JP3455552B2 - Method for producing rare earth metal-iron binary alloy ingot for permanent magnet - Google Patents
Method for producing rare earth metal-iron binary alloy ingot for permanent magnetInfo
- Publication number
- JP3455552B2 JP3455552B2 JP12893692A JP12893692A JP3455552B2 JP 3455552 B2 JP3455552 B2 JP 3455552B2 JP 12893692 A JP12893692 A JP 12893692A JP 12893692 A JP12893692 A JP 12893692A JP 3455552 B2 JP3455552 B2 JP 3455552B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- earth metal
- alloy ingot
- permanent magnet
- binary alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Continuous Casting (AREA)
- Hard Magnetic Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気特性に優れた結晶
組織を有する、永久磁石用希土類金属−鉄2元系合金鋳
塊の製造法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth metal-iron binary alloy casting for a permanent magnet , which has a crystal structure excellent in magnetic properties.
About the mass of the production process.
【0002】[0002]
【従来の技術】従来、永久磁石用合金鋳塊は、溶融した
合金を金型に鋳造する金型鋳造法により製造されている
のが一般的である。しかし該金型鋳造法により合金溶融
物を凝固させる場合、合金溶融物の抜熱過程において、
抜熱初期では鋳型伝熱律速であるが、凝固が進行する
と、鋳型−凝固相間及び凝固相における伝熱が抜熱律速
となり、金型冷却能を向上させても鋳塊内部と鋳型近傍
の鋳塊では、冷却条件が異なり、特に鋳塊厚が厚いほど
このような現象が生じる。そのため鋳塊の内部と表面付
近での冷却条件の相違が大きい場合には、特に磁石組成
における高残留磁束密度側の鋳造組織に、粒径10〜1
00μmのα−Fe相が残存し、同時に主相を取り巻く
希土類金属に富んだ相の大きさも大きくなる。該α−F
e相及び希土類金属に富んだ大きい相では、通常900
〜1200℃で数〜数十時間熱処理することにより行う
均質化が困難なため、磁石製造工程における均質化過程
が長期化し、結晶粒は更に粗大化する。更にその後の窒
素化過程が長期化するため、各粒子における窒素含有量
が不均一となる。その結果、その後の粉末配向性及び磁
気特性に悪影響を及ぼす等の欠点がある。2. Description of the Related Art Conventionally, alloy ingots for permanent magnets are generally produced by a die casting method in which a molten alloy is cast in a die. However, when solidifying the alloy melt by the die casting method, in the heat removal process of the alloy melt,
In the initial stage of heat removal, the heat transfer rate is controlled by the mold, but when solidification proceeds, heat transfer between the mold and the solidification phase and in the solidification phase becomes heat removal rate control, and even if the mold cooling capacity is improved, casting inside the ingot and near the mold In the ingot, the cooling conditions are different, and such a phenomenon occurs especially when the ingot thickness is large. Therefore, when there is a large difference in the cooling conditions between the inside of the ingot and the vicinity of the surface, the grain size is 10 to 1 especially in the cast structure on the high residual magnetic flux density side in the magnet composition.
The α-Fe phase of 00 μm remains, and at the same time, the size of the rare earth metal-rich phase surrounding the main phase also increases. The α-F
e phase and large phase rich in rare earth metals usually 900
Since it is difficult to perform homogenization by performing heat treatment at ˜1200 ° C. for several to tens of hours, the homogenization process in the magnet manufacturing process is prolonged and the crystal grains are further coarsened. Further, since the subsequent nitrogenation process is prolonged, the nitrogen content in each particle becomes non-uniform. As a result, there are drawbacks such as adversely affecting the powder orientation and magnetic properties thereafter.
【0003】また前記金型鋳造法により得られる鋳塊組
織中に、短軸方向0.1〜100μm、長軸方向0.1
〜100μmの結晶粒径を有する結晶が存在することが
知られているが、該結晶の含有率は、僅かであって、磁
気特性に良好な影響を及ぼすには至っていない。In the ingot structure obtained by the die casting method, 0.1-100 μm in the minor axis direction and 0.1 in the major axis direction.
It is known that there is a crystal having a crystal grain size of ˜100 μm, but the content of the crystal is so small that it has not yet exerted a good influence on the magnetic properties.
【0004】更にまた、希土類金属元素、コバルト及び
必要に応じて、鉄、銅、ジルコニウムを添加し、るつぼ
中で溶解させた後、双ロール、単ロール、双ベルト等を
組み合わせたストリップキャスティング法等で0.01
〜5mmの厚さとなるように凝固させる希土類金属磁石
用合金の製造法が提案されている。Furthermore, a rare earth metal element, cobalt and, if necessary, iron, copper and zirconium are added and dissolved in a crucible, and then a strip casting method in which twin rolls, single rolls, twin belts, etc. are combined. 0.01
A method for producing an alloy for a rare earth metal magnet, which is solidified to have a thickness of ~ 5 mm, has been proposed.
【0005】該方法では、金型鋳造法に比して組成の均
一な鋳塊が得られるが、原料成分が、希土類金属元素、
コバルト及び必要に応じて、鉄、銅、ジルコニウムを組
み合わせた成分であるために、前記ストリップキャステ
ィング法による磁石性能の向上が充分に得られない等の
問題がある。According to this method, an ingot having a uniform composition can be obtained as compared with the die casting method, but the raw material components are rare earth metal elements,
Since cobalt and, if necessary, a combination of iron, copper, and zirconium are components, there is a problem in that the magnet performance cannot be sufficiently improved by the strip casting method.
【0006】[0006]
【発明が解決しようとする課題】本発明の目的は、希土
類金属−鉄系永久磁石合金の特性に最も良い影響を与え
る結晶組織を有する永久磁石用希土類金属−鉄2元系合
金鋳塊の製造法を提供することにある。 An object of the present invention is to provide a rare earth metal - iron rare earth metal permanent magnet having a crystal structure giving the best effect on the properties of the permanent magnet alloy - iron binary interlockable <br/> Ru near to provide a process for the preparation of a gold ingot.
【0007】[0007]
【0008】[0008]
【課題を解決するための手段】本発明によれば、短軸方
向0.1〜100μm、長軸方向0.1〜100μmの
主相結晶粒径を有する結晶を90容量%以上含有し、且
つ前記主相結晶粒内に、包晶核であるα−Fe及び/又
はγ−Feが粒径20μm未満で微細分散されている希
土類金属−鉄2元系合金鋳塊の製造法であって、希土類
金属−鉄2元系合金溶融物を、タンディッシュを介した
単ロールによるストリップキャスティング法により冷却
速度100〜1000℃/秒、過冷度200〜500℃
の冷却条件下で均一に凝固させることを特徴とする永久
磁石用希土類金属−鉄2元系合金鋳塊の製造法が提供さ
れる。According to the present invention, the short axis direction
0.1 to 100 μm in the longitudinal direction and 0.1 to 100 μm in the major axis direction
Contains 90% by volume or more of crystals having a main phase crystal grain size, and
In the main phase crystal grains, α-Fe which is a peritectic nucleus and / or
Is rare in which γ-Fe is finely dispersed with a particle size of less than 20 μm.
A method for producing an ingot of a binary alloy of an earth metal-iron and a binary alloy of rare earth metal-iron, a cooling rate of 100 to 100 by a strip casting method using a single roll through a tundish. 1000 ° C / sec, supercooling degree 200-500 ° C
Permanently characterized by uniform solidification under cooling conditions
A method of manufacturing a rare earth metal-iron binary alloy ingot for a magnet is provided.
【0009】[0009]
【0010】[0010]
【0011】以下本発明を更に詳細に説明する。The present invention will be described in more detail below.
【0012】本発明により得られる永久磁石用希土類金
属−鉄2元系合金鋳塊は、短軸方向0.1〜100μ
m、長軸方向0.1〜100μmの結晶粒径を有する結
晶を90容量%以上、好ましくは95容量%以上含有す
る希土類金属−鉄2元系の合金鋳塊であって、特に、主
相結晶粒内に包晶核として通常含有されるα−Fe及び
/又はγ−Feの粒径が20μm未満であり、且つ微細
分散されている。この際前記特定の結晶粒径を有する結
晶の含有割合が、90容量%未満の場合には、得られる
合金鋳塊に優れた磁気特性を付与できない。また短軸方
向及び長軸方向の長さが前記範囲外である場合、若しく
は該α−Fe及び/又はγ−Feの粒径が20μm以上
であり、且つ微細分散されていない場合には、永久磁石
製造工程における均質化熱処理の際に、均質化時間が長
期化する。また永久磁石用合金鋳塊の厚さは、0.05
〜0.5mmの範囲である。 Rare earth gold for permanent magnet obtained by the present invention
Genus-iron binary alloy ingot, 0.1-100μ in the minor axis direction
m, a rare earth metal-iron binary alloy ingot containing 90% by volume or more, preferably 95% by volume or more of crystals having a crystal grain size of 0.1 to 100 μm in the major axis direction, and particularly a main phase the particle size of the alpha-Fe is usually contained as TsutsumiAkirakaku in crystal grains and / or .gamma. Fe is less than 20 [mu] m, that is and finely dispersed. At this time, if the content ratio of the crystal having the specific crystal grain size is less than 90% by volume, excellent magnetic properties cannot be imparted to the obtained alloy ingot. Further, when the lengths in the minor axis direction and the major axis direction are out of the above range, or when the particle size of the α-Fe and / or γ-Fe is 20 μm or more and the particles are not finely dispersed, permanent Homogenization time is prolonged during the homogenization heat treatment in the magnet manufacturing process . The thickness of the alloy ingot for permanent magnet is 0.05
It is in the range of 0.5 mm .
【0013】本発明の製造法に用いる原料成分は、希土
類金属−鉄2元系であれば特に限定されるものではない
が、希土類金属としては特にサマリウムを好ましく用い
ることができ、また通常製造の際に不可避的に含まれる
他の不純物成分を含んでいても良い。また希土類金属
は、単体でも混合物であっても良い。該希土類金属と、
鉄との配合割合は、通常永久磁石用合金鋳塊の配合割合
と同様で良く、好ましくは重量比で、23〜28:77
〜72であるのが好ましい。The raw material component used in the production method of the present invention is not particularly limited as long as it is a rare earth metal-iron binary system, but as the rare earth metal, samarium can be preferably used, and it is usually produced. Other impurity components that are unavoidably included may be included. The rare earth metal may be a single substance or a mixture. The rare earth metal,
The compounding ratio with iron may be the same as the compounding ratio of the alloy ingot for permanent magnet, and is preferably 23 to 28:77 by weight.
It is preferably ˜72.
【0014】本発明の製造法では、前記永久磁石用合金
鋳塊を得るために、希土類金属−鉄2元系合金溶融物
を、タンディッシュを介して単ロール法により冷却速度
100〜1000℃/秒、過冷度200〜500℃の冷
却条件下で均一に凝固させることを特徴とする。In the manufacturing method of the present invention, in order to obtain the alloy ingot for a permanent magnet, a rare earth metal-iron binary alloy melt is cooled by a single roll method through a tundish at a cooling rate of 100 to 1000 ° C. / sec, wherein the uniformly solidified by cooling under conditions of supercooling degree 2 from 00 to 500 ° C..
【0015】この際過冷度とは、(合金の融点)−(合
金溶融物の実際の温度)の値である。冷却速度及び過冷
度が前記必須範囲外の場合には、所望の組織を有する合
金鋳塊が得られない。In this case, the degree of supercooling is a value of (melting point of alloy)-(actual temperature of molten alloy) . If the cooling rate and the degree of supercooling are outside the above-mentioned essential ranges, an alloy ingot having a desired structure cannot be obtained.
【0016】本発明の製造法を更に具体的に説明する
と、例えば真空溶融法、高周波溶融法等により、好まし
くはるつぼ等を用いて、不活性ガス雰囲気下、希土類金
属−鉄2元系合金溶融物を、タンディッシュを介した単
ロールによるストリップキャスティング法で、前記条件
下連続的に凝固させ、所望の結晶組織を有する永久磁石
用合金鋳塊を得ることができる。この際、合金鋳塊の厚
さを、好ましくは0.05〜0.5mmの範囲となるよ
うに、鋳造温度及び注湯速度等を適宜選択し、前記条件
下処理するのが最も容易な方法である。また所望に応じ
て得られた合金鋳塊を、好ましくは900〜1200℃
において、5〜40時間、均質化処理することもでき
る。More specifically, the production method of the present invention will be described. For example, by a vacuum melting method, a high frequency melting method or the like, preferably using a crucible or the like, a rare earth metal-iron binary alloy melting under an inert gas atmosphere. Object through a tundish
Strip casting method by roll, the above conditions
Under continuous manner solidified, it is possible to obtain an alloy ingot for permanent magnet having a desired crystal structure. At this time, it is the easiest to appropriately select the casting temperature, the pouring speed, etc. so that the thickness of the alloy ingot is preferably in the range of 0.05 to 0.5 mm, and to perform the treatment under the above conditions. Is the way. The alloy ingot obtained as desired is preferably 900 to 1200 ° C.
In the above, homogenization treatment can be performed for 5 to 40 hours.
【0017】[0017]
【0018】[0018]
【0019】[0019]
【0020】[0020]
【発明の効果】本発明の製造法では、特定の冷却速度及
び特定の過冷度にて、均一性に優れた組成及び組織を有
する永久磁石用希土類金属−鉄2元系合金鋳塊を容易に
得ることができる。 In this onset Ming preparation according to the present invention, at a particular cooling rate and specific degree of supercooling, a rare earth metal permanent magnet exhibits excellent composition and tissue uniformity - iron binary alloy ingot Can be easily obtained.
【0021】[0021]
【実施例】以下本発明を実施例及び比較例により更に詳
細に説明するが、本発明はこれらに限定されるものでは
ない。EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
【0022】[0022]
【実施例1】サマリウム24.5wt%、鉄75.5w
t%からなる合金を、アルゴンガス雰囲気中で、アルミ
ナるつぼを使用して高周波溶融法により溶融物とした。
次いで、得られた溶融物を図1に示す装置を用いて以下
の方法に従って永久磁石用合金鋳塊を得た。Example 1 Samarium 24.5 wt%, iron 7 5 . 5w
An alloy consisting of t% was made into a melt by an induction melting method using an alumina crucible in an argon gas atmosphere.
Next, the obtained melt was used to obtain an alloy ingot for permanent magnet according to the following method using the apparatus shown in FIG.
【0023】図1は、単ロールを用いたストリップキャ
スト法により永久磁石用合金鋳塊を製造するための概略
図であって、1は前記高周波溶融法により溶融した溶融
物の入ったるつぼである。1500℃に保持された溶融
物2を、タンディッシュ3上に連続的に流し込み、次い
で約1m/秒で回転するロール4上において、冷却速度
1000℃/秒、過冷度200℃の冷却条件となるよう
に急冷凝固させ、ロール4の回転方向に連続的に溶融物
2を落下させて、厚さ0.5mmの合金鋳塊5を製造し
た。FIG. 1 is a schematic view for producing an alloy ingot for a permanent magnet by a strip casting method using a single roll, and 1 is a crucible containing a melt melted by the high frequency melting method. . The melt 2 held at 1500 ° C. was continuously poured onto the tundish 3 and then on a roll 4 rotating at about 1 m / sec, cooling conditions of 1000 ° C./sec and supercooling degree of 200 ° C. It was rapidly cooled and solidified so that the melt 2 was continuously dropped in the rotation direction of the roll 4 to manufacture an alloy ingot 5 having a thickness of 0.5 mm.
【0024】次に得られた永久磁石用合金鋳塊に110
0℃にて、20時間の均質化処理を施し、均質化処理開
始後5時間、10時間、20時間、30時間及び40時
間での鋳塊に残留するα−Feの量を測定した。結果を
表1に示す。またα−Feが消失した時点での鋳塊の結
晶粒径を測定し、その結果を表2に示す。その後、前記
鋳塊を0.5〜5mmに粉砕し、得られた粉末を500
℃にて3時間、窒素ガス1気圧雰囲気中にて窒化処理を
施した。得られた窒化粉末を、アルコール中において、
遊星ボールミルを用いて更に平均粒径2μm程度まで微
粉砕した。次いで得られた微粉末を、150MPa、2
400KAm~1の条件下、磁場プレスし、圧粉体を得
た。得られた圧粉体の磁気特性を直流磁気測定装置によ
り測定した。結果を表3に示す。Next, 110 is added to the obtained alloy ingot for permanent magnet.
The homogenization treatment was performed at 0 ° C. for 20 hours, and the amount of α-Fe remaining in the ingot was measured 5 hours, 10 hours, 20 hours, 30 hours, and 40 hours after the start of the homogenization treatment. The results are shown in Table 1. Further, the crystal grain size of the ingot at the time when α-Fe disappeared was measured, and the results are shown in Table 2. Then, the ingot was pulverized to 0.5 to 5 mm, and the obtained powder was 500
Nitriding treatment was performed in a nitrogen gas atmosphere of 1 atm for 3 hours. The obtained nitride powder in alcohol,
Using a planetary ball mill, it was further finely pulverized to an average particle size of about 2 μm. Then, the obtained fine powder was treated with 150 MPa, 2
Magnetic field pressing was performed under the condition of 400 KAm- 1 to obtain a green compact. The magnetic characteristics of the obtained green compact were measured with a DC magnetometer. The results are shown in Table 3.
【0025】[0025]
【実施例2】サマリウム25.00wt%、鉄75wt
%からなる合金を用いた以外は、実施例1と同様に行
い、永久磁石用合金鋳塊を得、均質化処理を施した後、
α−Fe残留量を測定し、更に圧粉体を製造した。α−
Fe残留量を表1に、結晶粒径を表2に、磁気特性を表
3に示す。[Example 2] Samarium 25.00 wt%, iron 75 wt
% In the same manner as in Example 1, except that an alloy ingot for permanent magnet was obtained, and after homogenization treatment,
The residual amount of α-Fe was measured to manufacture a green compact. α-
The residual Fe amount is shown in Table 1, the crystal grain size is shown in Table 2, and the magnetic properties are shown in Table 3.
【0026】[0026]
【比較例1〜2】実施例1及び2で製造した合金と同じ
組成を有する合金を、高周波溶融法により溶解し、金型
鋳造法により冷却速度10℃/秒、過冷度20℃の条件
下、厚さ30mmの永久磁石用合金鋳塊を得た。得られ
た合金鋳塊の均質化処理後のα−Fe残留量の測定を実
施例1と同様に行い、更に実施例1と同様な方法にて圧
粉体を製造した。α−Fe残留量を表1に、結晶粒径を
表2に、磁気特性を表3に示す。なお比較例1では、4
0時間の均質化処理でもα−Feが消失しなかったため
に、均質化処理開始後40時間での結晶粒径の値とし
た。[Comparative Examples 1 and 2] Alloys having the same composition as the alloys produced in Examples 1 and 2 were melted by the high frequency melting method, and the cooling rate was 10 ° C / sec and the supercooling degree was 20 ° C by the die casting method. Below, an alloy ingot for a permanent magnet having a thickness of 30 mm was obtained. The residual amount of α-Fe after the homogenization treatment of the obtained alloy ingot was measured in the same manner as in Example 1, and the green compact was manufactured by the same method as in Example 1. Table 1 shows the residual amount of α-Fe, Table 2 shows the crystal grain size, and Table 3 shows the magnetic properties. In Comparative Example 1, 4
Since α-Fe did not disappear even after the homogenization treatment for 0 hours, the value of the crystal grain size 40 hours after the start of the homogenization treatment was used.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】[0029]
【表3】 [Table 3]
【図面の簡単な説明】[Brief description of drawings]
【図1】図1は、実施例1で用いたストリップキャスト
法により永久磁石用合金鋳塊を製造する際の概略図であ
る。FIG. 1 is a schematic diagram when manufacturing an alloy ingot for a permanent magnet by the strip casting method used in Example 1.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−201902(JP,A) 特開 昭63−317643(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 33/04 B22D 11/124 B22D 11/22 C22C 38/00 303 H01F 1/053 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-2-201902 (JP, A) JP-A-63-317643 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 33/04 B22D 11/124 B22D 11/22 C22C 38/00 303 H01F 1/053
Claims (3)
0.1〜100μmの主相結晶粒径を有する結晶を90
容量%以上含有し、且つ前記主相結晶粒内に、包晶核で
あるα−Fe及び/又はγ−Feが粒径20μm未満で
微細分散されている希土類金属−鉄2元系合金鋳塊の製
造法であって、 希土類金属−鉄2元系合金溶融物を、タンディッシュを
介した単ロールによるストリップキャスティング法によ
り冷却速度100〜1000℃/秒、過冷度200〜5
00℃の冷却条件下で均一に凝固させることを特徴とす
る永久磁石用希土類金属−鉄2元系合金鋳塊の製造法。1. A minor axis direction of 0.1 to 100 μm and a major axis direction.
90 crystals having a main phase grain size of 0.1 to 100 μm
Content of more than volume% and within the main phase crystal grains, peritectic nuclei
When a certain α-Fe and / or γ-Fe has a particle size of less than 20 μm,
Production of finely dispersed rare earth metal-iron binary alloy ingot
A method for manufacturing a rare earth metal-iron binary alloy melt by a strip casting method using a single roll through a tundish at a cooling rate of 100 to 1000 ° C / sec and a supercooling degree of 200 to. 5
A method for producing a rare earth metal-iron binary alloy ingot for a permanent magnet, which comprises uniformly solidifying under a cooling condition of 00 ° C.
さが、0.05〜0.5mmであることを特徴とする請
求項1記載の製造法。2. A thickness of the alloy ingot upon which the uniform solidification, process according to claim 1, wherein it is 0.05 to 0.5 mm.
とを特徴とする請求項1記載の製造法。 3. The rare earth metal is samarium (Sm).
The manufacturing method according to claim 1, wherein
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12893692A JP3455552B2 (en) | 1992-05-21 | 1992-05-21 | Method for producing rare earth metal-iron binary alloy ingot for permanent magnet |
EP93102276A EP0556751B1 (en) | 1992-02-15 | 1993-02-12 | Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet |
US08/017,043 US5383978A (en) | 1992-02-15 | 1993-02-12 | Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet |
DE69318998T DE69318998T2 (en) | 1992-02-15 | 1993-02-12 | Alloy block for a permanent magnet, anisotropic powder for a permanent magnet, process for producing such a magnet and permanent magnet |
AT93102276T ATE167239T1 (en) | 1992-02-15 | 1993-02-12 | ALLOY BLOCK FOR A PERMANENT MAGNET, ANISOTROPIC POWDER FOR A PERMANENT MAGNET, METHOD FOR PRODUCING THE SAME AND PERMANENT MAGNET |
KR1019930002058A KR0131333B1 (en) | 1992-02-15 | 1993-02-15 | Alloy ingot for permanent magnet, antisotropic powders for permanent magnet, method for producing same and permanent magnet |
US08/626,157 US5630885A (en) | 1992-02-15 | 1996-04-04 | Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet |
US08/636,905 US5656100A (en) | 1992-02-15 | 1996-04-18 | Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet |
US08/636,772 US5674327A (en) | 1992-02-15 | 1996-04-19 | Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12893692A JP3455552B2 (en) | 1992-05-21 | 1992-05-21 | Method for producing rare earth metal-iron binary alloy ingot for permanent magnet |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003045275A Division JP3548568B2 (en) | 2003-02-24 | 2003-02-24 | Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05320832A JPH05320832A (en) | 1993-12-07 |
JP3455552B2 true JP3455552B2 (en) | 2003-10-14 |
Family
ID=14997070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12893692A Expired - Lifetime JP3455552B2 (en) | 1992-02-15 | 1992-05-21 | Method for producing rare earth metal-iron binary alloy ingot for permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3455552B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09212243A (en) * | 1996-02-02 | 1997-08-15 | Santoku Kinzoku Kogyo Kk | Device and method for controlling inclined flow rate of liquid in vessel |
US6468440B1 (en) * | 1998-03-27 | 2002-10-22 | Kabushiki Kaisha Toshiba | Magnet powder and method for producing the same, and bonded magnet using the same |
-
1992
- 1992-05-21 JP JP12893692A patent/JP3455552B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH05320832A (en) | 1993-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7691323B2 (en) | Rare-earth alloy, rare-earth sintered magnet, and methods of manufacturing | |
KR0131333B1 (en) | Alloy ingot for permanent magnet, antisotropic powders for permanent magnet, method for producing same and permanent magnet | |
JP3267133B2 (en) | Alloy for rare earth magnet, method for producing the same, and method for producing permanent magnet | |
JP4389427B2 (en) | Sintered magnet using alloy powder for rare earth-iron-boron magnet | |
JP2639609B2 (en) | Alloy ingot for permanent magnet and method for producing the same | |
JPH09111383A (en) | Permanent magnet alloy and its production | |
JP4106099B2 (en) | Method for producing slab for R-Fe-B magnet alloy | |
JPH1036949A (en) | Alloy for rare earth magnet and its production | |
KR0151244B1 (en) | Permanent magnet | |
US5690752A (en) | Permanent magnet containing rare earth metal, boron and iron | |
JP3505261B2 (en) | Sm-Co permanent magnet material, permanent magnet and method for producing the same | |
JP3455552B2 (en) | Method for producing rare earth metal-iron binary alloy ingot for permanent magnet | |
EP1263003B1 (en) | Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith | |
JP3299630B2 (en) | Manufacturing method of permanent magnet | |
JP3548568B2 (en) | Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom | |
JP3667783B2 (en) | Method for producing raw powder for anisotropic bonded magnet | |
JP3278431B2 (en) | Rare earth metal-iron-boron anisotropic permanent magnet powder | |
JP3479168B2 (en) | Method for producing cast piece for R-Fe-BC magnet alloy having excellent corrosion resistance | |
JP3726888B2 (en) | Rare earth alloy and manufacturing method thereof, and manufacturing method of rare earth sintered magnet | |
JP3213638B2 (en) | Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet | |
JP2003077717A (en) | Rare-earth magnetic alloy agglomeration, its manufacturing method and sintered magnet | |
JP3953768B2 (en) | R-Fe-B-C magnet alloy slab with excellent corrosion resistance | |
JP3256413B2 (en) | Slab for R-Fe-BC magnet alloy having excellent corrosion resistance and method for producing the same | |
JPH01706A (en) | Rare earth magnet manufacturing method | |
JPH0125209B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |