JP3468621B2 - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereofInfo
- Publication number
- JP3468621B2 JP3468621B2 JP21707595A JP21707595A JP3468621B2 JP 3468621 B2 JP3468621 B2 JP 3468621B2 JP 21707595 A JP21707595 A JP 21707595A JP 21707595 A JP21707595 A JP 21707595A JP 3468621 B2 JP3468621 B2 JP 3468621B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- buried layer
- drain
- conductivity type
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 105
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000012535 impurity Substances 0.000 claims description 65
- 239000000758 substrate Substances 0.000 claims description 51
- 230000015572 biosynthetic process Effects 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 104
- 238000010586 diagram Methods 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 7
- 230000003071 parasitic effect Effects 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/4175—Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823814—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0922—Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66659—Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7835—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1083—Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1087—Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は大電流がえられるパ
ワーMOSFETを有する半導体装置に関する。さらに
詳しくは、大電流がえられ、かつ、ドレイン電極が半導
体基板の表面側からとり出され、パワーMOSFETが
他の素子とともにICとして1チップ化しうる半導体装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a power MOSFET capable of obtaining a large current. More specifically, the present invention relates to a semiconductor device in which a large current can be obtained, a drain electrode is taken out from the surface side of a semiconductor substrate, and a power MOSFET can be integrated into one chip as an IC together with other elements.
【0002】[0002]
【従来の技術】従来のMOSFETは、図8に示される
ような構造のものが知られている。図8(a)に示され
る構造は従来から最も汎用されているロジック小信号ト
ランジスタ用の横型MOSFETで、p-型半導体基板
51にn+型のソース領域52、ドレイン領域53が形
成され、そのあいだのチャネル領域51a上に絶縁膜5
4を介してゲート電極Gが形成されている。なお、S、
Dはそれぞれソース電極、ドレイン電極である。2. Description of the Related Art A conventional MOSFET having a structure as shown in FIG. 8 is known. The structure shown in FIG. 8A is a lateral MOSFET for a logic small signal transistor which has been most widely used in the past, and an n + type source region 52 and a drain region 53 are formed on a p − type semiconductor substrate 51. The insulating film 5 is formed on the inter-channel region 51a.
The gate electrode G is formed via the gate electrode 4. Note that S,
D is a source electrode and a drain electrode, respectively.
【0003】図8(b)〜(c)に示される構造は、大
電流を必要とするパワー用のため、チャネル幅を増大す
る際に問題化するオン抵抗の増大を防ぐため、縦方向の
半導体基板の底面側に広く電流経路を広げた縦型MOS
FETの構造である。図8(b)〜(c)において、n
+型のサブ基板61上にドレイン領域とするn-型半導体
層62をエピキタキシャル成長し、チャネル領域63a
を形成するp-型半導体領域63およびn+型のソース領
域64が形成されている。これらの構造は2回の拡散に
よりソース領域64、チャネル領域63a、ドレイン領
域62が分離されるため、ダブルディフェーズドドレイ
ン構造(DMOS)といわれている。The structures shown in FIGS. 8 (b) to 8 (c) are for use in power requiring a large current, and therefore, in order to prevent an increase in on-resistance, which is a problem when increasing the channel width, the structure in the vertical direction is used. Vertical MOS with a wide current path on the bottom side of the semiconductor substrate
This is the structure of the FET. In FIGS. 8B to 8C, n
An n − type semiconductor layer 62 to be a drain region is epitaxially grown on the + type sub substrate 61 to form a channel region 63a.
Forming ap − type semiconductor region 63 and an n + type source region 64. These structures are called double dephased drain structures (DMOS) because the source region 64, the channel region 63a, and the drain region 62 are separated by two diffusions.
【0004】図8(b)に示される構造はp-型半導体
領域63とn+型のソース領域64を貫通してV字状の
エッチングが施され、絶縁膜65を介してゲート電極G
が設けられることにより半導体基板(サブ基板61と半
導体層62)の縦方向にソース領域64、チャネル領域
63a、ドレイン領域62が形成され、ドレイン電極D
は半導体基板の裏面に設けられて縦方向に電流が流れ
る。In the structure shown in FIG. 8B, V-shaped etching is performed through the p − type semiconductor region 63 and the n + type source region 64, and the gate electrode G is formed through the insulating film 65.
Is provided, the source region 64, the channel region 63a, and the drain region 62 are formed in the vertical direction of the semiconductor substrate (the sub-substrate 61 and the semiconductor layer 62).
Is provided on the back surface of the semiconductor substrate, and a current flows in the vertical direction.
【0005】また、図8(c)に示される構造は、ゲー
ト電極Gは半導体基板(サブ基板61と半導体層62)
の表面に設けられ、チャネル幅を大きくするため、ソー
ス領域64とチャネル領域63aを形成するp-型領域
63をドレイン領域62の両側に設け、電流は半導体基
板の下面側に流れるようにし、ドレイン電極Dが半導体
基板の裏面に設けられている。In the structure shown in FIG. 8C, the gate electrode G is a semiconductor substrate (sub-substrate 61 and semiconductor layer 62).
In order to increase the channel width, the p − type regions 63 that form the source region 64 and the channel region 63a are provided on both sides of the drain region 62 so that the current flows to the lower surface side of the semiconductor substrate. The electrode D is provided on the back surface of the semiconductor substrate.
【0006】図8(d)に示される構造は、ドレイン領
域となるn-型半導体基板55にチャネル領域56aを
形成するp-型領域56が形成され、該p-型領域56内
にn+型のソース領域57が設けられ、ソース・ドレイ
ン間の耐圧をもたせるのに必要な距離hだけチャネル領
域56aから離れた位置のn-型半導体基板55の表面
にn+型のドレイン電極形成領域58が設けられてい
る。この構造は、チャネル幅を広くした横型のDMOS
構造としたもので、ロジック小信号トランジスタと組合
せて利用できる構造のものである。In the structure shown in FIG. 8 (d), ap -- type region 56 forming a channel region 56a is formed in an n -- type semiconductor substrate 55 to be a drain region, and an n + -type region 56 is formed in the p -- type region 56. Type source region 57 is provided, and an n + type drain electrode forming region 58 is formed on the surface of the n − type semiconductor substrate 55 at a position separated from the channel region 56a by a distance h required to have a withstand voltage between the source and the drain. Is provided. This structure is a horizontal DMOS with a wide channel.
It has a structure and can be used in combination with a logic small signal transistor.
【0007】[0007]
【発明が解決しようとする課題】図8(a)に示される
ロジック小信号用トランジスタの構造では、電流経路が
半導体基板の表面層であるため、大電流をうるためには
チャネル幅を広くしてオン抵抗を下げなければならな
い。そのため、この構造で大電流のMOSFETにする
ためには、大面積が必要となり、チップサイズが大型化
するという問題がある。In the structure of the logic small signal transistor shown in FIG. 8A, since the current path is the surface layer of the semiconductor substrate, the channel width is widened in order to obtain a large current. To lower the on-resistance. Therefore, in order to make a MOSFET of large current with this structure, a large area is required, and there is a problem that the chip size becomes large.
【0008】また、図8(b)〜(c)に示される縦型
MOSFETでは、電流経路が半導体基板に垂直方向
で、半導体基板の底面全面を電流経路として使えるが、
ドレイン電極が半導体基板の裏面に設けられることにな
り、他の半導体素子とともに1チップ化して利用するこ
とができないという問題がある。さらに、DMOS構造
では表面チャネル部の濃度制御が難しく、しきい値電圧
の制御性がよくないという問題がある。In the vertical MOSFET shown in FIGS. 8B to 8C, the current path is vertical to the semiconductor substrate, and the entire bottom surface of the semiconductor substrate can be used as the current path.
Since the drain electrode is provided on the back surface of the semiconductor substrate, there is a problem that it cannot be used as one chip together with other semiconductor elements. Further, the DMOS structure has a problem that it is difficult to control the concentration of the surface channel portion and the controllability of the threshold voltage is not good.
【0009】さらに、図8(d)に示される横型DMO
SFETでは、図8(a)の構造と同様に、電流経路は
半導体基板の表面層であり、基本的にはロジック小信号
トランジスタと同様に大電流用にするためには大面積と
なり、縦型DMOSに比べてオン抵抗が高くなるという
問題がある。Further, the horizontal DMO shown in FIG.
In the SFET, as in the structure of FIG. 8A, the current path is the surface layer of the semiconductor substrate, and basically, like the logic small-signal transistor, it has a large area for a large current. There is a problem that the ON resistance is higher than that of the DMOS.
【0010】本発明はこのような横型MOSFETのオ
ン抵抗が高いという欠点を改善し、かつ、縦型MOSF
ETの裏面電極の欠点を改善し、オン抵抗が小さく、小
さなチップ面積で、かつ、他の半導体素子とともに1チ
ップIC化を可能とするパワーMOSFETを有する半
導体装置およびその製法を提供することを目的とする。The present invention solves the drawback of the high on-resistance of such a lateral MOSFET, and also improves the vertical MOSF.
An object of the present invention is to provide a semiconductor device having a power MOSFET that improves the drawbacks of the back electrode of the ET, has a small on-resistance, a small chip area, and can be integrated into one chip IC together with other semiconductor elements, and a method for manufacturing the same. And
【0011】[0011]
【課題を解決するための手段】本発明の半導体装置は、
第2導電型のサブ基板と、該サブ基板の一部表面に形成
される高濃度不純物の第1導電型の第1の埋込層と、前
記サブ基板および該第1の埋込層上に設けられる第1導
電型半導体層と、前記第1導電型半導体層に形成される
第2導電型半導体領域と、該第2導電型半導体領域の表
面側に相互に分離して形成される第1導電型のソース領
域およびドレイン領域と、前記第1導電型半導体層の表
面側に前記ドレイン領域と異なる場所に形成され、か
つ、前記ドレイン領域との間に前記ソース領域が位置す
るように形成される第1導電型のドレイン電極形成領域
と、該ドレイン電極形成領域および前記ドレイン領域を
それぞれ前記第1の埋込層と接続する第1導電型の高濃
度不純物領域と、前記ソース領域とドレイン領域との間
隙部で、前記第2導電型半導体領域上に絶縁膜を介して
設けられるゲート電極と、前記ソース領域およびドレイ
ン電極形成領域にそれぞれ接続して設けられるソース電
極およびドレイン電極とを具備している。The semiconductor device of the present invention comprises:
A second conductive type sub-substrate, a high-concentration impurity first-concentration first buried layer formed on a partial surface of the sub-substrate, and the sub-substrate and the first buried layer. A first conductive type semiconductor layer provided, a second conductive type semiconductor region formed in the first conductive type semiconductor layer, and a first separately formed on the front surface side of the second conductive type semiconductor region. A conductive type source region and a drain region, and a region different from the drain region on the surface side of the first conductive type semiconductor layer ,
The source region is located between the drain region and
A first-conductivity-type drain electrode forming region formed as described above, a first-conductivity-type high-concentration impurity region connecting the drain electrode forming region and the drain region to the first buried layer, respectively. A gate electrode provided in the gap between the source region and the drain region on the second conductivity type semiconductor region through an insulating film, and a source electrode and a drain provided respectively connected to the source region and the drain electrode formation region. And electrodes.
【0012】ここに第1導電型および第2導電型とは、
半導体のn型またはp型の一方を第1導電型とすると
き、他方のp型またはn型が第2導電型であることを意
味する。Here, the first conductivity type and the second conductivity type are
When one of the n-type and p-type of a semiconductor is the first conductivity type, it means that the other p-type or n-type is the second conductivity type.
【0013】[0013]
【0014】前記ソース領域が前記ドレイン領域の両側
に設けられ、前記ドレイン領域の両側のゲート電極が、
該ドレイン領域上の厚い絶縁膜上で連続して形成される
ことが、小さいゲート電極を効率よく確実に形成するこ
とができるため好ましい。The source region is on both sides of the drain region
And the gate electrodes on both sides of the drain region are
It is preferable to continuously form a thick insulating film on the drain region because a small gate electrode can be efficiently and reliably formed.
【0015】前記ソース領域と前記第1の埋込層とのあ
いだに第2導電型の高濃度不純物の第2の埋込層が設け
られていることが、寄生バイポーラトランジスタの電流
増幅率を低下させることができるため好ましい。また、
前記ソース領域と前記ドレイン電極形成領域との間に前
記第2の埋込層に達するように第2導電型の高濃度不純
物領域が設けられることにより、横方向の寄生バイポー
ラトランジスタの電流増幅率を低下させることができ
る。 The fact that the second buried layer of the second conductivity type high-concentration impurity is provided between the source region and the first buried layer lowers the current amplification factor of the parasitic bipolar transistor. It is preferable because it can be caused. Also,
Between the source region and the drain electrode formation region
The second conductivity type high concentration impurity so as to reach the second buried layer.
Of the parasitic area in the lateral direction by providing the object area.
The current gain of the transistor can be reduced
It
【0016】本発明の半導体装置の製法は、(a)第2
導電型のサブ基板に第1導電型の第1の埋込層を形成す
るための第1導電型不純物領域を形成し、(b)前記サ
ブ基板の表面に第1導電型の半導体層をエピタキシャル
成長することにより前記サブ基板と該第1導電型半導体
層との間に前記第1の埋込層を形成し、(c)前記第1
の埋込層上における前記第1導電型の半導体層に第2導
電型不純物を導入して第2導電型半導体領域を形成し、
(d)ドレイン領域およびドレイン電極形成領域をそれ
ぞれ形成する場所のそれぞれの中央部に前記第1の埋込
層と接続するように第1導電型不純物を導入することに
より、第1導電型の高濃度不純物領域を形成し、(e)
前記第2導電型半導体領域の表面側で、前記第1導電型
の高濃度不純物領域を形成した近傍およびソース領域形
成場所に第1導電型不純物を導入することにより、相互
に分離したソース領域およびドレイン領域を形成すると
ともに、前記ドレイン領域と異なる場所に、かつ、前記
ドレイン領域との間に前記ソース領域が位置するように
ドレイン電極形成領域を形成し、(f)前記ソース領域
およびドレイン領域の間隙部の表面に、絶縁膜を介して
ゲート電極を形成するとともに、前記ソース領域および
ドレイン電極形成領域にそれぞれソース電極およびドレ
イン電極を形成することを特徴とする。The method of manufacturing a semiconductor device according to the present invention includes (a) second step.
A first conductivity type impurity region for forming a first conductivity type first buried layer is formed on a conductivity type sub-substrate, and (b) a first conductivity type semiconductor layer is epitaxially grown on the surface of the sub-substrate. Thereby forming the first buried layer between the sub-substrate and the first conductive type semiconductor layer, and (c) the first buried layer.
Second conductivity type impurities are introduced into the first conductivity type semiconductor layer on the buried layer to form a second conductivity type semiconductor region,
(D) By introducing an impurity of the first conductivity type into the central portion of each of the places where the drain region and the drain electrode formation region are respectively formed so as to be connected to the first buried layer, the high conductivity of the first conductivity type is obtained. Forming a concentration impurity region, (e)
It said second conductivity type surface semiconductor region by introducing a first conductivity type impurity in the vicinity and the source region formation location to form a high concentration impurity region of the first conductivity type, mutually
To form a source region and a drain region separated into
Both of them are different from the drain region, and
A drain electrode formation region is formed so that the source region is located between the drain region and (f) a gate electrode is formed on the surface of the gap between the source region and the drain region via an insulating film. And forming the source region and
A source electrode and a drain are formed in the drain electrode formation region, respectively.
It is characterized in that an in electrode is formed .
【0017】前記製法において、(a)工程と(b)工
程とのあいだに第1導電型のエピタキシャル層を成長す
ることにより第1の埋込層を形成し、該第1の埋込層の
一部に第2の埋込層を形成するための第2導電型不純物
を導入する工程を付加することが、第1の埋込層と第2
の埋込層とのあいだの耐圧を向上させることができる点
から好ましい。In the above manufacturing method, a first buried layer is formed by growing an epitaxial layer of the first conductivity type between the steps (a) and (b), and the first buried layer is formed.
Second conductivity type impurity for partially forming the second buried layer
Adding a step of introducing a first buried layer and a second buried layer.
It is preferable in that the breakdown voltage between the buried layer and the buried layer can be improved.
【0018】[0018]
【発明の実施の形態】つぎに、本発明の半導体装置およ
びその製法について説明をする。BEST MODE FOR CARRYING OUT THE INVENTION Next, a semiconductor device of the present invention and a method for manufacturing the same will be described.
【0019】図1は本発明の半導体装置の一実施形態の
断面説明図、図2は他の実施形態を示す説明図、図3〜
4は図1の製造工程を示す図、図5はパワーMOSFE
Tにロジック用のCMOSFETがさらに設けられた状
態を示す図、図6はさらに他の実施形態の断面説明図、
図7は図6の製造工程を示す図である。FIG. 1 is a sectional explanatory view of an embodiment of a semiconductor device of the present invention, FIG. 2 is an explanatory view showing another embodiment, and FIGS.
4 is a diagram showing the manufacturing process of FIG. 1, and FIG. 5 is a power MOSFE.
FIG. 6 is a diagram showing a state in which a CMOSFET for logic is further provided in T, FIG. 6 is a cross-sectional explanatory diagram of still another embodiment,
FIG. 7 is a diagram showing the manufacturing process of FIG.
【0020】図1において1は第2導電型である、たと
えばp-型のサブ基板で、2は第1導電型である、たと
えばn+型の第1の埋込層、3は第2導電型である、た
とえばp+型の第2の埋込層、4はたとえばn-型の第1
導電型の半導体層、5は第1導電型半導体層4に第2導
電型の不純物が導入されて形成された、たとえばpウェ
ルからなる第2導電型半導体領域、6はたとえばn+型
からなる第1導電型のドレイン領域、7はドレイン領域
6と同じ導電型のソース領域、8は同じく、たとえばn
+型である第1導電型のドレイン電極形成領域、9はn+
型のソース領域7とn+型のドレイン電極形成領域8と
のあいだに形成される横方向の寄生バイポーラトランジ
スタの電流増幅率を低下させるため、およびソース領域
7と第2導電型半導体領域5とにまたがるコンタクトを
形成するため、高濃度不純物領域としたp+型領域であ
る。6aおよび8aはドレイン領域6およびドレイン電
極形成領域8をそれぞれ第1の埋込層2と電気的に接続
するために、ドレイン領域6およびドレイン電極形成領
域8にそれぞれの領域と同じ導電型の不純物を拡散して
形成した第1導電型の高濃度不純物領域である。なお、
10は酸化ケイ素やチッ化ケイ素などからなる絶縁膜
で、Dはドレイン電極、Sはソース電極、Gはゲート電
極をそれぞれ示す。また、ここではサブ基板1と半導体
層4とを併せて半導体基板という。In FIG. 1, reference numeral 1 denotes a second conductivity type, for example, p − type sub-substrate, 2 denotes a first conductivity type, for example, n + type first buried layer, and 3 denotes a second conductivity type. Second buried layer of p + type, for example, is a first buried layer of n − type
The conductive type semiconductor layer 5 is a second conductive type semiconductor region formed of, for example, a p-well, which is formed by introducing the second conductive type impurity into the first conductive type semiconductor layer 4, and 6 is of an n + type, for example. A drain region of the first conductivity type, 7 is a source region of the same conductivity type as the drain region 6, and 8 is, for example, n.
First conductivity type drain electrode formation region of + type, 9 is n +
In order to reduce the current amplification factor of the lateral parasitic bipolar transistor formed between the n-type source region 7 and the n + -type drain electrode forming region 8 and the source region 7 and the second conductivity type semiconductor region 5. This is ap + type region which is a high concentration impurity region for forming a contact extending over the same. 6a and 8a in order to connect the drain region 6 and the drain collector <br/> electrode formation region 8 first buried layer 2 and the electrically respectively, and each region to the drain region 6 and the drain electrode formation region 8 This is a high-concentration impurity region of the first conductivity type formed by diffusing impurities of the same conductivity type. In addition,
Reference numeral 10 is an insulating film made of silicon oxide or silicon nitride, D is a drain electrode, S is a source electrode, and G is a gate electrode. Further, here, the sub-substrate 1 and the semiconductor layer 4 are collectively referred to as a semiconductor substrate.
【0021】この構造でソース領域7とドレイン領域6
とのあいだに挟まれる第2導電型半導体領域(pウェ
ル)5の表面層がチャネル領域5aとなり、その表面上
に薄い絶縁膜10aを介して設けられたゲート電極Gに
よりオンオフが制御されるMOSFETが形成される。
その結果、オン電流のキャリアの流れはソース領域7か
らチャネル領域5aを経てドレイン領域6に流れ、ドレ
イン領域6から高濃度不純物領域6aを経て第1の埋込
層2に流れ、第1の埋込層2、高濃度不純物領域8aお
よびドレイン電極形成領域8を経てドレイン電極Dに流
れる。なお、この例では、ドレイン領域6の両側のゲー
ト電極Gが、ドレイン領域6上の厚い絶縁膜10上で連
結して設けられている。このような構造にすることによ
り、ゲート電極Gの占める領域を小さくでき、かつ、ゲ
ート電極部の幅を必要なだけ広げてゲートの入力抵抗を
下げるばあいにも、直下のドレイン領域のサイズに合わ
せて広げることができ、素子サイズを大きくする必要が
ないという利点がある。With this structure, the source region 7 and the drain region 6
A MOSFET of which the surface layer of the second conductivity type semiconductor region (p well) 5 sandwiched between and becomes the channel region 5a, and whose on / off is controlled by the gate electrode G provided on the surface of the channel region 5a via the thin insulating film 10a. Is formed.
As a result, the carrier flow of the on-current flows from the source region 7 to the drain region 6 via the channel region 5a and from the drain region 6 to the first buried layer 2 via the high-concentration impurity region 6a. It flows into the drain electrode D through the buried layer 2, the high-concentration impurity region 8a, and the drain electrode formation region 8. In this example, the gate electrodes G on both sides of the drain region 6 are provided so as to be connected on the thick insulating film 10 on the drain region 6. With such a structure, the region occupied by the gate electrode G can be made small, and the size of the drain region immediately below can be reduced even when the width of the gate electrode portion is widened as necessary to reduce the input resistance of the gate. There is an advantage that they can be expanded together and there is no need to increase the element size.
【0022】この構造のMOSFETが図2に示される
ように(図2(b)では簡略化して図示されている)、
第1の埋込層2上にソース領域7とドレイン領域6とが
交互に多数個繰り返して設けられていることによりチャ
ネル幅を広く形成することができ、大電流をうることが
できる。このような構造にしても各々のドレイン領域6
にそれぞれ電極を形成する必要がなく第1の埋込層2の
端部に1〜2箇所ドレイン電極Dを形成すればよいた
め、狭い領域で連続してソース領域7とドレイン領域6
を多数形成することができ、大電流をえやすい。しかも
ドレイン電流は高濃度不純物領域である第1の埋込層2
を経由して流れるため、オン抵抗を充分小さくすること
ができる。その結果、低電圧で大電流がえられ、低消費
電力のIC化が可能となる。As shown in FIG. 2 of the MOSFET having this structure (illustrated in a simplified manner in FIG. 2B),
Since a large number of source regions 7 and drain regions 6 are alternately and repeatedly provided on the first buried layer 2, a wide channel width can be formed and a large current can be obtained. Even with such a structure, each drain region 6
Since it is not necessary to form an electrode on each of the first buried layer 2 and the drain electrode D may be formed on one or two places at the end of the first buried layer 2, the source region 7 and the drain region 6 can be continuously formed in a narrow region.
Can be formed in large numbers, and a large current can be easily obtained. Moreover, the drain current is the first buried layer 2 which is the high concentration impurity region.
Since the current flows through the capacitor, the on-resistance can be sufficiently reduced. As a result, a large current can be obtained at a low voltage, and an IC with low power consumption can be realized.
【0023】さらに、本発明ではMOS構造を表面不純
物濃度がチャネル領域内で均一であるシングルドレイン
構造としているため、表面チャネル部の濃度制御が容易
となり、しきい値電圧の制御性が向上する。Further, in the present invention, since the MOS structure has a single drain structure in which the surface impurity concentration is uniform in the channel region, the concentration control of the surface channel portion is facilitated and the controllability of the threshold voltage is improved.
【0024】図1に示される構造で、p+型の第2の埋
込層3はソース領域7のn+型と第2導電型半導体領域
(pウェル)5と第1の埋込層2のn+型とのあいだに
形成される縦方向の寄生バイポーラトランジスタの電流
増幅率を低下させ寄生トランジスタが機能しないように
するためのもので、p+型領域9と同様の機能を果す。In the structure shown in FIG. 1, the p + -type second buried layer 3 is composed of the n + -type semiconductor region (p well) 5 of the source region 7, the first buried layer 2 and the second conductivity type semiconductor region (p well) 5. This is to lower the current amplification factor of the parasitic bipolar transistor in the vertical direction formed between the n + type and the n + type so that the parasitic transistor does not function, and performs the same function as the p + type region 9.
【0025】本発明の構造のMOSFETは、前述のよ
うに半導体基板(サブ基板1と半導体層4)の表面から
半導体基板内の第1の埋込層2に向かって電流経路が形
成され、半導体基板の縦方向に電流が流れる。そのた
め、小さなチップ面積でオン抵抗の小さい大電流がえら
れる。しかもドレイン電極Dは半導体基板の裏面側では
なく、高濃度不純物の第1の埋込層2、高濃度不純物領
域8aおよび高濃度不純物のドレイン電極形成領域8を
経由して半導体基板の表面側から取り出される。この電
流経路は高濃度不純物領域で形成されているため、オン
抵抗は非常に小さい。さらに、ドレイン電極Dが半導体
基板の表面から取り出されているため、他のロジック用
のCMOSなどとともに1チップ化することが容易で、
大電流がえられるパワーMOSFETと他の信号処理用
などの半導体素子とを1チップ化した半導体装置がえら
れる。さらに、ドレイン電極形成場所の自由度が上が
り、レイアウトの設計が容易になる。As described above, in the MOSFET having the structure of the present invention, a current path is formed from the surface of the semiconductor substrate (the sub-substrate 1 and the semiconductor layer 4) toward the first buried layer 2 in the semiconductor substrate. An electric current flows in the vertical direction of the substrate. Therefore, a large current with a small on-resistance can be obtained with a small chip area. Moreover, the drain electrode D is not on the back surface side of the semiconductor substrate, but from the front surface side of the semiconductor substrate via the first buried layer 2 of high concentration impurity, the high concentration impurity region 8a, and the drain electrode formation region 8 of high concentration impurity. Taken out. Since this current path is formed in the high-concentration impurity region, the on-resistance is very small. Further, since the drain electrode D is taken out from the surface of the semiconductor substrate, it is easy to form one chip together with other logic CMOS and the like.
It is possible to obtain a semiconductor device in which a power MOSFET capable of obtaining a large current and another semiconductor element for signal processing are integrated into one chip. Further, the degree of freedom of the place where the drain electrode is formed is increased, which facilitates the layout design.
【0026】つぎに、図1に示されるパワーMOSFE
Tの製法について図3〜4を参照しながら説明する。Next, the power MOSFE shown in FIG.
The manufacturing method of T will be described with reference to FIGS.
【0027】まず、図3(a)に示されるように、p-
型のサブ基板1の表面にSiO2などからなるマスク1
1を形成し、第1の埋込層の形成場所に開口部11aを
設け、第1の埋込層を形成するためのリンやヒ素などの
n型不純物を拡散またはイオン注入法などにより導入
し、n+型領域21を形成する。[0027] First, as shown in FIG. 3 (a), p -
Mask 1 made of SiO 2 or the like on the surface of the mold sub-substrate 1
1 is formed, an opening 11a is provided at the place where the first buried layer is formed, and an n-type impurity such as phosphorus or arsenic for forming the first buried layer is introduced by diffusion or ion implantation. , N + -type regions 21 are formed.
【0028】つぎに、図3(b)に示されるように、第
2の埋込層を形成するため、サブ基板1の表面に再度S
iO2などからなるマスク12を形成し、ボロンB+など
のp型不純物イオンを打ち込む。Next, as shown in FIG. 3B, S is again formed on the surface of the sub-substrate 1 to form a second buried layer.
A mask 12 made of iO 2 or the like is formed, and p-type impurity ions such as boron B + are implanted.
【0029】そののち図3(c)に示されるようにn-
型の半導体層(n-Epi)4をエピキタキシャル成長
する。この際、前工程で導入したn+型領域21および
p型不純物イオンが半導体層4側にも拡散し、n+型の
第1の埋込層2およびp+型の第2の埋込層3が形成さ
れる。After that, as shown in FIG. 3C, n −
Type semiconductor layer (n - Epi) 4 is epitaxially grown. At this time, the n + type region 21 and the p type impurity ions introduced in the previous step are also diffused to the semiconductor layer 4 side, and the n + type first buried layer 2 and the p + type second buried layer 2 are formed. 3 is formed.
【0030】つぎに、図3(d)に示されるように、n
-型の半導体層4の第1の埋込層2上でパワーMOSF
ETの形成場所に第2導電型不純物を導入して、たとえ
ばpウェル(p/W)の第2導電型半導体領域5を形成
する。Next, as shown in FIG. 3D, n
- Power on the first buried layer 2 of type semiconductor layer 4 MOSF
An impurity of the second conductivity type is introduced into the formation location of ET to form, for example, the second conductivity type semiconductor region 5 of the p well (p / W).
【0031】つぎに、図4(e)に示されるように、ド
レイン領域およびドレイン電極形成領域の中心部となる
場所にこれらと同じ導電型の不純物を拡散などにより導
入してn+型の高濃度不純物領域6aおよび8aを形成
する。そののち、さらに酸化ケイ素やチッ化ケイ素など
からなるマスク15をパターニングして、第2の埋込層
3に達するようにp+型領域9を形成する。なお、n+型
の高濃度不純物領域6aおよび8aとp+型領域9との
形成順序は逆でもよい。Next, as shown in FIG. 4E, an impurity of the same conductivity type as those of the drain region and the drain electrode forming region is introduced into the central region of the drain region and the drain electrode forming region by diffusion or the like, so that the n + -type impurity is increased. Concentrated impurity regions 6a and 8a are formed. After that, the mask 15 made of silicon oxide, silicon nitride or the like is further patterned to form the p + type region 9 so as to reach the second buried layer 3. The n + -type high-concentration impurity regions 6a and 8a and the p + -type region 9 may be formed in the reverse order.
【0032】ついで図4(f)に示されるように、さら
にマスク16をパターニングしてそれぞれn+型からな
るドレイン領域6、ソース領域7およびドレイン電極形
成領域8をn型不純物の拡散などにより形成する。その
結果、n+型の高濃度不純物領域6aおよび8aを介し
て、ドレイン領域6およびドレイン電極形成領域8が第
1の埋込層2と電気的に接続される。Then, as shown in FIG. 4F, the mask 16 is further patterned to form a drain region 6, a source region 7 and a drain electrode formation region 8 each of n + type by diffusion of n type impurities. To do. As a result, drain region 6 and drain electrode formation region 8 are electrically connected to first buried layer 2 via n + type high-concentration impurity regions 6a and 8a.
【0033】そののち、図1に示されるように各電極
D、S、Gを形成することにより本発明のパワーMOS
FET部が形成される。なお、酸化ケイ素やチッ化ケイ
素などからなる絶縁膜10はチャネル領域5aの上のみ
をエッチングして取りさり、ゲート絶縁膜とする絶縁膜
10aを薄く形成する。After that, the electrodes D, S and G are formed as shown in FIG. 1 to form the power MOS of the present invention.
The FET section is formed. The insulating film 10 made of silicon oxide, silicon nitride, or the like is removed by etching only the channel region 5a to form a thin insulating film 10a as a gate insulating film.
【0034】図5はパワーMOSFET部とともにCM
OSFET部を形成するばあいのCMOSFET部を示
す図である。図5に示す左端のドレイン電極Dは図1に
示すパワーMOSFET部の右端のドレイン電極Dを示
し、その右側にさらにCMOSFET部が形成されてい
るものである。FIG. 5 shows a CM together with the power MOSFET section.
It is a figure which shows the CMOSFET part at the time of forming an OSFET part. The leftmost drain electrode D shown in FIG. 5 is the rightmost drain electrode D of the power MOSFET section shown in FIG. 1, and a CMOSFET section is further formed on the right side thereof.
【0035】図5において、31はCMOSFET部の
寄生バイポーラトランジスタの電流増幅率を低下させ、
寄生トランジスタが機能しないようにするための、たと
えばn+型の第3の埋込層、32および34はCMOS
FET部を他の領域から分離するアイソレーション領域
のp+領域およびpウェル(p/W)をそれぞれ示し、
33はNMOSを形成するためのpウェル(p/W)、
36および37はPMOSのソース領域およびドレイン
領域、38および39はNMOSのソース領域およびド
レイン領域である。これらのn+領域およびp+領域はそ
れぞれパワーMOSFETのそれぞれの領域の形成の際
に同時に形成され、マスキングだけで特別の工程を必要
とすることなく形成される。この例のようにアイソレー
ション領域を形成することにより、パワーMOSFET
とCMOSロジック部とを別電位に分離できる。Bi−
CMOSのばあいも同様である。In FIG. 5, reference numeral 31 lowers the current amplification factor of the parasitic bipolar transistor in the CMOSFET section,
In order to prevent the parasitic transistor from functioning, for example, an n + type third buried layer, 32 and 34 are CMOS
The p + region and p well (p / W) of the isolation region for separating the FET part from other regions are shown,
33 is a p-well (p / W) for forming an NMOS,
Reference numerals 36 and 37 denote PMOS source and drain regions, and 38 and 39 denote NMOS source and drain regions. The n + region and the p + region are formed at the same time when the respective regions of the power MOSFET are formed, and are formed only by masking without requiring a special process. By forming the isolation region as in this example, the power MOSFET
And the CMOS logic part can be separated into different potentials. Bi-
The same applies to CMOS.
【0036】図6は本発明のさらに他の実施形態の構造
を示す断面説明図である。この実施形態は第1の埋込層
2用の不純物を導入したのち第2の埋込層用の不純物を
導入する前にn-型の半導体層のエピキタキシャル層4
aを形成し、そののち、ドレイン領域6およびドレイン
電極形成領域8の第1の埋込層2との接続用の高濃度不
純物領域の下低部6b、8b用のn+型不純物を導入
し、かつ、第2の埋込層3用のp+型の不純物を導入し
てから再度n-型の半導体層4bをエピキタキシャル成
長し、そののちは、図1および図5の構造と同様にpウ
ェル5およびp+型領域9ならびにドレイン領域6、ソ
ース領域7、ドレイン電極形成領域8をそれぞれn+型
で形成してパワーNMOSが形成されている。なお、こ
の例では半導体基板はサブ基板1とエピキタキシャル層
4aと半導体層4bの積層構造からなっている。FIG. 6 is a sectional view showing the structure of still another embodiment of the present invention. In this embodiment, after the impurities for the first buried layer 2 are introduced and before the impurities for the second buried layer are introduced, the epitaxial layer 4 of the n − type semiconductor layer 4 is introduced.
a is formed, and then n + -type impurities for the lower and lower parts 6b and 8b of the high-concentration impurity regions for connecting the drain region 6 and the drain electrode forming region 8 to the first buried layer 2 are introduced. In addition, after the p + -type impurity for the second buried layer 3 is introduced, the n − -type semiconductor layer 4b is epitaxially grown again. After that, the same structure as in FIGS. 1 and 5 is used. A power NMOS is formed by forming the p well 5, the p + type region 9, the drain region 6, the source region 7 and the drain electrode forming region 8 in the n + type. In this example, the semiconductor substrate has a laminated structure of the sub-substrate 1, the epitaxial layer 4a and the semiconductor layer 4b.
【0037】図6に示される例ではパワーNMOSFE
Tと図5に示されるのと同じ構造のCMOSFETが形
成された例である。CMOS部は図5と同じ符号を付し
てその説明を省略する。In the example shown in FIG. 6, the power NMOS FE is used.
This is an example in which T and a CMOSFET having the same structure as shown in FIG. 5 are formed. The CMOS portion is given the same reference numeral as that in FIG. 5 and its description is omitted.
【0038】つぎに、図6に示される構造の半導体装置
の製法を図7を参照しながら説明する。Next, a method of manufacturing the semiconductor device having the structure shown in FIG. 6 will be described with reference to FIG.
【0039】まず、図7(a)に示されるように、p-
型のサブ基板(p-−Sub)1の表面にSiO2などか
らなるマスク11を形成し、第1の埋込層およびCMO
S用の第3の埋込層の形成場所に開口部11aおよび1
1bを設け、第1の埋込層および第3の埋込層を形成す
るためのリンやヒ素などのn型不純物を拡散またはイオ
ン注入法などにより導入し、n+型領域21、22をそ
れぞれ形成する。[0039] First, as shown in FIG. 7 (a), p -
A mask 11 made of SiO 2 or the like is formed on the surface of the mold type sub-substrate (p − −Sub) 1, and the first buried layer and the CMO are formed.
The openings 11a and 1 are formed at the place where the third buried layer for S is formed.
1b is provided and n-type impurities such as phosphorus and arsenic for forming the first buried layer and the third buried layer are introduced by diffusion or ion implantation to form the n + -type regions 21 and 22, respectively. Form.
【0040】つぎに、図7(b)に示されるように、n
-型のエピキタキシャル層(n-Epi)4aを成長す
る。この際、n+型領域21、22の不純物はエピキタ
キシャル層4aの成長中にエピキタキシャル層4a内に
も拡散し、第1の埋込層2および第3の埋込層31が形
成される。ひきつづきエピキタキシャル層4aの表面に
SiO2などからなるマスク13を形成し、ドレイン領
域およびドレイン電極形成領域の形成場所に開口部13
aおよび13bを形成し、リンやヒ素などのn型不純物
を拡散またはイオン注入により導入し、ドレイン領域お
よびドレイン電極形成領域の第1の埋込層との接続用の
高濃度不純物領域の下底部用n+型領域23、24をそ
れぞれ形成する。Next, as shown in FIG. 7B, n
A − type epitaxial layer (n − Epi) 4a is grown. At this time, the impurities of the n + type regions 21 and 22 also diffuse into the epitaxial layer 4a during the growth of the epitaxial layer 4a, so that the first buried layer 2 and the third buried layer 31 are formed. To be done. Subsequently, a mask 13 made of SiO 2 or the like is formed on the surface of the epitaxial layer 4a, and an opening 13 is formed at the formation location of the drain region and the drain electrode formation region.
a and 13b are formed, n-type impurities such as phosphorus and arsenic are introduced by diffusion or ion implantation, and the bottom of the high-concentration impurity region for connection with the first buried layer in the drain region and the drain electrode formation region is formed. The n + type regions 23 and 24 for use are formed respectively.
【0041】ついで、図7(c)に示されるように、第
2の埋込層を形成するため、エピキタキシャル層4aの
表面に再度SiO2などからなるマスク12を形成し、
開口部からボロンB+などのp型不純物イオンを打ち込
む。Then, as shown in FIG. 7C, a mask 12 made of SiO 2 or the like is formed again on the surface of the epitaxial layer 4a in order to form a second buried layer.
A p-type impurity ion such as boron B + is implanted through the opening.
【0042】つぎに、図7(d)に示されるように、再
度n-型の半導体層(n-Epi)4bをエピキタキシャ
ル成長する。この際、下底部用n+型領域23、24は
新たに成長する半導体層4bおよびエピキタキシャル層
4aの下方にも拡散して広がり、第1の埋込層2と接続
されるとともに、半導体層4b内にも延びてドレイン領
域およびドレイン電極形成領域の第1の埋込層2との接
続用の高濃度不純物領域の下低部6bおよび8bが形成
される。さらにイオン打ち込みされたB+も拡散し、第
2の埋込層3が形成される。この際アイソレーションの
下底部32bも同時に形成される。Next, as shown in FIG. 7D, the n -- type semiconductor layer (n -- Epi) 4b is epitaxially grown again. At this time, the n + -type regions 23 and 24 for the lower bottom portion are diffused and spread below the newly grown semiconductor layer 4b and the epitaxial layer 4a, and are connected to the first buried layer 2 as well as the semiconductor. Lower parts 6b and 8b of the high-concentration impurity regions for connecting to the first buried layer 2 in the drain region and the drain electrode forming region are formed so as to extend into the layer 4b. Further, the ion-implanted B + is also diffused to form the second buried layer 3. At this time, the lower bottom portion 32b of the isolation is also formed at the same time.
【0043】こののちは図3(d)〜図4(f)と同様
の手順を繰り返すことにより図6に示される構造のパワ
ーNMOSとCMOSを有する半導体装置がえられる。After that, by repeating the same procedure as shown in FIGS. 3D to 4F, a semiconductor device having the power NMOS and CMOS having the structure shown in FIG. 6 is obtained.
【0044】この例のように第1の埋込層2用の不純物
導入と第2の埋込層3用の不純物導入とのあいだにエピ
キタキシャル層4aを成長させることにより、第1の埋
込層2用のn型不純物と第2の埋込層3用のp型不純物
が同じ場所に導入されて相殺されることがなく両機能を
確実に達成できるという利点がある。なお、高濃度不純
物領域の下底部6b、8bを形成するのは、エピキタキ
シャル層4a、半導体層4bとの2層でn-型半導体層
が形成されて厚くなっているため、表面からの拡散だけ
では第1の埋込層2に到達しにくいのを解決するための
もので、表面からの不純物導入により第1の埋込層に到
達させることができれば下底部6b、8bの形成は必ず
しも必要ではない。By growing the epitaxial layer 4a between the introduction of impurities for the first buried layer 2 and the introduction of impurities for the second buried layer 3 as in this example, the first buried layer 4a is grown. The n-type impurity for the buried layer 2 and the p-type impurity for the second buried layer 3 are not introduced into the same place and are not offset, and there is an advantage that both functions can be achieved reliably. The lower bottom portions 6b and 8b of the high-concentration impurity region are formed by the two layers of the epitaxial layer 4a and the semiconductor layer 4b, and the n − -type semiconductor layer is formed thicker. This is to solve the problem that it is difficult to reach the first buried layer 2 only by diffusion, and if the first buried layer can be reached by introducing impurities from the surface, the formation of the lower bottom portions 6b and 8b is not always necessary. Not necessary.
【0045】[0045]
【発明の効果】本発明によれば、大電流が流れるパワー
MOSFETを、半導体基板中に形成された第1の埋込
層に電流が流れ込む縦形構造にするとともに、ドレイン
電極は半導体基板の表面から第1の埋込層に達するまで
導入された高濃度不純物領域を経由して半導体基板の表
面から取り出される構造になっている。そのため、小さ
なオン抵抗のパワーMOSFETが小さなチップサイズ
でえられるとともに、ドレイン電極が半導体基板の表面
から取り出されているため、駆動回路など他のCMOS
FETなどとの1チップ化が容易になされ、高性能のパ
ワーMOSFETを有する高集積度の半導体装置が安価
にえられる。According to the present invention, the power MOSFET through which a large current flows has a vertical structure in which the current flows into the first buried layer formed in the semiconductor substrate, and the drain electrode is formed from the surface of the semiconductor substrate. The structure is such that it is taken out from the surface of the semiconductor substrate via the high-concentration impurity region introduced until it reaches the first buried layer. Therefore, a power MOSFET having a small on-resistance can be obtained with a small chip size, and since the drain electrode is taken out from the surface of the semiconductor substrate, it can be used in other CMOS such as a driving circuit.
A single chip such as an FET can be easily formed, and a highly integrated semiconductor device having a high-performance power MOSFET can be obtained at low cost.
【図1】本発明の半導体装置の一実施形態の断面説明図
である。FIG. 1 is a cross-sectional explanatory diagram of an embodiment of a semiconductor device of the present invention.
【図2】本発明の半導体装置の他の実施形態の説明図で
ある。FIG. 2 is an explanatory diagram of another embodiment of the semiconductor device of the present invention.
【図3】図1の半導体装置の製造工程を示す図である。FIG. 3 is a diagram showing a manufacturing process of the semiconductor device in FIG. 1;
【図4】図1の半導体装置の製造工程を示す図である。FIG. 4 is a diagram showing a manufacturing process of the semiconductor device in FIG. 1;
【図5】パワーMOSとともに形成するCMOS部の断
面説明図である。FIG. 5 is an explanatory cross-sectional view of a CMOS portion formed together with a power MOS.
【図6】本発明の半導体装置のさらに他の実施形態の断
面説明図である。FIG. 6 is a cross-sectional explanatory view of still another embodiment of the semiconductor device of the present invention.
【図7】図6の半導体装置の製造工程を示す図である。FIG. 7 is a diagram showing a manufacturing process of the semiconductor device in FIG. 6;
【図8】従来のMOSFETの構造の説明図である。FIG. 8 is an explanatory diagram of a structure of a conventional MOSFET.
1 サブ基板 2 第1の埋込層 3 第2の埋込層 4 第1導電型の半導体層 5 第2導電型半導体領域 6 ドレイン領域 6a 高濃度不純物領域 7 ソース領域 8 ドレイン電極形成領域 8a 高濃度不純物領域 S ソース電極 D ドレイン電極 G ゲート電極 1 sub board 2 First buried layer 3 Second buried layer 4 First conductivity type semiconductor layer 5 Second conductivity type semiconductor region 6 drain region 6a high concentration impurity region 7 Source area 8 Drain electrode formation area 8a high concentration impurity region S source electrode D drain electrode G gate electrode
Claims (6)
一部表面に形成される高濃度不純物の第1導電型の第1
の埋込層と、前記サブ基板および該第1の埋込層上に設
けられる第1導電型半導体層と、前記第1導電型半導体
層に形成される第2導電型半導体領域と、該第2導電型
半導体領域の表面側に相互に分離して形成される第1導
電型のソース領域およびドレイン領域と、前記第1導電
型半導体層の表面側に前記ドレイン領域と異なる場所に
形成され、かつ、前記ドレイン領域との間に前記ソース
領域が位置するように形成される第1導電型のドレイン
電極形成領域と、該ドレイン電極形成領域および前記ド
レイン領域をそれぞれ前記第1の埋込層と接続する第1
導電型の高濃度不純物領域と、前記ソース領域とドレイ
ン領域との間隙部で、前記第2導電型半導体領域上に絶
縁膜を介して設けられるゲート電極と、前記ソース領域
およびドレイン電極形成領域にそれぞれ接続して設けら
れるソース電極およびドレイン電極とを具備する半導体
装置。1. A second-conductivity-type sub-substrate and a first-conductivity-type first substrate of high-concentration impurities formed on a partial surface of the sub-substrate.
A buried layer, a first conductive type semiconductor layer provided on the sub-substrate and the first buried layer, a second conductive type semiconductor region formed in the first conductive type semiconductor layer, A first conductivity type source region and a drain region formed separately from each other on the surface side of the second conductivity type semiconductor region; and on a surface side of the first conductivity type semiconductor layer at a position different from the drain region.
The source formed between the drain region and
A first conductivity type drain electrode formation region formed so that the region is located , and a first connection region connecting the drain electrode formation region and the drain region to the first buried layer, respectively.
A high-concentration impurity region of conductivity type, a gate electrode provided on the second conductivity type semiconductor region via an insulating film in a gap between the source region and the drain region, and the source region and the drain electrode formation region. A semiconductor device comprising a source electrode and a drain electrode which are connected to each other.
側に設けられ、前記ドレイン領域の両側のゲート電極
が、該ドレイン領域上の厚い絶縁膜上で連続して形成さ
れてなる請求項1記載の半導体装置。2. The source region is the drain region.
Provided on a side, the gate electrode on both sides of the drain region, the semiconductor device of consecutive made is formed according to claim 1, wherein on the thick insulating film on the drain region.
あいだに第2導電型の高濃度不純物の第2の埋込層が設
けられてなる請求項1または2記載の半導体装置。Wherein the semiconductor device of the second second buried layer of the conductivity type high concentration impurity is provided according to claim 1 or 2, wherein in between the source region and said first buried layer.
領域との間に前記第2の埋込層に達するように第2導電
型の高濃度不純物領域が設けられてなる請求項3記載の
半導体装置。 4. Forming the source region and the drain electrode
A second conductive layer so as to reach the second buried layer between
The high concentration impurity region of the mold is provided.
Semiconductor device .
型の第1の埋込層を形成するための第1導電型不純物領
域を形成し、 (b)前記サブ基板の表面に第1導電型の半導体層をエ
ピタキシャル成長することにより前記サブ基板と該第1
導電型半導体層との間に前記第1の埋込層を形成し、 (c)前記第1の埋込層上における前記第1導電型の半
導体層に第2導電型不純物を導入して第2導電型半導体
領域を形成し、 (d)ドレイン領域およびドレイン電極形成領域をそれ
ぞれ形成する場所のそれぞれの中央部に前記第1の埋込
層と接続するように第1導電型不純物を導入することに
より、第1導電型の高濃度不純物領域を形成し、 (e)前記第2導電型半導体領域の表面側で、前記第1
導電型の高濃度不純物領域を形成した近傍およびソース
領域形成場所に第1導電型不純物を導入することによ
り、相互に分離したソース領域およびドレイン領域を形
成するとともに、前記ドレイン領域と異なる場所に、か
つ、前記ドレイン領域との間に前記ソース領域が位置す
るようにドレイン電極形成領域を形成し、 (f)前記ソース領域およびドレイン領域の間隙部の表
面に、絶縁膜を介してゲート電極を形成するとともに、
前記ソース領域およびドレイン電極形成領域にそれぞれ
ソース電極およびドレイン電極を形成することを特徴と
する半導体装置の製法。5. A first-conductivity-type impurity region for forming a first-conductivity-type first buried layer is formed on a second-conductivity-type sub-substrate, and (b) a surface of the sub-substrate. By epitaxially growing a semiconductor layer of the first conductivity type on the sub-substrate and the first substrate.
Forming a first buried layer between the conductive type semiconductor layer and (c) introducing a second conductive type impurity into the first conductive type semiconductor layer on the first buried layer to form a first buried layer; A two-conductivity type semiconductor region is formed, and (d) a first-conductivity type impurity is introduced so as to be connected to the first buried layer at the central portions of the respective locations where the drain region and the drain electrode formation region are respectively formed. Thereby, a high-concentration impurity region of the first conductivity type is formed, and (e) the first conductivity type high-concentration impurity region is formed on the front surface side of the second conductivity type semiconductor region.
A source region and a drain region which are separated from each other are formed by introducing an impurity of the first conductivity type into the vicinity where the conductivity type high-concentration impurity region is formed and a place where the source region is formed.
And in a place different from the drain region.
The source region is located between the drain region and
A drain electrode forming region is formed as follows, and (f) a gate electrode is formed on the surface of the gap between the source region and the drain region via an insulating film , and
In the source region and the drain electrode formation region, respectively
A method of manufacturing a semiconductor device, which comprises forming a source electrode and a drain electrode .
て、(a)工程と(b)工程とのあいだに第1導電型の
エピタキシャル層を成長することにより第1の埋込層を
形成し、該第1の埋込層の一部に第2の埋込層を形成す
るための第2導電型不純物を導入する工程を付加する半
導体装置の製法。6. The method for manufacturing a semiconductor device according to claim 5, wherein the first buried layer is formed by growing an epitaxial layer of a first conductivity type between steps (a) and (b).
And forming a second buried layer in a part of the first buried layer
A method of manufacturing a semiconductor device, which additionally includes a step of introducing a second conductivity type impurity .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21707595A JP3468621B2 (en) | 1995-08-25 | 1995-08-25 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21707595A JP3468621B2 (en) | 1995-08-25 | 1995-08-25 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0964352A JPH0964352A (en) | 1997-03-07 |
JP3468621B2 true JP3468621B2 (en) | 2003-11-17 |
Family
ID=16698447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21707595A Expired - Fee Related JP3468621B2 (en) | 1995-08-25 | 1995-08-25 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3468621B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4526179B2 (en) * | 2000-11-21 | 2010-08-18 | 三菱電機株式会社 | Semiconductor device |
DE10255116B4 (en) * | 2002-11-26 | 2015-04-02 | Infineon Technologies Ag | LDMOS transistor and method for its production |
WO2009039441A1 (en) | 2007-09-21 | 2009-03-26 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US20120273916A1 (en) | 2011-04-27 | 2012-11-01 | Yedinak Joseph A | Superjunction Structures for Power Devices and Methods of Manufacture |
US8836028B2 (en) | 2011-04-27 | 2014-09-16 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
-
1995
- 1995-08-25 JP JP21707595A patent/JP3468621B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0964352A (en) | 1997-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3291958B2 (en) | Back source MOSFET | |
US5831320A (en) | High voltage metal oxide silicon field effect transistor | |
US20030164527A1 (en) | Semiconductor device and its manufacturing method | |
US6861303B2 (en) | JFET structure for integrated circuit and fabrication method | |
JP4437388B2 (en) | Semiconductor device | |
JPH06120510A (en) | High breakdown voltage misfet and semiconductor integrated circuit | |
JP2000286346A (en) | Semiconductor device and manufacture thereof | |
US8513736B2 (en) | Semiconductor device | |
JPH09139438A (en) | Semiconductor device and semiconductor manufacturing method | |
US6307224B1 (en) | Double diffused mosfet | |
JP2005136150A (en) | Semiconductor device and its manufacturing method | |
JP3448546B2 (en) | Semiconductor device and manufacturing method thereof | |
KR100962233B1 (en) | High Voltage Junction Field Effect Transistor | |
JP2004311891A (en) | Semiconductor device | |
JP3400301B2 (en) | High voltage semiconductor device | |
JP3468621B2 (en) | Semiconductor device and manufacturing method thereof | |
JP3363810B2 (en) | Semiconductor device and manufacturing method thereof | |
KR100245303B1 (en) | Manufacture of semiconductor device | |
JP2917301B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2002343884A (en) | Semiconductor device and its manufacturing method | |
JP2508218B2 (en) | Complementary MIS integrated circuit | |
JP2525257B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
JPH05251647A (en) | Semiconductor integrated circuit device | |
JP3191285B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH09199718A (en) | Semiconductor integrated circuit device and its fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |