[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3461566B2 - Interferometer for measuring cone shape - Google Patents

Interferometer for measuring cone shape

Info

Publication number
JP3461566B2
JP3461566B2 JP11115994A JP11115994A JP3461566B2 JP 3461566 B2 JP3461566 B2 JP 3461566B2 JP 11115994 A JP11115994 A JP 11115994A JP 11115994 A JP11115994 A JP 11115994A JP 3461566 B2 JP3461566 B2 JP 3461566B2
Authority
JP
Japan
Prior art keywords
light
conical
reference plate
reflected
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11115994A
Other languages
Japanese (ja)
Other versions
JPH07318307A (en
Inventor
隆行 齋藤
Original Assignee
富士写真光機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士写真光機株式会社 filed Critical 富士写真光機株式会社
Priority to JP11115994A priority Critical patent/JP3461566B2/en
Publication of JPH07318307A publication Critical patent/JPH07318307A/en
Application granted granted Critical
Publication of JP3461566B2 publication Critical patent/JP3461566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、円錐レンズ等の被測定
物の円錐形状の面の形状を精密に測定することができる
円錐形状測定用干渉計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conical measuring interferometer capable of accurately measuring the shape of a conical surface of an object to be measured such as a conical lens.

【0002】[0002]

【従来の技術】従来、円錐レンズ等の円錐形状をなした
被測定物の形状を測定するには、この円錐レンズ等をニ
ュートン板に当てて目視によって干渉縞を観察すること
によって行うか、あるいは触針を当てることによって行
っていた。
2. Description of the Related Art Conventionally, the shape of a conical object such as a conical lens is measured by contacting the conical lens with a Newton plate and visually observing interference fringes, or It was done by applying a stylus.

【0003】[0003]

【発明が解決しようとする課題】ところが、ニュートン
板を用いる場合には、ニュートン板が平面形状であるた
め円錐形状には部分的にしか当接せず、円錐レンズ等の
全体形状は部分的な測定結果を総合することによって予
測することしかできなかった。
However, when the Newton plate is used, the Newton plate has a planar shape and therefore only partially contacts the conical shape. It could only be predicted by combining the measurement results.

【0004】また、触針を当てる場合には、測定の精度
が低く、円錐レンズ等の測定においては十分な精度を得
ることが困難であった。
Further, when a stylus is applied, the measurement accuracy is low, and it has been difficult to obtain sufficient accuracy when measuring a conical lens or the like.

【0005】そこで、本発明の目的は、円錐形状の面を
有する被測定物の円錐形状の面の形状を高精度に測定す
ることができる円錐形状測定用干渉計を提供することに
ある。
Therefore, an object of the present invention is to provide a conical shape measuring interferometer capable of measuring the shape of the conical surface of an object having a conical surface with high accuracy.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明は、一定の波長の測定用の光を
供給する光供給手段と、光供給手段からの光を平行にす
るコリメーターレンズと、反射膜及び等間隔かつ同心円
状の回折格子が一方の面に形成された平板状の基準板で
あって、コリメーターレンズからの光のうちの一部の光
を反射するとともに、他の部分の光を回折させて被測定
物の円錐形状の面に垂直に入射させ、この面で反射した
光を再び回折させる基準板と、光供給手段及び基準板の
間に配置され、反射膜で反射した光、及び被測定物の面
で反射し回折格子で回折した光を反射する半透明鏡と、
半透明鏡で反射した2つの光を受光する受光部とを備え
ている。
In order to achieve the above object, the invention according to claim 1 provides a light supply means for supplying measurement light of a certain wavelength and a light from the light supply means in parallel. A collimator lens, a reflecting film, and a flat reference plate having a concentric circular diffraction grating at equal intervals formed on one surface, and reflects a part of the light from the collimator lens. Along with the reference plate that diffracts the light of other parts and makes it incident perpendicularly on the conical surface of the DUT, and diffracts the light reflected by this surface again, it is placed between the light supply means and the reference plate, and A semi-transparent mirror that reflects the light reflected by the film and the light reflected by the surface of the DUT and diffracted by the diffraction grating,
And a light receiving section for receiving the two lights reflected by the semitransparent mirror.

【0007】また、請求項2に係る発明は、一定の波長
の測定用の平行光を供給する光供給手段と、平行光を、
一部を透過させ他の部分を反射することによって2つに
分離する半透明鏡と、等間隔かつ同心円状の回折格子が
一方の面に形成された平板状の基準板であって、半透明
鏡によって分離された2つの光のうちの一方を回折させ
て被測定物の円錐形状の面に垂直に入射させ、この面で
反射した光を再び回折させる基準板と、半透明鏡によっ
て分離された2つの光のうちの他方を反射する平面鏡
と、半透明鏡によって再び1つにされた、基準板からの
光、及び平面鏡からの光を受光する受光部とを備えてい
る。
Further, the invention according to claim 2 is characterized in that the light supplying means for supplying the parallel light for measuring a constant wavelength and the parallel light are
A semi-transparent mirror that is formed by transmitting a part of the light and reflecting the other part to separate the light into two parts, and a flat reference plate on one surface of which diffraction gratings with equal intervals and concentric circles are formed. It is separated by a semi-transparent mirror and a reference plate that diffracts one of the two light beams separated by the mirror and makes it vertically incident on the conical surface of the DUT, and diffracts the light reflected by this surface again. Further, the flat mirror that reflects the other of the two lights and the light receiving unit that receives the light from the reference plate and the light from the flat mirror, which are combined again by the semitransparent mirror, are provided.

【0008】さらに、請求項1または2において、光供
給手段が波長可変レーザー光源を備えていてもよい。
Further, in claim 1 or 2, the light supply means may include a wavelength tunable laser light source.

【0009】[0009]

【作用】本発明においては、回折格子によって光路を曲
げられ円錐形状の面で反射する光と、基準となる平面で
反射する光とが干渉して干渉縞を形成する。従って、こ
の干渉縞を観察することによって円錐形状の面の形状が
高精度に測定される。
In the present invention, the light reflected by the conical surface whose optical path is bent by the diffraction grating and the light reflected by the reference plane interfere with each other to form interference fringes. Therefore, the shape of the conical surface can be measured with high accuracy by observing the interference fringes.

【0010】[0010]

【実施例】以下、添付図面に沿って本発明の実施例につ
いて説明する。なお、図面において同一又は相当部分に
は同一符号を用いるものとする。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that the same reference numerals are used for the same or corresponding parts in the drawings.

【0011】図1は、本発明に従って構成されたフィゾ
ー型の円錐形状測定用干渉計の構成を示す図である。図
1において、レーザー光源1から供給された一定の波長
の測定用レーザー光は、ダイバージャーレンズ2及び半
透明鏡3を通った後、コリメーターレンズ4によって平
行光にされ、平板状の基準板5に至る。基準板5のコリ
メーターレンズ4と反対側の面にはクロム等から成る反
射膜6が形成されており、コリメーターレンズ4からの
光の一部は反射膜6で反射する。この反射光はコリメー
ターレンズ4によって収束され、半透明鏡3で反射して
光路を曲げられ、さらに結像レンズ7によって結像され
てテレビカメラ8によって受光される。
FIG. 1 is a diagram showing the structure of a Fizeau-type conical interferometer for measuring a cone shape according to the present invention. In FIG. 1, a laser beam for measurement having a constant wavelength supplied from a laser light source 1 passes through a diver jar lens 2 and a semitransparent mirror 3 and then is collimated by a collimator lens 4 to form a flat reference plate. Up to 5. A reflection film 6 made of chrome or the like is formed on the surface of the reference plate 5 opposite to the collimator lens 4, and a part of the light from the collimator lens 4 is reflected by the reflection film 6. The reflected light is converged by the collimator lens 4, reflected by the semitransparent mirror 3 to have its optical path bent, further imaged by the imaging lens 7, and received by the television camera 8.

【0012】一方、反射膜6には電子線描画等によって
等間隔かつ同心円状の回折格子が刻まれており、コリメ
ーターレンズ4から基準板5に向かう光の一部は回折格
子で回折される。回折された光は、同心円状の回折格子
の中心軸方向に光路を曲げられ、基準板5に対してコリ
メーターレンズ4と反対側に配置された被測定物である
円錐レンズ9の円錐形状の面に垂直に入射する。被測定
物としては、円錐形状の面を有するものであれば円錐レ
ンズ以外のものであってもよい。円錐レンズ9の面に垂
直に入射した光は、その面で反射され、元の光路を通っ
て基準板5の方に戻る。そして、再び回折格子によって
光路を曲げられ光束が平行になり、反射膜6で反射した
光と同一の光路を通って、テレビカメラ8によって受光
される。
On the other hand, the reflection film 6 is engraved with concentric circular diffraction gratings at equal intervals by electron beam drawing or the like, and a part of the light traveling from the collimator lens 4 toward the reference plate 5 is diffracted by the diffraction grating. . The diffracted light has its optical path bent in the direction of the central axis of the concentric diffraction grating, and has the conical shape of the conical lens 9 which is the object to be measured and is arranged on the side opposite to the collimator lens 4 with respect to the reference plate 5. Incident perpendicular to the surface. The object to be measured may be something other than a conical lens as long as it has a conical surface. The light that is incident perpendicularly to the surface of the conical lens 9 is reflected by that surface and returns to the reference plate 5 through the original optical path. Then, the optical path is bent again by the diffraction grating to make the light flux parallel, and the light is received by the television camera 8 through the same optical path as the light reflected by the reflective film 6.

【0013】なお、レーザー光源1及びダイバージャー
レンズ2によって光供給手段が構成され、テレビカメラ
8によって受光部が構成される。
The laser light source 1 and the diver jar lens 2 constitute a light supplying means, and the television camera 8 constitutes a light receiving portion.

【0014】テレビカメラ8によって受光された2つの
光、すなわち、反射膜6で反射した光と円錐レンズ9の
面で反射した光の間には、反射膜6の円錐レンズ9側の
面と円錐レンズ9の円錐形状の面との間の距離に応じた
光路差が存在する。従って、テレビカメラ8によって観
察される2つの光の干渉縞は、基準板5の反射膜6の形
成されている面の面形状が高精度になっている限り、円
錐レンズ9の円錐形状の面の形状を表したものとなる。
テレビカメラ8に接続されたモニター10には、この干
渉縞が表示されており、表示された干渉縞から円錐レン
ズ9の円錐形状の面を高精度に測定することができる。
Between the two lights received by the television camera 8, that is, the light reflected by the reflective film 6 and the light reflected by the surface of the conical lens 9, the surface of the reflective film 6 on the conical lens 9 side and the conical surface. There is an optical path difference depending on the distance between the lens 9 and the conical surface. Therefore, as long as the surface shape of the surface of the reference plate 5 on which the reflective film 6 is formed is highly accurate, the interference fringes of the two lights observed by the television camera 8 are conical surfaces of the conical lens 9. It represents the shape of.
This interference fringe is displayed on the monitor 10 connected to the television camera 8, and the conical surface of the conical lens 9 can be measured with high accuracy from the displayed interference fringe.

【0015】なお、受光部はテレビカメラ8であるとし
たが、受光部として結像レンズ7の後方に配置されるス
クリーン(図示せず)を用いてもよい。この場合には、
スクリーン上に投影される干渉縞を肉眼等により観察す
ることによって、円錐レンズ9の円錐形状の面が高精度
に測定される。
Although the light receiving unit is the television camera 8, a screen (not shown) arranged behind the imaging lens 7 may be used as the light receiving unit. In this case,
By observing the interference fringes projected on the screen with the naked eye, the conical surface of the conical lens 9 is measured with high accuracy.

【0016】次に、図2に基づいて反射膜6上に形成さ
れる回折格子の詳細について説明する。図2( a) は基
準板5と円錐レンズ9との関係を示した図、図2( b)
は( a) の側面図であり反射膜6を正面から見た図であ
る。まず、円錐レンズ9の円錐形状の面に垂直に入射す
る光はすべて同一の回折角θで曲げられるから、同心円
の間隔dは一定になる。また、測定される円錐レンズ9
の頂角をαとした場合、αとθとの間には、図2より、 θ=(π−α)/2 … ( 1) の関係がある。このθを用いれば、レーザー光源1のレ
ーザー光の波長をλとして、同心円の間隔dは、 d=λ/sinθ … ( 2) のように求まる。例えば、波長λ=632.8nmのレ
ーザー光を用いて、頂角α=120°の被測定物を測定
するには、回折格子の間隔dは約0.7μmとなる。ま
た、間隔d=1μmの回折格子を用いて、波長λ=63
2.8nmのレーザー光によって測定できる被測定物の
頂角αは約101.5°となる。
Next, the details of the diffraction grating formed on the reflection film 6 will be described with reference to FIG. FIG. 2 (a) is a diagram showing the relationship between the reference plate 5 and the conical lens 9, and FIG. 2 (b)
FIG. 3A is a side view of (a) and is a view of the reflective film 6 seen from the front. First, all the lights that are incident perpendicularly on the conical surface of the conical lens 9 are bent at the same diffraction angle θ, so that the interval d between the concentric circles is constant. Also, the conical lens 9 to be measured
Assuming that the apex angle of α is α, there is a relation of θ = (π−α) / 2 (1) between α and θ from FIG. If this θ is used, the concentric circle interval d is determined as follows: d = λ / sin θ (2) where λ is the wavelength of the laser light of the laser light source 1. For example, in order to measure an object to be measured having an apex angle α = 120 ° with a laser beam having a wavelength λ = 632.8 nm, the distance d between the diffraction gratings is about 0.7 μm. Also, using a diffraction grating with a spacing d = 1 μm, the wavelength λ = 63
The apex angle α of the object to be measured which can be measured by the 2.8 nm laser beam is about 101.5 °.

【0017】このように求められたdの間隔で、同心円
状の回折格子を電子線描画の方法によって反射膜6上に
描く。なお、この回折格子はエッチングによって形成し
てもよい。また、図2からわかるように反射膜6の中央
には回折格子を形成する必要がない。
Concentric diffraction gratings are drawn on the reflection film 6 by the electron beam drawing method at the intervals d thus obtained. The diffraction grating may be formed by etching. Further, as can be seen from FIG. 2, it is not necessary to form a diffraction grating in the center of the reflective film 6.

【0018】この実施例においては、回折格子の間隔d
が決まると円錐の頂角αが決まってしまうから、同一の
頂角αを有する被測定物しか測定できなかった。そこ
で、レーザー光源1から供給されるレーザー光の波長を
可変にすれば、1つの基準板5によって種々の頂角の被
測定物を測定することができる。例えば、回折格子の間
隔をd=1μm、レーザー光源1のレーザー光の波長が
λ1 =690nmとλ=825nmとの間で可変であ
るとすれば、式( 2) よりθの可動範囲が求まり、従
って、式( 1) より測定可能な頂角αの範囲がα1 =9
2.7゜〜α2 =68.8゜と求まる。すなわち、この
場合には、頂角が68.8゜から92.7゜までの円錐
形状の面の形状を測定することができる。
In this embodiment, the diffraction grating spacing d
Since the apex angle α of the cone is determined when is determined, only the measurement object having the same apex angle α can be measured. Therefore, if the wavelength of the laser light supplied from the laser light source 1 is made variable, it is possible to measure the objects to be measured having various apex angles with one reference plate 5. For example, if the distance between the diffraction gratings is d = 1 μm and the wavelength of the laser light of the laser light source 1 is variable between λ 1 = 690 nm and λ 2 = 825 nm, the movable range of θ can be calculated from equation (2). Therefore, the range of the apex angle α measurable by the equation (1) is α 1 = 9
2.7 ° to α 2 = 68.8 ° is obtained. That is, in this case, the shape of a conical surface having an apex angle of 68.8 ° to 92.7 ° can be measured.

【0019】以上の実施例は、フィゾー型の干渉計につ
いて説明してきたが、マイケルソン型やトワイマン・グ
リーン型の干渉計を用いることもできる。
Although the Fizeau type interferometer has been described in the above embodiment, a Michelson type or a Twyman-Green type interferometer may be used.

【0020】図3は、マイケルソン型の干渉計を用いた
円錐形状測定用干渉計の構成を示す図である。レーザー
光源1から供給されたレーザー光はレンズ11によって
光束を広げられ、コリメーターレンズ12によって平行
光に変換される。この平行光の一部は半透明鏡13を透
過し、図1の場合と同様に回折格子を経て円錐レンズ9
の円錐形状の面で反射し、半透明鏡13で反射してテレ
ビカメラ8に至る。一方、半透明鏡13で反射した光は
平面鏡14で反射し、半透明鏡13を透過して、テレビ
カメラ8に至る。なお、レーザー光源1、レンズ11及
びコリメーターレンズ12によって光供給手段が構成さ
れる。そして、テレビカメラ8に入射した2つの光が、
図3の場合と同様に干渉縞を形成するため、円錐レンズ
9の円錐形状の面の形状を高精度に測定することができ
る。
FIG. 3 is a diagram showing the configuration of a conical shape measuring interferometer using a Michelson type interferometer. The laser light supplied from the laser light source 1 has its light flux expanded by the lens 11 and is converted into parallel light by the collimator lens 12. Part of this parallel light is transmitted through the semitransparent mirror 13, passes through the diffraction grating as in the case of FIG.
It is reflected by the conical surface of, and is reflected by the semitransparent mirror 13 to reach the television camera 8. On the other hand, the light reflected by the semitransparent mirror 13 is reflected by the plane mirror 14, passes through the semitransparent mirror 13, and reaches the television camera 8. The laser light source 1, the lens 11 and the collimator lens 12 constitute a light supply means. Then, the two lights incident on the TV camera 8 are
Since interference fringes are formed as in the case of FIG. 3, the shape of the conical surface of the conical lens 9 can be measured with high accuracy.

【0021】なお、フィゾー型の干渉計を用いた図1の
場合には、基準板5の2つの面のうち、円錐レンズ9側
の面に反射膜6を形成するのが好ましい。これは、基準
板5内の光路を、反射膜6で反射する光と被測定物で反
射する光とで共通にすれば、反射膜6を形成しない方の
基準板5の面を高精度に加工しなくて済むからである。
一方、マイケルソン型の干渉計を用いた図3の場合に
は、反射膜6を形成しない方の基準板5の面は高精度に
加工する必要がある。これは、基準板5を通過する光
が、干渉する2つの光のうちの一方のみであるから、基
準板5の厚さが測定精度に直接影響するためである。
In the case of FIG. 1 using a Fizeau interferometer, it is preferable to form the reflection film 6 on the surface of the reference plate 5 on the side of the conical lens 9 among the two surfaces. This is because if the light path inside the reference plate 5 is common to the light reflected by the reflection film 6 and the light reflected by the object to be measured, the surface of the reference plate 5 on which the reflection film 6 is not formed is highly accurate. This is because it does not need to be processed.
On the other hand, in the case of FIG. 3 using the Michelson type interferometer, the surface of the reference plate 5 on which the reflection film 6 is not formed needs to be processed with high accuracy. This is because the light passing through the reference plate 5 is only one of the two interfering lights, and therefore the thickness of the reference plate 5 directly affects the measurement accuracy.

【0022】また、以上の実施例においては、光源をレ
ーザー光源であるとしたが、単色の光源としてもよい。
Further, although the light source is the laser light source in the above embodiments, it may be a monochromatic light source.

【0023】[0023]

【発明の効果】以上のように、本発明によれば、回折格
子によって光路を曲げられ円錐形状の面で反射する光
と、基準となる平面で反射する光とが干渉して干渉縞を
形成するので、円錐形状の面を有する被測定物の表面形
状を高精度に測定することのできる円錐形状測定用干渉
計を得ることができる。
As described above, according to the present invention, the light reflected by the conical surface whose optical path is bent by the diffraction grating and the light reflected by the reference plane interfere with each other to form an interference fringe. Therefore, it is possible to obtain a conical shape measuring interferometer capable of measuring the surface shape of the object to be measured having a conical surface with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従って構成されたフィゾー型による円
錐形状測定用干渉計の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a Fizeau-type conical measuring interferometer configured according to the present invention.

【図2】( a) は基準板と被測定物である円錐レンズと
の関係を示した図、( b) は( a) の側面図であり反射
膜を正面から見た図である。
FIG. 2A is a view showing a relationship between a reference plate and a conical lens which is an object to be measured, and FIG. 2B is a side view of FIG. 2A, which is a front view of a reflection film.

【図3】本発明に従って構成されたマイケルソン型の円
錐形状測定用干渉計の構成を示す図である。
FIG. 3 is a diagram showing a configuration of a Michelson-type conical interferometer for measuring a cone shape, which is configured according to the present invention.

【符号の説明】[Explanation of symbols]

1…レーザー光源、2…ダイバージャーレンズ、3…半
透明鏡、4…コリメーターレンズ、5…基準板、6…反
射膜、9…円錐レンズ、11…レンズ、12…コリメー
ターレンズ、13…半透明鏡。
1 ... Laser light source, 2 ... Diver jar lens, 3 ... Semi-transparent mirror, 4 ... Collimator lens, 5 ... Reference plate, 6 ... Reflective film, 9 ... Cone lens, 11 ... Lens, 12 ... Collimator lens, 13 ... Semi-transparent mirror.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一定の波長の測定用の光を供給する光供
給手段と、 前記光供給手段からの光を平行にするコリメーターレン
ズと、 反射膜及び等間隔かつ同心円状の回折格子が一方の面に
形成された平板状の基準板であって、前記コリメーター
レンズからの光のうちの一部の光を反射するとともに、
他の部分の光を回折させて被測定物の円錐形状の面に垂
直に入射させ、この面で反射した光を再び回折させる基
準板と、 前記光供給手段及び前記基準板の間に配置され、前記反
射膜で反射した光、及び被測定物の面で反射し前記回折
格子で回折した光を反射する半透明鏡と、 前記半透明鏡で反射した2つの光を受光する受光部と、
を備え、前記受光部で受光された2つの光の干渉によっ
て被測定物の円錐形状の面の形状を測定する円錐形状測
定用干渉計。
1. A light supply means for supplying measurement light having a constant wavelength, a collimator lens for collimating the light from the light supply means, a reflection film, and a diffraction grating having equal intervals and concentric circles. Is a flat reference plate formed on the surface of, and while reflecting a part of the light from the collimator lens,
A reference plate for diffracting the light of the other part to make it perpendicularly incident on the conical surface of the DUT, and diffracting the light reflected by this surface again, and arranged between the light supply means and the reference plate, A semi-transparent mirror that reflects the light reflected by the reflection film and the light that is reflected by the surface of the object to be measured and diffracted by the diffraction grating; and a light-receiving unit that receives the two lights reflected by the semi-transparent mirror,
A conical interferometer for measuring a conical surface of an object to be measured by the interference of two lights received by the light receiving section.
【請求項2】 一定の波長の測定用の平行光を供給する
光供給手段と、 前記平行光を、一部を透過させ他の部分を反射すること
によって2つに分離する半透明鏡と、 等間隔かつ同心円状の回折格子が一方の面に形成された
平板状の基準板であって、前記半透明鏡によって分離さ
れた2つの光のうちの一方を回折させて被測定物の円錐
形状の面に垂直に入射させ、この面で反射した光を再び
回折させる基準板と、 前記半透明鏡によって分離された2つの光のうちの他方
を反射する平面鏡と、 前記半透明鏡によって再び1つにされた、前記基準板か
らの光、及び前記平面鏡からの光を受光する受光部と、
を備え、前記受光部で受光された2つの光の干渉によっ
て被測定物の円錐形状の面の形状を測定する円錐形状測
定用干渉計。
2. A light supply means for supplying parallel light for measuring a constant wavelength, and a semitransparent mirror for separating the parallel light into two by transmitting a part of the parallel light and reflecting the other part. A flat reference plate having equidistant and concentric circular diffraction gratings formed on one surface thereof, and diffracts one of the two lights separated by the semitransparent mirror to form a conical shape of an object to be measured. A reference plate for making the light incident perpendicularly on the surface of the light and diffracting the light reflected by this surface again; a plane mirror for reflecting the other of the two lights separated by the semitransparent mirror; A light receiving section for receiving light from the reference plate and light from the plane mirror,
A conical interferometer for measuring a conical surface of an object to be measured by the interference of two lights received by the light receiving section.
【請求項3】 前記光供給手段が波長可変レーザー光源
を備えることを特徴とする請求項1または2に記載の円
錐形状測定用干渉計。
3. The conical shape measuring interferometer according to claim 1, wherein the light supply unit includes a variable wavelength laser light source.
JP11115994A 1994-05-25 1994-05-25 Interferometer for measuring cone shape Expired - Fee Related JP3461566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11115994A JP3461566B2 (en) 1994-05-25 1994-05-25 Interferometer for measuring cone shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11115994A JP3461566B2 (en) 1994-05-25 1994-05-25 Interferometer for measuring cone shape

Publications (2)

Publication Number Publication Date
JPH07318307A JPH07318307A (en) 1995-12-08
JP3461566B2 true JP3461566B2 (en) 2003-10-27

Family

ID=14553980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11115994A Expired - Fee Related JP3461566B2 (en) 1994-05-25 1994-05-25 Interferometer for measuring cone shape

Country Status (1)

Country Link
JP (1) JP3461566B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103115583A (en) * 2013-01-29 2013-05-22 哈尔滨工业大学 Stimulated radiation based Mirau fluorescence interference microscopic measurement device
CN103278105A (en) * 2013-05-16 2013-09-04 中国科学院上海光学精密机械研究所 Axicon surface shape and cone angle detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO320062B1 (en) * 2003-11-19 2005-10-17 New Interaction Devices And Te Device for detecting proximity between a first object (template object) and another object (reference object), as well as drawing, writing and / or pointing tools for data presentation etc.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103115583A (en) * 2013-01-29 2013-05-22 哈尔滨工业大学 Stimulated radiation based Mirau fluorescence interference microscopic measurement device
CN103115583B (en) * 2013-01-29 2015-07-29 哈尔滨工业大学 Based on the Mirau fluorescence interference micro-measurement apparatus of stimulated radiation
CN103278105A (en) * 2013-05-16 2013-09-04 中国科学院上海光学精密机械研究所 Axicon surface shape and cone angle detection method
CN103278105B (en) * 2013-05-16 2016-03-09 中国科学院上海光学精密机械研究所 The detection method of axicon surface shape and cone angle

Also Published As

Publication number Publication date
JPH07318307A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
US5671050A (en) Method and apparatus for profiling surfaces using diffracative optics
US7072042B2 (en) Apparatus for and method of measurement of aspheric surfaces using hologram and concave surface
US5526116A (en) Method and apparatus for profiling surfaces using diffractive optics which impinges the beams at two different incident angles
US5847828A (en) Michelson interferometer using matched wedge-shaped beam splitter and compensator
US5076695A (en) Interferometer
US4969744A (en) Optical angle-measuring device
US5995224A (en) Full-field geometrically-desensitized interferometer employing diffractive and conventional optics
US6226092B1 (en) Full-field geometrically desensitized interferometer using refractive optics
EP0902874A1 (en) Interferometer for measuring thickness variations of semiconductor wafers
US5355218A (en) Shearing interferometer for measuring lens lateral aberration
JPH10512674A (en) Interferometric measurement of grazing incidence surface using diffractive optical element
US4221486A (en) Interferometric measurement with λ/4 resolution
JPH06117830A (en) Measuring/analyzing method of interference fringe by hologram interferometer
GB2325740A (en) Interferometric measuring device
JP3461566B2 (en) Interferometer for measuring cone shape
JPH116784A (en) Device and method for measuring shape of aspherical surface
JP3773073B2 (en) Apparatus and method for measuring aspheric shape
JPH07229721A (en) Device for generating aspherical wave and method for measuring aspherical shape
JP3010085B2 (en) Hologram interferometer
JP2000088513A (en) Aspherical wave generating lens system assembling adjusting equipment
JP3212353B2 (en) Positioning method and positioning screen for test sample during cylindrical surface measurement
JP3164127B2 (en) Hologram interferometer
JPH11325848A (en) Aspherical surface shape measurement device
JP2000097657A (en) Interferometer
JP2000097650A (en) Device for measuring shape of aspheric surface

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees