JP3459468B2 - Electronic equipment cooling device - Google Patents
Electronic equipment cooling deviceInfo
- Publication number
- JP3459468B2 JP3459468B2 JP14300394A JP14300394A JP3459468B2 JP 3459468 B2 JP3459468 B2 JP 3459468B2 JP 14300394 A JP14300394 A JP 14300394A JP 14300394 A JP14300394 A JP 14300394A JP 3459468 B2 JP3459468 B2 JP 3459468B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- bellows
- electronic device
- electronic
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001816 cooling Methods 0.000 title claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 2
- 241000270295 Serpentes Species 0.000 claims 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 230000032258 transport Effects 0.000 claims 1
- 238000001444 catalytic combustion detection Methods 0.000 description 11
- 230000005855 radiation Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、固体撮像素子のよう
な動作中発熱する電子デバイスを備えたビデオカメラや
電子カメラなどの電子機器に適用できる冷却装置に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device applicable to electronic equipment such as a video camera and an electronic camera provided with an electronic device that generates heat during operation such as a solid-state image pickup device.
【0002】[0002]
【従来の技術】従来ビデオカメラや電子カメラなどの電
子機器ではCCDなどの固体撮像素子を用い、光学レン
ズを通して素子上に結像された像を撮像する撮像装置が
利用されている。しかしながら上記のような撮像装置を
駆動すると、固体撮像素子、及びその駆動回路が発熱
し、それらの発熱による固体撮像素子の温度上昇に伴っ
て暗電流が増加するため画像が劣化する。暗電流は10
℃につき約2倍の増加があり、駆動電力が小さい素子で
も10℃前後の上昇があるため、特性の良い状態で安定
して駆動することが困難となっている。特に、暗い撮影
条件下においてアンプゲインを大きくしたり、電荷蓄積
時間を長くして高感度を得ようとすると、暗電流の影響
が大きくなって画像劣化が著しくなる。そこで、前記暗
電流を抑えて固体撮像素子を特性の良い状態で駆動する
ためには、固体撮像素子を冷却しながら駆動することが
考えられる。2. Description of the Related Art Conventionally, an electronic apparatus such as a video camera or an electronic camera uses a solid-state image pickup device such as a CCD and an image pickup device for picking up an image formed on the device through an optical lens. However, when the image pickup apparatus as described above is driven, the solid-state image pickup element and its drive circuit generate heat, and the dark current increases as the temperature of the solid-state image pickup element rises due to the heat generation, so that the image deteriorates. Dark current is 10
There is about a two-fold increase per degree Celsius, and even an element with a small driving power rises around 10 degrees Celsius, which makes it difficult to drive the element stably with good characteristics. In particular, when the amplifier gain is increased or the charge accumulation time is lengthened to obtain high sensitivity under dark photographing conditions, the influence of the dark current becomes large and the image deterioration becomes remarkable. Therefore, in order to suppress the dark current and drive the solid-state image sensor with good characteristics, it is conceivable to drive the solid-state image sensor while cooling.
【0003】固体撮像素子を備えた電子機器の冷却装置
または冷却による恒温化法としては、幾つかの方法が既
に提案されている。例えば、図2に示す実開平5−29
2366号公報「電子機器の冷却装置」に記載されたも
のなどがある。これは内側に摺動自在に嵌合されたピス
トン7を含むシリンダ8がペルチェ素子2に接続されて
おり、そのピストン7の先端は球面に形成され、その球
面に沿って摺動自在に嵌合された自在スペーサ6をピス
トン7を介して固体撮像素子1の背面に平行に当ててコ
イルバネ9で押し付ける構造をしている。ペルチェ素子
2の放熱側はループ型細管放熱用パイプ10に接続され
ており、このパイプを通してカメラ筐体外部へ放熱する
ようになっている。自在スペーサ6の凹面はピストン7
の先端の凸面と接し、シリンダ8の円筒側壁はピストン
7の円柱側面と接し、2つのすり合わせ面が存在するた
め、回転運動と前後運動の両方について自由度を持ち、
ペルチェ素子の取り付け位置や取り付け姿勢にバラツキ
があっても、固体撮像素子に機械的なストレスを与えな
いようにできる。Several methods have already been proposed as a cooling device for an electronic device equipped with a solid-state image pickup device or a constant temperature method by cooling. For example, the actual Kaihei 5-29 shown in FIG.
For example, there is one described in Japanese Patent No. 2366, "Cooling Device for Electronic Equipment". A cylinder 8 including a piston 7 slidably fitted inside is connected to a Peltier element 2, the tip of the piston 7 is formed into a spherical surface, and slidably fitted along the spherical surface. The movable spacer 6 thus formed is in parallel contact with the back surface of the solid-state imaging device 1 via the piston 7, and is pressed by the coil spring 9. The heat radiation side of the Peltier element 2 is connected to a loop type thin tube heat radiation pipe 10, and heat is radiated to the outside of the camera housing through this pipe. The concave surface of the free spacer 6 is the piston 7
Since the cylindrical side wall of the cylinder 8 is in contact with the convex side surface of the cylinder 8, and the cylindrical side surface of the piston 7 is in contact with the two grinding surfaces, there is a degree of freedom in both rotational movement and longitudinal movement.
It is possible to prevent mechanical stress from being applied to the solid-state imaging device even if the mounting position or mounting posture of the Peltier device varies.
【0004】[0004]
【発明が解決しようとする課題】しかし、先願例は発熱
体1と電子冷却素子2との間に2つのすり合わせ面(ス
ペーサ6とピストン7の間およびピストン7とシリンダ
8の間)が存在するため、熱伝達効率が悪くなる欠点が
ある。すなわち、すり合わせ面が可動であるためには僅
かのすき間が必要であり、この隙間には気体または液体
からなる流動体が存在することになるが、気体または液
体の熱伝導率は固体のそれに比べて著しく悪いことは明
らかである。例えば0℃での空気の熱伝導率は2.41
×10-2W/mK、油の熱伝導率は0.136W/mK
で、銅の熱伝導率403W/mKと比べて約3桁以上悪
くなっている。また自在スペーサなどを含む複雑な緩衝
性機構は製作精度がないと熱伝達効果が落ち、安価に製
造することは容易ではなく、重量も大きくなるという欠
点がある。さらに、スペーサなどを含む緩衝性の電熱機
構は、熱容量や表面積が大きく、ペルチェ素子の冷却に
対して重い負荷となってしまう欠点があった。そこで本
発明の目的は、前述の問題点を解消し、動作中発熱する
電子デバイスを備えた電子機器を冷却し、簡単な構造で
冷却効率を落とすことのない伸縮可能な熱伝導機構を有
する冷却装置を提供せんとするものである。However, in the prior application, there are two grinding surfaces (between the spacer 6 and the piston 7 and between the piston 7 and the cylinder 8) between the heating element 1 and the electronic cooling element 2. Therefore, there is a drawback that the heat transfer efficiency is deteriorated. That is, a small gap is required for the mating surface to be movable, and a fluid consisting of gas or liquid exists in this gap, but the thermal conductivity of gas or liquid is higher than that of solid. It is clear that it is extremely bad. For example, the thermal conductivity of air at 0 ° C is 2.41
× 10 -2 W / mK, oil thermal conductivity is 0.136 W / mK
In comparison, the thermal conductivity of copper is 403 W / mK, which is about 3 orders of magnitude worse. In addition, a complicated buffer mechanism including a flexible spacer has a drawback that the heat transfer effect is deteriorated if it is not manufactured with precision, and it is not easy to manufacture at low cost and the weight is increased. Further, the buffering electrothermal mechanism including the spacers and the like has a drawback that the heat capacity and the surface area are large and a heavy load is applied to the cooling of the Peltier element. Therefore, an object of the present invention is to eliminate the above-mentioned problems, cool an electronic device including an electronic device that generates heat during operation, and have a simple structure that has an expandable and contractible heat conduction mechanism that does not reduce cooling efficiency. It is intended to provide a device.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
の本発明電子機器の冷却装置は、動作中発熱する電子デ
バイスを備えた電子機器において、前記発熱する電子デ
バイスに密着させた電子冷却素子と、電子機器の外部へ
熱を輸送する放熱用ヒートパイプと、熱伝導性に優れた
平たい金属板の蛇腹または丸形の金属板の蛇腹からなる
金属ベローズとを具えるとともに、前記電子冷却素子と
前記ヒートパイプとの間に前記金属ベローズを熱的に密
着させたことを特徴とするものである。A cooling device for electronic equipment according to the present invention for achieving the above object is an electronic equipment having an electronic device that generates heat during operation. In this case, the electronic cooling element is closely attached to the electronic device that generates heat. And a heat-dissipating heat pipe for transporting heat to the outside of the electronic device, and a metal bellows including a bellows of a flat metal plate or a round metal plate having excellent thermal conductivity, and the electronic cooling element. The metal bellows is thermally adhered between the heat pipe and the heat pipe.
【0006】[0006]
【実施例】以下添付図面、図1および図3〜図9を参照
し、本発明装置をカラーCCDカメラに適用した冷却装
置の実施例について説明する。図1に伸縮可能な熱伝導
機構として蛇腹型のベローズを用いた第1の実施例を示
す。吸熱側をCCD1に密着させたペルチェ素子2の放
熱側にベローズ3の一端を密着させ、他端には棒状や板
状をした放熱用部材であるヒートパイプ4が密着されて
いる。ベローズ3はアルミニウム、銅またはそれらの合
金などのような熱伝導性に優れた材質で作られている小
型のもで、ペルチェ素子2の放熱側とは銀ペーストや、
銀フェラが配合された無溶剤エポキシ系の熱伝導性接着
剤、あるいは低温ハンダなどで密着されている。ベロー
ズ3の他端も同様にヒートパイプ4と密着されている。
ベローズは構造上伸縮性に優れており、かつ回転、傾
き、煽りなどの機械的自由度を持つものであり、特に溶
接ベローズでは小型で短くてもバネ定数が小さいものを
作ることができる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a cooling device in which the device of the present invention is applied to a color CCD camera will be described below with reference to the accompanying drawings, FIG. 1 and FIGS. FIG. 1 shows a first embodiment using a bellows-type bellows as an expandable and contractible heat conduction mechanism. One end of the bellows 3 is brought into close contact with the heat radiation side of the Peltier element 2 whose heat absorption side is brought into close contact with the CCD 1, and a heat pipe 4 which is a rod-shaped or plate-shaped heat radiation member is brought into close contact with the other end. The bellows 3 is a small one made of a material having excellent thermal conductivity such as aluminum, copper or alloys thereof. The heat radiation side of the Peltier element 2 is silver paste or
It is adhered with a solvent-free epoxy-based thermally conductive adhesive compounded with silver fella or low temperature solder. The other end of the bellows 3 is also closely attached to the heat pipe 4.
The bellows is structurally excellent in stretchability and has mechanical degrees of freedom such as rotation, tilting and tilting. In particular, a welded bellows can be made small and short but having a small spring constant.
【0007】さらにこのベローズの詳細な構造例を図3
を用いて説明する。図3(a)は四方を囲むように蛇腹
を配置したもので、その両端部には平たい金属板を取り
付け熱的な密着を容易にしている。図3(b)は、複数
枚の蛇腹を並列に並べたものである。図3(c)は丸形
の蛇腹からなるものである。また、これらの例を組み合
わせたり、切り出したりしても良く、図3(d)のよう
に変形させても良い。また蛇腹の段数を変えることで、
最大変形量を任意に設計可能である。図4に蛇腹の製作
加工方法の例を断面図として具体的に示す。図4(a)
は折り曲げ加工、図4(b)は溶接加工、図4(c)は
プレス加工または押し出し加工によって製作したもの
で、いずれの場合にも同様の効果がある。Further, a detailed structural example of this bellows is shown in FIG.
Will be explained. In FIG. 3 (a), bellows are arranged so as to surround four sides, and flat metal plates are attached to both ends thereof to facilitate thermal contact. FIG. 3B shows a plurality of bellows arranged in parallel. FIG. 3 (c) has a round bellows. Further, these examples may be combined or cut out, and may be transformed as shown in FIG. Also, by changing the number of bellows steps,
The maximum deformation amount can be designed arbitrarily. FIG. 4 specifically shows an example of a method of manufacturing and processing a bellows as a sectional view. Figure 4 (a)
Is manufactured by bending, FIG. 4 (b) is manufactured by welding, and FIG. 4 (c) is manufactured by pressing or extrusion. In either case, the same effect can be obtained.
【0008】図5は上記第1の実施例を用いた場合の全
体図を示し、カラーCCDカメラへの取り付け例につい
て示している。カメラの後部には回路基板15が、また
カメラ前部にはレンズ16が取り付けられている。レン
ズ16を介して入ってきた光はプリズム11でR
(赤)、G(緑)、B(青)の光に分解される。プリズ
ム11の光の出口には各々CCDが取り付けられる。本
発明をR、G、BそれぞれのCCD1R、1G、1Bに
対して同様に用いて冷却を行う。2R、2G、2Bは冷
却用のペルチェ素子で、3R、3G,3Bは熱伝導性の
ベローズである。放熱のための各ヒートパイプ4R、4
G、4Bは上方に向けて配置し、カメラ本体外筐14の
上部から3本まとめて外部へ出す。各ヒートパイプが筐
体から外部に突出した部分には放熱フィン12を複数枚
取り付け、ヒートパイプと放熱フィンはハンダ等で熱的
に密着する。この放熱フィン12の表面積は大きく、こ
の熱を取り除くようにファン13で送風することで、熱
を外気へ効率良く放出することがてきる。ヒートパイプ
の形状や配置、筐体からのヒートパイプの出口等はカメ
ラ筐体の形状、内部駆動回路の配置に合わせて変化させ
ても良い。また、本願発明の実施例では固体撮像素子と
してCCDを用いる説明をしたが、MOS型、AMI型
など他の固体撮像素子でもかまわない。FIG. 5 shows an overall view when the first embodiment is used, and shows an example of attachment to a color CCD camera. A circuit board 15 is attached to the rear of the camera, and a lens 16 is attached to the front of the camera. The light entering through the lens 16 is R by the prism 11.
It is decomposed into (red), G (green), and B (blue) light. CCDs are attached to the light outlets of the prisms 11, respectively. The present invention is similarly applied to the CCDs 1R, 1G, and 1B of R, G, and B to perform cooling. 2R, 2G, 2B are Peltier elements for cooling, and 3R, 3G, 3B are bellows having thermal conductivity. Each heat pipe 4R, 4 for heat dissipation
G and 4B are arranged so as to face upward, and three from the upper part of the outer casing 14 of the camera body are brought out together. A plurality of radiating fins 12 are attached to the portion where each heat pipe projects from the housing to the outside, and the heat pipe and the radiating fin are thermally adhered to each other with solder or the like. The surface area of the heat radiation fins 12 is large, and by blowing the heat by the fan 13 so as to remove the heat, the heat can be efficiently released to the outside air. The shape and arrangement of the heat pipe, the outlet of the heat pipe from the housing, and the like may be changed according to the shape of the camera housing and the arrangement of the internal drive circuit. Further, although the CCD is used as the solid-state image sensor in the embodiment of the present invention, other solid-state image sensors such as MOS type and AMI type may be used.
【0009】図6に伸縮可能な熱伝導機構として良熱伝
導性金属の細線を多数並べた構造にした幅広のリボン状
のものを用いた第2の実施例を示す。CCD1にペルチ
ェ素子2の吸熱側を密着させて、かつペルチェ素子2の
放熱側に、良熱伝導性金属の細線を多数並べた幅広のリ
ボン状のもの5の一端を密着させ、他端は棒状や板状を
したヒートパイプ4と密着させる。上記2ケ所の接合部
は第1の実施例と同様にして密着されている。良熱伝導
性金属細線を幅広のリボン状にしたもの5は、金属細線
を多数並べたもの以外に、縦横に編んだものでもさしつ
かえない。さらに取り付け易くするために、両端には図
7に示すように、銅などの熱伝導性の良い金属からなる
平らな伝熱板17を取り付けてもよい。また良熱伝導性
金属の細線を多数並べた幅広のリボン状のもの5は機械
的自由度が得やすいように、適度に撓ませて装着するの
が良いが、その形状は楕円やジグザグ型もしくはその一
部を切り出したものなど、自由に変形できる。FIG. 6 shows a second embodiment using a wide ribbon-like structure having a structure in which a large number of fine wires of good heat conductive metal are arranged as an expandable and contractible heat transfer mechanism. The heat absorption side of the Peltier element 2 is brought into close contact with the CCD 1, and one end of a wide ribbon-like member 5 in which a large number of fine wires of good heat conductive metal are arranged is brought into close contact with the heat radiation side of the Peltier element 2, and the other end is rod-shaped. It is brought into close contact with the heat pipe 4 having a plate shape. The above-mentioned two joints are adhered to each other in the same manner as in the first embodiment. The wide ribbon-shaped thin metal wire 5 having good thermal conductivity may be a long and wide knitted wire in addition to a large number of thin metal wires arranged side by side. For easier mounting, flat heat transfer plates 17 made of a metal having good thermal conductivity such as copper may be mounted on both ends, as shown in FIG. A wide ribbon-like member 5 having a large number of fine wires made of a metal having good heat conductivity is preferably bent so as to have a high degree of mechanical freedom, and its shape is elliptical or zigzag. It can be freely transformed, such as a cut-out part.
【0010】本発明に係る冷却装置では、固体撮像素子
を直接冷却するペルチェ素子の放熱側からの熱を効率的
にヒートパイプに送ることがてきる。ヒートパイプの蒸
発部へ流入された熱は、ヒートパイプ内に封入された作
動流体の液相と気相との潜熱の流れによってパイプ内を
運ばれ、上方へ引かれてカメラ本体外筐の上部を抜け、
外部へ出されたヒートパイプの凝縮部から外気へ放出さ
れる。板状のヒートパイプの蒸発部に発熱体を直接接続
して、放熱側には放熱フィンを取り付け、そのフィンを
空冷したときのヒートパイプの蒸発部と凝縮部との温度
の変化を図8に示す。図は発熱体に毎秒約1.2J(ジ
ュール)の熱量を与えたときの温度上昇を測定したもの
である。T1はこの熱量を与えたときの発熱体のみの温
度上昇を表したもので、発熱体の温度と室温との差で示
してあり、20分後に45℃となっている。この発熱体
をヒートパイプに接続したときの蒸発部の温度を表した
ものがT2、同じ時にヒートパイプの放熱部の温度を表
したものがT3であり、それぞれ室温との差で示してあ
る。図8より、T2とT3の差が極めて少なく、ヒート
パイプは十分に熱輸送能力を持つものであることがわか
る。In the cooling device according to the present invention, the heat from the heat radiation side of the Peltier device for directly cooling the solid-state image pickup device can be efficiently sent to the heat pipe. The heat flowing into the evaporation part of the heat pipe is carried in the pipe by the latent heat flow of the liquid phase and the gas phase of the working fluid enclosed in the heat pipe, and is drawn upward to the upper part of the outer casing of the camera body. Exit through
The heat pipe is discharged to the outside from the condensing part of the heat pipe. A heating element is directly connected to the evaporating part of the plate-shaped heat pipe, a heat radiating fin is attached to the heat radiating side, and the temperature change between the evaporating part and the condensing part of the heat pipe when the fin is air-cooled is shown in FIG. Show. The figure shows the measurement of the temperature rise when a heat amount of about 1.2 J (joule) per second is applied to the heating element. T1 represents the temperature rise of only the heating element when this amount of heat is applied, and is shown by the difference between the temperature of the heating element and room temperature, which is 45 ° C. after 20 minutes. The temperature of the evaporation part when the heating element is connected to the heat pipe is T2, and the temperature of the heat radiating part of the heat pipe is T3 at the same time, which is shown by the difference from the room temperature. From FIG. 8, it can be seen that the difference between T2 and T3 is extremely small, and the heat pipe has a sufficient heat transport ability.
【0011】上記と同じ発熱体とヒートパイプに本発明
の第1の実施例に示した伸縮可能な熱伝導機構を用いた
温度測定結果の一例を図9に示す。この時の発熱体とベ
ローズとの接合部の温度を表したものがT4、ヒートパ
イプの放熱部の温度を表したものがT5であり、それぞ
れ室温との差で示してある。T2、T3は図8の同記号
を付したものと同じである。T4とT5の温度差が小さ
いという結果より、本発明が熱伝導性に優れた装置であ
ることは明らかである。また、放送用のカラーCCDカ
メラに本発明を適用した例では、CCDの温度を従来よ
りも30℃低くすることができ、暗電流が約10分の1
に減少した。そのためカメラのアンプゲインを上げて使
用したり、長時間の電荷蓄積動作を行っても良好な画像
が得られた。以上の実施例では、電子デバイスが固体撮
像素子の場合について説明してきたが、本発明はこれに
限定されることなく、前記電子デバイスとしては各種の
半導体素子、半導体集積回路、表示素子など動作中発熱
して特性の劣化するものに本発明冷却装置が適用されて
好適なことは自明であろう。FIG. 9 shows an example of the temperature measurement results using the same heat generating element and heat pipe as described above using the expandable heat conduction mechanism shown in the first embodiment of the present invention. The temperature of the joint between the heating element and the bellows at this time is T4, and the temperature of the heat radiating portion of the heat pipe is T5, which are shown as the difference from room temperature. T2 and T3 are the same as those with the same symbols in FIG. From the result that the temperature difference between T4 and T5 is small, it is clear that the present invention is a device having excellent thermal conductivity. Further, in an example in which the present invention is applied to a color CCD camera for broadcasting, the temperature of the CCD can be lowered by 30 ° C. as compared with the conventional case, and the dark current is about 1/10.
Decreased to. Therefore, a good image was obtained even if the amplifier gain of the camera was increased and used or the charge accumulation operation was performed for a long time. In the above embodiments, the case where the electronic device is a solid-state image pickup element has been described, but the present invention is not limited to this, and various semiconductor elements, semiconductor integrated circuits, display elements, etc. are operating as the electronic device. It will be apparent that the cooling device of the present invention is suitable for application to a device that generates heat and deteriorates its characteristics.
【0012】[0012]
【発明の効果】以上詳細に説明してきたように、本発明
に係る冷却装置を適用することにより、動作中発熱する
電子デバイスを備えた電子機器において、電子デバイス
による発熱熱量をぺルチェ素子およびヒートパイプを介
して有効に放熱することができ、前記電子デバイスが固
体撮像素子の場合には動作中その暗電流の増加を抑圧し
て、固体撮像素子の動作の安定化と性能向上に資するこ
とができる。また、本発明冷却装置は、熱伝導性のみな
らず伸縮性も合わせ持つため、固体撮像素子まはたペル
チェ素子等の電子部品に対して機械的ストレスを与える
ことがなく、長期間にわたって安定して動作させること
ができる。As described above in detail, by applying the cooling device according to the present invention, in an electronic apparatus having an electronic device that generates heat during operation, the amount of heat generated by the electronic device can be determined by the Peltier element and the heat. Heat can be effectively dissipated through the pipe, and when the electronic device is a solid-state image sensor, it is possible to suppress an increase in dark current during operation and contribute to stabilization of the operation and performance improvement of the solid-state image sensor. it can. Further, since the cooling device of the present invention has not only thermal conductivity but also elasticity, it does not give mechanical stress to electronic components such as a solid-state imaging device or a Peltier device and is stable for a long period of time. Can be operated.
【図1】本発明に係る冷却装置第1の実施例の断面図。FIG. 1 is a sectional view of a cooling device according to a first embodiment of the present invention.
【図2】従来の冷却装置例の断面図。FIG. 2 is a cross-sectional view of a conventional cooling device example.
【図3】第1の実施例の伸縮可能な熱伝導機構の形状例
を示す図。FIG. 3 is a diagram showing an example of the shape of an expandable and contractible heat transfer mechanism of the first embodiment.
【図4】第1の実施例の伸縮可能な熱伝導機構の加工例
を示す図。FIG. 4 is a view showing an example of processing the expandable heat conduction mechanism of the first embodiment.
【図5】本発明装置をカラーCCDカメラの外筐体へ取
り付けた例の断面図。FIG. 5 is a cross-sectional view of an example in which the device of the present invention is attached to the outer case of a color CCD camera.
【図6】本発明に係る冷却装置第2の実施例の断面図。FIG. 6 is a sectional view of a cooling device according to a second embodiment of the present invention.
【図7】第2の実施例の伸縮可能な熱伝導機構への伝熱
板の取付け例を示す図。FIG. 7 is a diagram showing an example of attachment of a heat transfer plate to an expandable and contractible heat transfer mechanism of the second embodiment.
【図8】ヒートパイプの動作測定結果の一例。FIG. 8 shows an example of the measurement result of the operation of the heat pipe.
【図9】本発明に係る熱伝導機構を用いた温度測定結果
の一例。FIG. 9 is an example of a temperature measurement result using the heat conduction mechanism according to the present invention.
【符号の説明】
1 固体撮像素子(発熱体)
2 電子冷却素子
3 ベローズ(伸縮可能な熱伝導機構)
4 放熱用ヒートパイプ
5 良熱伝導性金属の細線をリボン状にしたもの(伸縮
可能な熱伝導機構)
6 自在スペーサ
7 ピストン
8 シリンダ
9 コイルバネ
10 ループ型細管放熱用パイプ
11 プリズム
12 放熱フィン
13 ファン
14 カメラ外筐体
15 回路基板
16 レンズ
17 伝熱板[Explanation of reference numerals] 1 solid-state image pickup element (heating element) 2 electronic cooling element 3 bellows (expandable heat conduction mechanism) 4 heat dissipation heat pipe 5 ribbon of fine heat conductive metal (expandable Heat conduction mechanism 6 Flexible spacer 7 Piston 8 Cylinder 9 Coil spring 10 Loop type thin pipe heat radiation pipe 11 Prism 12 Radiation fin 13 Fan 14 Camera outer casing 15 Circuit board 16 Lens 17 Heat transfer plate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 文彦 東京都世田谷区砧1丁目10番11号 日本 放送協会 放送技術研究所内 (56)参考文献 特開 平2−54975(JP,A) 実開 平4−10469(JP,U) 特表 平6−510638(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 23/38 H01L 23/427 H04N 5/335 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumihiko Ando 1-10-11 Kinuta, Setagaya-ku, Tokyo Inside the Broadcasting Research Laboratories, Japan Broadcasting Corporation (56) Reference JP-A-2-54975 (JP, A) Flat 4-10469 (JP, U) Special Table Flat 6-510638 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 23/38 H01L 23/427 H04N 5/335
Claims (3)
子機器において、前記発熱する電子デバイスに密着させ
た電子冷却素子と、電子機器の外部へ熱を輸送する放熱
用ヒートパイプと、熱伝導性に優れた平たい金属板の蛇
腹または丸形の金属板の蛇腹からなる金属ベローズとを
具えるとともに、前記電子冷却素子と前記ヒートパイプ
との間に前記金属ベローズを熱的に密着させたことを特
徴とする電子機器の冷却装置。1. An electronic device including an electronic device that generates heat during operation, an electronic cooling element that is in close contact with the electronic device that generates heat, a heat radiating heat pipe that transports heat to the outside of the electronic device, and thermal conductivity. An excellent flat metal plate snake
A bellows or a metal bellows formed of a bellows of a round metal plate, and cooling the electronic device characterized in that the metal bellows is thermally adhered between the electronic cooling element and the heat pipe. apparatus.
ことを特徴とする請求項1記載の電子機器の冷却装置。2. The cooling device for electronic equipment according to claim 1, wherein the electronic device is a solid-state image sensor.
腹または丸形の金属板の蛇腹が、銅、アルミニウム、ニ
ッケル、鉄あるいはそれらの金属のうち少なくとも1つ
を含む合金であることを特徴とする請求項1または2記
載の電子機器の冷却装置。3. A snake made of a flat metal plate having excellent thermal conductivity.
3. The cooling device for electronic equipment according to claim 1, wherein the bellows or the bellows of the round metal plate is copper, aluminum, nickel, iron, or an alloy containing at least one of these metals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14300394A JP3459468B2 (en) | 1994-06-24 | 1994-06-24 | Electronic equipment cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14300394A JP3459468B2 (en) | 1994-06-24 | 1994-06-24 | Electronic equipment cooling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0817980A JPH0817980A (en) | 1996-01-19 |
JP3459468B2 true JP3459468B2 (en) | 2003-10-20 |
Family
ID=15328695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14300394A Expired - Fee Related JP3459468B2 (en) | 1994-06-24 | 1994-06-24 | Electronic equipment cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3459468B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7554068B2 (en) | 2007-02-09 | 2009-06-30 | Panasonic Corporation | Heat radiating structure for solid-state image sensor, and solid-state image pickup device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3994117B2 (en) * | 2002-11-07 | 2007-10-17 | Smc株式会社 | Poppet valve with heater |
EP1672655A1 (en) * | 2004-12-20 | 2006-06-21 | Abb Research Ltd. | Vacuum switch with increased current load capacity |
JP5090820B2 (en) * | 2007-08-08 | 2012-12-05 | パナソニック株式会社 | Solid-state imaging device heat dissipation structure and solid-state imaging device |
-
1994
- 1994-06-24 JP JP14300394A patent/JP3459468B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7554068B2 (en) | 2007-02-09 | 2009-06-30 | Panasonic Corporation | Heat radiating structure for solid-state image sensor, and solid-state image pickup device |
Also Published As
Publication number | Publication date |
---|---|
JPH0817980A (en) | 1996-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI548271B (en) | Image capture device | |
EP0565366B1 (en) | Cooling system for cooling electronic devices | |
JP2009100374A (en) | Image sensor cooling unit, photographing lens unit, and electronic apparatus | |
JP3459468B2 (en) | Electronic equipment cooling device | |
US4547809A (en) | Thermally isolated imager | |
JP2009141609A (en) | Electronic camera and lens unit | |
JP4499316B2 (en) | Electronic camera | |
JP4391351B2 (en) | Cooling system | |
CN101572774A (en) | Solid-state imaging apparatus | |
JP2004340404A (en) | Heat radiator for electronic refrigerator | |
JPH07211823A (en) | Imaging device | |
JP2001326840A (en) | Image pickup device | |
US7570303B2 (en) | Image pick-up element assembly and image pick-up element | |
JP2014011758A (en) | Heat radiation mechanism | |
JPH0831993A (en) | Cooling device | |
JP2584785B2 (en) | Thermoelectric module | |
JPH088493A (en) | Heat dissipation structure in semiconductor laser device | |
JP2005016836A (en) | Cooling device | |
JP3121424B2 (en) | Semiconductor photodetector | |
JP2006053232A (en) | Electronic imaging device | |
JPH0767177B2 (en) | Heat dissipation structure of solid-state image sensor | |
JPH08293628A (en) | Thermoelectricity conversion device | |
JPS61202590A (en) | Solid-state color image pickup device | |
JP2581391Y2 (en) | Radiator for portable electronic equipment | |
JPH04219083A (en) | Solid-state image pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |