JP3457462B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3457462B2 JP3457462B2 JP10354696A JP10354696A JP3457462B2 JP 3457462 B2 JP3457462 B2 JP 3457462B2 JP 10354696 A JP10354696 A JP 10354696A JP 10354696 A JP10354696 A JP 10354696A JP 3457462 B2 JP3457462 B2 JP 3457462B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- aqueous electrolyte
- electrolyte secondary
- lead
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、安全性が高くかつ
重量エネルギー密度の高い非水電解質二次電池に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery having high safety and high weight energy density.
【0002】[0002]
【従来の技術】近年、電子機器の小型化、ポータブル化
が進み、これらの駆動用電源として小型・軽量で、高エ
ネルギー密度を有し、充放電サイクル特性に優れた長寿
命の二次電池への要望が高い。そこで、最近、リチウム
やリチウム合金、又は炭素材料等のリチウムイオンのド
ープ・脱ドープが可能な物質を負極活物質として用い、
リチウムコバルト複合酸化物等のリチウム複合酸化物を
正極活物質として使用する非水電解質二次電池の研究・
開発が行われており、既に実用化されているものもあ
る。2. Description of the Related Art In recent years, electronic devices have become smaller and more portable, and as a power source for driving these devices, they have become small-sized, lightweight, high energy density, long-life secondary batteries with excellent charge / discharge cycle characteristics. Is highly demanded. Therefore, recently, a material capable of doping / dedoping lithium ions such as lithium, a lithium alloy, or a carbon material is used as a negative electrode active material,
Research on non-aqueous electrolyte secondary batteries using lithium composite oxides such as lithium cobalt composite oxides as positive electrode active materials
Some are under development and some are already in practical use.
【0003】従来、このような非水電解質二次電池は、
渦巻き状の電極1本を、円筒缶に収納したものが一般的
である。Conventionally, such a non-aqueous electrolyte secondary battery has been
Generally, one spiral electrode is housed in a cylindrical can.
【0004】ところで、非水電解質二次電池は、上述の
ようにエネルギー密度が高くかつ電解液に有機溶媒を使
用するため、電池内部で短絡が起こった場合、過大電流
のため発熱し、最悪の場合には電池の破裂に至るおそれ
がある。破裂の危険性は、電池1個当たりの容量が大き
くなる程、短絡部に流れ込むエネルギーが増加するた
め、高くなる。このため、比較的小容量の電池缶に収め
られた電池を複数個接続し、安全性を確保するようにし
ている。しかし、この方法では、電池全重量に対する電
池缶の重量が相対的に大きくなるという問題がある。或
いは、電池内部の圧力が増した場合に圧力を逃がし電流
を遮断する防爆弁等を設ける方法もあるが、構造が複雑
でコスト高を招く。By the way, since the non-aqueous electrolyte secondary battery has a high energy density and uses an organic solvent as an electrolytic solution as described above, when a short circuit occurs inside the battery, it generates heat due to an excessive current, which is the worst case. In this case, the battery may burst. The risk of rupture increases as the capacity per battery increases, because the energy flowing into the short circuit increases. For this reason, a plurality of batteries housed in a battery can having a relatively small capacity are connected to ensure safety. However, this method has a problem that the weight of the battery can becomes relatively large with respect to the total weight of the battery. Alternatively, there is also a method of providing an explosion-proof valve or the like that releases the pressure and shuts off the current when the pressure inside the battery increases, but the structure is complicated and the cost increases.
【0005】[0005]
【発明が解決しようとする課題】そこで、本発明の目的
は、構造簡単にして安全性が高くかつ重量エネルギー密
度の高い非水電解質二次電池を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous electrolyte secondary battery having a simple structure, high safety and high weight energy density.
【0006】[0006]
【課題を解決するための手段】上記課題を解決するため
に、本発明の非水電解質二次電池は、帯状の正極と帯状
の負極とをセパレーターを介して積層した帯状電極を設
け、この帯状電極を渦巻き状に巻付けてなる複数の渦巻
き状電極を設け、これらを密接させて集合させ、該集合
した電極群を正六角筒形電池缶に収容し、各電極間をリ
ードを介して並列に接続してなるとともに、各リードが
過電流遮断機能を有すること、を特徴としている。ここ
で、前記リードは、その一部にくびれを有し、又は一部
の材質を異ならせることにより過電流遮断機能を有する
のが好ましい。In order to solve the above-mentioned problems, a non-aqueous electrolyte secondary battery of the present invention is provided with a strip-shaped electrode in which a strip-shaped positive electrode and a strip-shaped negative electrode are laminated with a separator interposed between them. a plurality of spiral <br/> can-shaped electrode formed by winding an electrode spirally arranged, are assembled by closely these, accommodating the electrode group and the set in regular hexagonal cylindrical battery can, between the electrodes Connected in parallel via leads , and each lead
It is characterized by having an overcurrent interruption function . Here, the lead has a constriction in a part thereof, or a part thereof.
It is preferable to have an overcurrent cutoff function by using different materials .
【0007】[0007]
【発明の実施の形態】以下本発明の非水電解質二次電池
の実施の形態を説明する。図1は本発明の非水電解質二
次電池の破砕平面図、図2は図1のII−II断面図、図3
は組電池化した場合の説明図である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the non-aqueous electrolyte secondary battery of the present invention will be described below. 1 is a fragmentary plan view of the non-aqueous electrolyte secondary battery of the present invention, FIG. 2 is a sectional view taken along line II-II of FIG. 1, and FIG.
[Fig. 3] is an explanatory diagram of a case where an assembled battery is used.
【0008】本発明の非水電解質二次電池1は、帯状の
正極2と帯状の負極3とをセパレーター4を介して積層
した帯状電極を、渦巻き状に巻付けた同径の渦巻き状電
極(5)7本を設け、これらの内の1本の電極を中心と
して残り6本の電極を環状にかつ密接させて集合させ、
該集合した電極群を有底の正六角筒形電池缶6に収容す
るとともに、各電極5,5間をリード7,8を介して並
列に接続してなる。図2において、符号9は正極キャッ
プで、10は電池缶6と正極キャップ9とを絶縁すると
ともに気密性を保持するためのパッキンである。なお、
電池缶6内には非水電解液が注入されている。上記にお
いて、リードを介してとは、各電極間をリードで直接接
続する場合の他、導通を有する正極キャップ9や電池缶
6をさらに介して接続する場合も含む。In the non-aqueous electrolyte secondary battery 1 of the present invention, a spiral electrode having the same diameter is formed by spirally winding a strip electrode in which a strip positive electrode 2 and a strip negative electrode 3 are laminated via a separator 4. 5) Providing 7 electrodes, and centering on one of these electrodes, the remaining 6 electrodes are assembled in an annular and intimate contact,
The assembled electrode group is housed in a bottomed regular hexagonal tubular battery can 6, and the electrodes 5 and 5 are connected in parallel via leads 7 and 8. In FIG. 2, reference numeral 9 is a positive electrode cap, and 10 is a packing for insulating the battery can 6 and the positive electrode cap 9 and maintaining airtightness. In addition,
A non-aqueous electrolytic solution is injected into the battery can 6. In the above description, “through a lead” includes not only a case where the electrodes are directly connected to each other through a lead, but also a case where the electrodes are further connected through a positive electrode cap 9 and a battery can 6 which have electrical continuity.
【0009】電池缶6に複数の電極5を収容するのは、
各電極5の容量を小さくし、短絡した場合でも、そこに
流れ込むエネルギーを小さくして安全性を高めるためで
ある。そして、電池缶6を正六角筒形としたは、同径の
7本の渦巻き状電極5を集合した電極群を収容するの
に、容積効率が最もよいためであり、また、単電池を複
数個集合して組電池化した場合、図3に示すように隙間
11少なく集合でき、高エネルギー密度化が可能なため
である。各電極間を並列に接続するのは、直列接続では
高電圧になり過ぎて電解液が分解するおそれがあるため
である。The housing of the plurality of electrodes 5 in the battery can 6 is
This is to reduce the capacity of each electrode 5 and to reduce the energy that flows into the electrode 5 even when a short circuit occurs, thereby improving safety. The reason why the battery can 6 has a regular hexagonal cylindrical shape is that the volume efficiency is the best for accommodating an electrode group in which seven spiral electrodes 5 having the same diameter are assembled, and a plurality of single cells are used. This is because when the cells are assembled into a battery pack, the gaps 11 can be reduced as shown in FIG. 3 and the energy density can be increased. The reason why the electrodes are connected in parallel is that the voltage may become too high and the electrolytic solution may be decomposed in series connection.
【0010】ここで、前記各渦巻き状電極5,5間を接
続する各リード7,8に過電流遮断機能を持たせるの
が、安全性を確保する上で好ましい。過電流遮断機能を
有するリードとは、例えば、リードの一部にくびれをも
たせて抵抗を高め、過電流によって溶断するようにした
もの、リードの一部にサーモスタットを組み込み過電流
によって発熱して回路が開となるようにしたもの、リー
ドの材質を一部分異ならしめ(例えば抵抗が大きい、融
点が低い等)、過電流によって溶断するようにしたもの
等がある。これらの内では、リードの一部にくびれをも
たせたものやリードの材質を一部分異ならしめたもの
が、構造が簡単でコスト的にも有利であり好ましい。ま
た、過電流遮断機能を有するリードは、正極2、負極
3、又は両極2,3に用いることができる。なお、正極
リード7の材質としてはアルミニウムが、負極リード8
の材質としては銅又はニッケルが使用されるのが一般的
であるが、かかる材質のものに限られるものではない。Here, it is preferable in order to ensure safety that the leads 7 and 8 connecting the spiral electrodes 5 and 5 have an overcurrent blocking function. A lead having an overcurrent cutoff function is, for example, one in which a part of the lead has a constriction to increase the resistance so that it melts down due to an overcurrent. There is a method in which the material of the leads is partially different (for example, the resistance is high, the melting point is low, etc.), and the leads are blown by an overcurrent. Among these, those in which a part of the lead has a constriction and those in which the material of the lead is partly different are preferable because the structure is simple and the cost is advantageous. Further, the lead having the overcurrent interruption function can be used for the positive electrode 2, the negative electrode 3, or the both electrodes 2, 3. The material of the positive electrode lead 7 is aluminum, and the material of the negative electrode lead 8 is
Copper or nickel is generally used as the material of the material, but is not limited to such material.
【0011】本発明における非水電解質二次電池は、有
機溶媒にリチウム塩等の電解質を溶解させた非水電解液
を用いた二次電池であれば、特に制限はないが、負極活
物質、正極活物質、有機溶媒及び電解質を具体的に述べ
れば、以下のようなものが挙げられる。The non-aqueous electrolyte secondary battery in the present invention is not particularly limited as long as it is a secondary battery using a non-aqueous electrolyte solution in which an electrolyte such as a lithium salt is dissolved in an organic solvent. Specific examples of the positive electrode active material, the organic solvent and the electrolyte include the following.
【0012】負極活物質としてはリチウムイオンのドー
プ・脱ドープが可能な炭素材料が好ましく、かかる炭素
材料としては、熱分解炭素類、コークス類、有機高分子
化合物焼成体、黒鉛、ガラス状炭素類等が挙げられる。
正極活物質としては、リチウムをドープ・脱ドープ可能
な物質であれば特に制限はないが、リチウム遷移金属複
合酸化物が好適で、具体的には、LiCoO2 、LiM
nO2 、LiNiO2、LiCrO2 、LiMn2 O4
等が挙げられる。The negative electrode active material is preferably a carbon material capable of being doped or dedoped with lithium ions, and examples of such a carbon material include pyrolytic carbons, cokes, calcined organic polymer compounds, graphite and glassy carbons. Etc.
The positive electrode active material is not particularly limited as long as it is a material that can be doped with lithium and dedoped, but a lithium transition metal composite oxide is preferable, and specifically, LiCoO 2 , LiM
nO 2 , LiNiO 2 , LiCrO 2 , LiMn 2 O 4
Etc.
【0013】有機溶媒としては、特に限定されるもので
はないが、たとえば、エチレンカーボネイト、プロピレ
ンカーボネイト、ジエチルカーボネイト、ジメチルカー
ボネイト、エチルメチルカーボネイト、ジプロピルカー
ボネイト、γ−ブチロラクトン等が挙げられ、これらの
1種又は2種以上の混合溶媒を用いることができる。ま
た、電解質としては、LiPF6 、LiBF4 、LiC
lO4 、LiAsF6、LiSbF6 、LiCF3 SO
3 、LiC(CF3 SO2 )3 等が挙げられ、これらの
1種又は2種以上を併用することもできる。The organic solvent is not particularly limited, and examples thereof include ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, dipropyl carbonate, γ-butyrolactone and the like. One kind or a mixed solvent of two or more kinds can be used. Further, as the electrolyte, LiPF 6 , LiBF 4 , LiC
lO 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO
3 , LiC (CF 3 SO 2 ) 3, and the like, and one or more of these may be used in combination.
【0014】[0014]
【実施例】以下に本発明を実施例においてより具体的に
説明する。実施例は本発明を例示的に示したものであっ
て本発明を制限するものではない。実施例1
図1中の渦巻き状電極5は、帯状の正極2と帯状の負極
3の間にポリプロピレン製セパレータ4を配し、渦巻き
状に巻付けたものである。ここで、正極2は厚さ20μ
mのアルミニウム箔の両面に、リチウムコバルト複合酸
化物90重量部、黒鉛粉末5重量部、ポリフッ化ビニリ
デン樹脂5重量部、及びN−メチルピロリドン50重量
部の混合物を、塗布、乾燥、圧延したものである。ま
た、負極3は、厚さ15μmの銅箔の両面に、黒鉛粉末
90重量部、ポリフッ化ビニリデン樹脂10重量部及び
N−メチルピロリドン100重量部の混合物を、塗布、
乾燥、圧延したものである。また、正極2には正極リー
ド7を、負極3には負極リード8を溶接してある。な
お、使用した正極リード7は20Aの電流で溶断する太
さのものである。この渦巻き状電極(5)7本を集合し
た電池群を、正六角筒形の電池缶6に装填後、正極リー
ド7と正極キャップ9間、及び負極リード8と電池缶6
間を溶接した。次に、エチレンカーボネイト50vol
%とジエチルカーボネイト50vol%からなる溶媒
に、6フッ化リン酸リチウムを1mol/Lの濃度で溶
解させ、調整した非水電解液を電池缶6内に注入し、パ
ッキン10を介して電池缶6の上部をカシメることによ
り、正極キャップ9を固定して電池缶6を密閉し、非水
電解質二次電池1とした。こうして作製した非水電解質
二次電池1の充放電試験結果及び釘刺し試験結果を表1
に示す。なお、充放電試験は、電圧範囲2.5〜4.1
Vで行い、充放電電流は1000mAとした。また、釘
刺し試験は、4.1Vまで充電した電池1に、直径3m
mの釘12を毎分5cmの一定速度で押し込む(貫通さ
せる)ことにより行った。EXAMPLES The present invention will be described more specifically below with reference to examples. The examples are illustrative of the invention and are not intended to limit the invention. Example 1 A spiral electrode 5 in FIG. 1 is obtained by disposing a polypropylene separator 4 between a strip-shaped positive electrode 2 and a strip-shaped negative electrode 3 and spirally winding the same. Here, the positive electrode 2 has a thickness of 20 μm.
A mixture of 90 parts by weight of lithium cobalt composite oxide, 5 parts by weight of graphite powder, 5 parts by weight of polyvinylidene fluoride resin, and 50 parts by weight of N-methylpyrrolidone was applied, dried and rolled on both sides of the aluminum foil of m. Is. The negative electrode 3 was obtained by applying a mixture of 90 parts by weight of graphite powder, 10 parts by weight of polyvinylidene fluoride resin and 100 parts by weight of N-methylpyrrolidone on both surfaces of a copper foil having a thickness of 15 μm,
It is dried and rolled. A positive electrode lead 7 is welded to the positive electrode 2 and a negative electrode lead 8 is welded to the negative electrode 3. In addition, the positive electrode lead 7 used has a thickness capable of being fused by a current of 20A. The battery group in which seven spiral electrodes (5) are assembled is loaded into a regular hexagonal tubular battery can 6, and then, between the positive electrode lead 7 and the positive electrode cap 9, and between the negative electrode lead 8 and the battery can 6.
Welded between. Next, ethylene carbonate 50vol
% Lithium and 50% by volume of diethyl carbonate, lithium hexafluorophosphate was dissolved at a concentration of 1 mol / L, the adjusted non-aqueous electrolyte was injected into the battery can 6, and the battery can 6 was charged through the packing 10. The positive electrode cap 9 was fixed and the battery can 6 was sealed by caulking the upper part of the above to obtain the non-aqueous electrolyte secondary battery 1. Table 1 shows the charge / discharge test results and the nail penetration test results of the non-aqueous electrolyte secondary battery 1 thus manufactured.
Shown in. The charge / discharge test was conducted in the voltage range of 2.5 to 4.1.
V and the charge / discharge current was 1000 mA. In addition, the nail penetration test was conducted on a battery 1 charged to 4.1V with a diameter of 3 m.
It was performed by pushing in (penetrating) the nail 12 of m at a constant speed of 5 cm per minute.
【0015】比較例1
実施例1における正極及び負極の長さを7倍として作製
した渦巻き状電極1本を、円筒形の電池缶に装填した。
次に、実施例1におけると同様の電解液を電池缶内に注
入し、電池缶の上部をカシメることにより、電池缶を密
閉し、非水電解質二次電池とした。こうして作製した非
水電解質二次電池の充放電試験結果及び釘刺し試験結果
を表1に示す。COMPARATIVE EXAMPLE 1 One spiral electrode produced by increasing the length of the positive electrode and the negative electrode in Example 1 to 7 was loaded into a cylindrical battery can.
Next, the same electrolytic solution as in Example 1 was injected into the battery can, and the upper part of the battery can was caulked to seal the battery can, thereby forming a non-aqueous electrolyte secondary battery. Table 1 shows the charge / discharge test results and the nail penetration test results of the non-aqueous electrolyte secondary battery thus manufactured.
【0016】比較例2
実施例1におけると同一長さ、同一幅の正極及び負極か
ら作製した渦巻き状電極1本を、円筒形の電池缶に装填
した。次に、実施例1におけると同様の電解液を電池缶
内に注入し、電池缶の上部をカシメることにより、電池
缶を密閉し、非水電解質二次電池(直径18mm、長さ
65mm)とした。こうして作製した非水電解質二次電
池の充放電試験結果及び釘刺し試験結果を表1に示す。 Comparative Example 2 One spiral electrode made of a positive electrode and a negative electrode having the same length and width as in Example 1 was loaded into a cylindrical battery can. Next, the same electrolytic solution as in Example 1 was injected into the battery can, and the upper part of the battery can was caulked to seal the battery can, and the non-aqueous electrolyte secondary battery (diameter 18 mm, length 65 mm). And Table 1 shows the charge / discharge test results and the nail penetration test results of the non-aqueous electrolyte secondary battery thus manufactured.
【0017】比較例3
比較例2と同様にして作製した非水電解質二次電池7個
を、組合わせ、並列に接続し、組電池とした。こうして
作製した非水電解質二次電池の充放電試験結果を表1に
示す。 Comparative Example 3 Seven non-aqueous electrolyte secondary batteries produced in the same manner as in Comparative Example 2 were combined and connected in parallel to form an assembled battery. Table 1 shows the charge / discharge test results of the non-aqueous electrolyte secondary battery thus produced.
【0018】[0018]
【表1】 表 1 放電容量 重量エネルギー密 釘刺し試験 (mAh) 度(Wh/kg) 実施例1の電池 4620 123 *1 比較例1の電池 4630 125 正極キャップ部より破裂 比較例2の電池 660 125 *2 比較例3の組電池 4590 100 実施せず *1:温度、内圧が上昇し、正極リードの一部が溶断したものの、破裂には至ら なかった。 *2:温度、内圧が上昇したものの、破裂には至らなかった。[Table 1] Table 1 Discharge capacity Weight energy tight nail penetration test (MAh) degree (Wh / kg) Battery of Example 1 4620 123 * 1 Battery of Comparative Example 1 4630 125 Explosion from positive electrode cap part Battery of Comparative Example 2 660 125 * 2 Battery of Comparative Example 3 4590 100 Not implemented * 1: Temperature and internal pressure increased Although a part of the positive electrode lead was fused, it did not burst. * 2: Although the temperature and internal pressure increased, it did not burst.
【0019】表1から分かるように、実施例1の電池1
は、比較例1と同様な高い重量エネルギー密度を示し、
かつ釘刺し試験においても破裂には至らず安全性の高い
ものであった。比較例2の電池は安全性には問題はない
が、容量を高めるため、これを複数個組合せた比較例3
の組電池は、電池全体に対する電池缶の重量が相対的に
大きくなったため、十分に高い重量エネルギー密度は得
られなかった。As can be seen from Table 1, battery 1 of Example 1
Shows a high weight energy density similar to Comparative Example 1,
Moreover, the nail puncture test did not result in rupture, and the safety was high. Although the battery of Comparative Example 2 has no problem in safety, Comparative Example 3 in which a plurality of batteries are combined in order to increase the capacity.
In the assembled battery of (1), the weight of the battery can was relatively large with respect to the entire battery, so that a sufficiently high weight energy density could not be obtained.
【0020】[0020]
【発明の効果】以上説明したように、本発明の非水電解
質二次電池によれば、電池缶に複数の電極を有している
ので、各電極の容量を小さくし、短絡した場合でも、そ
こに流れ込むエネルギーを小さくして安全性を高めるこ
とができる。加えて、電極間を接続する各リードが過電
流遮断機能を有しているので、安全性を確保する上で更
に好ましい。また、リードの一部にくびれを有し、又は
一部の材質を異ならせることにより過電流遮断機能を有
しているので、構造が簡単でコスト的にも有利である。 As described above, according to the non-aqueous electrolyte secondary battery of the present invention, the battery can has a plurality of electrodes.
Therefore, reduce the capacitance of each electrode, and
The energy that flows into this unit can be reduced to improve safety.
You can In addition, each lead connecting the electrodes is
Since it has a flow blocking function, it can be
Is preferred. Also, there is a constriction in a part of the lead, or
Has an overcurrent cutoff function by changing some materials.
Therefore, the structure is simple and the cost is advantageous.
【図1】本発明の非水電解質二次電池の破砕平面図。FIG. 1 is a fragmentary plan view of a non-aqueous electrolyte secondary battery of the present invention.
【図2】図1のII−II断面図。FIG. 2 is a sectional view taken along line II-II of FIG.
【図3】組電池化した場合の説明図。FIG. 3 is an explanatory diagram of a case where an assembled battery is used.
1 非水電解質二次電池 2 正極 3 負極 4 セパレータ 5 渦巻き状電極 6 正六角筒形電池缶 7,8 リード 1 Non-aqueous electrolyte secondary battery 2 positive electrode 3 Negative electrode 4 separator 5 spiral electrode 6 regular hexagonal battery cans 7,8 leads
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 10/04 - 10/28 H01M 6/02 - 6/18 H01M 2/02 H01M 2/34 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 10/40 H01M 10/04-10/28 H01M 6/02-6/18 H01M 2/02 H01M 2 / 34
Claims (2)
を介して積層した帯状電極を設け、この帯状電極を渦巻
き状に巻付けてなる複数の渦巻き状電極を設け、これら
を密接させて集合させ、該集合した電極群を正六角筒形
電池缶に収容し、各電極間をリードを介して並列に接続
してなるとともに、各リードが過電流遮断機能を有する
ことを特徴とする非水電解質二次電池。1. A provided strip-shaped cathode and a strip-shaped anode and the strip electrodes laminated via a separator, the strip electrodes provided with a plurality of spiral electrodes formed by winding spirally, these
Were assembled by closely accommodates the electrode group was the aggregate in regular hexagonal cylindrical battery can, it becomes connected in parallel between the electrodes through the lead, each lead having an overcurrent interrupting function <br /> A non-aqueous electrolyte secondary battery characterized by the following.
又は一部の材質を異ならせることにより過電流遮断機能
を有することを特徴とする請求項1記載の非水電解質二
次電池。 2. The lead has a constriction in a part thereof,
Or overcurrent cutoff function by changing some materials
The non-aqueous electrolyte electrolyte according to claim 1, characterized in that
Next battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10354696A JP3457462B2 (en) | 1996-03-29 | 1996-03-29 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10354696A JP3457462B2 (en) | 1996-03-29 | 1996-03-29 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09266013A JPH09266013A (en) | 1997-10-07 |
JP3457462B2 true JP3457462B2 (en) | 2003-10-20 |
Family
ID=14356836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10354696A Expired - Fee Related JP3457462B2 (en) | 1996-03-29 | 1996-03-29 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3457462B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4552237B2 (en) * | 1999-02-03 | 2010-09-29 | 株式会社Gsユアサ | Single cell |
JP4906538B2 (en) * | 2007-02-28 | 2012-03-28 | 日立ビークルエナジー株式会社 | Lithium secondary battery |
JP5308729B2 (en) * | 2008-07-02 | 2013-10-09 | 川崎重工業株式会社 | Fuel cell storage battery and battery module using the same |
DE102015200921A1 (en) * | 2015-01-21 | 2016-07-21 | Robert Bosch Gmbh | Cell winding for a lithium ion accumulator |
-
1996
- 1996-03-29 JP JP10354696A patent/JP3457462B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09266013A (en) | 1997-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6733925B2 (en) | Non-aqueous electrolytic solution secondary battery with electrodes having a specific thickness and porosity | |
JP2002352863A (en) | Lithium secondary battery and prolonged structure of lithium secondary battery | |
JP4601752B2 (en) | Gel electrolyte and gel electrolyte battery | |
US6984471B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery | |
JP2001185224A (en) | Nonaqueous electrolyte secondary battery | |
US20050058896A1 (en) | Non-aqueous electrolyte secondary battery | |
JP3457461B2 (en) | Non-aqueous electrolyte secondary battery and assembled battery | |
JP2001185213A (en) | Nonaqueous electrolyte battery and manufacturing method therefor | |
JP2001084984A (en) | Battery | |
JP2001185213A5 (en) | ||
JP3237015B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH11176478A (en) | Organic electrolyte secondary battery | |
JP3457462B2 (en) | Non-aqueous electrolyte secondary battery | |
EP1191618B1 (en) | Rechargeable battery using nonaqueous electrolyte | |
KR100321132B1 (en) | Lithium ion secondary cell and its cathode | |
JP3511966B2 (en) | Cylindrical lithium-ion battery | |
JP2000285902A5 (en) | ||
JP2002245991A (en) | Non-aqueous secondary battery | |
JP4938923B2 (en) | Secondary battery | |
US20060040184A1 (en) | Non-aqueous electrolyte battery | |
JP3643693B2 (en) | Manufacturing method of sealed battery | |
JPH11265700A (en) | Nonaqueous electrolyte secondary battery | |
JP2001189167A (en) | Non-aqueous electrolyte secondary cell | |
JP3709965B2 (en) | Cylindrical lithium ion battery | |
JP2001126760A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120801 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |