[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3465234B2 - Ionization section of electric dust collector - Google Patents

Ionization section of electric dust collector

Info

Publication number
JP3465234B2
JP3465234B2 JP01717198A JP1717198A JP3465234B2 JP 3465234 B2 JP3465234 B2 JP 3465234B2 JP 01717198 A JP01717198 A JP 01717198A JP 1717198 A JP1717198 A JP 1717198A JP 3465234 B2 JP3465234 B2 JP 3465234B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
counter electrode
air flow
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01717198A
Other languages
Japanese (ja)
Other versions
JPH11216388A (en
Inventor
正史 長田
達男 曽根
太郎 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP01717198A priority Critical patent/JP3465234B2/en
Publication of JPH11216388A publication Critical patent/JPH11216388A/en
Application granted granted Critical
Publication of JP3465234B2 publication Critical patent/JP3465234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、電気集塵機に関
し、特にイオン部における放電電極の改良に関する。 【0002】 【従来の技術】電気集塵機は、放電電極と対向電極との
間でコロナ放電を生じさせるイオン化部と、その帯電さ
れた塵を集塵する集塵部から構成される。図10は例え
ば特開平5ー184969号公報に示された従来の集塵
機のイオン化部を示す斜視図である。図において21は
放電電極、22は対向電極である。放電電極1は、長手
方向の両側端に複数の突起21aが一定の間隔で打抜き
成形された金属板であり、複数個からなり、放電電極2
1は、その板面が風の流れ方向と直交するように配置さ
れ、複数の突起21aが対向電極2と対向するように構
成されている。このように、放電電極21は、風の流れ
方向と直交するように配置したことにより、複数の放電
電極21は1枚の金属板から一体打抜き成形することが
でき、且つ板厚を薄くすることができる。 【0003】上述のように構成されているため、図11
に示すように、放電電極21と対向電極2間の距離は放
電電極21に反りが生じても常に一定に保たれ、安定し
た放電が行われ、また、放電電極21は、その坂厚が薄
いので放電電極21の先端部への電荷の集中が多くな
り、集塵効率を向上させることができる。 【0004】 【発明が解決しようとする課題】コロナ電流は電極の形
状や電極間距離等に大きく依存するので、一定の電圧で
大きなイオン電流を加えるためには放電電極と対向電極
の形状を適切にする必要がある。上述のような従来の電
気集塵機のイオン化部では、コロナ電流が流れている場
(図中点線の場所)を塵埃粒子を含んだ空気が通過する
ことによって粒子が帯電されるが放電電極21の突起2
1aの先端からコロナ電流が流れるため、放電電極21
を空気流と直交させると、突起21a(図中点線以外の
場所)間を通過する粒子は帯電されずに通過してしま
い、集塵効率の低下を招くという問題があった。 【0005】この発明は、上述のような課題を解決する
ためになされたもので、電極の形状や電極間距離を最適
化することにより、一定電圧において高く、安定したコ
ロナ電流と、高い粒子帯電効率による高い塵埃集塵率を
得ること、また、省エネルギーを得ること、脈動の無い
安定したコロナ電流によって静音化を得る(電流脈動で
音が発生する)ことができる電気集塵機のイオン化部を
得ることを目的とする。 【0006】 【課題を解決するための手段】この発明に係わる電気集
塵機のイオン化部は、空気流に沿った平板状の対向電極
と放電電極との間で発生させたコロナ放電により塵埃を
帯電させて集塵する電気集塵機のイオン化部において、
前記放電電極の空気流の上流側端部にL字形状の折曲げ
部を設けるとともに、空気流の下流側に空気流に沿った
複数の突起を設け、前記突起の間隔をP、前記対向電極
間距離をDとしたときに、D/5≦P≦Dを満足するよ
うにするとともに、前記対向電極の空気流の上流側端部
と前記突起先端部との距離をA、前記対向電極の空気流
方向の幅をBとしたときに、−2B/3≦A≦0を満足
するようにしたものである。 【0007】 【0008】 【発明の実施の形態】実施の形態1.図1は一般的な二
段荷電形集塵機の概略構成を示す断面構成図、図2は実
施の形態1であるイオン化部の要部斜視図、図3はイオ
ン化部の電極詳細図、図4はイオン化部の放電状態の説
明図、図5は印加電圧及び放電電流の関係を示す特性
図、図6は放電電極のピッチ間隔を変えた場合の印加電
圧と放電電流の特性図である。図1に示すように、電気
集塵機は流入する塵埃をコロナ放電により帯電させるイ
オン化部1と、帯電した塵挨をクーロン力により接地電
極へ吸着させるコレクタ部2よりなる。コレクタ部2
は、複数の平板状の高電圧電極5と接地される集塵電極
板6が交互に並行配置されている。そして、イオン化部
1の対向電極3と放電電極4間には、直流電源7から数
KV、高電圧電極5と集塵電極板6間にも、直流電源8
から数KVの電圧が印加される。 【0009】図2において、イオン化部1は互いに並行
配置され、接地される複数の対向電極3と、この対向電
極3を支持するケーシング3aとそれらの中間に配置さ
れた放電電極4とからなる。4aは突起、4bは断面が
L字形状の折曲げ部、11は碍子等の絶縁部材からな
り、対向電極3と電気的に絶縁して間隔を保つスペーサ
であり、対向電極3と放電電極4は、スペーサ11を介
してネジ12等により取付けられる。 【0010】図3(a)はイオン化部1における放電電
極4及び対向電極3の断面図、図3(b)はイオン化部
における放電電極4及び対向電極3の側面図である。図
においてAは放電電極4の突起4aの先端と対向電極3
の空気流の風上端部との距離、Bは対向電極3の空気流
方向の幅、Pは放電電極4の突起4aの間隔(ピッ
チ)、Dは対向電極3間の距離である。なお、距離Aは
対向電極3空気入口端部を基準(0)として、空気流上
流方向を正、下流方向を負としている。 【0011】コロナ電流は電極の形状や電極間距離等に
大きく依存するので、放電電極4の突起4aの間隔Pを
変えて放電電極4と対向電極3間の印加電圧とコロナ電
流の関係を実験した結果を次に説明する。 【0012】一例として、B=18mm、D=25mm
として、放電電極4の突起4aの間隔(ピッチ)Pは、
D/5≦P≦D、D/5>P及びP>Dの三種類につい
て印加電圧を4〜9KVとしたときのコロナ電流の状態
について実験した。この結果を図4〜図6に示す。図4
(a)は放電電極4及び対向電極3間に流れるコロナ電
流の状態を示す断面図、図4(b)は放電電極4及び対
向電極3間に流れるコロナ電流の状態を示す側面図、図
4(c)は放電電極4及び対向電極3間に流れるコロナ
電流の状態を空気流の下流から見た下面図である。 【0013】図4(b)、(c)からわかるように、P
>Dの場合はコロナ電流の密度が空気流路に対して疎で
あり、塵埃が帯電されずに通過する部分が多い。D/5
>Pの場合はコロナ電流が干渉し合う。 D/5≦P≦
Dの場合はコロナ電流の密度が密であり、コロナ電流が
干渉せず、良好な状態である。 【0014】D/5>Pの場合はコロナ電流が干渉し合
うが、このときのコロナ電流の変化状態を測定した結果
を図5に示す。図5(a)はD/5≦P≦Dの場合の印
加電圧とコロナ電流の状態を示す図、図5(b)はD/
5>Pの場合を示す図である。図からわかるように、D
/5>Pの場合はコロナ電流に脈動が生じるが、D/5
≦P≦Dの場合はコロナ電流に脈動が生じなく安定して
いる。 【0015】以上の結果をまとめたVーI特性を図6に
示す。図からわかるように、同一の印加電圧に対するコ
ロナ電流は、印加電圧が4〜5.5KVではD/5≦P
≦D(黒丸)とP>D(黒四角)はコロナ電流は同じで
あるが、D/5>P(×印)より高く、印加電圧が5.
5〜8.5KVでは、D/5≦P≦D(黒丸)、P>D
(黒四角)、D/5>P(×印)の順に低くなり、同一
の印加電圧に対するコロナ電流はD/5≦P≦Dの場合
が最も高かった。 【0016】このように、D/5>Pの場合は、ピッチ
が狭く、突起から流れるコロナ電流が互いに干渉し合う
ので、電流に脈動が生じて不安定となるとともに電流値
も減少する。これにより、帯電効率が低下するために集
塵効率の低下をまねく。また、脈動によりシュー音が発
生し、オゾンの発生量が多くなる傾向にある。また、P
>Dの場合はピッチが広く、コロナ電流密度が疎となる
ために、コロナ電流が低下し、帯電効率が低下するので
集塵効率が低下する。しかし、D/5≦P≦Dの場合
は、コロナ電流が高く、脈動がなく安定したコロナ電流
となり、帯電効率が高くなり、従って、塵埃集塵率が高
くなる。なお、B=18、D=25mmの例以外の寸法
によってもPとDの関係は、上記と同様な結果となるこ
とを確認した。 【0017】以上のように、放電電極の突起間隔を、D
/5≦P≦Dとすることにより、一定電圧でコロナ電流
を高く、安定させることができ、帯電効率が高くなり、
従って、塵埃集塵率を高くすることができる。また、所
定電流を得る場合の電圧も低くできるので省エネルギー
を図ることができ、さらに、脈動が無く音の発生がなく
なり静音化を図ることができる。また、放電電極の空気
入口端部をL字形状の折曲げ部としたので、放電電極に
反りが生じなく、放電電極と対向電極との間隔を一定に
保つことができる。さらに、電流密度分布(図4)でわ
かるように、突起部を空気流に対して垂直に配列するよ
り、水平に配列する方が突起の長さ分の電流密度の疎部
分を少なくすることができる。 【0018】実施の形態2.本実施の形態は、突起4a
の先端と対向電極3の空気流の風上端部との距離Aを変
えて、放電電極4と対向電極3間の印加電圧とコロナ電
流の関係を実験により適切なAの範囲を求めたものであ
る。 【0019】図7は実施の形態2である電気集塵機のイ
オン化部の電極詳細図、図8はイオン化部の放電状態を
示す図、図9は突起4aの先端と対向電極3の空気流の
上流端部との距離Aを変えたときの印加電圧と放電電流
の特性図である。 【0020】例えば、B=18mm、D=25mm、P
=8として、放電電極4の突起4aの先端と対向電極3
の空気流の上流端部との距離Aは、−2B/3≦A≦
0、A>0及び−2B/3>Aの三種類について印加電
圧を4〜10KVとしたときのコロナ電流の状態を実験
した。この結果を図8及び図9に示す。図8(a)は、
−2B/3≦A≦0の場合の放電電極4及び対向電極3
間に流れるコロナ電流の状態を示す断面図、図9(b)
はA>0の場合の放電電極4及び対向電極3間に流れる
コロナ電流の状態を示す断面図、図8(c)は−2B/
3>Aの場合の放電電極4及び対向電極3間に流れるコ
ロナ電流の状態の断面図である。なお、図において、対
向電極3の空気入口側端部を基準として、空気上流方向
を正、下流方向を負としている。 【0021】図からわかるように、図8(c)に示す−
2B/3>Aの場合は突起4aの先端からのイオン電流
は、先端部の角部曲率により対向電極3に対し空気流の
方向に約45度に向かう成分が発生するため、放電電極
4が対向電極3の内部に入りすぎると電流減となる。ま
た、下流部にはコレクタ部2が位置するためコレクタ部
2の集塵電極板6に流れ込んでしまいイオン化部1とし
ての電流減となる。図8(b)に示すA>0の場合は、
Aが大きくなるにしたがって電流減となる。図8(a)
に示す−2B/3≦A≦0の場合は、コロナ電流分布の
密度が高く、良好な状態である。 【0022】次に、B=18mm、D=25mm、P=
8として、−2B/3≦A≦0、A>0、A=0及び−
2B/3>Aの4種類について印加電圧とコロナ電流の
関係を実験した。この結果を図9に示す。図からわかる
ように、同一の印加電圧に対するコロナ電流は、−2B
/3≦A≦0(黒丸)、A=0A(三角)、−2B/3
>A(四角黒)、A>0(菱形黒)の順に低くなった。
このように、同一の印加電圧に対するコロナ電流は、−
2B/3≦A≦0の場合が最も高く、帯電効率が高いの
で集塵効率が最も高くなる。 【0023】以上のように、放電電極の突起の先端と対
向電極の空気流の上流端部との距離Aを、−2B/3≦
A≦0とすることにより、一定電圧でコロナ電流を高
く、安定させることができ、帯電効率が高くなり、従っ
て、塵埃集塵率を高くすることができる。また、電圧も
低くできるので省エネルギーを図ることができる。 【0024】 【発明の効果】以上のように、空気流に沿った平板状の
対向電極と放電電極との間で発生させたコロナ放電によ
り塵埃を帯電させて集塵する電気集塵機のイオン化部に
おいて、前記放電電極の空気流の上流側端部にL字形状
の折曲げ部を設けるとともに、空気流の下流側に空気流
に沿った複数の突起を設け、前記突起の間隔をP、前記
対向電極間距離をDとしたときに、D/5≦P≦Dを満
足するようにするとともに、前記対向電極の空気流の上
流側端部と前記突起先端部との距離をA、前記対向電極
の空気流方向の幅をBとしたときに、−2B/3≦A≦
0を満足するようにしたので、コロナ電流が高く、脈動
がなく安定したコロナ電流となり、帯電効率が高くな
り、塵埃集塵率を高くすることができる。また、電圧も
低くできるので省エネルギーを図ることができ、さら
に、脈動が無く音の発生がなくなり静音化を図ることが
できる。さらに、放電電極に反りが生じなく、放電電極
と対向電極との間隔を一定に保つことができる。 【0025】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric dust collector, and more particularly to an improvement in a discharge electrode in an ion part. 2. Description of the Related Art An electrostatic precipitator includes an ionizing section for generating corona discharge between a discharge electrode and a counter electrode, and a dust collecting section for collecting the charged dust. FIG. 10 is a perspective view showing an ionization section of a conventional dust collector disclosed in, for example, Japanese Patent Application Laid-Open No. 5-184969. In the figure, 21 is a discharge electrode and 22 is a counter electrode. The discharge electrode 1 is a metal plate in which a plurality of projections 21a are stamped and formed at both ends in the longitudinal direction at a predetermined interval.
1 is arranged so that its plate surface is orthogonal to the flow direction of the wind, and is configured such that the plurality of protrusions 21 a face the counter electrode 2. As described above, since the discharge electrodes 21 are arranged so as to be orthogonal to the flow direction of the wind, the plurality of discharge electrodes 21 can be integrally formed by stamping from one metal plate, and the plate thickness can be reduced. Can be. [0003] Because of the configuration described above, FIG.
As shown in the figure, the distance between the discharge electrode 21 and the counter electrode 2 is always kept constant even if the discharge electrode 21 is warped, stable discharge is performed, and the discharge electrode 21 has a thin slope. Therefore, the concentration of charges on the tip of the discharge electrode 21 increases, and the dust collection efficiency can be improved. [0004] Since the corona current greatly depends on the shape of the electrodes, the distance between the electrodes, and the like, the shape of the discharge electrode and the counter electrode must be appropriately adjusted in order to apply a large ion current at a constant voltage. Need to be In the ionization section of the above-mentioned conventional electric precipitator, the particles containing the dust particles are charged by the passage of the air containing the dust particles through the place where the corona current flows (the location indicated by the dotted line in the figure). 2
1a, a corona current flows from the tip of the discharge electrode 21a.
Is orthogonal to the air flow, particles passing between the protrusions 21a (locations other than the dotted lines in the figure) pass without being charged, and there is a problem that the dust collection efficiency is reduced. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. By optimizing the shape of the electrodes and the distance between the electrodes, a high and stable corona current at a constant voltage and a high particle charge can be obtained. To obtain a high dust collection rate due to efficiency, to obtain energy saving, and to obtain an ionization unit of an electric precipitator that can obtain quietness (sound is generated by current pulsation) by stable corona current without pulsation. With the goal. The ionization section of the electric precipitator according to the present invention charges dust by corona discharge generated between a flat counter electrode and a discharge electrode along an air flow. In the ionization section of an electric dust collector that collects dust
L-shaped bending at the upstream end of the air flow of the discharge electrode
And a plurality of protrusions are provided along the air flow on the downstream side of the air flow, and when the distance between the protrusions is P and the distance between the opposing electrodes is D, D / 5 ≦ P ≦ D is satisfied. When the distance between the upstream end of the air flow of the counter electrode and the tip of the protrusion is A, and the width of the counter electrode in the air flow direction is B, -2B / 3 ≦ A ≦ 0 is satisfied. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment FIG. 1 is a cross-sectional configuration diagram showing a schematic configuration of a general two-stage charged dust collector, FIG. 2 is a perspective view of a main part of an ionization unit according to the first embodiment, FIG. 3 is an electrode detailed view of the ionization unit, and FIG. FIG. 5 is a graph showing the relationship between the applied voltage and the discharge current, and FIG. 6 is a graph showing the relationship between the applied voltage and the discharge current when the pitch between the discharge electrodes is changed. As shown in FIG. 1, the electrostatic precipitator includes an ionization unit 1 for charging dust flowing in by corona discharge, and a collector unit 2 for adsorbing the charged dust to a ground electrode by Coulomb force. Collector part 2
Has a plurality of plate-like high voltage electrodes 5 and a dust collecting electrode plate 6 grounded alternately arranged in parallel. A DC power source 7 supplies a voltage of several kV between the counter electrode 3 and the discharge electrode 4 of the ionization unit 1.
To several KV. In FIG. 2, the ionization section 1 comprises a plurality of counter electrodes 3 arranged in parallel with each other and grounded, a casing 3a for supporting the counter electrodes 3, and a discharge electrode 4 disposed therebetween. 4a is a projection, 4b is a bent portion having an L-shaped cross section, 11 is a spacer made of an insulating member such as an insulator, and is a spacer which is electrically insulated from the counter electrode 3 to keep an interval. Is attached by screws 12 or the like via a spacer 11. FIG. 3A is a sectional view of the discharge electrode 4 and the counter electrode 3 in the ionization section 1, and FIG. 3B is a side view of the discharge electrode 4 and the counter electrode 3 in the ionization section. In the figure, A is the tip of the projection 4a of the discharge electrode 4 and the counter electrode 3
B is the width of the counter electrode 3 in the air flow direction, P is the interval (pitch) between the protrusions 4a of the discharge electrode 4, and D is the distance between the counter electrodes 3. The distance A is defined as positive (0) in the airflow upstream direction and negative in the downstream direction, with the air inlet end of the counter electrode 3 as the reference (0). Since the corona current greatly depends on the shape of the electrodes, the distance between the electrodes, and the like, the relationship between the applied voltage between the discharge electrode 4 and the counter electrode 3 and the corona current is examined by changing the distance P between the protrusions 4a of the discharge electrode 4. The results obtained will be described below. As an example, B = 18 mm, D = 25 mm
The interval (pitch) P between the protrusions 4a of the discharge electrode 4 is
Experiments were conducted on the state of the corona current when the applied voltage was 4 to 9 KV for three types of D / 5 ≦ P ≦ D, D / 5> P and P> D. The results are shown in FIGS. FIG.
4A is a cross-sectional view showing a state of a corona current flowing between the discharge electrode 4 and the counter electrode 3, FIG. 4B is a side view showing a state of a corona current flowing between the discharge electrode 4 and the counter electrode 3, and FIG. (C) is a bottom view of the state of the corona current flowing between the discharge electrode 4 and the counter electrode 3 as viewed from the downstream of the airflow. As can be seen from FIGS. 4B and 4C, P
In the case of> D, the density of the corona current is low with respect to the air flow path, and there are many portions where dust passes without being charged. D / 5
If> P, corona currents interfere with each other. D / 5 ≦ P ≦
In the case of D, the density of the corona current is high, the corona current does not interfere, and the state is good. In the case of D / 5> P, the corona currents interfere with each other. FIG. 5 shows the result of measuring the state of change of the corona current at this time. FIG. 5A is a diagram showing the state of the applied voltage and the corona current when D / 5 ≦ P ≦ D, and FIG.
It is a figure showing the case of 5> P. As can be seen from the figure, D
When / 5> P, pulsation occurs in the corona current, but D / 5
When ≤P≤D, the corona current is stable without pulsation. FIG. 6 shows VI characteristics summarizing the above results. As can be seen from the figure, the corona current for the same applied voltage is D / 5 ≦ P when the applied voltage is 4 to 5.5 KV.
≦ D (solid circle) and P> D (solid square) have the same corona current, but are higher than D / 5> P (x mark), and the applied voltage is 5.
For 5 to 8.5 KV, D / 5 ≦ P ≦ D (black circle), P> D
(Black squares), D / 5> P (marked by X), and the corona current for the same applied voltage was highest when D / 5 ≦ P ≦ D. As described above, in the case of D / 5> P, the pitch is narrow and the corona currents flowing from the projections interfere with each other, so that the current is pulsated and becomes unstable, and the current value decreases. As a result, the charging efficiency is reduced and the dust collection efficiency is reduced. In addition, pulsation generates shoe noise, and the amount of generated ozone tends to increase. Also, P
In the case of> D, the pitch is wide and the corona current density is low, so that the corona current decreases and the charging efficiency decreases, so that the dust collection efficiency decreases. However, when D / 5 ≦ P ≦ D, the corona current is high, the corona current is stable without pulsation, the charging efficiency is increased, and the dust collection rate is increased. In addition, it was confirmed that the relationship between P and D was the same as that described above even with dimensions other than the example of B = 18 and D = 25 mm. As described above, the distance between the protrusions of the discharge electrode is D
By setting / 5 ≦ P ≦ D, the corona current can be increased and stabilized at a constant voltage, and the charging efficiency can be increased.
Therefore, the dust collection rate can be increased. Further, since the voltage for obtaining the predetermined current can be reduced, energy can be saved, and furthermore, there is no pulsation, no sound is generated, and noise can be reduced. In addition, since the air inlet end of the discharge electrode is formed as an L-shaped bent portion, the discharge electrode does not warp, and the distance between the discharge electrode and the counter electrode can be kept constant. Furthermore, as can be seen from the current density distribution (FIG. 4), arranging the protrusions horizontally makes it possible to reduce the sparse portion of the current density by the length of the protrusions, rather than arranging them vertically. it can. Embodiment 2 FIG. In the present embodiment, the protrusion 4a
The relationship between the applied voltage between the discharge electrode 4 and the counter electrode 3 and the corona current was obtained by experiment to find the appropriate range of A by changing the distance A between the tip of the electrode and the upper end of the air flow of the counter electrode 3. is there. FIG. 7 is a detailed view of the electrodes of the ionization unit of the electrostatic precipitator according to the second embodiment, FIG. 8 is a diagram showing the discharge state of the ionization unit, and FIG. FIG. 9 is a characteristic diagram of an applied voltage and a discharge current when a distance A to an end is changed. For example, B = 18 mm, D = 25 mm, P
= 8, the tip of the projection 4a of the discharge electrode 4 and the counter electrode 3
The distance A from the upstream end of the airflow is −2B / 3 ≦ A ≦
For three types of 0, A> 0 and -2B / 3> A, the state of the corona current when the applied voltage was 4 to 10 KV was tested. The results are shown in FIGS. FIG. 8 (a)
Discharge electrode 4 and counter electrode 3 when −2B / 3 ≦ A ≦ 0
FIG. 9B is a cross-sectional view showing a state of a corona current flowing therebetween.
FIG. 8C is a cross-sectional view showing the state of the corona current flowing between the discharge electrode 4 and the counter electrode 3 when A> 0, and FIG.
FIG. 4 is a cross-sectional view of a state of a corona current flowing between the discharge electrode 4 and the counter electrode 3 when 3> A. In the figure, the air upstream direction is positive and the downstream direction is negative with reference to the air inlet side end of the counter electrode 3. As can be seen from the figure, FIG.
In the case of 2B / 3> A, the ion current from the tip of the projection 4a generates a component directed to the counter electrode 3 in the direction of the airflow by about 45 degrees due to the corner curvature of the tip. If it enters the inside of the counter electrode 3 too much, the current decreases. Further, since the collector portion 2 is located downstream, the current flows into the dust collecting electrode plate 6 of the collector portion 2 and the current as the ionization portion 1 decreases. When A> 0 shown in FIG. 8B,
The current decreases as A increases. FIG. 8 (a)
In the case of −2B / 3 ≦ A ≦ 0, the density of the corona current distribution is high and the state is good. Next, B = 18 mm, D = 25 mm, P =
As 8, -2B / 3 ≦ A ≦ 0, A> 0, A = 0 and −
The relationship between the applied voltage and the corona current was tested for four types of 2B / 3> A. The result is shown in FIG. As can be seen, the corona current for the same applied voltage is -2B
/ 3 ≦ A ≦ 0 (black circle), A = 0A (triangle), −2B / 3
> A (square black), A> 0 (rhombic black).
Thus, the corona current for the same applied voltage is −
The case where 2B / 3 ≦ A ≦ 0 is the highest, and since the charging efficiency is high, the dust collection efficiency is the highest. As described above, the distance A between the tip of the projection of the discharge electrode and the upstream end of the air flow of the counter electrode is set to -2B / 3 ≦
By setting A ≦ 0, the corona current can be increased and stabilized at a constant voltage, the charging efficiency can be increased, and the dust collection rate can be increased. In addition, since the voltage can be reduced, energy can be saved. As described above, in the ionization section of the electric precipitator which charges and collects dust by corona discharge generated between the flat counter electrode and the discharge electrode along the air flow. L-shaped at the upstream end of the air flow of the discharge electrode
Is provided, and a plurality of protrusions are provided along the air flow on the downstream side of the air flow. When the distance between the protrusions is P and the distance between the opposed electrodes is D, D / 5 ≦ P ≦ D is satisfied, and the distance between the upstream end of the air flow of the counter electrode and the tip of the protrusion is A, and the width of the counter electrode in the air flow direction is B, -2B / 3 ≦ A ≦
Since 0 is satisfied, the corona current is high, the corona current is stable without pulsation, the charging efficiency is increased, and the dust collection rate can be increased. In addition, since the voltage can be reduced, energy can be saved, and furthermore, there is no pulsation, no sound is generated, and noise can be reduced. Further, the discharge electrode is not warped, and the distance between the discharge electrode and the counter electrode can be kept constant. [0025]

【図面の簡単な説明】 【図1】 一般的な二段荷電形集塵機の概略構成を示す
断面構成図である。 【図2】 この発明の実施の形態1である電気集塵機の
イオン化部の要部斜視図である。 【図3】 この発明の実施の形態1である電気集塵機の
イオン化部の電極詳細図である。 【図4】 この発明の実施の形態1である電気集塵機の
イオン化部の放電状態を示す図である。 【図5】 この発明の実施の形態1である電気集塵機の
イオン化部の印加電圧及び放電電流の関係を示す特性図
である。 【図6】 この発明の実施の形態1である電気集塵機の
イオン化部の印加電圧と放電電流の特性図である。 【図7】 この発明の実施の形態2である電気集塵機の
イオン化部の電極詳細図である。 【図8】 この発明の実施の形態2である電気集塵機の
イオン化部の放電状態を示す図である。 【図9】この発明の実施の形態2である電気集塵機のイ
オン化部の印加電圧と放電電流の特性図である。 【図10】従来の電気集塵機のイオン化部の斜視図であ
る。 【図11】 従来の電気集塵機のイオン化部の放電状態
を示す図である。 【符号の説明】 1 イオン化部、3 対向電極、4 放電電極、4a
突起、4b 折曲部。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional configuration diagram showing a schematic configuration of a general two-stage charged dust collector. FIG. 2 is a perspective view of a main part of an ionization unit of the electric dust collector according to Embodiment 1 of the present invention. FIG. 3 is a detailed electrode diagram of an ionization unit of the electric precipitator according to Embodiment 1 of the present invention. FIG. 4 is a diagram showing a discharge state of an ionization unit of the electric dust collector according to Embodiment 1 of the present invention. FIG. 5 is a characteristic diagram showing a relationship between an applied voltage and a discharge current of an ionization unit of the electric dust collector according to Embodiment 1 of the present invention. FIG. 6 is a characteristic diagram of an applied voltage and a discharge current of the ionization unit of the electric dust collector according to Embodiment 1 of the present invention. FIG. 7 is a detailed electrode diagram of an ionization section of the electric precipitator according to Embodiment 2 of the present invention. FIG. 8 is a diagram showing a discharge state of an ionization unit of the electric dust collector according to Embodiment 2 of the present invention. FIG. 9 is a characteristic diagram of an applied voltage and a discharge current of an ionization unit of an electric dust collector according to Embodiment 2 of the present invention. FIG. 10 is a perspective view of an ionization unit of a conventional electric dust collector. FIG. 11 is a diagram showing a discharge state of an ionization unit of a conventional electric precipitator. [Description of Signs] 1 Ionization part, 3 counter electrode, 4 discharge electrode, 4a
Projection, 4b bent part.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−310251(JP,A) (58)調査した分野(Int.Cl.7,DB名) B03C 3/00 - 3/88 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-310251 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B03C 3/00-3/88

Claims (1)

(57)【特許請求の範囲】 【請求項1】 空気流に沿った平板状の対向電極と放電
電極との間で発生させたコロナ放電により塵埃を帯電さ
せて集塵する電気集塵機のイオン化部において、 前記放電電極の空気流の上流側端部にL字形状の折曲げ
部を設けるとともに、空気流の下流側に空気流に沿った
複数の突起を設け、前記突起の間隔をP、前記対向電極
間距離をDとしたときに、D/5≦P≦Dを満足するよ
うにするとともに、前記対向電極の空気流の上流側端部
と前記突起先端部との距離をA、前記対向電極の空気流
方向の幅をBとしたときに、−2B/3≦A≦0を満足
するようにしたことを特徴とする電気集塵機のイオン化
部。
(1) An ionization unit of an electric precipitator for charging and collecting dust by corona discharge generated between a flat counter electrode and a discharge electrode along an air flow. An L-shaped bend at the upstream end of the air flow of the discharge electrode
And a plurality of protrusions are provided along the air flow on the downstream side of the air flow, and when the distance between the protrusions is P and the distance between the opposing electrodes is D, D / 5 ≦ P ≦ D is satisfied. When the distance between the upstream end of the air flow of the counter electrode and the tip of the protrusion is A, and the width of the counter electrode in the air flow direction is B, -2B / 3 ≦ A An ionization unit of an electric precipitator characterized by satisfying ≦ 0.
JP01717198A 1998-01-29 1998-01-29 Ionization section of electric dust collector Expired - Lifetime JP3465234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01717198A JP3465234B2 (en) 1998-01-29 1998-01-29 Ionization section of electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01717198A JP3465234B2 (en) 1998-01-29 1998-01-29 Ionization section of electric dust collector

Publications (2)

Publication Number Publication Date
JPH11216388A JPH11216388A (en) 1999-08-10
JP3465234B2 true JP3465234B2 (en) 2003-11-10

Family

ID=11936522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01717198A Expired - Lifetime JP3465234B2 (en) 1998-01-29 1998-01-29 Ionization section of electric dust collector

Country Status (1)

Country Link
JP (1) JP3465234B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135894A (en) * 2003-10-07 2005-05-26 Daikin Ind Ltd Discharge device and air cleaning device
JP5458750B2 (en) * 2009-09-03 2014-04-02 パナソニック株式会社 Blower
JP2012091080A (en) * 2010-10-25 2012-05-17 Daikin Industries Ltd Dust collector
JPWO2013179381A1 (en) 2012-05-29 2016-01-14 トヨタ自動車株式会社 Particulate matter treatment equipment

Also Published As

Publication number Publication date
JPH11216388A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
US4689056A (en) Air cleaner using ionic wind
US4673416A (en) Air cleaning apparatus
US4643745A (en) Air cleaner using ionic wind
US5322550A (en) Electrical dust collector
US4342571A (en) Electrostatic precipitator
JPS625237Y2 (en)
KR101984321B1 (en) Electrostatic precipitator
JP5213568B2 (en) Electric dust collector
JP3465234B2 (en) Ionization section of electric dust collector
JP4553125B2 (en) Charging device, collection device and electrostatic dust collection device
JP3254134B2 (en) Electric dust collector
KR102629969B1 (en) Charging device and dust collecting device
JP3674751B2 (en) Electric dust collector
KR200142511Y1 (en) Electrostatic precipitator
EP3932563B1 (en) Charging device and dust collecting apparatus
JPH11216389A (en) Ionization part of electric precipitator
JP6953605B2 (en) Electrostatic precipitator
KR100201651B1 (en) Dust collecting filter in air cleaner
KR200179858Y1 (en) Electrode films for a electric dust collector
JP7300298B2 (en) Charging device and dust collector
JP2562557B2 (en) Electric dust collector charging method
JPS60147263A (en) Air purifier
KR20000004183U (en) Electrode films for a electric dust collector
KR200295211Y1 (en) Discharging electrode for electric dust collector
JP2001038242A (en) Electrostatic dust collector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term