oxide film was formed on each target by reactive sputtering to form an aluminum oxide film, the deposition rate was 0.3 (nm / S), which was 60% of the deposition rate in the sputter deposition method of the present invention. The optical characteristics are about 350
It is a film that absorbs UV light of nm or less, and has a wavelength of 2
It was observed that the refractive indexes for light of 50 nm and 550 nm were 1.7 and 1.65, respectively, which were smaller than those of the sputter deposition method of the present invention, and the denseness of the film was lowered.

【0031】実施例4 図1に示した構成の対向ターゲット式スパッタ装置を用
い、ターゲットとしてアンチモンをドープして導電性を
高めたシリコンを、基板としてガラス基板を用い、ター
ゲット間の中央部の磁束密度が800ガウスになるよう
に磁界を印加し、スパッタ電力として周波数が150M
Hzの高周波電力1.3kWと直流電力0.5kWを各
ターゲットに供給し、スパッタガスとしてアルゴンに窒
素を50%混入して用い、成膜圧力を3ミリトールに維
持し、40℃に保ったガラス基板上に窒素の反応性スパ
ッタにより窒化ケイ素膜を形成した。こうして形成され
た膜をRBS(ラザフォード後方散乱)で分析すると、
Si原子:N原子の比率は1:1.3であり、完全なS
34 にかなり近い良質の窒化ケイ素膜が得られた。
また、HFに対するエッチング速度を測定したところ4
9%フッ化水素水溶液に対して0.3nm/sであり、
後述する従来の形成法による窒化ケイ素膜より一桁低い
値が得られ、緻密な窒化ケイ素膜が得られたことがわか
った。
Example 4 Using the facing target type sputtering apparatus having the structure shown in FIG. 1, silicon having antimony doped to enhance conductivity as a target, a glass substrate as a substrate, and a magnetic flux in the central portion between the targets are used. A magnetic field is applied so that the density becomes 800 gauss, and the frequency is 150 M as sputter power.
High-frequency power of 1.3 Hz and direct-current power of 0.5 kW were supplied to each target, argon was used as a sputtering gas with 50% of nitrogen mixed, and the film formation pressure was maintained at 3 mTorr and glass kept at 40 ° C. A silicon nitride film was formed on the substrate by reactive sputtering of nitrogen. When the film thus formed is analyzed by RBS (Rutherford backscattering),
The ratio of Si atom: N atom is 1: 1.3, and the complete S
A good quality silicon nitride film which is very close to i 3 N 4 was obtained.
Also, when the etching rate against HF was measured, it was 4
0.3 nm / s for 9% hydrogen fluoride aqueous solution,
It was found that a value that was an order of magnitude lower than that of the silicon nitride film formed by the conventional forming method described later was obtained, and that a dense silicon nitride film was obtained.

【0032】比較例5 実施例4と比較するために、スパッタ電力以外は前述し
た実施例4の成膜条件を用い、スパッタ電力として周波
数が13.56MHzの高周波電力1.3kWと直流電
力0.5kWを各ターゲットに供給して反応性スパッタ
により窒化ケイ素膜を形成したところ、Si原子:N原
子の比率は1:1.22であり、本発明の形成法の窒化
ケイ素膜と比べると窒化反応不足の膜であった。また、
49%フッ化水素水溶液に対してのエッチング速度は
3.2nm/sであった。
Comparative Example 5 In order to compare with Example 4, the film forming conditions of Example 4 described above were used except for the sputtering power, and the sputtering power had a high frequency power of 1.3 kW with a frequency of 13.56 MHz and a DC power of 0. When 5 kW was supplied to each target to form a silicon nitride film by reactive sputtering, the ratio of Si atoms: N atoms was 1: 1.22, which was higher than that of the silicon nitride film formed by the method of the present invention. It was a scarce film. Also,
The etching rate for a 49% hydrogen fluoride aqueous solution was 3.2 nm / s.

【0033】[0033]

【発明の効果】本発明のスパッタ成膜法によれば、堆積
膜にプラズマダメージを与えることなく堆積粒子にソフ
トなアシストエネルギーを付与でき、高品質な堆積膜の
形成が可能となった。また、反応性スパッタの反応性を
向上することができ、高品質な化合物薄膜の形成が可能
となった。
According to the sputter film forming method of the present invention, soft assist energy can be applied to deposited particles without plasma damage to the deposited film, and high quality deposited film can be formed. In addition, the reactivity of the reactive sputtering can be improved, and a high quality compound thin film can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】対向ターゲット式スパッタ装置の構成模式図で
ある。
FIG. 1 is a schematic diagram of a configuration of a facing target type sputtering apparatus.

【図2】プラズマ密度と入射イオンエネルギーの電力周
波数依存性を示したグラフである。
FIG. 2 is a graph showing the power frequency dependence of plasma density and incident ion energy.

【図3】本発明のスパッタ成膜法に用いられるスパッタ
電力供給源の構成模式図である。
FIG. 3 is a schematic configuration diagram of a sputtering power supply source used in the sputtering film forming method of the present invention.

【図4】飽和磁束密度と保磁力のスパッタ電力周波数依
存性を示したグラフである。
FIG. 4 is a graph showing the dependence of saturation magnetic flux density and coercive force on sputtering power frequency.

【符号の説明】[Explanation of symbols]

1 真空槽 2A,2B 電極支持台 3A,3B カソード電極 4A,4B ターゲット 5A,5B アースシールド 6A,6B スパッタ電力供給源 7 磁界コイル 8 基板 9 基板ホルダー 10 真空排気手段 11 ガス供給手段 12 高周波電源 13 整合回路 14 高周波カットフィルター 15 直流電源 1 vacuum tank 2A, 2B electrode support 3A, 3B cathode electrode 4A, 4B target 5A, 5B Earth shield 6A, 6B Sputter power supply source 7 Magnetic field coil 8 substrates 9 Board holder 10 Evacuation means 11 Gas supply means 12 High frequency power supply 13 Matching circuit 14 High frequency cut filter 15 DC power supply

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−157511(JP,A) 特開 昭63−140077(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 14/34 C23C 14/44 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-57-157511 (JP, A) JP-A-63-140077 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C23C 14/34 C23C 14/44

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 対面させたターゲットの側方に基板を配
置し、ターゲット間に磁界をその対向方向に印加してス
パッタし、基板上に薄膜を形成する対向ターゲット式ス
パッタ成膜方法において、ターゲットにスパッタ電力と
して30〜300MHzの高周波電力及び直流電力を供
給することを特徴とするスパッタ成膜方法。
1. A facing target type sputtering film forming method for forming a thin film on a substrate by arranging a substrate on a side of a facing target and applying a magnetic field between the targets in a direction opposite to each other to form a thin film on the substrate. A high-frequency power of 30 to 300 MHz and a DC power are supplied as a sputtering power to the sputtering film forming method.
【請求項2】 スパッタガスに反応性ガスを混入して反
応性スパッタにより基板上に化合物薄膜を形成すること
を特徴とする請求項1記載のスパッタ成膜方法。
2. The sputtering film forming method according to claim 1, wherein a reactive gas is mixed in the sputtering gas to form a compound thin film on the substrate by reactive sputtering.
JP12423393A 1993-05-26 1993-05-26 Sputter deposition method Expired - Lifetime JP3478561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12423393A JP3478561B2 (en) 1993-05-26 1993-05-26 Sputter deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12423393A JP3478561B2 (en) 1993-05-26 1993-05-26 Sputter deposition method

Publications (2)

Publication Number Publication Date
JPH06330305A JPH06330305A (en) 1994-11-29
JP3478561B2 true JP3478561B2 (en) 2003-12-15

Family

ID=14880275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12423393A Expired - Lifetime JP3478561B2 (en) 1993-05-26 1993-05-26 Sputter deposition method

Country Status (1)

Country Link
JP (1) JP3478561B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3391944B2 (en) * 1995-07-06 2003-03-31 キヤノン株式会社 Method of forming oxide thin film
JP3840735B2 (en) * 1996-04-12 2006-11-01 旭硝子株式会社 Manufacturing method of oxide film
WO2002000960A1 (en) * 2000-06-29 2002-01-03 Sanyo Sinkuu Kougyou Co., Ltd Magnetron sputtering device
JP5178832B2 (en) * 2007-07-25 2013-04-10 ジーエス ナノテク カンパニー リミテッド Deposition method of ceramic thin film by sputtering using non-conductive target
US20140272345A1 (en) * 2013-03-15 2014-09-18 Rubicon Technology, Inc. Method of growing aluminum oxide onto substrates by use of an aluminum source in an environment containing partial pressure of oxygen to create transparent, scratch-resistant windows

Also Published As

Publication number Publication date
JPH06330305A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
US4599135A (en) Thin film deposition
US6458253B2 (en) Thin film production process and optical device
US5376223A (en) Plasma etch process
EP0908531B1 (en) Apparatus and method for forming a thin film of a compound
JPH0635323B2 (en) Surface treatment method
EP0764969B1 (en) Microwave plasma processing apparatus and microwave plasma processing method
US6388366B1 (en) Carbon nitride cold cathode
US5304514A (en) Dry etching method
JPH11504751A (en) Boron nitride cold cathode
JP3478561B2 (en) Sputter deposition method
JPH1081968A (en) Fabrication method of amorphous silicon film
JPH09148676A (en) Semiconductor laser and its manufacture
US5975012A (en) Deposition apparatus
JPH11172430A (en) Thin film forming device and formation of compound thin film using the device
JP3143252B2 (en) Hard carbon thin film forming apparatus and its forming method
JPH09263948A (en) Formation of thin film by using plasma, thin film producing apparatus, etching method and etching device
JPH06112133A (en) Method of covering upper section of base body with transparent dielectric film
US5236537A (en) Plasma etching apparatus
JPH03122266A (en) Production of thin nitride film
JPH1121669A (en) Method for forming compound barrier film in silicon semiconductor
JPH0614522B2 (en) Surface treatment method and surface treatment apparatus
JP3368743B2 (en) Plasma processing apparatus and plasma processing method
JP3359128B2 (en) Plasma CVD deposited film forming apparatus and deposited film forming method
JP3085427B2 (en) Plasma etching method
JP3162511B2 (en) Manufacturing method of amorphous silicon film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 9