[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3459478B2 - Thread for airbag - Google Patents

Thread for airbag

Info

Publication number
JP3459478B2
JP3459478B2 JP27085794A JP27085794A JP3459478B2 JP 3459478 B2 JP3459478 B2 JP 3459478B2 JP 27085794 A JP27085794 A JP 27085794A JP 27085794 A JP27085794 A JP 27085794A JP 3459478 B2 JP3459478 B2 JP 3459478B2
Authority
JP
Japan
Prior art keywords
yarn
fiber
airbag
flexibility
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27085794A
Other languages
Japanese (ja)
Other versions
JPH08134716A (en
Inventor
和典 橋本
幸治 角本
修二 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP27085794A priority Critical patent/JP3459478B2/en
Publication of JPH08134716A publication Critical patent/JPH08134716A/en
Application granted granted Critical
Publication of JP3459478B2 publication Critical patent/JP3459478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Bags (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、機械的特性と柔軟性に
優れたエアバッグ基布を得ることできる、エアバッグ用
糸条に関するものである。 【0002】 【従来の技術】自動車の安全装置として用いられるエア
バッグは、現在、ナイロン66を用いた合成繊維織物に
ゴム類を被覆した基布により形成されたものが主流であ
る。 【0003】エアバッグは衝撃吸収性とともに、通常、
非常に小さな場所に収納するために、柔軟性にも優れて
いることが要求される。 【0004】しかしながら、この合成繊維織物にゴム類
を被覆した基布は、ゴム類の被覆によって、耐熱性や気
密性を向上させることはできるが、基布が硬くなるた
め、収納性が悪いという問題がある。 【0005】この問題を解決し、製造コストを下げる目
的で、最近では、ゴムを被覆しないノンコートタイプの
エアバッグの開発が進められており、素材もナイロン6
6より安価で耐熱性のよいポリエステルを使用すること
が検討されている。 【0006】しかしながら、ポリエステルはナイロン6
6と比較して弾性率が高いため、製織して基布にする
と、柔軟性に欠けるという欠点があり、特に、気密性を
上げるために高密度に織ると、コンパクトに収納するこ
とがより困難になるという問題が生じる。 【0007】特開平3-167312号公報には、エアバッグ用
ポリエステル繊維として、タフネス、結節強度の向上し
た繊維が提案されており、この繊維より得られるエアバ
ッグ基布は、耐衝撃性や耐久性に優れ、基布の平坦性も
改善されたものである。 【0008】しかしながら、この繊維より得られる基布
は、柔軟性が十分でなく、特に気密性を上げるために高
密度に織ると、収納性に劣るものとなるという欠点があ
った。 【0009】このように、強度や耐久性を保持したうえ
でポリエステル糸条に柔軟性を付与することは容易では
なく、強度や耐久性に優れると同時に柔軟なエアバッグ
基布を得ることのできるポリエステル糸条は未だ開発さ
れていない。 【0010】 【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解決し、エアバッグ基布として必要な機械的
特性と柔軟性を同時に有する基布を得ることのできるエ
アバッグ用糸条を提供することを技術的な課題とするも
のである。 【0011】 【課題を解決する手段】本発明者らは、上記の課題を解
決するために鋭意検討した結果、繊維断面の内層部分と
表層部分とが配向差を有し、表層部分の配向度を内層部
分の配向度より低い繊維とし、曲げ方向の剛性を小さく
すれば、高強度でありながら曲げに対して柔らかい柔軟
性を持つ糸条が得られることを見出し、本発明に到達し
た。 【0012】すなわち、本発明は、固有粘度が0.8 以上
のポリエチレンテレフタレートより構成され、単糸繊度
が1〜2.5 d、総繊度が200 〜500 d、引張強度が8g
/d以上、破断伸度が15%以上で、単糸断面の複屈折率
分布が(1)式を満たし、曲げ剛性が(2)式の範囲に
あることを特徴とするエアバッグ用糸条。 【0013】 (1) △nc−△ns≧0.015 、 △nc≧0.170 △nc:単糸の中心から半径方向に70%までの部分の複
屈折率の平均値 △ns:単糸の表面から半径方向に30%までの部分の複
屈折率の平均値 (2) B≦ 6.0×10-6×TD B :曲げ剛性(g・cm2 /糸条) TD:総繊度(d) 以下、本発明について詳細に説明する。 【0014】本発明における糸条は、ポリエチレンテレ
フタレート(PET)よりなるものであるが、ポリエス
テル本来の性質を損なわない程度において、PETに耐
熱剤、難燃剤、艶消剤等の第3成分が混合されていても
よい。 【0015】また、PETの固有粘度を0.8 以上とする
必要がある。ここで、固有粘度は、フェノールとテトラ
クロロエタンの等重量混合溶剤を用い、20℃で測定した
ものである。固有粘度が0.8 未満であると、強度や耐久
性が劣った糸条となり、好ましくない。 【0016】また、固有粘度の上限は特に限定されるも
のではないが、操業性よく紡糸するためには、固有粘度
の範囲を0.8 〜1.1 とすることが好ましい。 【0017】本発明における繊維は、繊維断面の内層部
分と表層部分とが配向差を有しており、表層部分の配向
を内層部分の配向より低くし、繊維の曲げ方向の剛性を
小さくすることによって、高強度でありながら柔軟性を
有するものとなるのであり、具体的には、繊維を半径方
向に7/3の比率で分けて測定した複屈折率が、(1)
式を満たすことが必要である。 【0018】(1)式を満足する複屈折率分布を有する
ことによって、繊維を曲げたとき内側の圧縮に要するエ
ネルギーが小さく、曲げ剛性が小さくなり、さらに、繊
維の内層部分は高度に配向しているため、繊維軸方向に
高い強度を維持することもできる。 【0019】単糸繊度については、1〜2.5 dとするこ
とが必要である。単糸繊度が2.5 dより大きいと、繊維
の曲げ剛性が大きくなり、得られる布帛が柔軟なものと
ならず、一方、1dより小さいと強度に劣り、また、
(1)式を満たす分布を付与することが困難となる。 【0020】総繊度は200 〜500 dの範囲とする必要が
ある。総繊度が500 dより大きいと、高密度に織る場
合、柔軟性に欠けた基布となり、200 dより小さいと、
引裂強力の弱い基布となる。 【0021】糸条の曲げ剛性は、単糸繊度とフィラメン
ト数により値が変わるが、本発明では、製編織した布帛
に十分な柔軟性を付与するために、(2)式を満足させ
る必要がある。 【0022】さらに、引張強度は8g/d以上、破断伸
度は15%以上とすることが必要である。引張強度が8g
/dより小さいと、引裂強力の弱い基布となり、破断伸
度が15%より小さいと、エアバッグ作動時の衝撃に耐え
る耐衝撃性を有した基布とすることができない。 【0023】次に、本発明の糸条の製法例について説明
する。 【0024】一般に、単一成分のポリマーを通常の溶融
紡糸法で紡糸する場合、冷却速度の差により、表層部分
の配向が内層部分より促進される傾向にあるが、本発明
における繊維は、表層部分の配向を、内層部分の配向よ
り低くする必要がある。 【0025】したがって、本発明ではポリマーが吐出さ
れる時点で内外層に溶融粘度差を生じさせることによ
り、前記のような配向差を与える。すなわち、表層部分
と内層部分とに供給されるポリマーをそれぞれ独立した
押出機により温度制御し、芯鞘型の紡糸口金により両成
分を接合吐出させることにより、溶融粘度差を生じさせ
る。 【0026】まず、押出機の温度を、表層側を305 〜31
5 ℃、内層側を290 〜300 ℃とし、吐出温度を295 〜30
5 ℃の範囲とし、ポリマーの供給比率を、重量比で表層
/内層を3/7〜5/5として紡糸する。 【0027】次に、紡出した糸条は、溶融粘度差を保つ
ために吐出温度より高い350 〜450℃の温度の加熱ゾー
ンを通過させた後、冷却固化させる。加熱ゾーンを通過
させた後、糸条の外側から中心に向かって冷却風を吹き
付けて冷却し、固化直後に油剤を付与して集束する。 【0028】集束した糸条を引き取った後、延伸を施し
て、引張強度が8g/d以上の糸条を得るが、延伸工程
は、生産性をよくするため、紡糸に引き続き連続して行
うことが好ましく、引取速度を400 〜600 m/分の範囲
とし、延伸時に繊維表層にかかる応力を低減できるよう
に、温度が200 ℃以上の加熱水蒸気を吹き付けたり、ヒ
ートプレート等を使用して加熱しながら、延伸倍率4.5
〜5.5 倍で延伸する。また、延伸した後、5%以内の弛
緩処理を施し、巻き取る。 【0029】この時、延伸を多段に分けて行ったり、弛
緩率を大きくすると、繊維の表層と内層の配向差が小さ
くなり、好ましくない。 【0030】 【実施例】次に、本発明を実施例により具体的に説明す
る。なお、本発明における特性値の測定法は次のとおり
である。 【0031】(a) 強伸度 島津製作所製オートグラフS−100 を用い、試料長25c
m、引っ張り速度30cm/分の条件で測定した。 【0032】(b) 複屈折率 干渉顕微鏡により、繊維の断面を半径方向に10等分した
部分を各々測定し、表層側の3カ所と内層側の7カ所の
各々の平均値を算出した。 【0033】(c) 曲げ剛性 カトーテック社製純曲げ試験機KES−FB2を用いて
測定した。 【0034】(d) 柔軟性 JIS L-1096 6.19.1A法(45°カンチレバー法)
で測定した。 【0035】なお、エアバッグ用の基布として十分な柔
軟性は、60mm以下である。 【0036】実施例1〜2、比較例1〜3 固有粘度が0.9 のPETチップをエクストルーダーを2
機備えた複合溶融紡糸機にそれぞれ供給し、表1に示す
フィラメント数となる、芯鞘型紡糸口金から紡出した。
その際、表層側と内層側の供給比率を重量比で4/6と
し、表層側のエクストルーダーの制御温度を315 ℃、内
層側のエクストルーダーの制御温度を300 ℃、吐出温度
を305 ℃とした。 【0037】紡出した糸条を、雰囲気温度が400 ℃に保
たれた長さ10cmの加熱筒を通過させた後に、円筒型の
冷却風吹付装置により、温度20℃、速度30m/分の冷却
風を吹付けて冷却固化し、油剤を付与した後、速度が48
0 m/分の引取ローラで引き取った。 【0038】引き続いて、表面温度が220 ℃の延伸ロー
ラに送り、引取ローラと延伸ローラとの間で糸条に400
℃の加熱水蒸気を吹き付け、延伸倍率5.2 倍(比較例3
は5.6 倍) で延伸を行い、表面温度が160 ℃の弛緩ロー
ラにより3%の弛緩熱処理を施し、巻取機で巻き取っ
た。 【0039】得られた糸条の単糸繊度、引張強度、破断
伸度、複屈折率、曲げ剛性の値を表1に示す。 【0040】実施例1、2で得られた糸条は、いずれも
曲げ剛性が小さく、強度、伸度ともにエアバッグ用糸条
として十分な値であった。一方、比較例1で得られた糸
条は単糸繊度が大きいため、曲げ剛性が大きく、比較例
2で得られた糸条は単糸繊度が小さいため、強度が不足
し、比較例3で得られた糸条は過剰に延伸したため、伸
度が小さく、表層と内層との配向差も小さく、曲げ剛性
も大きかった。 【0041】比較例4 固有粘度が0.9 のPETチップを単一のエクストルーダ
ーを備えた溶融紡糸機に供給し、エクストルーダーの制
御温度を310 ℃、吐出温度を305 ℃とした以外は、実施
例1と同様の方法で、紡糸延伸を行った。 【0042】得られた糸条の単糸繊度、引張強度、破断
伸度、複屈折率、曲げ剛性の値を表1に示す。 【0043】比較例4で得られた糸条は、繊維の表層の
配向が内層より高いものであったため、曲げ剛性が大き
いものであった。 【0044】 【表1】【0045】実施例3、比較例5 実施例1及び比較例4の糸条を用いて、経、緯密度とも
に60本/2.54cmの平組織の織物を製織し、柔軟性を測定
した。 【0046】得られた織物の柔軟性の測定値を表2に示
す。 【0047】 【表2】 【0048】実施例3で得られた織物は、柔軟性に優れ
るものであったが、比較例5で得られた織物は、柔軟性
に劣り、エアバッグ用基布としての収納性が不十分なも
のであった。 【0049】 【発明の効果】本発明のエアバッグ用糸条は、製編織す
れば、エアバッグ基布として必要な強度や伸度の機械特
性を有し、かつ柔軟性も有する布帛とすることが可能と
なる。 【0050】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thread for an airbag which can obtain an airbag base fabric having excellent mechanical properties and flexibility. 2. Description of the Related Art At present, airbags used as safety devices for automobiles are mainly formed of a base fabric obtained by coating a synthetic fiber woven fabric using nylon 66 with rubbers. [0003] Airbags, together with shock absorption, are usually
In order to store it in a very small place, it is required to have excellent flexibility. [0004] However, the base fabric in which the synthetic fiber woven fabric is covered with rubber can improve heat resistance and airtightness by covering with rubber, but the base fabric is hardened, so that the storage property is poor. There's a problem. [0005] In order to solve this problem and reduce the manufacturing cost, a non-coated type airbag which is not coated with rubber has recently been developed.
The use of a polyester that is less expensive than 6 and has good heat resistance has been studied. [0006] However, polyester is nylon 6
6 has a drawback of lacking flexibility when woven into a base fabric, especially when woven at high density to increase airtightness, it is more difficult to store compactly. Problem arises. Japanese Patent Application Laid-Open No. Hei 3-167312 proposes a fiber having improved toughness and knot strength as a polyester fiber for an airbag, and an airbag base fabric obtained from this fiber has improved impact resistance and durability. It has excellent properties and the flatness of the base fabric is also improved. [0008] However, the base fabric obtained from these fibers has a drawback that the flexibility is not sufficient, and if the fabric is woven at a high density in order to increase the airtightness, the storability is poor. As described above, it is not easy to impart flexibility to the polyester yarn while maintaining strength and durability, and it is possible to obtain a flexible airbag base fabric which is excellent in strength and durability and at the same time. Polyester yarn has not yet been developed. [0010] The present invention solves the above-mentioned problems and provides an airbag capable of obtaining a base cloth having both the mechanical properties and flexibility required for an airbag base cloth. An object of the present invention is to provide a bag thread. The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the inner layer portion and the surface layer portion of the fiber cross section have a difference in orientation. Was found to be a fiber having a degree of orientation lower than that of the inner layer portion and to reduce the rigidity in the bending direction, thereby obtaining a yarn having high strength and soft flexibility against bending, and reached the present invention. That is, the present invention comprises polyethylene terephthalate having an intrinsic viscosity of 0.8 or more, a single fiber fineness of 1 to 2.5 d, a total fineness of 200 to 500 d, and a tensile strength of 8 g.
/ D, the breaking elongation is 15% or more, the birefringence distribution of the cross section of the single yarn satisfies the expression (1), and the bending rigidity is in the range of the expression (2). . (1) Δnc−Δns ≧ 0.015, Δnc ≧ 0.170 Δnc: Average value of the birefringence of 70% in the radial direction from the center of the single yarn Δns: Radius from the surface of the single yarn Average value of birefringence of a portion up to 30% in the direction (2) B ≦ 6.0 × 10 −6 × TD B: Flexural rigidity (g · cm 2 / thread) TD: Total fineness (d) Hereinafter, the present invention Will be described in detail. The yarn in the present invention is made of polyethylene terephthalate (PET), but the PET is mixed with a third component such as a heat-resistant agent, a flame retardant, and a matting agent to the extent that the intrinsic properties of polyester are not impaired. It may be. Further, the intrinsic viscosity of PET needs to be 0.8 or more. Here, the intrinsic viscosity is measured at 20 ° C. using an equal weight mixed solvent of phenol and tetrachloroethane. If the intrinsic viscosity is less than 0.8, the yarn becomes poor in strength and durability, which is not preferable. Although the upper limit of the intrinsic viscosity is not particularly limited, it is preferable that the range of the intrinsic viscosity be 0.8 to 1.1 for spinning with good operability. In the fiber according to the present invention, the inner layer portion and the surface layer portion of the fiber cross section have a difference in orientation, the orientation of the surface layer portion is lower than that of the inner layer portion, and the rigidity of the fiber in the bending direction is reduced. Thus, the fiber has flexibility while having high strength. Specifically, the birefringence measured by dividing the fiber in the radial direction at a ratio of 7/3 is (1)
It is necessary to satisfy the expression. By having a birefringence distribution that satisfies the expression (1), the energy required for inner compression when the fiber is bent is small, the bending rigidity is small, and the inner layer portion of the fiber is highly oriented. Therefore, high strength can be maintained in the fiber axis direction. The fineness of the single yarn must be 1 to 2.5 d. If the single-fiber fineness is larger than 2.5 d, the bending rigidity of the fiber becomes large, and the obtained fabric is not flexible. On the other hand, if it is smaller than 1 d, the strength is inferior.
It is difficult to provide a distribution satisfying the expression (1). The total fineness must be in the range of 200 to 500 d. When the total fineness is larger than 500 d, when weaving at high density, the base fabric lacks flexibility.
It becomes a base fabric with weak tear strength. The value of the bending rigidity of the yarn varies depending on the fineness of the single yarn and the number of filaments. In the present invention, it is necessary to satisfy the expression (2) in order to impart sufficient flexibility to the knitted and woven fabric. is there. Further, it is necessary that the tensile strength be 8 g / d or more and the breaking elongation be 15% or more. 8g tensile strength
If it is less than / d, it will be a base fabric with low tear strength, and if the elongation at break is less than 15%, it will not be possible to obtain a base fabric having impact resistance to withstand the impact during airbag operation. Next, an example of a method for producing the yarn of the present invention will be described. In general, when a single component polymer is spun by a usual melt spinning method, the orientation of the surface layer tends to be promoted more than the inner layer due to a difference in cooling rate. The orientation of the portion needs to be lower than the orientation of the inner layer portion. Therefore, in the present invention, the above-described orientation difference is provided by causing a difference in melt viscosity between the inner and outer layers at the time when the polymer is discharged. That is, the polymer supplied to the surface layer portion and the inner layer portion is temperature-controlled by independent extruders, and both components are joined and discharged by a core-sheath type spinneret, thereby causing a difference in melt viscosity. First, the temperature of the extruder was set to 305 to 31 on the surface side.
5 ℃, inner layer side 290 ~ 300 ℃, discharge temperature 295 ~ 30
The spinning is performed at a temperature of 5 ° C., and the supply ratio of the polymer is 3/7 to 5/5 for the surface layer / inner layer by weight. Next, the spun yarn is passed through a heating zone at a temperature of 350 to 450 ° C. higher than the discharge temperature in order to maintain a difference in melt viscosity, and then cooled and solidified. After passing through the heating zone, the yarn is cooled by blowing cooling air from the outside to the center of the yarn, and the oil is applied immediately after solidification to bundle the yarn. After the collected yarn is taken out, the yarn is stretched to obtain a yarn having a tensile strength of 8 g / d or more. However, in order to improve the productivity, the stretching process should be performed continuously after the spinning. Preferably, the take-up speed is in the range of 400 to 600 m / min, and a heating steam having a temperature of 200 ° C. or more is sprayed or heated using a heat plate or the like so as to reduce the stress applied to the fiber surface layer during drawing. While stretching ratio 4.5
Stretch by 5.5 times. After stretching, the film is subjected to a relaxation treatment of 5% or less and wound up. At this time, if the stretching is performed in multiple stages or the relaxation ratio is increased, the difference in orientation between the surface layer and the inner layer of the fiber becomes small, which is not preferable. Next, the present invention will be described in detail with reference to examples. In addition, the measuring method of the characteristic value in this invention is as follows. (A) High elongation Using an autograph S-100 manufactured by Shimadzu Corporation, sample length 25c
m, and a tensile speed of 30 cm / min. (B) The birefringent interference microscope was used to measure each of the portions obtained by dividing the cross section of the fiber into 10 equal parts in the radial direction, and the average value was calculated for three places on the surface layer and seven places on the inner layer side. (C) Flexural rigidity The flexural rigidity was measured using a pure bending tester KES-FB2 manufactured by Kato Tech. (D) Flexibility JIS L-1096 6.19.1A method (45 ° cantilever method)
Was measured. The flexibility sufficient as a base fabric for an air bag is 60 mm or less. Examples 1-2, Comparative Examples 1-3 PET chips having an intrinsic viscosity of 0.9 were extruded into two extruders.
Each of them was supplied to the equipped composite melt spinning machine, and was spun from a core-sheath type spinneret having the number of filaments shown in Table 1.
At that time, the supply ratio between the surface layer and the inner layer was 4/6 by weight, the control temperature of the extruder on the surface layer was 315 ° C, the control temperature of the extruder on the inner layer was 300 ° C, and the discharge temperature was 305 ° C. did. The spun yarn is passed through a 10 cm long heating cylinder maintained at an ambient temperature of 400 ° C., and then cooled at a temperature of 20 ° C. and a speed of 30 m / min by a cylindrical cooling air blowing device. After blowing the wind to cool and solidify and applying the oil, the speed is 48
It was taken off by a take-off roller of 0 m / min. Subsequently, the paper is sent to a drawing roller having a surface temperature of 220 ° C., and 400 mm is applied to the yarn between the drawing roller and the drawing roller.
Sprayed with heated steam at a temperature of 5.2 ° C (Comparative Example 3).
The film was stretched at 5.6 times), subjected to a 3% relaxation heat treatment with a relaxation roller having a surface temperature of 160 ° C., and wound up by a winder. Table 1 shows the values of single fiber fineness, tensile strength, elongation at break, birefringence, and flexural rigidity of the obtained yarn. Each of the yarns obtained in Examples 1 and 2 had a low bending rigidity, and both the strength and the elongation were sufficient for an airbag yarn. On the other hand, the yarn obtained in Comparative Example 1 has a large single-fiber fineness and therefore has a high bending rigidity, and the yarn obtained in Comparative Example 2 has a low single-fiber fineness and thus lacks strength. Since the obtained yarn was excessively stretched, it had a low elongation, a small difference in orientation between the surface layer and the inner layer, and a high flexural rigidity. Comparative Example 4 Example 1 was repeated except that a PET chip having an intrinsic viscosity of 0.9 was fed to a melt spinning machine equipped with a single extruder, and the control temperature of the extruder was 310 ° C. and the discharge temperature was 305 ° C. Spinning-drawing was performed in the same manner as in 1. Table 1 shows the values of single fiber fineness, tensile strength, elongation at break, birefringence, and flexural rigidity of the obtained yarn. The yarn obtained in Comparative Example 4 had high flexural rigidity because the orientation of the fiber surface layer was higher than that of the inner layer. [Table 1] Example 3, Comparative Example 5 Using the yarns of Example 1 and Comparative Example 4, a woven fabric having a flat structure with a warp and weft density of 60 yarns / 2.54 cm was measured, and the flexibility was measured. Table 2 shows the measured values of the flexibility of the obtained woven fabric. [Table 2] The woven fabric obtained in Example 3 was excellent in flexibility, but the woven fabric obtained in Comparative Example 5 was inferior in flexibility and was insufficiently storable as a base fabric for an airbag. It was something. The yarn for an airbag according to the present invention, when knitted and woven, has a mechanical property of strength and elongation required as an airbag base fabric, and a fabric having flexibility. Becomes possible. [0050]

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−311513(JP,A) 特開 昭61−207619(JP,A) 特開 平3−167312(JP,A) 特開 平6−306728(JP,A) 特開 平7−186858(JP,A) 特開 昭60−88120(JP,A) 特開 平2−289115(JP,A) (58)調査した分野(Int.Cl.7,DB名) D01F 6/62 301 - 308 D01F 8/14 B60R 21/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-5-311513 (JP, A) JP-A-61-207619 (JP, A) JP-A-3-167312 (JP, A) JP-A-6-206 306728 (JP, A) JP-A-7-186858 (JP, A) JP-A-60-88120 (JP, A) JP-A-2-289115 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) D01F 6/62 301-308 D01F 8/14 B60R 21/16

Claims (1)

(57)【特許請求の範囲】 【請求項1】 固有粘度が0.8 以上のポリエチレンテレ
フタレートより構成され、単糸繊度が1〜2.5 d、総繊
度が200 〜500 d、引張強度が8g/d以上、破断伸度
が15%以上で、単糸断面の複屈折率分布が(1)式を満
たし、曲げ剛性が(2)式の範囲にあることを特徴とす
るエアバッグ用糸条。 (1) △nc−△ns≧0.015 、 △nc≧0.170 △nc:単糸の中心から半径方向に70%までの部分の複
屈折率の平均値 △ns:単糸の表面から半径方向に30%までの部分の複
屈折率の平均値 (2) B≦ 6.0×10-6×TD B :曲げ剛性(g・cm2 /糸条) TD:総繊度(d)
(57) [Claims 1] A polyethylene terephthalate having an intrinsic viscosity of 0.8 or more, a single fiber fineness of 1 to 2.5 d, a total fineness of 200 to 500 d, and a tensile strength of 8 g / d or more. An airbag yarn having a breaking elongation of 15% or more, a birefringence distribution of a cross section of a single yarn satisfying the expression (1), and a bending rigidity in a range of the expression (2). (1) Δnc−Δns ≧ 0.015, Δnc ≧ 0.170 Δnc: Average value of the birefringence of 70% in the radial direction from the center of the single yarn Δns: 30 in the radial direction from the surface of the single yarn % (2) B ≦ 6.0 × 10 −6 × TD B: Flexural rigidity (g · cm 2 / thread) TD: Total fineness (d)
JP27085794A 1994-11-04 1994-11-04 Thread for airbag Expired - Fee Related JP3459478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27085794A JP3459478B2 (en) 1994-11-04 1994-11-04 Thread for airbag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27085794A JP3459478B2 (en) 1994-11-04 1994-11-04 Thread for airbag

Publications (2)

Publication Number Publication Date
JPH08134716A JPH08134716A (en) 1996-05-28
JP3459478B2 true JP3459478B2 (en) 2003-10-20

Family

ID=17491947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27085794A Expired - Fee Related JP3459478B2 (en) 1994-11-04 1994-11-04 Thread for airbag

Country Status (1)

Country Link
JP (1) JP3459478B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760493A4 (en) * 2018-03-30 2021-12-08 Seiren Co., Ltd. Airbag base fabric and airbag

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7014914B2 (en) 2004-01-09 2006-03-21 Milliken & Company Polyester yarn and airbags employing certain polyester yarn
MX2012014677A (en) * 2010-06-24 2013-02-11 Hyosung Corp Fabric for airbag, using polyethylene terephthalate fiber with excellent heat resistance.
KR101621934B1 (en) * 2010-06-28 2016-06-01 코오롱인더스트리 주식회사 Polyester fiber for airbag and preparation method thereof
EP3686326A4 (en) * 2017-09-22 2021-10-06 Kolon Industries, Inc. High-strength polyethylene terephthalate yarn and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760493A4 (en) * 2018-03-30 2021-12-08 Seiren Co., Ltd. Airbag base fabric and airbag

Also Published As

Publication number Publication date
JPH08134716A (en) 1996-05-28

Similar Documents

Publication Publication Date Title
EP0666344B1 (en) High-strength ultra-fine fiber construction and method for producing the same
JP3284735B2 (en) Base fabric for airbag
JP2015028234A (en) High tenacity low shrinkage polyamide yarns
JP3180524B2 (en) Base fabric for airbag
JPH06306728A (en) Base cloth for air bag
JP3459478B2 (en) Thread for airbag
JPH0835116A (en) Polyester fiber for air bag base fabric
JP4538967B2 (en) Airbag fabric
JP3462914B2 (en) Thread for airbag
JP3353540B2 (en) Non-coated airbag fabric and airbag
JP5157346B2 (en) Polyester fiber for seat belt
JP4306391B2 (en) Airbag base fabric and manufacturing method thereof
JP3353412B2 (en) High strength polybutylene terephthalate fiber
JPH1178747A (en) Foundation cloth for airbag and airbag
JP3649215B2 (en) Method for producing high-strength polybutylene terephthalate fiber
JPH03185103A (en) Conjugate fiber for artificial hair having thick single fiber and production thereof
JP4826367B2 (en) Seat belt webbing
JP3543468B2 (en) Method for producing non-breathable high-strength fabric for non-coated airbag and high-strength multifilament yarn for non-coated airbag
JPH04176750A (en) Base cloth for air bag
JPH03185102A (en) Conjugate fiber for artificial hair and production thereof
JPH08176932A (en) Production of fabric for air bag
JP4007856B2 (en) Polyester different shrinkage mixed yarn
JP3518035B2 (en) Polyester fiber and seat belt webbing using this polyester fiber
JP2001294122A (en) Webbing for seat belt and its manufacturing method
JP3859135B2 (en) Airbag base fabric

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090808

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120808

LAPS Cancellation because of no payment of annual fees