JP3473874B2 - Magnetic recording media - Google Patents
Magnetic recording mediaInfo
- Publication number
- JP3473874B2 JP3473874B2 JP18975295A JP18975295A JP3473874B2 JP 3473874 B2 JP3473874 B2 JP 3473874B2 JP 18975295 A JP18975295 A JP 18975295A JP 18975295 A JP18975295 A JP 18975295A JP 3473874 B2 JP3473874 B2 JP 3473874B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- ferromagnetic metal
- recording medium
- magnetic layer
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Paints Or Removers (AREA)
- Magnetic Record Carriers (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は磁気テープ等の磁気
記録媒体に関し、特に強磁性金属粉末と結合剤を主体と
する磁性塗料を非磁性支持体上に塗布して磁性層を形成
した塗布型の磁気記録媒体に関連し短波長領域における
感度とS/Nがすぐれた磁気記録媒体に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a magnetic tape and, more particularly, to a coating type in which a magnetic coating mainly composed of a ferromagnetic metal powder and a binder is coated on a non-magnetic support to form a magnetic layer. The present invention relates to a magnetic recording medium excellent in sensitivity and S / N in a short wavelength region in relation to the magnetic recording medium.
【0002】[0002]
【従来の技術】磁気記録技術は、媒体の繰り返し使用が
可能であること、信号の電子化が容易であり周辺機器と
の組み合わせによるシステムの構築が可能であること、
信号の修正も簡単にできること等の他の記録方式にはな
い優れた特長を有することから、ビデオ、オーディオ、
コンピューター用途等を始めとして様々な分野で幅広く
利用されてきた。2. Description of the Related Art In magnetic recording technology, a medium can be repeatedly used, signals can be easily digitized, and a system can be constructed by combining with peripheral equipment.
Since it has excellent features not found in other recording methods, such as the ability to easily modify signals,
It has been widely used in various fields including computer applications.
【0003】そして、機器の小型化、記録再生信号の質
の向上、記録の長時間化、記録容量の増大等の要求に対
応するために、記録媒体に関しては、記録密度、信頼
性、耐久性をより一層向上させることが常に望まれてき
た。In order to meet the demands for downsizing of equipment, improvement of quality of recording / reproducing signal, lengthening of recording, increase of recording capacity, etc., a recording medium has recording density, reliability and durability. It has always been desired to further improve.
【0004】例えば、オーディオ、ビデオ用途にあって
は、音質及び画質の向上を実現するディジタル記録方式
の実用化、ハイビジョンTVに対応した録画方式の開発
に対応するために、従来のシステムよりも一層、短波長
信号の記録再生ができかつヘッドと媒体の相対速度が大
きくなっても信頼性、耐久性が優れた磁気記録媒体が要
求されるようになっている。またコンピューター用途も
増大するデータ量を保存するために大容量のデジタル記
録媒体が開発されることが望まれている。For example, in audio and video applications, in order to cope with the practical use of a digital recording method for improving the sound quality and image quality and the development of a recording method compatible with high-definition TV, it is more important than the conventional system. A magnetic recording medium capable of recording and reproducing a short wavelength signal and having excellent reliability and durability even when the relative speed between the head and the medium is increased has been demanded. In addition, it is desired that a large-capacity digital recording medium be developed in order to store an increasing amount of data for computer applications.
【0005】塗布型の磁気記録媒体の高密度記録化のた
めに、従来より使用されていた磁性酸化鉄粉末に代わ
り、鉄又は鉄を主体とする合金磁性粉末を使用したり、
磁性粉末の微細化等磁性体の改良及びその充填性と配向
性を改良して磁性層の磁気特性を改良すること、強磁性
粉末の分散性を向上させること、磁性層の表面性を高め
ること等の観点から種々の方法が検討され提案されてき
た。In order to achieve high-density recording of a coating type magnetic recording medium, iron or an alloy magnetic powder mainly composed of iron is used in place of the magnetic iron oxide powder conventionally used,
Improving the magnetic properties of the magnetic layer by improving the magnetic substance such as miniaturization of the magnetic powder and improving its packing and orientation, improving the dispersibility of the ferromagnetic powder, and enhancing the surface property of the magnetic layer. From the viewpoint of the above, various methods have been studied and proposed.
【0006】例えば、磁気特性を高めるために強磁性粉
末に強磁性金属粉末や六方晶系フェライトを使用する方
法が特開昭58−122623号公報、特開昭61−7
4137号公報、特公昭62−49656号公報、特公
昭60−50323号公報、US4629653号、U
S4666770号、US4543198号等に開示さ
れている。For example, a method of using a ferromagnetic metal powder or a hexagonal ferrite as a ferromagnetic powder in order to enhance magnetic properties is disclosed in JP-A-58-122623 and JP-A-61-7.
4137, Japanese Patent Publication No. 62-49656, Japanese Patent Publication No. 60-50323, US462953, U
S46666770, US4543198, etc. are disclosed.
【0007】特開平1−18961号には、長軸径が
0.05〜0.2μm、軸比が4〜8の金属磁性粉で、
比表面積が30〜55m2 /g、保磁力が1300Oe
以上、飽和磁化量が120emu/g以上の強磁性粉を
開示し、比表面積の小さい微小金属粉を提供するとして
いる。また、特開昭60−11300号公報および特開
昭60−21307号公報には、強磁性粉末、特に強磁
性金属粉末に適した微細なα−オキシ水酸化鉄針状結晶
の製造方法を開示し、後者では長軸長0.12〜0.2
5μm、軸比6〜8のゲータイトからHc1450〜1
600、σS 142〜155emu/gの強磁性金属粉
末が製されることを開示している。JP-A-1-18961 discloses a metal magnetic powder having a major axis diameter of 0.05 to 0.2 μm and an axial ratio of 4 to 8,
Specific surface area of 30-55 m 2 / g, coercive force of 1300 Oe
As mentioned above, the ferromagnetic powder having a saturation magnetization of 120 emu / g or more is disclosed, and the fine metal powder having a small specific surface area is provided. Further, JP-A-60-11300 and JP-A-60-21307 disclose a method for producing fine α-iron oxyhydroxide needle crystals suitable for ferromagnetic powder, particularly ferromagnetic metal powder. However, in the latter case, the major axis length is 0.12 to 0.2.
Hc1450-1 from Goethite with 5 μm and axial ratio 6-8
It is disclosed that a ferromagnetic metal powder of 600, σ S 142-155 emu / g is produced.
【0008】更に、特開平6−340426号公報およ
び特開平7−109122号公報には、ヘマタイト核
晶、水酸化鉄、特定イオンを用いた単分散紡錘型ヘマタ
イト粒子、及び該ヘマタイト粒子を還元して得られる極
めて微小な強磁性粉末が開示されている。Further, in JP-A-6-340426 and JP-A-7-109122, hematite nucleus crystals, iron hydroxide, monodisperse spindle type hematite particles using specific ions, and the hematite particles are reduced. The extremely fine ferromagnetic powder obtained is disclosed.
【0009】また、強磁性粉末の分散性を高めるため
に、種々の界面活性剤(例えば特開昭52−15660
6号公報、特開昭53−15803号公報、特開昭53
−116114号公報等に開示されている。)を用いた
り、種々の反応性のカップリング剤(例えば、特開昭4
9−59608号公報、特開昭56−58135号公
報、特公昭62−28489号公報等に開示されてい
る。)を用いることが提案されている。Further, in order to enhance the dispersibility of the ferromagnetic powder, various surfactants (for example, Japanese Patent Laid-Open No. 52-15660).
6, JP-A-53-15803, JP-A-53-15
It is disclosed in Japanese Patent Laid-Open No. 116114. ) Or various reactive coupling agents (see, for example, JP-A-4
9-59608, JP-A-56-58135, JP-B-62-28489 and the like. ) Is proposed.
【0010】また、特開平1−239819号公報に
は、磁性酸化鉄の粒子表面に硼素化合物、アルミニウム
化合物もしくはアルミニウム化合物と珪素化合物を順次
被着させた磁性粉末を開示し、磁気特性および分散性を
改善するとしている。更に、特開平7−22224号公
報には、周期率表第1a族元素の含有量が0.05重量
%以下であり、必要に応じて金属元素の総量に対して
0.1〜30原子%のアルミニウム、更には金属元素の
総量に対して0.1〜10原子%の希土類元素を含有さ
せ、また周期率表第2a族元素の残存量が0.1重量%
以下の強磁性金属粉末を開示し、保存安定性および磁気
特性の良好な高密度磁気記録媒体が得られるとしてい
る。Further, Japanese Patent Application Laid-Open No. 1-239819 discloses a magnetic powder in which particles of magnetic iron oxide are sequentially coated with a boron compound, an aluminum compound or an aluminum compound and a silicon compound, and magnetic properties and dispersibility are disclosed. To improve. Further, in JP-A-7-22224, the content of the group 1a element of the periodic table is 0.05% by weight or less, and if necessary, 0.1 to 30 atomic% with respect to the total amount of metal elements. Aluminum, and 0.1 to 10 atomic% of the rare earth element relative to the total amount of metallic elements, and the residual amount of the Group 2a element of the periodic table is 0.1% by weight.
The following ferromagnetic metal powders are disclosed, and it is stated that a high-density magnetic recording medium having excellent storage stability and magnetic properties can be obtained.
【0011】更に、磁性層の表面性を改良するために、
塗布、乾燥後の磁性層の表面形成処理方法を改良する方
法(例えば、特公昭60−44725号公報に開示され
ている。)が提案されている。Further, in order to improve the surface property of the magnetic layer,
A method (for example, disclosed in Japanese Patent Publication No. 60-44725) of improving the surface forming treatment method of the magnetic layer after coating and drying has been proposed.
【0012】磁気記録用金属粉では粒子形状を針状とし
形状異方性を付与し、目的とする抗磁力を得ている。高
密度記録のために強磁性金属粉末を微細化し得られる媒
体の表面粗さを小さくする必要があることは当業者によ
く知られたことである。しかしながら磁気記録用金属粉
は、微細化にともない針状比が低下し所望の抗磁力が得
られなくなる。最近、ビデオ信号をデジタル化し記録す
るDVCシステムが提案されており、高性能なMEテー
プおよび高性能なMPテープが使用される。DVCに使
用されるMPテープの抗磁力は、2000Oe以上であ
るので、抗磁力が大きく微細かつ粒度分布がすぐれた強
磁性金属粉末が必要である。また信号を上書きする記録
法なのでオーバーライト特性が良好であることが望まれ
ている。In the metal powder for magnetic recording, the particle shape is needle-like and imparts shape anisotropy to obtain the target coercive force. It is well known to those skilled in the art that it is necessary to refine the ferromagnetic metal powder to reduce the surface roughness of the resulting medium for high density recording. However, the acicular ratio of the metal powder for magnetic recording decreases with miniaturization, and the desired coercive force cannot be obtained. Recently, a DVC system for digitizing and recording a video signal has been proposed, and a high performance ME tape and a high performance MP tape are used. Since the coercive force of the MP tape used for DVC is 2000 Oe or more, a ferromagnetic metal powder having a large coercive force and a fine particle size distribution is required. Further, since the recording method overwrites the signal, it is desired that the overwrite characteristic is good.
【0013】本出願人は先にDVCシステムに好適な強
磁性金属粉末およびそれを用いた磁気記録媒体を提案し
ている(特願平6−139683号)。この発明は磁性
層を、抗磁力2000〜3000Oe、厚さ0.05〜
0.3μm、表面粗さ1〜3nmに制御し、かつ特定の
反転磁化成分率を規定した磁気記録媒体を提供するもの
である。The present applicant has previously proposed a ferromagnetic metal powder suitable for a DVC system and a magnetic recording medium using the same (Japanese Patent Application No. 6-139683). This invention uses a magnetic layer having a coercive force of 2000 to 3000 Oe and a thickness of 0.05 to
The present invention provides a magnetic recording medium in which the surface roughness is controlled to 0.3 μm and the surface roughness is controlled to 1 to 3 nm, and a specific reversal magnetization component ratio is defined.
【0014】本発明は上記出願と一連のものあり、更に
磁気記録媒体の性能および品質の均一性を向上させるた
めの手段を提供しようとするものである。The present invention is a series of the above-mentioned applications, and further aims to provide means for improving the uniformity of performance and quality of magnetic recording media.
【0015】[0015]
【発明が解決しようとする問題点】本発明は、前記従来
技術の問題点に鑑みなされたものであり、短波長出力と
S/Nが良好でオーバーライト特性が優れた高密度デジ
タル記録システムに適用することができる磁気記録媒体
を提供することを目的としている。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and provides a high density digital recording system having a short wavelength output and a good S / N and excellent overwrite characteristics. It is an object of the present invention to provide a magnetic recording medium that can be applied.
【0016】[0016]
【問題点を解決するための手段】本発明の目的は、非
磁性支持体上に少なくとも強磁性金属粉末を含む磁性層
を設けた磁気記録媒体において、前記磁性層の抗磁力が
2000〜3000Oe、該磁性層のBmが3800〜
5500ガウスであり、前記強磁性金属粒子の平均長軸
長が0.04〜0.10μmであり、前記強磁性金属粒
子の平均針状比が3.0〜8.0であり、前記強磁性金
属粒子を構成する結晶子数の平均が1.0〜2.0、結
晶子の平均針状比が2.0〜5.0であることを特徴と
する磁気記録媒体、及び前記非磁性支持体と前記磁性
層の間に主として無機質非磁性粉末と結合剤を含む下層
塗布層を設けたことを特徴とする前記に記載の磁気記
録媒体により達成することができる。An object of the present invention is to provide a magnetic recording medium in which a magnetic layer containing at least a ferromagnetic metal powder is provided on a non-magnetic support, and the coercive force of the magnetic layer is 2000 to 3000 Oe. Bm of the magnetic layer is 3800-
5500 gauss, the average major axis length of the ferromagnetic metal particles is 0.04 to 0.10 μm, the average acicular ratio of the ferromagnetic metal particles is 3.0 to 8.0, and the ferromagnetic A magnetic recording medium characterized in that the average number of crystallites constituting the metal particles is 1.0 to 2.0, and the average acicular ratio of crystallites is 2.0 to 5.0, and the nonmagnetic support. This can be achieved by the above-described magnetic recording medium characterized in that an undercoat layer mainly containing an inorganic non-magnetic powder and a binder is provided between the body and the magnetic layer.
【0017】本発明において、「強磁性金属粒子」と
は、粒子の最大の外形を構成する粒子をいう。強磁性金
属粒子の平均長軸長とは、該粒子を構成する長軸の長さ
の平均を示し、平均短軸長とは、該粒子を構成する短軸
の長さの平均を示し、その平均針状比とは平均長軸長を
平均短軸長で除した値を指す。強磁性金属粒子の結晶子
とは上記強磁性金属粒子を構成する金属粒子の1つ1つ
の結晶のことをいう。In the present invention, the "ferromagnetic metal particle" means a particle that constitutes the maximum outer shape of the particle. The average major axis length of the ferromagnetic metal particles indicates the average of the major axis lengths of the particles, and the average minor axis length indicates the average of the minor axis lengths of the particles. The average acicular ratio refers to a value obtained by dividing the average major axis length by the average minor axis length. The crystallite of the ferromagnetic metal particle means each crystal of the metal particles constituting the ferromagnetic metal particle.
【0018】即ち、本発明者は微粒子強磁性金属粉末の
製法を種々検討し、従来は高抗磁力化が困難であった強
磁性金属粒子が小さくかつ低針状比であっても、強磁性
金属粒子を構成する結晶子に着目しこれを制御すること
で高Hc化とHc分布の改良を達成した。従来の製造方
法では出発原料の形態制御が不十分であることと、強磁
性金属粉末とした時、強磁性金属粉末を構成する結晶子
の個数と形状が制御されていないので、高Hc化とHc
分布の改良が不十分であったと考えている。本発明は粒
度がよくそろった出発原料に焼結防止処理を行い、還元
するときに金属酸化物(例、FeO)から金属(例、F
e)の核生成数を制御することで本願を達成した。出発
原料は、単分散ゲータイトあるいは単分散ヘマタイトを
使用することができる。出発原料の平均長軸長は0.0
4〜0.15μm、針状比が3〜10が好ましい。平均
長軸長が0.04μm以下の原料を使用した時、Hc、
σsを目的の範囲としにくい。0.15μm以上の原料
を使用し結晶子数を1.0〜2.0とすることが困難で
Hc分布が劣化する。針状比が10より大きい時、結晶
子数を1.0〜2.0とすることが困難であり、針状比
が3より小さい時は強磁性金属粉末としたときの抗磁力
が小さく高密度記録用の媒体には使用できない。That is, the present inventor has variously studied a method for producing a fine-particle ferromagnetic metal powder, and even if the ferromagnetic metal particles, which have been difficult to achieve a high coercive force in the past, are small and have a low acicular ratio, By focusing on the crystallites that compose the metal particles and controlling the crystallites, we achieved higher Hc and improved Hc distribution. In the conventional manufacturing method, the morphology control of the starting material is insufficient, and when the ferromagnetic metal powder is used, the number and shape of the crystallites constituting the ferromagnetic metal powder are not controlled. Hc
I think that the improvement of distribution was insufficient. According to the present invention, a starting material having a uniform particle size is subjected to a sintering prevention treatment and is reduced from a metal oxide (eg FeO) to a metal (eg F).
The present invention was achieved by controlling the number of nucleation in e). Monodisperse goethite or monodisperse hematite can be used as the starting material. The average major axis length of the starting material is 0.0
It is preferably 4 to 0.15 μm and the acicular ratio is 3 to 10. When using a raw material having an average major axis length of 0.04 μm or less, Hc,
It is difficult to set σs to the target range. It is difficult to control the number of crystallites to 1.0 to 2.0 using a raw material of 0.15 μm or more, and the Hc distribution deteriorates. When the acicular ratio is greater than 10, it is difficult to control the number of crystallites to 1.0 to 2.0, and when the acicular ratio is less than 3, the coercive force of the ferromagnetic metal powder is small and high. It cannot be used as a medium for density recording.
【0019】本発明で使用する強磁性金属粉末におい
て、上記強磁性金属粒子および結晶子を制御する手段と
しては、特に制限はないが、具体的には以下の方法お
よびが挙げられる。
主として強磁性金属粉末内部の元素組成を特定する
こと。特にFeを主体とする強磁性金属粉末の場合、F
eと相互作用する微量元素を特定する。該微量元素とし
ては、Mg、Co、Ni、Cu、Mn等が好ましい。こ
の微量元素はゲータイトやヘマタイト作成時および/ま
たは作成後表面処理して添加する事が好ましい。
強磁性金属元素の酸化物を還元により強磁性金属粉
末とする手法において、還元前の前処理、例えば、ゲー
タイト等の脱水条件、アニール条件等及び該還元条件、
例えば、温度、還元ガス、還元処理時間等を選定するこ
と。In the ferromagnetic metal powder used in the present invention, the means for controlling the above-mentioned ferromagnetic metal particles and crystallites is not particularly limited, but specific examples include the following methods and. Mainly to specify the elemental composition inside the ferromagnetic metal powder. Especially in the case of a ferromagnetic metal powder mainly composed of Fe, F
Identify the trace elements that interact with e. As the trace element, Mg, Co, Ni, Cu, Mn and the like are preferable. It is preferable that the trace elements are added after surface treatment during and / or after the production of goethite or hematite. In the method of reducing an oxide of a ferromagnetic metal element to a ferromagnetic metal powder, pretreatment before reduction, for example, dehydration conditions such as goethite, annealing conditions and the reduction conditions,
For example, select temperature, reducing gas, reducing treatment time, etc.
【0020】具体的には上記で得られた微量元素含有
ゲータイトを処理する場合の各条件は以下の通りであ
る。脱水条件としては、窒素雰囲気下、250〜400
℃、好ましくは300〜400℃で0.5〜2時間、好
ましくは0.5〜1時間行うことが挙げられる。アニー
ル条件としては、窒素雰囲気下、500〜800℃、好
ましくは550〜700℃で1〜5時間、好ましくは2
〜3時間行うことが挙げられる。Specifically, the respective conditions for treating the trace element-containing goethite obtained above are as follows. The dehydration conditions are 250 to 400 under a nitrogen atmosphere.
C., preferably 300 to 400.degree. C. for 0.5 to 2 hours, preferably 0.5 to 1 hour. The annealing conditions are 500 to 800 ° C., preferably 550 to 700 ° C., and 1 to 5 hours, preferably 2 in a nitrogen atmosphere.
It may be performed for 3 hours.
【0021】還元条件としては、水素/CO(容量比)
=1/9〜5/5、好ましくは1/9〜4/6で、温度
350〜450℃ 、好ましくは375〜425℃、
0.3〜3時間、好ましくは1〜2時間還元処理し、次
いで、雰囲気を窒素に置換して後、純水素にて前記温度
にて3〜5時間還元処理することが挙げられる。還元の
終了は、排水系ガス中の水分を露点計で測定して決定す
る。The reducing condition is hydrogen / CO (volume ratio)
= 1/9 to 5/5, preferably 1/9 to 4/6, and a temperature of 350 to 450 ° C, preferably 375 to 425 ° C,
The reduction treatment may be performed for 0.3 to 3 hours, preferably 1 to 2 hours, and then the atmosphere may be replaced with nitrogen, followed by reduction treatment with pure hydrogen at the above temperature for 3 to 5 hours. The end of reduction is determined by measuring the water content in the wastewater gas with a dew point meter.
【0022】上記強磁性金属粉末の製法においては、公
知の方法、例えば、特開平7−109122号公報およ
び特開平6−340426号公報に記載の方法を適用す
ることができる。強磁性金属粉末の強磁性金属元素とし
ては、特に制限はないが、FeまたはNiまたはCoを
主成分(75%以上)とするものが好ましい。Coはσ
sを大きくしかつ緻密で薄い酸化膜を形成することがで
きるので特に好ましい。Coの含有量はFeに対し5〜
40原子%が好ましく、より好ましくは10〜30原子
%である。Coは上述のように一部を原料中にドープし
次に必要量を表面に被着し原料に添加し、還元により合
金化することが好ましい。As the method for producing the above-mentioned ferromagnetic metal powder, a known method, for example, the methods described in JP-A-7-109122 and JP-A-6-340426 can be applied. The ferromagnetic metal element of the ferromagnetic metal powder is not particularly limited, but those containing Fe, Ni or Co as the main component (75% or more) are preferable. Co is σ
It is particularly preferable because s can be increased and a dense and thin oxide film can be formed. Co content is 5 to Fe
40 atomic% is preferable, and 10 to 30 atomic% is more preferable. As described above, it is preferable that a part of Co is doped in the raw material, then a necessary amount is deposited on the surface, added to the raw material, and reduced to alloy.
【0023】本発明で使用できる上記の強磁性金属粉末
には、所定の金属原子以外に重量比で20重量%以下の
割合でAl、Si、S、Ti、V、Cr、Cu、Y、M
o、Rh、Pd、Ag、Sn、Sb、Te、Ba、S
r、W、Au、Pb、Bi、La、Ce、Pr、Nd、
P、Mn、Zn、Sr、B、Caなどの原子を含むこと
が好ましい。これらの元素は出発原料の形状制御の他
に、粒子間の焼結防止と還元の促進及び還元した強磁性
金属粉末の形状と粒子表面の凹凸制御に効果がある。The above-mentioned ferromagnetic metal powder that can be used in the present invention contains Al, Si, S, Ti, V, Cr, Cu, Y, and M in a weight ratio of 20% by weight or less in addition to predetermined metal atoms.
o, Rh, Pd, Ag, Sn, Sb, Te, Ba, S
r, W, Au, Pb, Bi, La, Ce, Pr, Nd,
It preferably contains atoms such as P, Mn, Zn, Sr, B, and Ca. In addition to controlling the shape of the starting material, these elements are effective in preventing sintering between particles, promoting reduction, and controlling the shape of the reduced ferromagnetic metal powder and the unevenness of the particle surface.
【0024】単分散ゲータイトあるいは単分散ヘマタイ
トを最終的に金属に還元するが、その途中段階でαFe
2 O3 でのアニール処理をすることが結晶数を少なくす
るために有用である。またαFe2 O3 よりFe
3 O4 、FeOに還元するときは純水素ではなく上述の
ように各種還元ガスを使用することができる。金属酸化
物より金属の核を生成させ、ひいては結晶子を生成させ
る時、還元により発生する水を短時間に系外へ除去する
ことあるいは還元により生成する水の量を制御すること
が必要である。このような水の制御は、還元ガスの分圧
を制御したり、還元ガス量を制御することにより行うこ
とができる。The monodisperse goethite or monodisperse hematite is finally reduced to a metal.
Annealing with 2 O 3 is useful for reducing the number of crystals. Fe from αFe 2 O 3
When reducing to 3 O 4 or FeO, various reducing gases can be used instead of pure hydrogen as described above. When generating metal nuclei from metal oxides, and then crystallites, it is necessary to remove the water generated by reduction to the outside of the system in a short time or control the amount of water generated by reduction. . Such water control can be performed by controlling the partial pressure of the reducing gas or by controlling the amount of reducing gas.
【0025】よく知られているように強磁性金属粉末は
徐酸化処理により、化学的に安定にするためにその粒子
表面に酸化被膜を形成する。強磁性金属粉末は、少量の
水酸化物、または酸化物を含んでもよい。徐酸化の時に
使用するガス中に炭酸ガスが含有されていると、強磁性
金属粉末表面の塩基性点に吸着するので、このような炭
酸ガスが含まれていてもよい。As is well known, the ferromagnetic metal powder is gradually oxidized to form an oxide film on the particle surface in order to be chemically stable. The ferromagnetic metal powder may contain a small amount of hydroxide or oxide. When carbon dioxide gas is contained in the gas used during the gradual oxidation, it is adsorbed at the basic points on the surface of the ferromagnetic metal powder, and thus carbon dioxide gas may be contained.
【0026】本発明に使用する強磁性金属粒子の平均長
軸長は0.04〜0.10μm、より好ましくは0.0
5〜0.09μm、針状比は3.0〜8.0であってよ
り好ましくは4.0〜7.0、且つ強磁性金属粒子を構
成する結晶子の数(即ち、結晶子数)の平均が1.0〜
2.0、好ましくは1.0〜1.5、結晶子の針状比は
2.0〜5.0、好ましくは2.5〜4.0に制御され
る。The average major axis length of the ferromagnetic metal particles used in the present invention is 0.04 to 0.10 μm, more preferably 0.0.
5 to 0.09 μm, the acicular ratio is 3.0 to 8.0, more preferably 4.0 to 7.0, and the number of crystallites constituting the ferromagnetic metal particles (that is, the number of crystallites). Is 1.0 to
The acicular ratio of the crystallites is controlled to 2.0, preferably 1.0 to 1.5, and 2.0 to 5.0, preferably 2.5 to 4.0.
【0027】すなわち本発明において、「強磁性金属粒
子」とは、出発原料のサイズや形態に起因する粒子の最
大の外形を構成する粒子をいう。粒子を構成する一番大
きい外形を強磁性金属粒子の平均長軸長と平均針状比と
してとらえている。結晶子とは上記強磁性金属粒子を構
成する金属粒子の1つ1つの結晶のことをいう。金属粒
子の外形を構成する粒子、すなわち強磁性金属粒子は必
ずしも1個の結晶からなっているものではなく複数の結
晶からなっている。高分解能透過型電子顕微鏡で粒子写
真を撮影した際、粒子の最大の外形を構成する粒子を強
磁性金属粒子といい、さらに微細に観察するとその格子
像が得られ、格子像の得られるユニットが結晶子であ
る。That is, in the present invention, the "ferromagnetic metal particle" means a particle which constitutes the maximum outer shape of the particle due to the size and morphology of the starting material. The largest outer shape that constitutes the particle is taken as the average major axis length and the average acicular ratio of the ferromagnetic metal particle. The crystallite means each crystal of the metal particles constituting the ferromagnetic metal particles. The particles forming the outer shape of the metal particles, that is, the ferromagnetic metal particles are not necessarily composed of one crystal, but are composed of a plurality of crystals. When a particle photograph is taken with a high-resolution transmission electron microscope, the particles that make up the largest outer shape of the particle are called ferromagnetic metal particles. It is a crystallite.
【0028】従来、ゲータイト(α−FeOOH)やヘ
マタイト(α−Fe2 O3 )を出発原料として金属磁性
粉を製造しているが、これまで出発原料のサイズや形態
に起因する粒子の外形は大きかった。すなわち強磁性金
属粒子の平均長軸長0.2〜0.3μm程度であった。
そして脱酸素してメタルに還元されると同時に、粒子の
外形の収縮が起き、従来のメタル粒子では図2に示す如
く、多結晶のすかすかの結晶が得られた。しかも結晶子
の大きさや形はバラバラであった。結晶子の数も4〜1
0又はそれ以上あった。本発明においては出発原料のサ
イズや形態に起因する粒子の外形を小さく(平均長軸長
0.04〜0.10μm)するとともに、従来の多結晶
の状態をできるだけ図1の如く単結晶に近い状態にし、
緻密な結晶構造を目指している。このような本発明の強
磁性金属粉末の特有な構造を規定するために、強磁性金
属粒子の平均長軸長0.04〜0.10μmと平均針状
比3.0〜8.0に対して結晶子数の平均1.0〜2.
0、結晶子の平均針状比2.0〜5.0を規定した。本
発明は特に強磁性金属粒子の平均長軸長0.04〜0.
10μmと従来になく微粒子で、結晶子数の平均1.0
〜2.0と単結晶に近い結晶を有する点で従来の金属磁
性粉と明確に区別されるものである。このような範囲と
することにより、本発明の目的としている緻密な、単結
晶に近い針状の強磁性金属粒子が得られる。Conventionally, metal magnetic powders have been manufactured using goethite (α-FeOOH) or hematite (α-Fe 2 O 3 ) as a starting material. It was great. That is, the average major axis length of the ferromagnetic metal particles was about 0.2 to 0.3 μm.
At the same time as deoxidation and reduction to metal, the outer shape of the particle contracted, and conventional metal particles obtained polycrystalline faint crystals as shown in FIG. Moreover, the crystallites had different sizes and shapes. The number of crystallites is 4-1
There were 0 or more. In the present invention, the outer shape of the particles due to the size and morphology of the starting material is made small (average major axis length 0.04 to 0.10 μm), and the conventional polycrystal state is as close as possible to a single crystal as shown in FIG. State,
Aiming for a dense crystal structure. In order to define such a peculiar structure of the ferromagnetic metal powder of the present invention, the average major axis length of the ferromagnetic metal particles is 0.04 to 0.10 μm and the average acicular ratio is 3.0 to 8.0. The average number of crystallites is 1.0 to 2.
0, the average acicular ratio of the crystallites was 2.0 to 5.0. The present invention is particularly applicable to ferromagnetic metal particles having an average major axis length of 0.04 to 0.
10 μm, finer than ever before, with an average number of crystallites of 1.0
It is clearly distinguished from the conventional metal magnetic powder in that it has a crystal close to a single crystal of ˜2.0. Within such a range, the dense, needle-like ferromagnetic metal particles close to a single crystal, which is the object of the present invention, can be obtained.
【0029】強磁性金属粒子の長軸長が0.04μmよ
り小さいとき、目的の抗磁力が得られないだけでなく、
磁気塗料を作成する時分散が困難でありかつ磁場配向し
ても配向の効果があらわれにくい。また安定化のために
形成した酸化膜の影響で高密度記録に必要な高い飽和磁
化を確保することが困難になる。強磁性金属粒子の長軸
長が0.10μmより大きく結晶子数の平均が1.0〜
2.0、結晶子の針状比が2.0〜5.0のときはHc
分布が大きく劣化(特にHc3000Oe以上の成分が増加)す
るのでオーバーライト特性上好ましくなく、また磁気記
録媒体の表面粗さが大きくなる。When the major axis length of the ferromagnetic metal particles is smaller than 0.04 μm, not only the desired coercive force cannot be obtained, but also
It is difficult to disperse when a magnetic paint is prepared, and the effect of orientation does not easily appear even if the magnetic field is oriented. Further, it becomes difficult to secure high saturation magnetization required for high density recording due to the influence of the oxide film formed for stabilization. The major axis length of the ferromagnetic metal particles is larger than 0.10 μm and the average number of crystallites is 1.0 to
Hc when the needle ratio of the crystallite is 2.0 to 5.0
The distribution is greatly deteriorated (particularly, the component of Hc3000Oe or more is increased), which is not preferable in the overwrite characteristic, and the surface roughness of the magnetic recording medium is increased.
【0030】結晶子の針状比分布につき検討すると80
%以上の粒子が針状比2.0〜5.0であることが好ま
しく、理想的には100%がこの範囲であることがHc
分布を小さくするので好ましい。分析精度を考慮すると
85〜95%が針状比2.0〜5.0に含まれることが
好ましい。結晶子の針状比が大きいものが多いと高抗磁
力成分が多いような傾向が認められた。The acicular ratio distribution of crystallites is 80
% Or more of particles preferably have an acicular ratio of 2.0 to 5.0, and ideally 100% is in this range.
It is preferable because the distribution is narrowed. Considering analysis accuracy, it is preferable that 85 to 95% is included in the acicular ratio of 2.0 to 5.0. It was observed that when many crystallites had a large acicular ratio, there were many high coercive force components.
【0031】本発明の磁性層の抗磁力Hcは、2000
〜3000Oe、好ましくは2100〜2800Oe、
更に好ましくは、2200〜2500Oeであり、磁性
層のBm(最大磁束密度)は3800〜5500ガウス
(G)、好ましくは4000〜5500Gである。H
c、Bmが下限値より小さいと短波長出力を十分に得る
ことができず、また、それらが上限値より大きいと記録
に使用するヘッドが飽和してしまうので出力を確保する
ことができない。The coercive force Hc of the magnetic layer of the present invention is 2000.
~ 3000 Oe, preferably 2100-2800 Oe,
More preferably, it is 2200 to 2500 Oe, and Bm (maximum magnetic flux density) of the magnetic layer is 3800 to 5500 gauss (G), preferably 4000 to 5500G. H
If c and Bm are smaller than the lower limit value, a short wavelength output cannot be sufficiently obtained, and if they are larger than the upper limit value, the head used for recording is saturated and the output cannot be secured.
【0032】本発明の強磁性金属微粉末の飽和磁化は通
常、125emu/g以上、好ましくは130emu/
g〜165emu/g、更に好ましくは、135〜15
0emu/gである。還元直後に特開昭61−5232
7号公報に記載の化合物や各種置換基をもつカップリン
グ剤で処理した後、徐酸化することも強磁性金属粉末の
飽和磁化を高めることができるので有効である。強磁性
金属粉末の抗磁力は通常、1700〜3000Oe(エ
ルステッド)、好ましくは1800〜2500Oe、特
に好ましくは2000〜2300Oeである。強磁性金
属粒子を構成する結晶子数を1.0〜2.0とすること
で、磁化反転モードが一斉回転モードに近くなり、本発
明のような微粒子かつ高抗磁力の強磁性金属粉末が得ら
れたと発明者は推定している。The saturation magnetization of the ferromagnetic metal fine powder of the present invention is usually 125 emu / g or more, preferably 130 emu / g.
g to 165 emu / g, more preferably 135 to 15
It is 0 emu / g. Immediately after reduction, JP-A-61-2232
It is also effective to perform gradual oxidation after treating with the compound or the coupling agent having various substituents described in JP-A No. 7, since the saturation magnetization of the ferromagnetic metal powder can be increased. The coercive force of the ferromagnetic metal powder is usually 1700 to 3000 Oe (Oersted), preferably 1800 to 2500 Oe, and particularly preferably 2000 to 2300 Oe. By setting the number of crystallites constituting the ferromagnetic metal particles to 1.0 to 2.0, the magnetization reversal mode becomes close to the simultaneous rotation mode, and the fine particles and the high coercive force ferromagnetic metal powder as in the present invention can be obtained. The inventor estimates that it was obtained.
【0033】本発明では、高分解能透過型電子顕微鏡で
粒子写真を撮影し、強磁性金属粒子の平均長軸長および
強磁性金属粒子の格子像より結晶子数を求めた。約20
0個の粒子についてこのような測定を実施して平均を求
めた。結晶子の針状比は、撮影した高分解能電顕写真の
各結晶子の輪郭を画像解析装置でなぞり平均の長さと幅
を求め、(長さ/幅)で算出した。In the present invention, a particle photograph was taken with a high resolution transmission electron microscope, and the number of crystallites was determined from the average major axis length of the ferromagnetic metal particles and the lattice image of the ferromagnetic metal particles. About 20
Such measurement was carried out for 0 particles and the average was obtained. The acicular ratio of the crystallite was calculated by (length / width) by tracing the outline of each crystallite of the photographed high-resolution electron microscope with an image analyzer to obtain the average length and width.
【0034】また、強磁性金属粉末には後述する分散
剤、潤滑剤、界面活性剤、帯電防止剤などで分散前にあ
らかじめ処理を行うこともできる。具体的には、特公昭
44−14090号公報、特公昭45−18372号公
報、特公昭47−22062号公報、特公昭47−22
513号公報、特公昭46−28466号公報、特公昭
46−38755号公報、特公昭47−4286号公
報、特公昭47−12422号公報、特公昭47−17
284号公報、特公昭47−18509号公報、特公昭
47−18573号公報、特公昭39−10307号公
報、特公昭48−39639号公報、米国特許3026
215号、同3031341号、同3100194号、
同3242005号、同3389014号などに記載さ
れている。Further, the ferromagnetic metal powder may be previously treated with a dispersant, a lubricant, a surfactant, an antistatic agent, etc., which will be described later, before the dispersion. Specifically, JP-B-44-14090, JP-B-45-18372, JP-B-47-22062, and JP-B-47-22
513, JP-B-46-28466, JP-B-46-38755, JP-B-47-4286, JP-B-47-12422, and JP-B-47-17.
No. 284, Japanese Patent Publication No. 47-18509, Japanese Patent Publication No. 47-18573, Japanese Patent Publication No. 39-10307, Japanese Patent Publication No. 48-39639, and US Patent No. 3026.
No. 215, No. 3031341, No. 3100194,
No. 3242005 and No. 3389014.
【0035】強磁性金属粉末の含水率は0.01〜2重
量%とするのが望ましい。後述する結合剤の種類によっ
て含水率は最適化するのが望ましい。The water content of the ferromagnetic metal powder is preferably 0.01 to 2% by weight. It is desirable to optimize the water content depending on the type of binder described below.
【0036】強磁性金属粉末のタップ密度は0.2〜
0.8g/ccが望ましい。0.8g/ccより大きい
と該粉末を徐酸化するときに均一に徐酸化されないので
該粉末を安全にハンドリングのすることが困難であった
り、得られたテープの磁化が経時で減少する。タップ密
度が0.2g/cc以下では分散が不十分になりやす
い。The tap density of the ferromagnetic metal powder is 0.2 to
0.8 g / cc is desirable. If it is greater than 0.8 g / cc, the powder is not gradually oxidized uniformly when gradually oxidized, and thus it is difficult to safely handle the powder, or the magnetization of the obtained tape decreases with time. When the tap density is 0.2 g / cc or less, the dispersion tends to be insufficient.
【0037】本発明の磁気記録媒体における磁性層の結
合剤樹脂は、結合剤樹脂には、従来公知の熱可塑性樹
脂、熱硬化性樹脂、反応型樹脂やこれらの混合物が使用
できる。熱可塑性樹脂としては、ガラス転移温度が−1
00〜150℃、数平均分子量が1000〜20000
0、好ましくは10000〜100000、重合度が約
50〜1000程度のものである。The binder resin of the magnetic layer in the magnetic recording medium of the present invention may be a conventionally known thermoplastic resin, thermosetting resin, reactive resin or a mixture thereof. As a thermoplastic resin, the glass transition temperature is -1.
00 to 150 ° C, number average molecular weight of 1000 to 20000
0, preferably 10,000 to 100,000, and the degree of polymerization is about 50 to 1,000.
【0038】このような結合剤樹脂のとしては、塩化ビ
ニル、酢酸ビニル、ビニルアルコール、マレイン酸、ア
クリル酸、アクリル酸エステル、塩化ビニリデン、アク
リロニトリル、メタクリル酸、メタクリル酸エステル、
スチレン、ブタジエン、エチレン、ビニルブチラール、
ビニルアセタール、ビニルエーテル、等を構成単位とし
て含む重合体または共重合体、ポリウレタン樹脂、各種
ゴム系樹脂がある。Examples of such binder resins include vinyl chloride, vinyl acetate, vinyl alcohol, maleic acid, acrylic acid, acrylic acid ester, vinylidene chloride, acrylonitrile, methacrylic acid, methacrylic acid ester,
Styrene, butadiene, ethylene, vinyl butyral,
There are polymers or copolymers containing vinyl acetal, vinyl ether, etc. as constituent units, polyurethane resins, and various rubber resins.
【0039】また、熱硬化性樹脂または反応型樹脂とし
てはフェノール樹脂、エポキシ樹脂、ポリウレタン硬化
型樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、アク
リル系反応樹脂、ホルムアルデヒド樹脂、シリコーン樹
脂、エポキシ−ポリアミド樹脂、ポリエステル樹脂とイ
ソシアネートプレポリマーの混合物、ポリエステルポリ
オールとポリイソシアネートの混合物、ポリウレタンと
ポリイソシアネートの混合物等があげられる。As the thermosetting resin or the reactive resin, phenol resin, epoxy resin, polyurethane curable resin, urea resin, melamine resin, alkyd resin, acrylic reaction resin, formaldehyde resin, silicone resin, epoxy-polyamide resin. , A mixture of polyester resin and isocyanate prepolymer, a mixture of polyester polyol and polyisocyanate, a mixture of polyurethane and polyisocyanate, and the like.
【0040】前記の結合剤樹脂に、より優れた強磁性粉
末の分散効果と磁性層の耐久性を得るためには必要に応
じ、COOM、SO3 M、OSO3 M、P=O(OM)
2 、O−P=O(OM)2 、(以上につきMは水素原
子、またはアルカリ金属塩基)、OH、NR2 、N+ R
3 (Rは炭化水素基)、エポキシ基、SH、CN、など
から選ばれる少なくともひとつ以上の極性基を共重合ま
たは付加反応で導入したものををもちいることが好まし
い。このような極性基の量は10-1〜10-8 モル/gで
あり、好ましくは10-2〜10-6モル/gである。In order to obtain more excellent dispersion effect of the ferromagnetic powder and durability of the magnetic layer in the above binder resin, COOM, SO 3 M, OSO 3 M, P = O (OM) is added as necessary.
2 , OP = O (OM) 2 , (wherein M is a hydrogen atom or an alkali metal base), OH, NR 2 , N + R
It is preferable to use one in which at least one polar group selected from 3 (R is a hydrocarbon group), an epoxy group, SH, CN, etc. is introduced by copolymerization or addition reaction. The amount of such a polar group is 10 -1 to 10 -8 mol / g, preferably 10 -2 to 10 -6 mol / g.
【0041】本発明の磁気記録媒体に用いられる結合剤
樹脂は、強磁性金属粉末に対し、5〜50重量%の範
囲、好ましくは10〜30重量%の範囲で用いられる。
塩化ビニル系樹脂を用いる場合は5〜100重量%、ポ
リウレタン樹脂を用いる場合は2〜50重量%、ポリイ
ソシアネートは2〜100重量%の範囲でこれらを組み
合わせて用いるのが好ましい。The binder resin used in the magnetic recording medium of the present invention is used in the range of 5 to 50% by weight, preferably 10 to 30% by weight, based on the ferromagnetic metal powder.
It is preferable to use these in combination in the range of 5 to 100% by weight when using a vinyl chloride resin, 2 to 50% by weight when using a polyurethane resin, and 2 to 100% by weight of polyisocyanate.
【0042】また、磁性層の強磁性金属粉末の充填度
は、使用した強磁性金属粉末の最大飽和磁化量σs及び
Bmから計算でき(Bm/4πσs)となり、本発明にお
いてはその値は、望ましくは1.7g/cc以上であ
り、更に望ましくは1.9g/cc以上、最も好ましく
は2.1g/cc以上である。The filling degree of the ferromagnetic metal powder in the magnetic layer can be calculated from the maximum saturation magnetization σs and Bm of the used ferromagnetic metal powder (Bm / 4πσs), which is desirable in the present invention. Is 1.7 g / cc or more, more preferably 1.9 g / cc or more, and most preferably 2.1 g / cc or more.
【0043】本発明において、ポリウレタンを用いる場
合はガラス転移温度が−50〜100℃、破断伸びが1
00〜2000%、破断応力は0.05〜10kg/c
m2、降伏点は0.05〜10kg/cm2 が好まし
い。In the present invention, when polyurethane is used, the glass transition temperature is -50 to 100 ° C. and the breaking elongation is 1.
0 to 2000%, breaking stress 0.05 to 10 kg / c
m 2 and the yield point are preferably 0.05 to 10 kg / cm 2 .
【0044】本発明にもちいるポリイソシアネートとし
ては、トリレンジイソシアネート、4,4’−ジフェニ
ルメタンジイソシアネート、ヘキサメチレンジイソシア
ネート、キシリレンジイソシアネート、ナフチレン−
1,5−ジイソシアネート、o−トルイジンジイソシア
ネート、イソホロンジイソシアネート、トリフェニルメ
タントリイソシアネート等のイソシアネート類、また、
これらのイソシアネート類とポリアルコールとの生成
物、また、イソシアネート類の縮合によって生成したポ
リイソシアネート等を使用することができる。これらの
イソシアネート類の市販されている商品名としては、日
本ポリウレタン社製、コロネートL、コロネートHL、
コロネート2030、コロネート2031、ミリオネー
トMR、ミリオネートMTL、武田薬品社製、タケネー
トD−102、タケネートD−110N、タケネートD
−200、タケネートD−202、住友バイエル社製、
デスモジュールL、デスモジュールIL、デスモジュー
ルN、デスモジュールHL等がありこれらを単独または
硬化反応性の差を利用して二つもしくはそれ以上の組合
せでもちいることができる。The polyisocyanates used in the present invention include tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, naphthylene-
Isocyanates such as 1,5-diisocyanate, o-toluidine diisocyanate, isophorone diisocyanate and triphenylmethane triisocyanate,
Products of these isocyanates and polyalcohols, and polyisocyanates produced by condensation of isocyanates can be used. Commercially available trade names of these isocyanates are Nippon Polyurethane Co., Coronate L, Coronate HL,
Coronate 2030, Coronate 2031, Millionate MR, Millionate MTL, Takeda Yakuhin, Takenate D-102, Takenate D-110N, Takenate D
-200, Takenate D-202, Sumitomo Bayer,
There are death module L, death module IL, death module N, death module HL and the like, and these can be used alone or in combination of two or more by utilizing the difference in curing reactivity.
【0045】本発明の磁気記録媒体の磁性層中には、通
常、潤滑剤、研磨剤、分散剤、帯電防止剤、分散剤、可
塑剤、防黴剤等などを始めとする種々の機能を有する素
材をその目的に応じて含有させる。In the magnetic layer of the magnetic recording medium of the present invention, various functions such as a lubricant, an abrasive, a dispersant, an antistatic agent, a dispersant, a plasticizer and an antifungal agent are usually included. The material to have is contained according to the purpose.
【0046】本発明の磁性層に使用する潤滑剤として
は、ジアルキルポリシロキサン(アルキルは炭素数1〜
5個)、ジアルコキシポリシロキサン(アルコキシは炭
素数1〜4個)、モノアルキルモノアルコキシポリシロ
キサン(アルキルは炭素数1〜5個、アルコキシは炭素
数1〜4個)、フェニルポリシロキサン、フロロアルキ
ルポリシロキサン(アルキルは炭素数1〜5個)などの
シリコンオイル;グラファイト等の導電性微粉末;二硫
化モリブデン、二硫化タングステンなどの無機粉末;ポ
リエチレン、ポリプロピレン、ポリエチレン塩化ビニル
共重合体、ポリテトラフルオロエチレン等のプラスチッ
ク微粉末;α−オレフィン重合物;常温で固体の飽和脂
肪酸(炭素数10から22);常温で液状の不飽和脂肪
族炭化水素(n−オレフィン二重結合が末端の炭素に結
合した化合物、炭素数約20);炭素数12〜20個の
一塩基性脂肪酸と炭素数3〜12個の一価のアルコール
から成る脂肪酸エステル類、フルオロカーボン類等が使
用できる。The lubricant used in the magnetic layer of the present invention is a dialkyl polysiloxane (where alkyl is 1 to 1 carbon atoms).
5), dialkoxy polysiloxane (alkoxy has 1 to 4 carbon atoms), monoalkyl monoalkoxy polysiloxane (alkyl has 1 to 5 carbon atoms, alkoxy has 1 to 4 carbon atoms), phenyl polysiloxane, fluoro Silicon oil such as alkyl polysiloxane (where alkyl is 1 to 5 carbon atoms); Conductive fine powder such as graphite; Inorganic powder such as molybdenum disulfide and tungsten disulfide; Polyethylene, polypropylene, polyethylene vinyl chloride copolymer, poly Plastic fine powder of tetrafluoroethylene or the like; α-olefin polymer; saturated fatty acid that is solid at room temperature (carbon number 10 to 22); unsaturated aliphatic hydrocarbon that is liquid at room temperature (carbon with n-olefin double bond at the end) Compound having about 20 carbon atoms; a monobasic fatty acid having 12 to 20 carbon atoms Fatty acid esters consisting of 3 to 12 monovalent alcohol prime, fluorocarbons and the like can be used.
【0047】上記の中でも飽和脂肪酸と脂肪酸エステル
が好ましく、両者を併用することがより好ましい。脂肪
酸エステルの原料となるアルコールとしてはエタノー
ル、ブタノール、フェノール、ベンジルアルコール、2
−メチルブチルアルコール、2−ヘキシルデシルアルコ
ール、プロピレングリコールモノブチルエーテル、エチ
レングリコールモノブチルエーテル、ジプロピレングリ
コールモノブチルエーテル、ジエチレングリコールモノ
ブチルエーテル、s−ブチルアルコール等のモノアルコ
ール類、エチレングリコール、ジエチレングリコール、
ネオペンチルグリコール、グリセリン、ソルビタン誘導
体等の多価アルコールが挙げられる。同じく脂肪酸とし
ては酢酸、プロピオン酸、オクタン酸、2−エチルヘキ
サン酸、ラウリン酸、ミリスチン酸、ステアリン酸、パ
ルミチン酸、ベヘン酸、アラキン酸、オレイン酸、リノ
ール酸、リノレン酸、エライジン酸、パルミトレイン酸
等の脂肪族カルボン酸またはこれらの混合物が挙げられ
る。Among the above, saturated fatty acids and fatty acid esters are preferable, and it is more preferable to use both in combination. Alcohols used as raw materials for fatty acid esters include ethanol, butanol, phenol, benzyl alcohol, and 2
-Methylbutyl alcohol, 2-hexyldecyl alcohol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol monobutyl ether, diethylene glycol monobutyl ether, monoalcohols such as s-butyl alcohol, ethylene glycol, diethylene glycol,
Examples include polyhydric alcohols such as neopentyl glycol, glycerin, and sorbitan derivatives. Similarly, as fatty acids, acetic acid, propionic acid, octanoic acid, 2-ethylhexanoic acid, lauric acid, myristic acid, stearic acid, palmitic acid, behenic acid, arachidic acid, oleic acid, linoleic acid, linolenic acid, elaidic acid, palmitoleic acid. And aliphatic carboxylic acids or mixtures thereof.
【0048】脂肪酸エステルとしての具体例は、ブチル
ステアレート、s−ブチルステアレート、イソプロピル
ステアレート、ブチルオレエート、アミルステアレー
ト、3−メチルブチルステアレート、2−エチルヘキシ
ルステアレート、2−ヘキシルデシルステアレート、ブ
チルパルミテート、2−エチルヘキシルミリステート、
ブチルステアレートとブチルパルミテートの混合物、ブ
トキシエチルステアレート、2−ブトキシ−1−プロピ
ルステアレート、ジプロピレングリコールモノブチルエ
ーテルをステアリン酸でエステル化したもの、ジエチレ
ングリコールジパルミテート、ヘキサメチレンジオール
をミリスチン酸でエステル化してジエステルとしたも
の、グリセリンのオレエート等の種々のエステル化合物
を挙げることができる。Specific examples of the fatty acid ester include butyl stearate, s-butyl stearate, isopropyl stearate, butyl oleate, amyl stearate, 3-methylbutyl stearate, 2-ethylhexyl stearate, 2-hexyl decyl. Stearate, butyl palmitate, 2-ethylhexyl myristate,
Mixture of butyl stearate and butyl palmitate, butoxyethyl stearate, 2-butoxy-1-propyl stearate, ester of dipropylene glycol monobutyl ether with stearic acid, diethylene glycol dipalmitate, hexamethylene diol myristic acid Examples thereof include various ester compounds such as those which are esterified to form diesters and glycerin oleate.
【0049】さらに、磁気記録媒体を高湿度下で使用す
るときしばしば生ずる脂肪酸エステルの加水分解を軽減
するために、原料の脂肪酸及びアルコールの分岐/直
鎖、シス/トランス等の異性構造、分岐位置を選択する
ことがなされる。これらの潤滑剤は結合剤100重量部
に対して0.2〜20重量部の範囲で添加される。Further, in order to reduce the hydrolysis of fatty acid ester that often occurs when the magnetic recording medium is used under high humidity, branched / straight chain, cis / trans and other isomer structures of branched fatty acids and alcohols as raw materials, and branched positions are used. Is made. These lubricants are added in the range of 0.2 to 20 parts by weight with respect to 100 parts by weight of the binder.
【0050】潤滑剤としては、更に以下の化合物を使用
することもできる。即ち、シリコンオイル、グラファイ
ト、二硫化モリブデン、窒化ほう素、弗化黒鉛、フッ素
アルコール、ポリオレフィン、ポリグリコール、アルキ
ル燐酸エステル、二硫化タングステン等である。The following compounds may be used as the lubricant. That is, silicone oil, graphite, molybdenum disulfide, boron nitride, fluorinated graphite, fluoroalcohol, polyolefin, polyglycol, alkyl phosphate, tungsten disulfide and the like.
【0051】本発明の磁性層に用いられる研磨剤として
は、一般に使用される材料でα、γアルミナ、溶融アル
ミナ、コランダム、人造コランダム、炭化珪素、酸化ク
ロム(Cr2 O3 )、ダイアモンド、人造ダイアモン
ド、ザクロ石、エメリー(主成分:コランダムと磁鉄
鉱)、αFe2 O3 等が使用される。これらの研磨剤は
モース硬度が6以上である。具体的な例としては住友化
学社製、AKP−10、AKPー12、AKP−15、
20AKP−30、AKP−50、AKP−1520、
AKP−1500、HIT- 50、HIT60A、HI
T70、HIT80、HIT-100、日本化学工業社
製、G5、G7、S−1、酸化クロムK、上村工業社製
UB40B、不二見研磨剤社製WA8000、WA10
000、戸田工業社製TF100、TF140、TF1
80などが上げられる。平均粒子径が0.05〜3μm
の大きさのものが効果があり、好ましくは0.05〜
1.0μmである。The abrasives used in the magnetic layer of the present invention are generally used materials such as α, γ alumina, fused alumina, corundum, artificial corundum, silicon carbide, chromium oxide (Cr 2 O 3 ), diamond and artificial. Diamond, garnet, emery (main components: corundum and magnetite), αFe 2 O 3, etc. are used. These abrasives have a Mohs hardness of 6 or more. Specific examples include AKP-10, AKP-12, AKP-15, manufactured by Sumitomo Chemical Co., Ltd.
20AKP-30, AKP-50, AKP-1520,
AKP-1500, HIT-50, HIT60A, HI
T70, HIT80, HIT-100, Nippon Kagaku Kogyo KK, G5, G7, S-1, chromium oxide K, Uemura Kogyo UB40B, Fujimi Abrasives WA8000, WA10
000, Toda Kogyo TF100, TF140, TF1
80 etc. can be raised. Average particle size is 0.05-3 μm
Is effective, and is preferably 0.05-
It is 1.0 μm.
【0052】これら研磨剤の合計量は磁性体100重量
部に対して1〜20重量部、望ましくは1〜15重量部
の範囲で添加される。1重量部より少ないと十分な耐久
性が得られず、20重量部より多すぎると表面性、充填
度が劣化する。これら研磨剤は、あらかじめ結合剤で分
散処理したのち磁性塗料中に添加してもかまわない。The total amount of these abrasives is 1 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the magnetic material. If it is less than 1 part by weight, sufficient durability cannot be obtained, and if it is more than 20 parts by weight, the surface property and filling degree are deteriorated. These abrasives may be dispersed in a binder in advance and then added to the magnetic paint.
【0053】本発明の磁気記録媒体の磁性層中には、前
記非磁性粉末の他に帯電防止剤として導電性粒子を含有
することもできる。しかしながら最上層の飽和磁束密度
を最大限に増加させるためにはできるだけ最上層への添
加は少なくし、最上層以外の塗布層に添加するのが好ま
しい。帯電防止剤としては特に、カーボンブラックを添
加することは、媒体全体の表面電気抵抗を下げる点で好
ましい。本発明に使用できるカーボンブラックはゴム用
ファーネス、ゴム用サーマル、カラー用ブラック、導電
性カーボンブラック、アセチレンブラック等を用いるこ
とができる。比表面積は5〜500m2 /g、DBP吸
油量は10〜1500ml/100g、粒子径は5mμ
〜300mμ、PHは2〜10、含水率は0.1〜10
%、タップ密度は0.1〜1g/cc、が好ましい。本
発明に用いられるカーボンブラックの具体的な例として
はキャボット社製、BLACKPEARLS 200
0、1300、1000、900、800、700、V
ULCAN XC−72、旭カーボン社製、#80、#
60、#55、#50、#35、三菱化成工業社製、#
3950B、#3250B、#2700、#2650、
#2600、#2400B、#2300、#900、#
1000、#95、#30、#40、#10B、MA2
30、MA220、MA77、コロンビアカーボン社
製、CONDUCTEX SC、RAVEN 150、
50、40、15、ライオンアグゾ社製ケッチェンブラ
ックEC、ケッチェンブラックECDJ−500、ケッ
チェンブラックECDJ−600などが挙げられる。カ
ーボンブラックを分散剤などで表面処理したり、カーボ
ンブラックを酸化処理したり、樹脂でグラフト化して使
用しても、表面の一部をグラファイト化したものを使用
してもかまわない。また、カーボンブラックを磁性塗料
に添加する前にあらかじめ結合剤で分散してもかまわな
い。磁性層にカーボンブラックを使用する場合は磁性体
に対する量は0.1〜30重量%でもちいることが好ま
しい。さらに非磁性層を設ける場合には無機質非磁性粉
末に対し3〜20重量%含有させることが好ましい。The magnetic layer of the magnetic recording medium of the present invention may contain conductive particles as an antistatic agent in addition to the non-magnetic powder. However, in order to maximize the saturation magnetic flux density of the uppermost layer, it is preferable to add as little as possible to the uppermost layer and to add it to a coating layer other than the uppermost layer. As the antistatic agent, it is particularly preferable to add carbon black in order to reduce the surface electric resistance of the entire medium. The carbon black that can be used in the present invention may be a furnace for rubber, thermal for rubber, black for color, conductive carbon black, acetylene black and the like. Specific surface area 5 to 500 m 2 / g, DBP oil absorption 10 to 1500 ml / 100 g, particle size 5 mμ
~ 300 mμ, PH 2-10, water content 0.1-10
%, And the tap density is preferably 0.1 to 1 g / cc. Specific examples of carbon black used in the present invention include BLACKPEARLS 200 manufactured by Cabot Corporation.
0, 1300, 1000, 900, 800, 700, V
ULCAN XC-72, Asahi Carbon Co., Ltd., # 80, #
60, # 55, # 50, # 35, manufactured by Mitsubishi Kasei Kogyo, #
3950B, # 3250B, # 2700, # 2650,
# 2600, # 2400B, # 2300, # 900, #
1000, # 95, # 30, # 40, # 10B, MA2
30, MA220, MA77, manufactured by Columbia Carbon Co., CONDUCTEX SC, RAVEN 150,
50, 40, 15, Ketjen Black EC, Ketjen Black ECDJ-500, and Ketjen Black ECDJ-600 manufactured by Lion Aguzo. The carbon black may be surface-treated with a dispersant or the like, the carbon black may be oxidized, a resin may be grafted, or a part of the surface may be graphitized. Further, the carbon black may be dispersed with a binder in advance before being added to the magnetic paint. When carbon black is used in the magnetic layer, the amount based on the magnetic material is preferably 0.1 to 30% by weight. Further, when a non-magnetic layer is provided, it is preferably contained in the inorganic non-magnetic powder in an amount of 3 to 20% by weight.
【0054】一般的にカーボンブラックは帯電防止剤と
してだけでなく、摩擦係数低減、遮光性付与、膜強度向
上などの働きがあり、これらは用いるカーボンブラック
により異なる。従って本発明に使用されるこれらのカー
ボンブラックは、その種類、量、組合せを変え、粒子サ
イズ、吸油量、電導度、pHなどの先に示した諸特性を
もとに目的に応じて使い分けることはもちろん可能であ
る。使用できるカーボンブラックは例えば「カーボンブ
ラック便覧」カーボンブラック協会編を参考にすること
ができる。Generally, carbon black functions not only as an antistatic agent, but also for reducing the coefficient of friction, imparting light-shielding properties, improving film strength, etc. These differ depending on the carbon black used. Therefore, these carbon blacks used in the present invention may be used in different types, amounts, and combinations depending on the purpose based on the various characteristics shown above such as particle size, oil absorption, electric conductivity, and pH. Of course it is possible. The carbon black that can be used can be referred to, for example, “Carbon Black Handbook” edited by Carbon Black Association.
【0055】本発明の磁気記録媒体の磁性層と非磁性支
持体の間に非磁性層を形成する場合の非磁性層(以下、
下層ともいう)は、主として無機質非磁性粉末を結合剤
樹脂中に分散した層である。その非磁性層に使用される
無機質非磁性粉末には、種々のものが使用できる。例え
ば、α化率90%以上のα−アルミナ、β−アルミナ、
γ−アルミナ、炭化ケイ素、酸化クロム、酸化セリウ
ム、α−酸化鉄、コランダム、窒化珪素、チタンカーバ
イト、酸化チタン、二酸化珪素、窒化ホウ素、酸化亜
鉛、炭酸カルシウム、硫酸カルシウム、硫酸バリウムな
どが単独または組合せで使用される。これら無機質非磁
性粉末の粒子サイズは0.01〜2μが好ましいが、必
要に応じて粒子サイズの異なる無機質非磁性粉末を組み
合わせたり、単独の無機質非磁性粉末でも粒径分布を広
くして同様の効果をもたせることもできる。使用する結
合剤樹脂との相互作用を大きくし分散性を改良するため
に、使用する無機質非磁性粉末が表面処理されていても
よい。表面処理物としては、シリカ、アルミナ、シリカ
−アルミナなどの無機物により処理でも、カップリング
剤による処理でもよい。タップ密度は0.3〜2g/c
c、含水率は0.1〜5重量%、pHは2〜11、比表
面積は5〜100m2 /gが好ましい。前記無機質非磁
性粉末の形状は針状、球状、サイコロ状、板状のいずれ
でも良い。本発明に用いられる無機質非磁性粉末の具体
的な例としては、住友化学社製、AKP−20、AKP
−30、AKP−50、HIT−50、日本化学工業社
製、G5、G7、S−1、戸田工業社製、TF−10
0、TF−120、TF−140、石原産業社製TT0
55シリーズ、ET300W、チタン工業社製STT3
0、磁性酸化鉄および酸化鉄還元法で作成する強磁性金
属粉末の中間原料である針状ヘマタイト粒子などがあげ
られる。In the case of forming a non-magnetic layer between the magnetic layer and the non-magnetic support of the magnetic recording medium of the present invention,
The lower layer) is a layer in which an inorganic non-magnetic powder is mainly dispersed in a binder resin. Various types of inorganic non-magnetic powder can be used for the non-magnetic layer. For example, α-alumina, β-alumina having an α conversion rate of 90% or more,
γ-alumina, silicon carbide, chromium oxide, cerium oxide, α-iron oxide, corundum, silicon nitride, titanium carbide, titanium oxide, silicon dioxide, boron nitride, zinc oxide, calcium carbonate, calcium sulfate, barium sulfate alone Or used in combination. The particle size of these inorganic non-magnetic powders is preferably 0.01 to 2μ, but if necessary, inorganic non-magnetic powders having different particle sizes may be combined, or a single inorganic non-magnetic powder may be used to broaden the particle size distribution. It can also be effective. The inorganic non-magnetic powder used may be surface-treated in order to increase the interaction with the binder resin used and improve the dispersibility. The surface-treated product may be treated with an inorganic substance such as silica, alumina or silica-alumina, or may be treated with a coupling agent. Tap density is 0.3-2g / c
c, water content is 0.1 to 5% by weight, pH is 2 to 11, and specific surface area is preferably 5 to 100 m 2 / g. The inorganic non-magnetic powder may be needle-shaped, spherical, dice-shaped, or plate-shaped. Specific examples of the inorganic non-magnetic powder used in the present invention include AKP-20 and AKP manufactured by Sumitomo Chemical Co., Ltd.
-30, AKP-50, HIT-50, Nippon Kagaku Kogyo KK, G5, G7, S-1, Toda Kogyo TF-10.
0, TF-120, TF-140, TT0 made by Ishihara Sangyo Co., Ltd.
55 series, ET300W, TTT3 manufactured by Titanium Industry Co., Ltd.
0, needle-like hematite particles and the like, which are intermediate raw materials for magnetic iron oxide and ferromagnetic metal powder prepared by the iron oxide reduction method.
【0056】本発明の磁気記録媒体の層構成は、基本的
に非磁性支持体の上に上記磁性層または更に前記非磁性
層を少なくとも設けたものであれば、特に制限されず、
他の構成の磁性層または非磁性層を設けることができ
る。例えば、上記非磁性層の代わりに強磁性層を形成す
る場合には、その強磁性体としては酸化鉄強磁性体、コ
バルト変性酸化鉄強磁性体、CrO2 、六方晶フェライ
ト、各種金属強磁性体を樹脂中に分散した、種々のもの
が使用できる。これら強磁性層を下層ともいう。The layer structure of the magnetic recording medium of the present invention is basically not limited as long as it has at least the above magnetic layer or further the above nonmagnetic layer on the nonmagnetic support.
A magnetic layer or a non-magnetic layer having another structure can be provided. For example, when a ferromagnetic layer is formed instead of the non-magnetic layer, the ferromagnetic material may be iron oxide ferromagnetic material, cobalt modified iron oxide ferromagnetic material, CrO 2 , hexagonal ferrite, various metal ferromagnetic materials. Various materials having a body dispersed in a resin can be used. These ferromagnetic layers are also called lower layers.
【0057】非磁性支持体上に2層以上の塗布層を形成
させることも高記録密度の磁気記録媒体を製造するする
うえで有効であり、同時塗布方式は超薄層の磁性層を作
り出すことができるので特に優れている。その同時塗布
方式としてウェット・オン・ウェット方式の具体的な方
法としては、Forming two or more coating layers on a non-magnetic support is also effective in producing a magnetic recording medium having a high recording density, and the simultaneous coating method produces an ultrathin magnetic layer. It is especially excellent because it can be done. As a specific method of the wet-on-wet method as the simultaneous application method,
【0058】(1)磁性塗料で一般的に用いられるグラビ
ア塗布、ロール塗布、ブレード塗布、エクストルージョ
ン塗布装置によりまず下層を塗布し、その層がまだ湿潤
状態にあるうちに、例えば、特公平1−46186号公
報、特開昭60−238179号公報及び特開平2−2
65672号公報に開示されている非磁性支持体加圧型
エクストルージョン塗布装置により上層を塗布する方
法、(1) First, the lower layer is coated by a gravure coating, roll coating, blade coating, and extrusion coating device which are generally used for magnetic paints, and while the layer is still in a wet state, for example, Japanese Patent Publication No. 1 -46186, JP-A-60-238179 and JP-A-2-2
Japanese Patent Publication No. 65672 discloses a method for coating an upper layer by a non-magnetic support pressure type extrusion coating apparatus,
【0059】(2) 特開昭63−88080号公報、特開
平2−17971号公報及び特開平2−265672号
公報に開示されているような塗布液通液スリットを二つ
内蔵した塗布ヘッドにより、下層の塗布液及び上層の塗
布液をほぼ同時に塗布する方法、(2) By a coating head having two slits for passing a coating liquid as disclosed in JP-A-63-88080, JP-A-2-17971 and JP-A-2-265672. , A method of applying the lower layer coating solution and the upper layer coating solution almost simultaneously,
【0060】(3)特開平2−174965号公報に開示
されているバックアップロール付きエクストルージョン
塗布装置により、上層及び下層をほぼ同時に塗布する方
法、等が挙げられる。(3) A method of coating the upper layer and the lower layer almost at the same time by using the extrusion coating apparatus with a backup roll disclosed in Japanese Patent Laid-Open No. 2-174965.
【0061】ウェット・オン・ウェット方式で塗布する
場合、磁性層用塗布液と非磁性層用塗布液の流動特性は
できるだけ近い方が、塗布された磁性層と非磁性層の界
面の乱れがなく厚さが均一な厚み変動の少ない磁性層を
得ることができる。塗布液の流動特性は、塗布液中の粉
末粒子と結合剤樹脂の組み合わせに強く依存するので、
特に、非磁性層に使用する非磁性粉末の選択に留意する
必要がある。When applying by the wet-on-wet method, the flow characteristics of the coating liquid for the magnetic layer and the coating liquid for the non-magnetic layer should be as close as possible so that the interface between the coated magnetic layer and the non-magnetic layer will not be disturbed. It is possible to obtain a magnetic layer having a uniform thickness and less variation in thickness. Since the flow characteristics of the coating liquid strongly depend on the combination of the powder particles and the binder resin in the coating liquid,
In particular, it is necessary to pay attention to the selection of the non-magnetic powder used for the non-magnetic layer.
【0062】本磁気記録媒体の非磁性支持体は、通常、
1〜100μm、望ましくは3〜20μm、非磁性層と
しては、0.5〜10μm、好ましくは1〜4μmであ
る。非磁性層の上に磁性層を設ける場合、その磁性層の
厚味は通常、0.05〜3.0μm、好ましくは0.0
5〜2.0μmであり、非磁性層を設けずに磁性層を単
独で設ける場合、その磁性層の厚味は通常、0.05〜
5.0μm、好ましくは1.5〜2.5μmである。ま
た、前記磁性層及び前記非磁性層以外の他の層を目的に
応じて形成することができる。例えば、非磁性支持体と
下層の間に密着性向上のための下塗り層を設けてもかま
わない。この厚みは0.01〜2μm、好ましくは0.
05〜0.5μmである。また、非磁性支持体の磁性層
側と反対側にバックコート層を設けてもかまわない。こ
の厚みは0.1〜2μm、好ましくは0.3〜1.0μ
mである。これらの下塗り層、バックコート層は公知の
ものが使用できる。円盤状磁気記録媒体の場合、片面も
しくは両面に上記層構成を設けることができる。The non-magnetic support of the present magnetic recording medium is usually
1 to 100 μm, preferably 3 to 20 μm, and the thickness of the nonmagnetic layer is 0.5 to 10 μm, preferably 1 to 4 μm. When a magnetic layer is provided on the non-magnetic layer, the thickness of the magnetic layer is usually 0.05 to 3.0 μm, preferably 0.0
5 to 2.0 μm, and when the magnetic layer is provided alone without providing the non-magnetic layer, the thickness of the magnetic layer is usually 0.05 to
The thickness is 5.0 μm, preferably 1.5 to 2.5 μm. Further, layers other than the magnetic layer and the non-magnetic layer can be formed according to the purpose. For example, an undercoat layer for improving adhesion may be provided between the non-magnetic support and the lower layer. This thickness is 0.01 to 2 μm, preferably 0.1.
05-0.5 μm. Further, a back coat layer may be provided on the side of the non-magnetic support opposite to the side of the magnetic layer. This thickness is 0.1 to 2 μm, preferably 0.3 to 1.0 μm
m. Known undercoat layers and back coat layers can be used. In the case of a disk-shaped magnetic recording medium, the above layer constitution can be provided on one side or both sides.
【0063】本発明で使用される非磁性支持体には特に
制限はなく、通常使用されているものを用いることがで
きる。非磁性支持体を形成する素材の例としては、ポリ
エチレンテレフタレート、ポリエチレン、ポリプロピレ
ン、ポリカーボネート、ポリエチレンナフタレート、ポ
リアミド、ポリアミドイミド、ポリイミド、ポリサルホ
ン、ポリエーテルサルホン等の各種合成樹脂のフィル
ム、およびアルミニウム箔、ステンレス箔などの金属箔
を挙げることができる。The non-magnetic support used in the present invention is not particularly limited, and those commonly used can be used. Examples of materials forming the non-magnetic support include polyethylene terephthalate, polyethylene, polypropylene, polycarbonate, polyethylene naphthalate, polyamide, polyamide imide, polyimide, polysulfone, films of various synthetic resins such as polyethersulfone, and aluminum foil. , And metal foils such as stainless steel foil.
【0064】本発明の目的を有効に達成するには、非磁
性支持体の表面粗さは、中心線平均表面粗さRa(カッ
トオフ値0.25mm)で0.03μm以下、望ましく
0.02μm以下、さらに望ましく0.01μm以下で
ある。また、これらの非磁性支持体は単に前記中心線平
均表面粗さが小さいだけではなく、1μm以上の粗大突
起がないことが好ましい。また表面の粗さ形状は必要に
応じて非磁性支持体に添加されるフィラーの大きさと量
により自由にコントロールされるものである。これらの
フィラーの一例としては、Ca、Si、Tiなどの酸化
物や炭酸塩の他、アクリル系などの有機樹脂微粉末があ
げられる。本発明に用いられる非磁性支持体のウエブ走
行方向のF−5値は好ましくは5〜50Kg/mm2 、
ウエブ幅方向のF−5値は好ましくは3〜30Kg/m
m2 であり、ウエブ長手方向のF−5値がウエブ幅方向
のF−5値より高いのが一般的であるが、特に幅方向の
強度を高くする必要があるときはその限りでない。In order to effectively achieve the object of the present invention, the surface roughness of the non-magnetic support is 0.03 μm or less, preferably 0.02 μm, in terms of center line average surface roughness Ra (cutoff value 0.25 mm). Hereafter, it is more preferably 0.01 μm or less. Further, it is preferable that these non-magnetic supports not only have a small center line average surface roughness but also that they have no coarse protrusions of 1 μm or more. The shape of the surface roughness can be freely controlled by the size and amount of the filler added to the non-magnetic support, if necessary. Examples of these fillers include oxides and carbonates of Ca, Si, Ti and the like, and fine organic resin powders of acrylic and the like. The F-5 value in the web running direction of the non-magnetic support used in the present invention is preferably 5 to 50 Kg / mm 2 ,
The F-5 value in the web width direction is preferably 3 to 30 Kg / m.
m 2 and the F-5 value in the longitudinal direction of the web is generally higher than the F-5 value in the web width direction, but this is not the case especially when the strength in the width direction needs to be increased.
【0065】また、支持体のウエブ走行方向および幅方
向の100℃30分での熱収縮率は好ましくは3%以
下、さらに望ましくは1.5%以下、80℃30分での
熱収縮率は好ましくは1%以下、さらに望ましくは0.
5%以下である。破断強度は両方向とも5〜100Kg
/mm2 、弾性率は100〜2000Kg/mm2 が望
ましい。The heat shrinkage of the support in the web running direction and the width direction at 100 ° C. for 30 minutes is preferably 3% or less, more preferably 1.5% or less, and the heat shrinkage at 80 ° C. for 30 minutes. It is preferably 1% or less, more preferably 0.
It is 5% or less. Breaking strength is 5-100 kg in both directions
/ Mm 2 , and the elastic modulus is preferably 100 to 2000 Kg / mm 2 .
【0066】本発明で用いられる有機溶媒は任意の比率
でアセトン、メチルエチルケトン、メチルイソブチルケ
トン、ジイソブチルケトン、シクロヘキサノン、イソホ
ロン、テトラヒドロフラン、等のケトン類、メタノー
ル、エタノール、プロパノール、ブタノール、イソブチ
ルアルコール、イソプロピルアルコール、メチルシクロ
ヘキサノール、などのアルコール類、酢酸メチル、酢酸
ブチル、酢酸イソブチル、酢酸イソプロピル、乳酸エチ
ル、酢酸グリコール等のエステル類、グリコールジメチ
ルエーテル、グリコールモノエチルエーテル、ジオキサ
ン、などのグリコールエーテル系、ベンゼン、トルエ
ン、キシレン、クレゾール、クロルベンゼン、などの芳
香族炭化水素類、メチレンクロライド、エチレンクロラ
イド、四塩化炭素、クロロホルム、エチレンクロルヒド
リン、ジクロルベンゼン、等の塩素化炭化水素類、N,
N−ジメチルホルムアミド、ヘキサン等のものが使用で
きる。これら有機溶媒は必ずしも100%純粋ではな
く、主成分以外に異性体、未反応物、副反応物、分解
物、酸化物、水分等の不純分がふくまれてもかまわな
い。これらの不純分は30%以下が好ましく、さらに好
ましくは10%以下である。本発明で用いる有機溶媒は
必要ならば磁性層と非磁性層でその種類、量を変えても
かまわない。非磁性層に揮発性の高い溶媒をもちい表面
性を向上させる、非磁性層に表面張力の高い溶媒(シク
ロヘキサノン、ジオキサンなど)を用い塗布の安定性を
あげる、磁性層の溶解性パラメータの高い溶媒を用い充
填度を上げるなどがその例としてあげられるがこれらの
例に限られたものではないことは無論である。The organic solvent used in the present invention is any ratio of ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, isophorone, tetrahydrofuran, methanol, ethanol, propanol, butanol, isobutyl alcohol, isopropyl alcohol. , Alcohols such as methylcyclohexanol, esters such as methyl acetate, butyl acetate, isobutyl acetate, isopropyl acetate, ethyl lactate, glycol acetate, glycol dimethyl ether, glycol monoethyl ether, dioxane, and other glycol ethers, benzene, etc. Aromatic hydrocarbons such as toluene, xylene, cresol, chlorobenzene, methylene chloride, ethylene chloride, carbon tetrachloride, chlorine Chloroform, ethylene chlorohydrin, dichlorobenzene, chlorinated hydrocarbons and the like, N,
Those such as N-dimethylformamide and hexane can be used. These organic solvents are not necessarily 100% pure, and may contain impurities such as isomers, unreacted substances, by-products, decomposition products, oxides, and water in addition to the main components. The content of these impurities is preferably 30% or less, more preferably 10% or less. If necessary, the type and amount of the organic solvent used in the present invention may be changed between the magnetic layer and the non-magnetic layer. A solvent with a high solubility parameter for the magnetic layer that uses a solvent with high volatility for the non-magnetic layer to improve the surface properties, uses a solvent with high surface tension (cyclohexanone, dioxane, etc.) for the non-magnetic layer, and improves coating stability Examples of such methods include increasing the filling degree by using, but it goes without saying that the present invention is not limited to these examples.
【0067】本発明の磁気記録媒体は、前記強磁性金属
粉末と結合剤樹脂、及び必要ならば他の添加剤と共に有
機溶媒を用いて混練分散し、磁性塗料を非磁性支持体上
に塗布し、必要に応じて配向、乾燥して得られる。The magnetic recording medium of the present invention is kneaded and dispersed in an organic solvent together with the above-mentioned ferromagnetic metal powder, a binder resin, and other additives if necessary, and a magnetic coating material is applied onto a non-magnetic support. It is obtained by orienting and drying if necessary.
【0068】本発明の磁気記録媒体の磁性塗料を製造す
る工程は、少なくとも混練工程、分散工程、およびこれ
らの工程の前後に必要に応じて設けた混合工程からな
る。個々の工程はそれぞれ2段階以上にわかれていても
かまわない。本発明に使用する強磁性金属粉末、結合
剤、カーボンブラック、研磨剤、帯電防止剤、潤滑剤、
溶剤などすべての原料はどの工程の最初または途中で添
加してもかまわない。また、個々の原料を2つ以上の工
程で分割して添加してもかまわない。例えば、ポリウレ
タンを混練工程、分散工程、分散後の粘度調整のための
混合工程で分割して投入してもよい。The process for producing the magnetic coating material for the magnetic recording medium of the present invention comprises at least a kneading process, a dispersing process, and a mixing process provided before and after these processes, if necessary. Each process may be divided into two or more stages. Ferromagnetic metal powder, binder, carbon black, abrasive, antistatic agent, lubricant used in the present invention,
All raw materials such as solvents may be added at the beginning or in the middle of any step. In addition, individual raw materials may be divided and added in two or more steps. For example, polyurethane may be divided and added in the kneading step, the dispersing step, and the mixing step for adjusting the viscosity after dispersion.
【0069】磁性塗料の混練分散に当たっては各種の混
練機が使用される。例えば、二本ロールミル、三本ロー
ルミル、ボールミル、ペブルミル、トロンミル、サンド
グラインダー、ゼグバリ(Szegvari)、アトラ
イター、高速インペラー分散機、高速ストーンミル、高
速衝撃ミル、ディスパー、ニーダー、高速ミキサー、ホ
モジナイザー、超音波分散機などを用いることができ
る。Various kneading machines are used for kneading and dispersing the magnetic paint. For example, two-roll mill, three-roll mill, ball mill, pebble mill, tron mill, sand grinder, Szegvari, attritor, high speed impeller disperser, high speed stone mill, high speed impact mill, disper, kneader, high speed mixer, homogenizer, ultra A sonic disperser or the like can be used.
【0070】本発明の目的を達成するためには、従来の
公知の製造技術のを一部の工程としてを用いることがで
きることはもちろんであるが、混練工程では連続ニーダ
や加圧ニーダなど強い混練力をもつものを使用すること
が好ましい。連続ニーダまたは加圧ニーダを用いる場合
は強磁性金属粉末と結合剤のすべてまたはその一部(た
だし全結合剤の30%以上が好ましい)および強磁性金
属粉末100重量部に対し15〜500重量部の範囲で
混練処理される。これらの混練処理の詳細については特
開平1−106338号公報、特開昭64−79274
号公報に記載されている。本発明では、特開昭62−2
12933に示されるような同時重層塗布方式をもちい
ることによりより効率的に生産することが出来る。In order to achieve the object of the present invention, it is needless to say that the conventional known manufacturing techniques can be used as a part of the steps, but in the kneading step, strong kneading such as continuous kneader or pressure kneader is used. It is preferable to use one that has strength. When a continuous kneader or a pressure kneader is used, all or part of the ferromagnetic metal powder and the binder (however, 30% or more of the total binder is preferable) and 15 to 500 parts by weight based on 100 parts by weight of the ferromagnetic metal powder. The kneading is performed within the range. Details of these kneading treatments are described in JP-A-1-106338 and JP-A-64-79274.
It is described in Japanese Patent Publication No. In the present invention, JP-A-62-2
By using the simultaneous multi-layer coating method as shown in 12933, it is possible to produce more efficiently.
【0071】本発明の磁気記録媒体の磁性層中に含まれ
る残留溶媒は好ましくは100mg/m2 以下、さらに
好ましくは10mg/m2 以下であり、磁性層に含まれ
る残留溶媒が非磁性層に含まれる残留溶媒より少ないほ
うが好ましい。The residual solvent contained in the magnetic layer of the magnetic recording medium of the present invention is preferably 100 mg / m 2 or less, more preferably 10 mg / m 2 or less, and the residual solvent contained in the magnetic layer is contained in the non-magnetic layer. It is preferably less than the residual solvent contained.
【0072】磁性層が有する空隙率は下層、上層とも好
ましくは30容量%以下、さらに好ましくは10容量%
以下である。非磁性層の空隙率が磁性層の空隙率より大
きいほうが好ましいが非磁性層の空隙率が5容量%以上
であれば小さくてもかまわない。The porosity of the magnetic layer in both the lower layer and the upper layer is preferably 30% by volume or less, more preferably 10% by volume.
It is the following. The porosity of the nonmagnetic layer is preferably larger than that of the magnetic layer, but may be small as long as the porosity of the nonmagnetic layer is 5% by volume or more.
【0073】本発明の磁気記録媒体は下層と上層を有す
ることができるが、目的に応じ下層と上層でこれらの物
理特性を変えることができるのは容易に推定されること
である。例えば、上層の弾性率を高くし走行耐久性を向
上させると同時に下層の弾性率を磁性層より低くして磁
気記録媒体のヘッドへの当りを良くするなどである。The magnetic recording medium of the present invention can have a lower layer and an upper layer, but it is easily presumed that the physical properties of the lower layer and the upper layer can be changed according to the purpose. For example, the elastic modulus of the upper layer is increased to improve running durability, and at the same time, the elastic modulus of the lower layer is made lower than that of the magnetic layer to improve the contact of the magnetic recording medium with the head.
【0074】このような方法により、支持体上に塗布さ
れた磁性層は必要により層中の強磁性金属粉末を配向さ
せる処理を施したのち、形成した磁性層を乾燥する。又
必要により表面平滑化加工を施したり、所望の形状に裁
断したりして、本発明の磁気記録媒体を製造する。以上
の上層用の組成物あるいは更に下層用の組成物を溶剤と
共に分散して、得られた塗布液を非磁性支持体上に塗布
し、配向乾燥して、磁気記録媒体をえる。By such a method, the magnetic layer coated on the support is optionally subjected to a treatment for orienting the ferromagnetic metal powder in the layer, and then the formed magnetic layer is dried. If necessary, the surface is smoothed or cut into a desired shape to manufacture the magnetic recording medium of the present invention. The above composition for the upper layer or the composition for the lower layer is dispersed together with a solvent, and the obtained coating solution is coated on a non-magnetic support and oriented and dried to obtain a magnetic recording medium.
【0075】磁性層の0.5%伸びでの弾性率はウエブ
塗布方向、幅方向とも望ましくは100〜2000Kg
/mm2 、破断強度は望ましくは1〜30Kg/c
m2 、磁気記録媒体の弾性率はウエブ塗布方向、幅方向
とも望ましくは100〜1500Kg/mm2 、残留の
びは望ましくは0.5%以下、100℃以下のあらゆる
温度での熱収縮率は望ましくは1%以下、さらに望まし
くは0.5%以下、もっとも望ましくは0.1%以下で
ある。The elastic modulus of the magnetic layer at 0.5% elongation is preferably 100 to 2000 kg in both the web coating direction and the width direction.
/ Mm 2 , breaking strength is desirably 1 to 30 Kg / c
m 2 , the elastic modulus of the magnetic recording medium is preferably 100 to 1500 Kg / mm 2 in both the web application direction and the width direction, the residual spread is preferably 0.5% or less, and the heat shrinkage rate at any temperature of 100 ° C. or less is desirable. Is 1% or less, more preferably 0.5% or less, and most preferably 0.1% or less.
【0076】本発明の磁気記録媒体は、ビデオ用途、オ
ーディオ用途などのテープであってもデータ記録用途の
フロッピーディスクや磁気ディスクであってもよいが、
ドロップ・アウトの発生による信号の欠落が致命的とな
るデジタル記録用途の媒体に対しては特に有効である。
更に、下層を非磁性層とし、最上層の厚さを1μm以下
とすることにより、電磁変換特性が高い、オーバーライ
ト特性が優れた、高密度で大容量の磁気記録媒体を得る
ことができる。The magnetic recording medium of the present invention may be a tape for video use, audio use or the like, or a floppy disk or magnetic disk for data recording.
It is particularly effective for a medium for digital recording in which the loss of a signal due to the occurrence of drop-out is fatal.
Further, by making the lower layer a non-magnetic layer and setting the thickness of the uppermost layer to 1 μm or less, it is possible to obtain a high-density and large-capacity magnetic recording medium having high electromagnetic conversion characteristics and excellent overwrite characteristics.
【0077】[0077]
【0078】本発明の新規な特長を以下の実施例で具体
的に説明するが、本発明はこれに限定されりるものでは
ない。The novel features of the present invention will be specifically described in the following examples, but the present invention is not limited thereto.
【0079】〔製造例1〕
製造例1−1〜5
(強磁性金属粉の製造)攪拌機つきの150lタンクに
1.7モル/lの炭酸ナトリウム35lと2.0モル/
lの水酸化ナトリウム15lの混合溶液に燐酸ナトリウ
ム0.5モル/lの水溶液0.4lを添加し窒素でバブ
リングしつつ、別のタンクで窒素をバブリングさせなが
ら溶解した硫酸第一鉄と硫酸コバルト(Fe2+濃度が
1.35モル/l、Co濃度が0.15モル/l)水溶
液40lを添加し混合した。10分間攪拌した後、懸濁
液の温度を25℃とし第一鉄を含む沈殿物を生成した。
窒素にかえて空気を導入し沈殿物を酸化しゲータイト核
晶を生成させた。懸濁液中のFe2+濃度が0.75モル
/lとなったとき空気酸化を中断し窒素にきりかえ、懸
濁液の温度を40℃に加熱し2時間保持したのち、アル
ミン酸ナトリウム1.1モル/l水溶液1lを添加し
た。その後窒素を空気に切り換え酸化反応を進め紡錘状
を呈したゲータイトを生成させた。得られた粒子を瀘
過、水洗した。一部を乾燥し透過型電子顕微鏡写真をと
り平均粒子径を求めたところ、平均長軸長が0.12μ
m、平均針状比が8であった。また窒素中で120℃で
30分加熱脱水後比表面積を測定すると115m2/gで
あった。Production Example 1 Production Examples 1-1 to 5 (Production of Ferromagnetic Metal Powder) In a 150 l tank equipped with a stirrer, 35 mol of 1.7 mol / l sodium carbonate and 2.0 mol / l were added.
To a mixed solution of 15 liters of sodium hydroxide, 0.4 liter of an aqueous solution of 0.5 mol / l of sodium phosphate was added, and while bubbling nitrogen, bubbling nitrogen in another tank dissolved ferrous sulfate and cobalt sulfate. 40 l of an aqueous solution (Fe 2+ concentration: 1.35 mol / l, Co concentration: 0.15 mol / l) was added and mixed. After stirring for 10 minutes, the temperature of the suspension was adjusted to 25 ° C., and a precipitate containing ferrous iron was produced.
Air was introduced instead of nitrogen to oxidize the precipitate to generate goethite nuclei. When the Fe 2+ concentration in the suspension reached 0.75 mol / l, the air oxidation was discontinued and replaced with nitrogen, the suspension temperature was heated to 40 ° C. and maintained for 2 hours, then sodium aluminate was added. 1 liter of 1.1 mol / l aqueous solution was added. After that, nitrogen was changed to air and the oxidation reaction proceeded to produce spindle-shaped goethite. The obtained particles were filtered and washed with water. A part of it was dried and a transmission electron micrograph was taken to determine the average particle size. The average major axis length was 0.12μ.
m, and the average acicular ratio was 8. The specific surface area was 115 m 2 / g after dehydration by heating at 120 ° C. for 30 minutes in nitrogen.
【0080】得られたゲータイトを水中で2%スラリー
とし攪拌しつつ表1にしめすCoおよび/またはMgの
各添加量(鉄100原子%に対する原子%を示す)とな
るように硫酸コバルト水溶液および/または塩化マグネ
シウム水溶液を添加し、水酸化ナトリウム水溶液で中和
しコバルト化合物および/またはマグネシウム化合物を
粒子表面に沈着させた。スラリーを濾過後再度2%水ス
ラリーとし、硫酸アルミニウム水溶液を添加した(表1
に鉄100原子%に対するAlの原子%を表示)。硫酸
アルミニウムを添加し20分攪拌した後、水酸化ナトリ
ウム水溶液を添加しスラリーを中和した。瀘過水洗した
後2%スラリーとし硝酸イットリウム水溶液を添加し
(表1に鉄に対するYの原子%を表示)、水酸化ナトリ
ウム水溶液でpHを8.5とした。濾過水洗し5%水ス
ラリーとし130℃で1時間加熱した。その後、濾過水
洗し得られたケーキを成形機を通しついで乾燥し焼結防
止処理した紡錘形を呈したゲータイトを得た。The obtained goethite was made into a 2% slurry in water and stirred so that each addition amount of Co and / or Mg shown in Table 1 (showing atomic% relative to 100 atomic% of iron) and / or aqueous solution of cobalt sulfate and / or Alternatively, an aqueous magnesium chloride solution was added and neutralized with an aqueous sodium hydroxide solution to deposit a cobalt compound and / or a magnesium compound on the particle surface. The slurry was filtered and made into a 2% water slurry again, and an aluminum sulfate aqueous solution was added (Table 1
Shows the atomic% of Al to 100 atomic% of iron). After adding aluminum sulfate and stirring for 20 minutes, a sodium hydroxide aqueous solution was added to neutralize the slurry. After washing with filtered water, a 2% slurry was prepared, an yttrium nitrate aqueous solution was added (atomic% of Y to iron is shown in Table 1), and the pH was adjusted to 8.5 with an aqueous sodium hydroxide solution. It was filtered, washed with water to form a 5% water slurry, and heated at 130 ° C. for 1 hour. After that, the cake obtained by filtering and washing with water was passed through a molding machine and then dried to obtain a spindle-shaped goethite that was subjected to a sintering prevention treatment.
【0081】得られた紡錘型ゲータイトを静置式の還元
炉にいれ、窒素中で350℃で20分加熱し脱水処理し
次に温度を600℃で2時間加熱しヘマタイトの結晶性
を高めた。温度を450℃としガスを窒素から水素:C
O=30:70のガスに切り換え1時間還元した。窒素
に置換したのち純水素に切り替え5時間還元した。窒素
に切り換え室温に冷却したのち空気と窒素の混合比率を
かえ酸素濃度を0.5%としメタル粉の温度をモニター
しつつ50℃以下で徐酸化し、発熱がおさまると酸素濃
度を1%とし10時間徐酸化した。このあとメタル粉に
対し水分が1%となるように蒸留水を気化させつつ空気
と搬送し、調湿するとともに安定化した。The spindle-type goethite thus obtained was placed in a static reduction furnace, heated in nitrogen at 350 ° C. for 20 minutes for dehydration treatment, and then heated at 600 ° C. for 2 hours to enhance the crystallinity of hematite. The temperature is 450 ° C. and the gas is nitrogen to hydrogen: C
The gas was changed to O = 30: 70 and reduced for 1 hour. After substituting with nitrogen, it was changed to pure hydrogen and reduced for 5 hours. After switching to nitrogen and cooling to room temperature, change the mixing ratio of air and nitrogen to change the oxygen concentration to 0.5% and gradually oxidize at 50 ° C or lower while monitoring the temperature of the metal powder, and when the heat generation subsides, the oxygen concentration is set to 1%. It was gradually oxidized for 10 hours. Then, the distilled water was vaporized so that the water content was 1% of the metal powder, and the distilled water was transported with air to regulate the humidity and stabilize.
【0082】得られた強磁性金属粉末の磁気特性を振動
試料型磁力計(東英工業製)で外部磁場10KOeで測定
した。得られた強磁性金属粉末の高分解能透過型電子顕
微鏡写真をとり強磁性金属粒子の平均長軸長(μm)と
平均針状比を、結晶子の平均数と平均針状比を求めた。
あわせて窒素中250℃で30分脱水し、カンターソブ
(カンタークロム社製)で比表面積(SBET )を測定
し,表1に示した。
〔製造例2〕
製造例2−1〜2
表1の記載の要素を用いて製造例1と同様の工程を経て
焼結防止処理した紡錘型ゲータイト得て、これを静置式
の還元炉にいれ、窒素中で350℃で60分加熱し脱水
処理し温度を450℃としガスを窒素から純水素に切り
替え6時間還元した。これ以降は製造例1と同様の処理
を行った。得られた強磁性金属粉末を製造例1と同様に
評価し、その結果を表1に示した。The magnetic characteristics of the obtained ferromagnetic metal powder were measured with a vibrating sample magnetometer (manufactured by Toei Industry Co., Ltd.) in an external magnetic field of 10 KOe. A high-resolution transmission electron micrograph of the obtained ferromagnetic metal powder was taken to determine the average major axis length (μm) and average acicular ratio of the ferromagnetic metal particles, and the average number of crystallites and the average acicular ratio.
In addition, dehydration was carried out in nitrogen at 250 ° C. for 30 minutes, and the specific surface area (S BET ) was measured with Cantersob (manufactured by Canterchrome Co.) and shown in Table 1. [Manufacturing Example 2] Manufacturing Examples 2-1 to 2 A spindle-type goethite that was subjected to a sintering prevention treatment through the same steps as in Manufacturing Example 1 using the elements described in Table 1 was placed in a stationary reduction furnace. Then, the mixture was heated in nitrogen at 350 ° C. for 60 minutes to perform dehydration treatment, the temperature was adjusted to 450 ° C., and the gas was changed from nitrogen to pure hydrogen for reduction for 6 hours. After this, the same treatment as in Production Example 1 was performed. The obtained ferromagnetic metal powder was evaluated in the same manner as in Production Example 1, and the results are shown in Table 1.
【0083】[0083]
【表1】 [Table 1]
【0084】〔製造例3〕
製造例3−1〜2
製造例1で25℃で核晶を生成させたあと、懸濁液中の
Fe2+濃度が0.75モル/lとなったとき空気酸化を
中断し窒素にきりかえ、アルミン酸ナトリウムを添加
し、懸濁液の温度を50℃に加熱し空気酸化しゲータイ
トを生成した。ゲータイトの平均長軸長は0.20μ
m、平均針状比は14、比表面積は130m2/gであっ
た。その後表2記載の要素を用いて製造例1と同様に添
加元素を使用し、次いで焼結防止剤で処理した後、濾過
水洗し成形機を通過させ乾燥した。その後製造例1と同
様に還元、徐酸化した。得られた強磁性金属粉末を製造
例1と同様に評価し、表2に示した。[Manufacturing Example 3] Manufacturing Examples 3-1 to 2 When the Fe 2+ concentration in the suspension was 0.75 mol / l after the nucleation was generated at 25 ° C. in Manufacturing Example 1. The air oxidation was discontinued and replaced with nitrogen, sodium aluminate was added, and the temperature of the suspension was heated to 50 ° C. to perform air oxidation to produce goethite. The average major axis length of Goethite is 0.20μ
m, the average acicular ratio was 14, and the specific surface area was 130 m 2 / g. Thereafter, using the elements shown in Table 2, the additional elements were used in the same manner as in Production Example 1, then treated with a sintering inhibitor, washed with filtered water, passed through a molding machine and dried. After that, reduction and gradual oxidation were performed in the same manner as in Production Example 1. The obtained ferromagnetic metal powder was evaluated in the same manner as in Production Example 1 and shown in Table 2.
【0085】[0085]
【表2】 [Table 2]
【0086】〔実施例1〕
磁気記録媒体の製造(実施例1−1〜5、比較例1−1
〜4)
製造例1−1〜5、製造例2−1〜2、および製造例3
−1〜2で得られた強磁性金属粉末を使用した重層構成
の磁気テープを作成するため以下の磁性層の組成物と非
磁性層の組成物を作成した。以下の処方において、
「部」との表示はすべて「重量部」を示す。
(磁性層の組性物)
強磁性金属粉末(表3記載) 100部
結合剤樹脂
塩化ビニル共重合体 12部
(−SO3 Na基を1×10-4eq/g含有
重合度 300
ポリエステルポリウレタン樹脂 5部
(ネオペンチルグリコール/カプロラクトンポリオール/MDI
=0.9/2.6/1(モル比)、−SO3 Na基 1×10-4eq
/g含有)
α−アルミナ(平均粒子径0.13μm) 5.0部
カーボンブラック(平均粒子サイズ 40nm) 1.0部
ブチルステアレート 1部
ステアリン酸 2部
メチルエチルケトンとシクロヘキサノン1:1混合溶剤 200部
(非磁性層の組成物)
針状ヘマタイト 80部
(BET法による比表面積 55m2/g
平均長軸長 0.12μm、針状比 8
pH 7.5
アルミ処理 Al/Fe 6.5at%)
カーボンブラック 20部
(平均一次粒子径 17nm、
DBP及油量 80ml/100g
BET法による表面積 240m2 /g
pH7.5)
結合剤樹脂
塩化ビニル共重合体 12部
(−SO3 Na基を1×10-4eq/g含有
重合度 300)
ポリエステルポリウレタン樹脂 7部
(基本骨格:1,4−BD/フタル酸/HMDI
=2/2/1(モル比)
分子量:10200
水酸基:0.23×10-3eq/g含有
−SO3 Na基:1×10-4eq/g含有)
ブチルステアレート 1部
ステアリン酸 2.5部
メチルエチルケトンとシクロヘキサノン1:1混合溶剤 200部
上記の磁性層用組成物及び非磁性層用組成物のそれぞれ
にをニーダーで混練した後、サンドグラインダーを使用
して分散した。得られた分散液にポリイソシアネートを
非磁性層の塗布液には5部、磁性層塗布液には6部を加
え、さらにメチルエチルケトンとシクロヘキサノン1:
1混合溶剤を20部加え、1μmの平均孔径を有するフ
ィルターを使用して濾過し、非磁性層および磁性層用の
塗布液を調整した。Example 1 Production of Magnetic Recording Medium (Examples 1-1 to 5 and Comparative Example 1-1)
~ 4) Production Examples 1-1 to 5, Production Examples 2-1 to 2 and Production Example 3
The following magnetic layer composition and non-magnetic layer composition were prepared in order to prepare a multi-layered magnetic tape using the ferromagnetic metal powders obtained in Nos. 1-2. In the following prescription,
All indications of "part" indicate "part by weight". (Set of product of the magnetic layer) ferromagnetic metal powder (Table 3 described) 100 parts binder resin of vinyl chloride copolymer 12 parts (-SO 3 Na groups and containing 1 × 10 -4 eq / g polymerization degree: 300 Polyester polyurethane 5 parts of the resin (neopentyl glycol / caprolactone polyol / MDI = 0.9 / 2.6 / 1 (molar ratio), - SO 3 Na group containing 1 × 10 -4 eq / g) alpha-alumina (average particle diameter 0 .13 μm) 5.0 parts carbon black (average particle size 40 nm) 1.0 part Butyl stearate 1 part Stearic acid 2 parts Mixed solvent of methyl ethyl ketone and cyclohexanone 1: 1 200 parts (composition of non-magnetic layer) Needle-like hematite 80 parts (specific surface area by the BET method: 55m 2 / g average major axis length 0.12 .mu.m, acicular ratio 8 pH 7.5 aluminized Al / Fe 6.5at%) Carb Black 20 parts (average primary particle diameter 17 nm, DBP及油amount 80 ml / 100 g surface area by BET method 240m 2 / g pH7.5) binder resin of vinyl chloride copolymer 12 parts (-SO 3 Na group of 1 × 10 - 4 eq / g content Degree of polymerization 300) Polyester polyurethane resin 7 parts (basic skeleton: 1,4-BD / phthalic acid / HMDI = 2/2/1 (molar ratio) Molecular weight: 10200 Hydroxyl group: 0.23 × 10 −3 eq / g containing -SO 3 Na group: 1 × 10 -4 eq / g containing) butyl stearate 1 part stearic acid 2.5 parts Methyl ethyl ketone and cyclohexanone 1: 1 magnetic layer composition of the mixed solvent 200 parts the above and non Each of the magnetic layer compositions was kneaded with a kneader and then dispersed using a sand grinder. 5 parts of the coating solution for sexual layer, is added 6 parts of the magnetic layer coating liquid, more ethyl ketone and cyclohexanone 1:
20 parts of 1 mixed solvent was added, and filtration was performed using a filter having an average pore size of 1 μm to prepare coating solutions for the non-magnetic layer and the magnetic layer.
【0087】得られた非磁性層用の塗布液を乾燥後の厚
さが1.8μmとなるように塗布し、さらにその直後非
磁性層用塗布層がまだ湿潤状態にあるうちに、その上に
磁性層の厚みが0.15μmとなるように厚さ7μmの
ポリエチレンテレフタレート支持体上に湿式同時重層塗
布を行い、両層がまだ湿潤状態にあるうちに配向装置を
通過させ長手配向した。この時の配向磁石は希土類磁石
(表面磁束5000ガウス)を通過させた後、ソレノイ
ド磁石(磁束密度5000ガウス)中を通過させ、ソレ
ノイド内で配向が戻らない程度まで乾燥しさらに磁性層
を乾燥し巻き取った。その後金属ロールより構成される
7段カレンダーでロール温度を90℃にしてカレンダー
処理を施して、ウェッブ状の磁気記録媒体を得、それを
8mm幅にスリットして8mmビデオテープのサンプル
を作成した。得られたサンプルを振動試料型磁力計で測
定した磁気特性と高Hc成分、表面粗さ、ドラムテスタ
ーを使用し測定した1/2Tbの出力とC/N、オーバ
ーライト特性を表3に示す。電磁変換特性の基準には富
士写真フィルム製のスーパーDCテープを使用した。The obtained coating liquid for the non-magnetic layer was coated so that the thickness after drying was 1.8 μm, and immediately thereafter, while the coating layer for the non-magnetic layer was still in a wet state, Then, wet simultaneous multilayer coating was performed on a polyethylene terephthalate support having a thickness of 7 μm so that the magnetic layer had a thickness of 0.15 μm, and while both layers were still in a wet state, they were passed through an aligning device for longitudinal alignment. At this time, the orienting magnet is passed through a rare earth magnet (surface magnetic flux: 5000 gauss) and then through a solenoid magnet (magnetic flux density: 5000 gauss), and dried until the orientation does not return in the solenoid, and further the magnetic layer is dried. I wound up. After that, calendering was performed with a 7-stage calender made of metal rolls at a roll temperature of 90 ° C. to obtain a web-shaped magnetic recording medium, which was slit into a width of 8 mm to prepare an 8 mm video tape sample. Table 3 shows the magnetic characteristics of the obtained sample measured by a vibrating sample magnetometer, the high Hc component, the surface roughness, the output of 1/2 Tb measured using a drum tester, the C / N, and the overwrite characteristics. Fuji DC film Super DC tape was used as the standard for electromagnetic conversion characteristics.
【0088】オーバーライト特性の測定法は次の方法に
よった。ドラムテスターを使用し、TSSヘッド(ヘッ
ドギャップ0.2μm、トラック幅14μm、飽和磁束
密度1.1テスラ)の相対速度を10.2m/秒とし、
1/2Tb(λ=0.5μm)の入出力特性から最適記
録電流を決めこの電流で1/90Tb(λ=22.5μ
m)の信号を記録し1/2Tbでオーバーライトしたと
きの1/90Tbの消去率よりオーバーライト特性を測
定した。The overwrite characteristic was measured by the following method. Using a drum tester, the relative speed of the TSS head (head gap 0.2 μm, track width 14 μm, saturation magnetic flux density 1.1 Tesla) was 10.2 m / sec,
The optimum recording current is determined from the input / output characteristics of 1/2 Tb (λ = 0.5 μm), and this current is 1/90 Tb (λ = 22.5 μm).
The overwrite characteristic was measured from the erasing rate of 1/90 Tb when the signal of m) was recorded and overwriting was performed at 1/2 Tb.
【0089】磁気特性は振動試料型磁力計(東英工業
製)を使用し外部磁場5kOeで配向方向に平行に測定
した。尚、SQは角形比を示す。高Hc成分の測定法は
次の方法によった。東英工業製の振動試料型磁力計に磁
気記録媒体の測定サンプルの配向方向が磁場と同一方向
になるようにセットし、−10kOe印加しDC飽和さ
せた後に、磁場をゼロに戻し残留磁化(-Mrmax)を測定す
る。逆の方向に3000Oeの磁場を印加したのち磁場
をゼロのもどし残留磁化Mrを測定した後10kOe印加
し逆方向にDC飽和し、磁場をゼロとし残留磁化Mrmax
を測定する。得られた各残留磁化より次の式で算出し
た。The magnetic characteristics were measured in parallel with the orientation direction using an oscillating sample magnetometer (manufactured by Toei Industry Co., Ltd.) with an external magnetic field of 5 kOe. In addition, SQ shows a squareness ratio. The high Hc component was measured by the following method. Set the orientation of the measurement sample of the magnetic recording medium in the same direction as the magnetic field in a vibrating sample magnetometer manufactured by Toei Industry Co., Ltd., apply -10 kOe and DC saturate, then return the magnetic field to zero and remanent magnetization ( -Mrmax) is measured. After applying a magnetic field of 3000 Oe in the opposite direction, returning the magnetic field to zero and measuring the residual magnetization Mr, applying 10 kOe and performing DC saturation in the opposite direction, and setting the magnetic field to zero, the residual magnetization Mrmax
To measure. It was calculated by the following formula from the obtained residual magnetization.
【0090】高Hc成分(%)=100×(Mrmax−Mr)/
(Mrmax−(-Mrmax))
逆方向に印加する磁場の大きさは任意に設定できるが、
検出感度の観点より本願では 3000Oeを採用し
た。高Hc成分は設定した印加磁場以上で磁化反転する
成分を表している。表面粗さは、WYKO社(USアリ
ゾナ州)製の光干渉3次元粗さ計「TOPO−3D」を
使用し250μm角の試料面積を測定した。測定値の算
出にあたっては、傾斜補正、球面補正、円筒補正等の補
正をJIS−B601に従って実施し、中心面平均粗さ
RaIを表面粗さの値とした。High Hc component (%) = 100 × (Mrmax−Mr) /
(Mrmax-(-Mrmax)) The magnitude of the magnetic field applied in the opposite direction can be set arbitrarily,
From the viewpoint of detection sensitivity, 3000 Oe is adopted in the present application. The high Hc component represents a component that causes magnetization reversal at a set applied magnetic field or more. The surface roughness was measured by using a light interference three-dimensional roughness meter "TOPO-3D" manufactured by WYKO (US Arizona) to measure a sample area of 250 μm square. In calculating the measurement value, corrections such as inclination correction, spherical correction, and cylindrical correction were performed according to JIS-B601, and the center surface average roughness RaI was used as the surface roughness value.
【0091】[0091]
【表3】 [Table 3]
【0092】〔製造例4〕
〔核晶作り〕密閉可能な2リットルガラス容器に2M FeC
l3水溶液500mlに5.94N NaOH水溶液500mlを攪拌しながら
5分間で添加し、添加終了後更に20分間攪拌し、容器
を完全に密栓した。あらかじめ100℃に加熱してあるオ
ーブンにいれ、48時間保持した。48時間後、流水で急冷
し、反応液を分取して遠心分離装置にて15000rpmで15分
間遠心分離し上澄みを捨てた。これに蒸留水を加えて再
分散して、再度遠心分離し上澄みをすてた。このように
遠心分離機を使用して水洗を3回繰り返した。水洗が終
了したヘマタイト粒子(平均粒子径約0.1μm)の沈殿
物を乾燥した。この乾燥粉末50gに5mlの蒸留水を加
えて、ライカイ機にて10分間粉砕した。500mlの蒸留
水を使用しビーカーに洗いだし、100mLにわけこれをス
チールビーズ入りの200mLマヨネーズビンにいれ10時間
分散した。分散物をあつめ蒸留水でマヨネーズビンを洗
浄し分散物を回収した。蒸留水を加え全液量を1200mlと
し、さらに30分間超音波分散した。[Production Example 4] [Preparation of nuclear crystals] 2M FeC was placed in a sealable 2 liter glass container.
l 3 was added 5.94N NaOH aqueous 500ml aqueous solution 500ml with stirring for 5 minutes, stirring after completion of the addition a further 20 minutes, it was sealed container completely. It was put in an oven preheated to 100 ° C. and kept for 48 hours. After 48 hours, the mixture was rapidly cooled with running water, the reaction solution was separated and centrifuged at 15000 rpm for 15 minutes in a centrifugal separator, and the supernatant was discarded. Distilled water was added to this to redisperse it, and the mixture was centrifuged again and the supernatant was discarded. Thus, the washing with water was repeated three times using the centrifuge. The precipitate of hematite particles (average particle size of about 0.1 μm) that had been washed with water was dried. Distilled water (5 ml) was added to 50 g of the dry powder, and the mixture was crushed for 10 minutes by a raikai machine. It was washed in a beaker using 500 ml of distilled water, divided into 100 ml, and put in 200 ml mayonnaise bottle containing steel beads and dispersed for 10 hours. The dispersion was collected and the mayonnaise bottle was washed with distilled water to collect the dispersion. Distilled water was added to bring the total volume to 1200 ml, and the mixture was ultrasonically dispersed for another 30 minutes.
【0093】この分散物を分取し10000rpmで30分間遠心
分離して、超微粒子ヘマタイト (平均粒径約70Å)が分散し
ている上澄み液を取りだし、核晶液を得た。核晶液中の
鉄濃度は2000ppmであった。
〔単分散紡錘型ヘマタイトの結晶子サイズ制御〕攪拌機つき
反応容器に1モル/lの硝酸第2鉄180mlをいれ、
冷却し溶液の温度を5℃とする。攪拌しつつ2.4モル
/lの水酸化ナトリウム溶液180mlを5分間かけて
添加する。添加後さらに5分間攪拌を継続し、核晶溶液
180mlを添加し10分間攪拌した。得られた液を6
0mlずつ採取し、形態制御イオンとして0.048M/lのNa
H2PO4 10mlを添加し、H2O 10mlを添加した後あらかじめ
100℃に加熱してあるオーブン中に48時間保持し
た。流水で急冷し、反応液を遠心分離装置にて18000rpm
で15分間遠心分離し上澄みを捨てた。これに蒸留水を加
えて再分散して、再度遠心分離し上澄みをすてた。この
ように遠心分離機を使用して水洗を3回繰り返した。次
に1Mアンモニア水を加え再分散して、遠心分離し上澄みを
すてた。これに蒸留水を加えて再分散して、再度遠心分
離し上澄みをすてた。このように遠心分離機を使用して
水洗を3回繰り返した。生成物の一部を取り出し乾燥し
た粒子を透過型電子顕微鏡で観察したところ、平均長軸
長が0.07μm、針状比(長軸/短軸)が4.5、長軸長バ
ラツキ(長軸長の標準偏差/平均長軸長)が6%できわめ
て粒度分布が優れたαFe2O3 がえられた。This dispersion was collected and centrifuged at 10,000 rpm for 30 minutes to take out a supernatant liquid in which ultrafine particle hematite (average particle size: 70Å) was dispersed to obtain a nuclear crystal liquid. The iron concentration in the nucleating solution was 2000 ppm. [Crystallite size control of monodisperse spindle hematite] 180 ml of 1 mol / l ferric nitrate was placed in a reaction vessel equipped with a stirrer,
Cool and bring the temperature of the solution to 5 ° C. With stirring, 180 ml of 2.4 mol / l sodium hydroxide solution are added over 5 minutes. After the addition, stirring was further continued for 5 minutes, 180 ml of the nuclear crystal solution was added, and the mixture was stirred for 10 minutes. The obtained liquid is 6
Collect 0 ml each, and use 0.048 M / l Na as morphological control ions.
After adding 10 ml of H 2 PO 4 and 10 ml of H 2 O, the mixture was kept in an oven preheated to 100 ° C. for 48 hours. Quench with running water and centrifuge reaction solution at 18000 rpm
After centrifugation for 15 minutes, the supernatant was discarded. Distilled water was added to this to redisperse it, and the mixture was centrifuged again and the supernatant was discarded. Thus, the washing with water was repeated three times using the centrifuge. Next, 1 M aqueous ammonia was added and redispersed, and the mixture was centrifuged and the supernatant was discarded. Distilled water was added to this to redisperse it, and the mixture was centrifuged again and the supernatant was discarded. Thus, the washing with water was repeated three times using the centrifuge. When a part of the product was taken out and the dried particles were observed with a transmission electron microscope, the average major axis length was 0.07 μm, the acicular ratio (major axis / minor axis) was 4.5, and the major axis length variation (minor axis length ΑFe 2 O 3 with an excellent particle size distribution was obtained with a standard deviation / average major axis length of 6%.
【0094】得られた単分散紡錘型ヘマタイトを蒸留水
中にヘマタイト濃度が2%となるように分散し、硫酸コ
バルトをヘマタイト中のFeを100原子%とし、Co
が5原子%となるように添加し充分攪拌混合した。この
懸濁液を攪拌しつつpHをモニターしながら懸濁液中に
水酸化ナトリウム水溶液を添加しpHを8.0としヘマ
タイト表面にCo化合物を被着した。さらにヘマタイト
中のFeを100原子%としAlが8原子%となるよう
に攪拌しつつこの懸濁液中にアルミン酸ナトリウムを添
加し、希釈した硫酸を添加しpHを6.5とした。ヘマ
タイト中のFeを100原子%としNdが5原子%とな
るように攪拌しつつこの懸濁液中に硝酸ネオジウム溶液
を添加し、水酸化ナトリウム溶液を添加してpHを7.
8とした。懸濁液を濾過、蒸留水で洗浄し不純物を除去
した。得られた表面処理紡錘型ヘマタイトを直径3mmの
成型板を通過させ円柱状に成型し乾燥した。The obtained monodisperse spindle hematite was dispersed in distilled water so that the concentration of hematite was 2%, cobalt sulfate was made to be 100 atomic% of Fe in Co, and Co
Was added so as to be 5 atom%, and they were mixed with sufficient stirring. The pH of this suspension was adjusted to 8.0 while monitoring the pH while stirring the suspension to adjust the pH to 8.0, and a Co compound was deposited on the surface of the hematite. Further, sodium aluminate was added to this suspension while stirring so that Fe in hematite was 100 atom% and Al was 8 atom%, and diluted sulfuric acid was added to adjust pH to 6.5. Neodymium nitrate solution was added to this suspension while stirring so that Fe in hematite was 100 atomic% and Nd was 5 atomic%, and sodium hydroxide solution was added to adjust the pH to 7.
It was set to 8. The suspension was filtered and washed with distilled water to remove impurities. The obtained surface-treated spindle-type hematite was passed through a molding plate having a diameter of 3 mm, molded into a cylindrical shape, and dried.
【0095】表面処理された単分散紡錘型ヘマタイトの
500gを静置式還元炉にいれ、窒素中500℃で1時間ア
ニール処理した。次に温度を425℃とし、ガスを窒素
から水素:CO=30:70のガスに切り換え1時間還
元した。窒素に置換したのち純水素に切り替え5時間還
元した。窒素に切り換え室温に冷却したのち空気と窒素
の混合比率をかえ酸素濃度を0.5%としメタル粉の温
度をモニターしつつ50℃を超えないように徐酸化し、
発熱がおさまると酸素濃度を1%とし10時間徐酸化し
た。このあとメタル粉に対し水分が1%となるように蒸
留水を気化させつつ空気と搬送し、調湿するとともに安
定化した。
〔製造例5〕製造例4で得たヘマタイトを蒸留水中にヘ
マタイト濃度が2%となるように分散し、ヘマタイト中
のFeを100原子%としAlが8原子%となるように
攪拌しつつこの懸濁液中にアルミン酸ナトリウムを添加
し、希釈した硫酸を添加しpHを6.5とした。ヘマタ
イト中のFeを100原子%としNdが5原子%となる
ように攪拌しつつこの懸濁液中に硝酸ネオジウム溶液を
添加し、水酸化ナトリウム溶液を添加してpHを7.8
とした。懸濁液を濾過、蒸留水で洗浄し不純物を除去し
た。得られた表面処理紡錘型ヘマタイトを直径3mmの成
型板を通過させ円柱状に成型し乾燥した。Of surface-treated monodisperse spindle type hematite
500 g was placed in a static reduction furnace and annealed in nitrogen at 500 ° C. for 1 hour. Next, the temperature was set to 425 ° C., the gas was changed from nitrogen to a gas of hydrogen: CO = 30: 70, and reduction was carried out for 1 hour. After substituting with nitrogen, it was changed to pure hydrogen and reduced for 5 hours. After switching to nitrogen and cooling to room temperature, change the mixing ratio of air and nitrogen to 0.5% oxygen concentration and gradually oxidize so as not to exceed 50 ° C while monitoring the temperature of the metal powder,
When the exotherm subsided, the oxygen concentration was adjusted to 1% and the mixture was gradually oxidized for 10 hours. Then, the distilled water was vaporized so that the water content was 1% of the metal powder, and the distilled water was transported with air to regulate the humidity and stabilize. [Production Example 5] The hematite obtained in Production Example 4 was dispersed in distilled water so that the hematite concentration was 2%, and Fe in the hematite was adjusted to 100 atom% and Al was stirred to be 8 atom%. Sodium aluminate was added to the suspension, and diluted sulfuric acid was added to adjust the pH to 6.5. Neodymium nitrate solution was added to this suspension while stirring so that Fe in hematite was 100 atomic% and Nd was 5 atomic%, and sodium hydroxide solution was added to adjust pH to 7.8.
And The suspension was filtered and washed with distilled water to remove impurities. The obtained surface-treated spindle-type hematite was passed through a molding plate having a diameter of 3 mm, molded into a cylindrical shape, and dried.
【0096】製造例4と同条件で焼成し、強磁性金属粉
末を得た。製造例4、5の強磁性金属粉の磁気特性を振
動試料型磁力計(東英工業製)で外部磁場10KOeで測
定した。得られた強磁性金属粉末の高分解能透過型電子
顕微鏡写真をとり強磁性金属粒子の平均長軸長(μm)
と平均針状比を、結晶子の平均数と平均針状比を求め
た。あわせて窒素中250℃で30分脱水し、カンター
ソブ(カンタークロム社製)で比表面積を測定し、表4
に示した。By firing under the same conditions as in Production Example 4, a ferromagnetic metal powder was obtained. The magnetic characteristics of the ferromagnetic metal powders of Production Examples 4 and 5 were measured with a vibrating sample magnetometer (manufactured by Toei Industry Co., Ltd.) in an external magnetic field of 10 KOe. A high-resolution transmission electron micrograph of the obtained ferromagnetic metal powder is taken, and the average major axis length (μm) of the ferromagnetic metal particles is taken.
The average number of crystallites and the average acicular ratio were calculated. In addition, dehydration was carried out in nitrogen at 250 ° C. for 30 minutes, and the specific surface area was measured with Cantersob (manufactured by Canterchrome).
It was shown to.
【0097】[0097]
【表4】 [Table 4]
【0098】〔実施例2〕製造例4、5で得られた強磁
性金属粉末を使用し以下の条件でテープ化し、磁気特
性、電磁変換特性を測定した。
(上層用組成物)
強磁性金属粉末(表5) 100部
結合剤樹脂
塩化ビニル共重合体 14部
(−SO3 Na基を1×10-4eq/g含有
重合度 300)
ポリエステルポリウレタン樹脂 4部
(ネオペンチルグリコール/カプロラクトンポリオール/MDI
=0.9/2.6/1(モル比)
−SO3 Na基 1×10-4eq/g含有)
α−アルミナ(平均粒子サイズ 0.1μm) 3.5部
カーボンブラック(平均粒子サイズ 100nm) 0.5部
ブチルステアレート 1部
ステアリン酸 2部
メチルエチルケトンとシクロヘキサノン1:1混合溶剤 200部
(非磁性層用組成)
球状酸化チタン 80部
(平均粒子系0.025μm、アルミナ処理
BET法による表面積 60m2 /g、pH6.5)
カーボンブラック 20部
(平均一次粒子径 16nm、
DBP及油量 80ml/100g
BET法による表面積 250m2 /g
pH8.0)
結合剤樹脂
塩化ビニル−酢酸ビニル−ビニルアルコール共重合体 10部
(−N+ (CH3 )3 Cl- の極性基を5×10-6eq/g含
有
モノマー組成比 86:13:1 重合度 400)
ポリエステルポリウレタン樹脂 8部
(基本骨格:1,4−BD/フタル酸/HMDI
=2/2/1(モル比)
分子量:10200
水酸基:0.23×10-3eq/g含有
−SO3 Na基:1×10-4eq/g含有)
ブチルステアレート 1部
ステアリン酸 2.5部
メチルエチルケトンとシクロヘキサノン1:1混合溶剤 200部
上記の非磁性層用組成物及び磁性層用組成物のそれぞれ
をニーダーで混練した後、サンドグラインダーを使用し
て分散した。得られた分散液にポリイソシアネートを非
磁性層の塗布液には5部、磁性層の塗布液には6部を加
え、さらにメチルエチルケトンとシクロヘキサノン1:
1混合溶剤を20部加え、1μmの平均孔径を有するフ
ィルターを使用して濾過し、非磁性層形成用および磁性
層形成用の塗布液を調製した。Example 2 Using the ferromagnetic metal powders obtained in Production Examples 4 and 5, tape was formed under the following conditions, and the magnetic characteristics and electromagnetic conversion characteristics were measured. (Upper layer composition) the ferromagnetic metal powder (Table 5) 100 parts of the binder resin of vinyl chloride copolymer 14 parts (-SO 3 Na groups and containing 1 × 10 -4 eq / g polymerization degree: 300) Polyester polyurethane resin 4 part (neopentyl glycol / caprolactone polyol / MDI = 0.9 / 2.6 / 1 (molar ratio) -SO 3 Na group containing 1 × 10 -4 eq / g) alpha-alumina (average particle size 0.1 [mu] m) 3.5 parts carbon black (average particle size 100 nm) 0.5 part butyl stearate 1 part stearic acid 2 parts mixed solvent of methyl ethyl ketone and cyclohexanone 1: 1 200 parts (composition for non-magnetic layer) spherical titanium oxide 80 parts (average particles) systems 0.025 .mu.m, the surface area 60m 2 /g,pH6.5 by alumina-treated BET method) carbon black 20 parts (average primary particle 16 nm, DBP及油amount 80 ml / 100 g BET method surface area of 250 meters 2 / g pH 8.0 by) the binder resin a vinyl chloride - vinyl acetate - vinyl alcohol copolymer 10 parts (-N + (CH 3) 3 Cl - polarity Group containing 5 × 10 −6 eq / g Monomer composition ratio 86: 13: 1 Degree of polymerization 400) Polyester polyurethane resin 8 parts (basic skeleton: 1,4-BD / phthalic acid / HMDI = 2/2/1 (molar ratio) ) Molecular weight: 10200 Hydroxyl group: 0.23 × 10 −3 eq / g content —SO 3 Na group: 1 × 10 −4 eq / g content) Butyl stearate 1 part Stearic acid 2.5 parts Methyl ethyl ketone and cyclohexanone 1: 1 Mixed solvent 200 parts The above-mentioned non-magnetic layer composition and magnetic layer composition were kneaded with a kneader, and then dispersed using a sand grinder. . To the obtained dispersion, 5 parts of polyisocyanate was added to the coating liquid for the non-magnetic layer, 6 parts to the coating liquid for the magnetic layer, and methyl ethyl ketone and cyclohexanone 1:
20 parts of 1 mixed solvent was added and the mixture was filtered using a filter having an average pore size of 1 μm to prepare coating solutions for forming a non-magnetic layer and for forming a magnetic layer.
【0099】得られた非磁性層用の塗布液を乾燥後の厚
さが2μmとなるように塗布し、さらにその直後、非磁
性塗布層がまだ湿潤状態にあるうちに、その上に磁性層
の厚みが0.15μmとなるように厚さ7μmのポリエ
チレンテレフタレート支持体上に湿式同時重層塗布を行
い、配向処理を行う場合は両層がまだ湿潤状態にあるう
ちに希土類磁石(表面磁束5000ガウス)とソレノイ
ド電磁石(表面磁束5000ガウス)により強磁性金属
粉末の磁場配向を行って乾燥させた。次いで金属ロール
より構成される7段カレンダーでロール温度を90℃に
してカレンダー処理を施して、ウェッブ状の磁気記録媒
体を得、それを8mm幅にスリットして8mmビデオテ
ープのサンプルを作成した。得られたサンプルを実施例
1と同様に評価し、表5に示した。電磁変換特性の基準
には富士写真フィルム製のスーパーDCテープを使用し
た。The obtained coating liquid for the non-magnetic layer was coated so that the thickness after drying was 2 μm, and immediately thereafter, while the non-magnetic coating layer was still in a wet state, the magnetic layer was formed thereon. When a simultaneous simultaneous multi-layer coating is performed on a polyethylene terephthalate support having a thickness of 7 μm so that the thickness is 0.15 μm and both layers are still in a wet state, a rare earth magnet (surface magnetic flux of 5000 gauss is applied). ) And a solenoid electromagnet (surface magnetic flux of 5000 gauss), magnetic field orientation of the ferromagnetic metal powder was performed and dried. Then, a seven-stage calender composed of metal rolls was calendered at a roll temperature of 90 ° C. to obtain a web-shaped magnetic recording medium, which was slit into a width of 8 mm to prepare a sample of 8 mm video tape. The obtained sample was evaluated in the same manner as in Example 1 and shown in Table 5. Fuji DC film Super DC tape was used as the standard for electromagnetic conversion characteristics.
【0100】[0100]
【表5】 [Table 5]
【0101】実施例3
磁性層が単層の磁気記録媒体を下記により製造した。実
施例1の磁性層組成において、製造例1−2の強磁性金
属粉末を用いて非磁性支持体上に厚さ1.5μmで塗布
した以外は実施例1と同様に作成した磁気記録媒体を実
施例3−1とし、実施例2の磁性層組成において、製造
例4の強磁性金属粉末を用いて非磁性支持体上に厚さ
1.5μmで塗布した以外は実施例2と同様に作成した
磁気記録媒体を実施例3−2とし、実施例1と同様に評
価した結果を表6に示した。Example 3 A magnetic recording medium having a single magnetic layer was manufactured as follows. A magnetic recording medium prepared in the same manner as in Example 1 except that the ferromagnetic metal powder of Production Example 1-2 was used to coat the nonmagnetic support in a thickness of 1.5 μm in the magnetic layer composition of Example 1. Example 3-1, produced in the same manner as in Example 2 except that the magnetic layer composition of Example 2 was coated with the ferromagnetic metal powder of Production Example 4 on a non-magnetic support to a thickness of 1.5 μm. Table 3 shows the results of evaluation made in the same manner as in Example 1 with the magnetic recording medium as Example 3-2.
【0102】[0102]
【表6】 [Table 6]
【0103】[0103]
【発明の効果】強磁性金属粒子の平均長軸長が0.04
〜0.10μmと従来になく小さい粒子であっても、出
発原料の粒度をよくそろえ金属の核が生成する時その核
数を制御して強磁性金属粒子を形成する平均結晶子数を
1.0〜2.0とし、この針状比を2.0〜5.0とす
ることにより、高抗磁力でかつ抗磁力分布がすぐれた強
磁性金属粉末を作成することができ、かつこの強磁性金
属粉末を使用することにより短波長出力およびC/Nに
優れ、かつオーバーライト特性の優れた磁気記録媒体を
提供することができる。The average major axis length of the ferromagnetic metal particles is 0.04.
Even if the particle size is as small as 0.10 μm, which is unprecedented, the average number of crystallites forming ferromagnetic metal particles is controlled by controlling the number of nuclei of metal when the particle sizes of the starting materials are well aligned and the nuclei of metal are generated. By setting the acicular ratio to 0 to 2.0 and setting the acicular ratio to 2.0 to 5.0, a ferromagnetic metal powder having a high coercive force and an excellent coercive force distribution can be prepared, and the ferromagnetic metal powder By using the metal powder, it is possible to provide a magnetic recording medium having excellent short-wavelength output and C / N and excellent overwrite characteristics.
【図1】本発明に使用する強磁性金属粒子を説明するた
めの図。FIG. 1 is a diagram for explaining ferromagnetic metal particles used in the present invention.
【図2】従来の強磁性金属粒子を説明するための図。FIG. 2 is a diagram for explaining conventional ferromagnetic metal particles.
1 強磁性金属粒子 2 結晶子 1 Ferromagnetic metal particles 2 crystallites
Claims (4)
粉末を含む磁性層を設けた磁気記録媒体において、前記
磁性層の抗磁力が2000〜3000Oe、該磁性層の
Bmが3800〜5500ガウスであり、前記強磁性金
属粒子の平均長軸長が0.04〜0.10μmであり、
前記強磁性金属粒子の平均針状比が3.0〜8.0であ
り、前記強磁性金属粒子を構成する結晶子数の平均が
1.0〜2.0、結晶子の平均針状比が2.0〜5.0
であることを特徴とする磁気記録媒体。1. A magnetic recording medium in which a magnetic layer containing at least a ferromagnetic metal powder is provided on a non-magnetic support, and the magnetic layer has a coercive force of 2000 to 3000 Oe and a Bm of 3800 to 5500 gauss. And the average major axis length of the ferromagnetic metal particles is 0.04 to 0.10 μm,
The average acicular ratio of the ferromagnetic metal particles is 3.0 to 8.0, the average number of crystallites constituting the ferromagnetic metal particles is 1.0 to 2.0, and the average acicular ratio of crystallites. Is 2.0 to 5.0
A magnetic recording medium characterized by:
抗磁力が1800〜2500Oe、σsが130〜16
5emu/gであることを特徴とする請求項1に記載の
磁気記録媒体。2. The ferromagnetic metal powder contains iron and Co, has a coercive force of 1800 to 2500 Oe and a σs of 130 to 16.
The magnetic recording medium according to claim 1, wherein the magnetic recording medium has an emu / g of 5 emu / g.
として無機質非磁性粉末と結合剤を含む非磁性層を設け
たことを特徴とする請求項1に記載の磁気記録媒体。3. The magnetic recording medium according to claim 1, wherein a nonmagnetic layer mainly containing an inorganic nonmagnetic powder and a binder is provided between the nonmagnetic support and the magnetic layer.
抗磁力が1800〜2500Oe、σsが130〜16
5emu/gであることを特徴とする請求項3に記載の
磁気記録媒体。4. The ferromagnetic metal powder contains iron and Co, has a coercive force of 1800 to 2500 Oe, and σs of 130 to 16
The magnetic recording medium according to claim 3, wherein the magnetic recording medium is 5 emu / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18975295A JP3473874B2 (en) | 1995-07-04 | 1995-07-04 | Magnetic recording media |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18975295A JP3473874B2 (en) | 1995-07-04 | 1995-07-04 | Magnetic recording media |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0922522A JPH0922522A (en) | 1997-01-21 |
JP3473874B2 true JP3473874B2 (en) | 2003-12-08 |
Family
ID=16246594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18975295A Expired - Lifetime JP3473874B2 (en) | 1995-07-04 | 1995-07-04 | Magnetic recording media |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3473874B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6309479B1 (en) | 1998-11-05 | 2001-10-30 | Toda Kogyo Corporation | Spindle-shaped goethite particles, spindle-shaped hematite particles and magnetic spindle-shaped metal particles containing iron as main component |
JP4677734B2 (en) * | 2004-04-19 | 2011-04-27 | Dowaエレクトロニクス株式会社 | Magnetic powder for magnetic recording media |
-
1995
- 1995-07-04 JP JP18975295A patent/JP3473874B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0922522A (en) | 1997-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3473877B2 (en) | Magnetic recording media | |
JP3666688B2 (en) | Magnetic recording medium | |
JP3866074B2 (en) | Ferromagnetic metal powder, method for producing the same, and magnetic recording medium | |
JP2001176054A (en) | Ferromagnetic metal powder and magnetic recording medium using the same | |
US6312796B1 (en) | Magnetic recording medium | |
JP3473875B2 (en) | Magnetic recording media | |
JP2002260211A (en) | Magnetic recording medium | |
JP3439532B2 (en) | Magnetic recording media | |
JP2001351220A (en) | Magnetic recording medium | |
JP2005276361A (en) | Magnetic recording medium and magnetic recording and reproducing method using the same | |
JPH11100213A (en) | Production of hematite, production of ferromagnetic powder using the hematite and magnetic recording medium | |
JP2002260212A (en) | Hexagonal ferrite and magnetic recording medium formed using the same | |
JP3473874B2 (en) | Magnetic recording media | |
JPH0922524A (en) | Magnetic recording medium | |
JPH07109122A (en) | Production of hematite particle and production of ferromagnetic powder for magnetic recording using hematite particle and magnetic recording medium | |
JP3491765B2 (en) | Method for producing hematite particles | |
JP3594191B2 (en) | Method for producing ferromagnetic metal powder | |
JP2001357511A (en) | Ferromagnetic metal powder and magnetic recording medium using the same | |
JPH0991684A (en) | Magnetic recording medium | |
JP2791728B2 (en) | Magnetic recording media | |
JP2003119502A (en) | Ferromagnetic metal powder and magnetic recording medium containing the same | |
JPH09227126A (en) | Production of hematite particle and production of ferromagnetic powder using the same particle and magnetic recording medium | |
JP2001068318A (en) | Ferromagnetic metal powder and magnetic record medium using the same | |
JP2000003511A (en) | Magnetic recording medium | |
JP2003303710A (en) | Ferromagnetic metal powder, and magnetic recording medium containing the same powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070919 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080919 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090919 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100919 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100919 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |