JP3448047B2 - 送信装置及び受信装置 - Google Patents
送信装置及び受信装置Info
- Publication number
- JP3448047B2 JP3448047B2 JP2002230064A JP2002230064A JP3448047B2 JP 3448047 B2 JP3448047 B2 JP 3448047B2 JP 2002230064 A JP2002230064 A JP 2002230064A JP 2002230064 A JP2002230064 A JP 2002230064A JP 3448047 B2 JP3448047 B2 JP 3448047B2
- Authority
- JP
- Japan
- Prior art keywords
- information
- data
- priority
- image
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Television Systems (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Time-Division Multiplex Systems (AREA)
Description
装置及び受信装置に関する。
中から、例えば人物画像を抽出し、その画像と相手側か
ら送られてきた人物画像と予め記憶されている相手側と
共通的に表示する仮想的な空間の画像と重畳して表示す
ることにより、相手が自分の前にいるという実在感を充
足し、臨場感のある映像通信を目指したものがある(特
公平4−24914号公報)。
の高速化、メモリーを低減する方法に関する発明が行わ
れている(例えば、特公平5−46592号公報:画像
合成装置)。
は、2次元の静止画や3次元のCGデータを合成する画
像合成を利用した通信システムが提案されていたが、複
数の動画や音声を同時に合成して表示させるシステムの
実現方法について、下記の観点からの具体的な議論が行
われていなかった。
実の伝送路上においてソフト的に構築される複数の論理
的な伝送路を用いて、データと制御情報(データとは別
のパケットで伝送される、端末側の処理を制御するため
の情報)とが独立して伝送される環境下での画像や音声
の伝送(通信と放送)及び、その制御方法、(A2)送
信すべき画像や音声のデータに付加するヘッダ情報(本
発明のデータ管理情報に対応)の動的な変更方法、(A
3)送信のために付加するヘッダ情報(本発明の伝送管
理情報に対応)の動的な変更方法、(A4)複数の論理
的な伝送路を動的に多重化、分離して情報の伝送を行う
方法、(A5)プログラムやデータの読み込み、立ち上
げ時間を考慮した画像や音声の伝送方法、及び(A6)
ザッピングを考慮した画像や音声の伝送方法等の観点か
らの具体的な議論が行われていなかったという課題があ
った。
を動的に調整する方法としては、エンコードの方式を変
更する方式や、映像のフレームタイプに応じて、フレー
ム単位でデータを廃棄する方式が提案されている(秦泉
寺(じんぜんじ)浩史、田尻哲男、分散適応型VODシ
ステムの一検討、D−81、電子情報通信学会システム
ソサイエティ(1995))。
ては、処理時間拘束のもとで画質の高い映像を提供でき
る動的演算量スケーラブルアルゴリズムが提案されてい
る(大迫 史典,矢島 由幸,小寺 博,渡辺 裕,島村
和典:動的演算量スケーラブルアルゴリズムによるソフ
トウェア画像符号化,電子情報通信学会論文誌 D−2,
Vol.80-D-2, No.2, pp.444-458(1997).)。
としては、MPEG1/MPEG2のシステムがある。
来方式の映像のフレームタイプに応じて映像を廃棄する
方式では、扱える情報の粒度が、単一のストリーム内で
あるため、複数のビデオストリームや複数のオーディオ
ストリームの取り扱いや、編集者の意図を反映させて、
重要なシーンカットを重点的にオーディオとともに同期
再生をさせることは困難であるという課題があった。
(B2)また、MPEG1/MPEG2では、ハードウ
ェアでの実現が前提であるため、デコーダは与えられた
ビットストリームをすべてデコードできることが前提と
なる。したがって、デコーダの処理能力を超えた場合の
対応方法が不定となる課題が有る。
H.261(ITU−T Recommendatio
n H.261−Video codec for a
udiovisual services at px
64)などの方式を用いたものがあり、これまで、ハー
ドウェアにより実装されていた。このため、ハードウェ
ア設計時に、必要な性能の上限を考慮しているため指定
時間以内に復号化処理を完了できないという場合は、生
じなかった。
を符号化したビットストリームの伝送に要する時間であ
る。この時間内に復号化できないと、超過した時間が遅
延となり、これが蓄積して大きくなると、送信側から受
信側までの遅延が大きくなりテレビ電話としての使用に
適しなくなる。このような状況は避けねばならない。
ムを生成しているために復号化処理を指定時間内に完了
できない場合には、動画像の伝送ができないという課題
があった。
データにおいても発生する課題である。
普及という形でパーソナルコンピュータ(PC)でのネ
ットワーク環境が整備された結果、伝送速度が速くな
り、PCとネットワークを利用した動画像の伝送が可能
になってきた。ユーザからの動画像伝送に対する要求
も、とみに高まってきている。また、CPU性能の向上
により、ソフトウェアによる動画像の復号化が充分可能
となってきている。
おいては同じソフトウェアを、CPU、バス幅、アクセ
ラレータの有無など、装置構成の異なるコンピュータで
実行可能であるため、必要な性能の上限を予め考慮する
ことが困難であり、指定時間内に画像を復号化できない
場合が生じる。
動画像の符号化データが伝送された場合には指定時間内
の符号化が不可能となる。
し、遅延を小さく抑える。
えば、波形データとして動画像を入力する場合であれ
ば、伝送されたビットストリームのうち一部を使用しな
いため、伝送路の実質使用効率が悪い、という問題が残
る場合もある。また、符号化方式によっては、前回の復
号画像をもとに今回の復号画像を生成するものがあるが
(Pピクチャなど)、前回の復号画像を完全に復元しな
い場合があるため、画質劣化が、時間とともに波及的に
大きくなるという問題もある。
い。また、画質劣化が波及する。
の符号化処理に要する時間で画像のフレームレートが決
まるため、ユーザの指定したフレームレートが計算機の
処理限界を越えた場合には、指定に応えることができな
かった。
レートが、計算機の処理限界を越えると指定に応えられ
ない。
〜(A6)の課題を考慮し、それらの課題の少なくとも
何れか一つを解決する送信装置及び受信装置を提供する
ことを目的とする。
は、伝送方法に関する及び/又は伝送するデータの構造
に関する内容、又はその内容を示す識別子を、伝送フォ
ーマット情報として受信装置へ送信する送信手段を有す
る送信装置において、前記伝送フォーマット情報は、
(1)前記受信装置において時間的に後の段階で処理の
ために使用されることになるプログラム又はデータを識
別する識別子と、(2)前記プログラム又はデータが処
理のために使用されることになる時点の情報、又は前記
プログラム又はデータを処理するための使用の有効期間
を知るための情報とを含み、前記受信装置が、前記識別
子及び前記情報を判断して、前記識別されたプログラム
又はデータを、前記情報に従って前記識別されたプログ
ラム又はデータを処理するための使用に先だってセット
アップするために用いられる送信装置である。
又はデータが処理のために使用されることになる時点の
情報、又は前記プログラム又はデータを処理するための
使用の有効期間を知るための情報は、フラグ、カウン
タ、又はタイマーのうち少なくとも1つであることを特
徴とする請求項1記載の送信装置である。
る及び/又は伝送するデータの構造に関する内容、又は
その内容を示す識別子を、伝送フォーマット情報として
受信する受信手段と、前記伝送フォーマット情報を判断
し、データを処理する制御手段とを有する受信装置にお
いて、前記伝送フォーマット情報は、(1)受信装置に
おいて時間的に後の段階で処理のために使用されること
になるプログラム又はデータを識別する識別子と、
(2)前記プログラム又はデータが処理のために使用さ
れることになる時点の情報、又は前記プログラム又はデ
ータを処理するための使用の有効期間を知るための情報
とを含み、前記制御手段は、前記識別子及び前記情報を
判断して、前記識別されたプログラム又はデータを、前
記情報に従って前記識別されたプログラム又はデータを
処理するための使用に先だってセットアップする受信装
置である。
又はデータが処理のために使用されることになる時点の
情報、又は前記プログラム又はデータを処理するための
使用の有効期間を知るための情報は、フラグ、カウン
タ、又はタイマーのうち少なくとも1つであることを特
徴とする請求項3記載の受信装置である。
て図面を参照しながら説明する。
述した課題(A1)〜(A6)の何れかを解決するもの
である。
画と動画の両方を含む。また、対象とする画像は、コン
ピュータ・グラフィックス(CG)のような2次元画像
とワイヤーフレーム・モデルから構成されるような3次
元の画像データであってもよい。
音声送受信装置の概略構成図である。
11と情報を送信する伝送部13は、同軸ケーブル、C
ATV、LAN、モデム等の情報を伝送する手段であ
る。通信環境としては、インターネットのように、多重
化手段を意識せずに複数の論理的な伝送路が利用できる
通信環境であってもよいし、アナログ電話や衛星放送の
ように多重化手段を意識しなければならない通信環境で
あってもよい。
やTV会議システムのように端末間で双方向で映像や音
声を送受信する形態や、衛星放送やCATV、インター
ネット上での放送型の映像や音声放送の形態が挙げられ
る。本発明では、このような端末の接続形態について考
慮している。
し、データと制御情報を分離する手段である。具体的に
は、送信のためにデータに付加された送信用のヘッダ情
報とデータとを分解したり、データ自身に付加されたデ
ータ制御用のヘッダとデータの中身を分解するための手
段である。画像伸張部14は受信した画像を伸張する手
段である。たとえば、H.261、H.263、MPE
G1/2、JPEGといった標準化された動画や静止画
の圧縮画像であってもよいし、そうでなくてもよい。
張状態を監視する手段である。たとえば、画像の伸張状
態を監視することで、受信バッファがオーバーフローを
起こしそうになった場合に、画像の伸張を行わずに、受
信バッファを空読みし、画像の伸張ができる状態になっ
た時点から、画像の伸張を再開させることができる。
張された画像を合成する手段である。合成方法に関して
は、JAVA(登録商標)、VRML、MHEGといっ
たスクリプト言語で、画像と画像の構造情報(表示位置
と表示時間(表示期間を含めてもよい))、画像同士の
グルーピングの方法、画像の表示のレイヤ(深さ)、そ
して、オブジェクトID(後述するSSRC)と、これ
らの属性の関係を記述することによって画像の合成方法
が定義できる。合成方法を記述したスクリプトはネット
ワークやローカルの記憶装置から入出力する。
するディスプレイやプリンターなどである。端末制御部
18はこれら各部を制御する手段である。なお、画像の
代わりに音声を伸張する構成であっても(画像伸張部を
音声伸張部に、画像伸張管理部を音声伸張管理部に、画
像合成部を音声合成部に変更することで対応できる)、
画像と音声の両方を伸張し、時間的に同期を保ちながら
合成、表示する構成であってもよい。
圧縮部を管理する画像圧縮管理部、音声を圧縮する音声
圧縮部、音声圧縮部を管理する音声圧縮管理部を備える
ことにより、画像や音声の伝送も可能になる。
す図である。
信するデータ受信部101とデータを制御するための制
御情報を受信する制御情報受信部102と、分離部12
に伝送内容を解釈するための伝送構造(詳細は後述す
る)について記憶する伝送フォーマット記憶部103
と、伝送フォーマット記憶部103に記憶された伝送構
造に基づき伝送内容を解釈する伝送情報解釈部104で
各部を構成することで、データと制御情報を独立して受
信することが可能になるので、例えば、受信しながらの
受信画像や音声の削除や移動が容易になる。
通信環境としては、インターネットのように、多重化手
段を意識せずに複数の論理的な伝送路が利用できる通信
環境(インターネット・プロファイル)であってもよい
し、アナログ電話や衛星放送のように多重化手段を意識
しなければならない通信環境(Rawプロファイル)で
あってもよい。しかし、利用者から見れば、論理的な伝
送路(ロジカルチャンネル)が複数個用意されている通
信環境を前提としている(たとえば、TCP/IPが使
える通信環境では「通信ポート」と呼ばれる表現が一般
に使われる)。
が受信する情報としては1種類以上のデータ用の伝送路
と、伝送するデータを制御するための制御用の論理的な
伝送路を1種類以上を想定している。データ伝送用の伝
送路を複数用意し、データ制御用の伝送路を1本だけ用
意してもよい。また、H.323でも利用されているR
TP/RTCPのように、データ伝送毎にデータ制御用
の伝送路を用意してもよい。さらに、UDPを使った放
送を考慮した場合、単一の通信ポート(マルチキャスト
アドレス)を使った通信形態であってもよい。
像や音声の伝送、制御する方法について説明する図であ
る。伝送するデータ自身をES(エレメンタリー・スト
リーム)と呼び、ESとしては、画像であれば1フレー
ム分の画像情報や1フレームよりも小さいGOB単位や
マクロブロック単位の画像情報であってもよい。
さであってよい。また、伝送するデータに付加するデー
タ制御用のヘッダ情報をAL(アダプテーション・レイ
ヤ情報)と呼ぶ。AL情報としては、データの処理可能
な開始位置であるかどうかを示す情報、データの再生時
刻を示す情報、データの処理の優先度を示す情報などが
あげられる。本発明のデータ管理情報は、AL情報に対
応する。なお、本発明で用いられるESとALはMPE
G1/2で定義されている内容と必ずしも合致しなくて
もよい。
かを示す情報は、具体的には2種類の情報があげられ
る。1つはランダムアクセスのためのフラグであり、例
えば、画像ならイントラフレーム(Iピクチャ)といっ
たように前後のデータに関係なく単独に読みとって再生
できることを示すための情報である。2つ目としては、
単に単独で読みとりが可能であることを示すためのフラ
グとして、アクセスフラグが定義できる。たとえば、画
像ならばGOB単位やマクロブロック単位の画像の先頭
であることを示す情報である。従って、アクセスフラグ
がなければデータの途中である。必ずしもデータの処理
可能な開始位置であるかどうかを示す情報としてランダ
ムアクセスのフラグと、アクセスフラグの両方が必要で
はない。
信では両方のフラグを付加しなくても問題が起こらない
場合もあるし、編集を簡単に行えるようにするためには
ランダムアクセスフラグは必要である。フラグが必要で
あるか、必要な場合でもどのフラグが必要かを通信路を
介してデータ転送前に決定しておいてもよい。
声の再生される時の時間同期の情報を示し、MEPG1
/2ではPTS(プレゼンテーション・タイムスタン
プ)と呼ばれる。TV会議システムのようなリアルタイ
ム通信では通常、時間同期に関しては考慮されていない
ため、必ずしも再生時刻を意味する情報は必要ない。必
要な情報としては、エンコードされたフレームの時間間
隔になるかもしれない。
て、フレーム間隔の大きな変動は防げるが、再生間隔を
調整させることで遅延になる可能性もある。従って、エ
ンコードのフレーム間隔を示す時間情報も必要ないと判
断できる場合もある。
意味するのか、フレーム間隔を意味するのか、データの
再生時刻をデータ自身には付加しないということを通信
路を介してデータ転送前に決定して受信端末に通知し
て、決定されたデータ管理情報とともにデータを伝送し
てもよい。
端末の負荷やネットワークの負荷によって処理もしくは
伝送できない場合に、データの処理を中止させたり、伝
送を取りやめることによって受信端末の負荷やネットワ
ークの負荷を低減させることができる。
トワークでは、中継の端末やルータなどで処理すること
ができる。優先度の表現方法としては数値による表現や
フラグであってもよい。なお、データの処理の優先度を
示す情報のオフセット値を制御情報、もしくはデータと
ともにデータ管理情報(ALの情報)として伝送するこ
とで、受信端末の負荷やネットワークの負荷の急激な変
動に対して、あらかじめ画像や音声に割り当てている優
先度にオフセット値を加えることで、システムの動作状
況に応じた動的な優先度の設定が可能になる。
トの有無、オリジナルかコピーかを識別するための情報
をデータとは別に、データの識別子(SSRC)ととも
に制御情報として送信することで、中継ノードでのスク
ランブルの解除などが容易になる。
は、複数のビデオやオーディオのフレームの集合から構
成されるストリーム単位で付加してもよいし、ビデオや
オーディオのフレーム単位に付加してもよい。
で、符号化された情報の過負荷時の処理の優先度を予め
決められた基準で決定し、符号化された情報と決定され
た優先度を対応づける優先度付加手段を送信端末装置に
備える(図54参照)。
優先度付加手段5201について説明する図である。
と音声の各データ(それぞれ映像符号化手段5202と
音声符号化手段5203が処理する)に対して、予め決
められた規則に基づき優先度を付加する。優先度を付加
する規則は、優先度付加規則5204に規則が格納され
ている。規則とは、Iフレーム(フレーム内符号化され
た映像フレーム)は、Pフレーム(フレーム間符号化さ
れた映像フレーム)よりも高い優先度付加するという規
則や、映像は音声よりも低い優先度を付加するという規
則である。また、この規則は利用者の指示により動的に
変更しても良い。
えば、画像であればシーンチェンジ、編集者や利用者が
指示した画像フレームやストリーム、音声であれば、有
音区間と無音区間である。
や音声フレーム単位の優先度の付加方法は、通信ヘッダ
へ付加する方法と符号化時にビデオやオーディオの符号
化されたビットストリームのヘッダに埋め込む方法が考
えられる。前者は、復号せずに優先度に関する情報を得
ることが可能であり、後者はシステムに依存せずにビッ
トストリーム単体で独立に扱うことが可能である。
1つの画像フレーム(たとえば、フレーム内符号化され
たIフレーム、フレーム間符号化されたP、Bフレー
ム)が複数個の送信パケットに分割される場合、画像で
あれば単独の情報としてアクセス可能な画像フレームの
先頭部分を伝送する通信ヘッダのみに優先度を付加する
(同一の画像フレーム内で優先度が等しい場合、次のア
クセス可能な画像フレームの先頭が現れるまで、優先度
は変わらないものとすればよい)。
る値の範囲(たとえば、時間情報を16ビットで表現す
るとか、32ビットで表現するとか)を可変にして、制
御情報でコンフィグレーションできるようにしてもよ
い。
符号化された情報の過負荷時の優先度に従って、処理の
方法を決定する優先度決定手段を受信端末装置に備える
(図55参照)。
を解釈し、復号処理の可否を決定する優先度決定手段5
301について説明する図である。
声のストリーム毎に付加される優先度、映像もしくは音
声のフレーム毎に付加される優先度である。これらの優
先度はそれぞれ独立に用いてもよいし、フレーム優先度
とストリーム優先度とを対応付けて用いてもよい。優先
度決定手段5301は、これら優先度に応じて復号すべ
きストリームやフレームを決定する。
る2種類の優先度を用いて、デコード処理を行なう。す
なわち、映像、音声といったビットストリーム間の相対
的優先度を定義するストリーム優先度(Stream Priorit
y;時系列間優先度)と、同一ストリーム内の映像フレ
ームといった復号処理単位間の相対的優先度を定義する
フレーム優先度(Frame Priority;時系列内優先度)を定
義する(図30)。
オやオーディオの取り扱いが可能になる。後者のフレー
ム優先度により映像のシーンチェンジや編集者の意図に
応じて、同一のフレーム内符号化された映像フレーム
(Iフレーム)でも異なる優先度の付加が可能になる。
符号化もしくは復号化処理のオペレーティング・システ
ム(OS)での割り当て時間もしく処理の優先度に対応
付けて管理することで、OSレベルでの処理時間の管理
が可能となる。たとえば、マイクロソフト社のWind
ows95/NTでは5段階のOSレベルでの優先度の
定義ができる。符号化、復号化の手段をソフトウェアで
スレッドの単位で実現した場合、処理対象となるストリ
ームのストリーム優先度から、各スレッドに割り当てる
OSレベルでの優先度を決定することができる。
ム優先度は、伝送媒体やデータ記録媒体へ適用が可能で
ある。例えば、伝送するパケットの優先度をアクセスユ
ニット優先度(Access Unit Priori
ty)と定義すると、Access Unit Pri
ority=Stream Priority−Fra
me Priorityといった、フレーム優先度と、
ストリーム優先度の関係式から、パケットの伝送に関す
る優先度、若しくは、端末による過負荷時の処理の優先
度を決定することが出来る。
録商標)ディスク、光ディスクなどを用いて行うことが
できる。また、記録媒体はこれに限らず、ICカード、
ROMカセット等、プログラムを記録できるものであれ
ば同様に実施することができる。さらに、データの中継
を行うルータやゲートウェイといった画像や音声の中継
装置を対象としてもよい。
は、受信端末が過負荷である場合に、処理すべき符号化
された情報の優先度の閾値を決定する優先度決定手段を
画像伸長管理部15や音声伸長管理部に具備し、表示さ
れるべき時刻(PTS)と現在までの処理開始からの経
過時間もしくは、復号されるべき時刻(DTS)と現在
までの処理開始からの経過時間を比較し、比較結果によ
り処理すべき符号化された情報の優先度の閾値を変化さ
せる(閾値を変化させるための情報としては、Iフレー
ムの挿入間隔、優先度の粒度を参考にしてもよい)。
には、取り込まれたQCIF、CIFのサイズの画像を
エンコーダ(H.263)により、エンコードを行い、
エンコードされた情報とともに、復号する時刻(DT
S)、画像を表示する時刻を示すタイムスタンプ(PT
S)、過負荷時の処理の順序を示す優先度情報(CG
D、Computational Graceful
Degradation)、フレームタイプ、シーケン
ス番号(SN)を出力する。
マイクを通して録音され、エンコーダ(G.721)に
より、エンコードを行い、エンコードされた情報ととも
に、復号する時刻(DTS)、音声を再生する時刻を示
すタイムスタンプ(PTS)、優先度情報(CGD)、
シーケンス番号(SN)を出力する。
と音声は、それぞれ別々のバッファに渡され、画像と音
声はそれぞれのDTS(復号時刻)と現在の処理開始か
らの経過時間とを比較して、DTSの方が遅れていなけ
れば、画像と音声はそれぞれのデコーダ(H.263、
G.721)に渡される。
の優先度の付加方法について記している。画像はIフレ
ーム(フレーム内符号化された画像フレーム)は優先度
が「0」と「1」で高い優先度を割り当てている(数字
が大きいほど優先度が低い)。Pフレームは優先度が
「2」でIフレームよりも低い優先度を割り当ててい
る。Iフレームは、2段階の優先度を割り当てているた
め、デコードする端末の負荷が高い場合、優先度が
「0」のIフレームのみを再生するといったことができ
る。なお、優先度の付加方法に応じて、Iフレームの挿
入間隔を調整する必要がある。
先度の決定方法について記した図である。廃棄するフレ
ームの優先度をCutOffPriorityよりも大きいと設定す
る。つまり、すべての画像フレームを処理の対象とす
る。画像フレームに付加される優先度の最大値は端末接
続時に送信側から受信側へ通知することにより、あらか
じめ知ることができる(ステップ101)。
比較して、経過時間の方が大きい場合(復号処理が間に
合っていない場合)、処理対象とすべき画像、音声の優
先度の閾値CutOffPriorityを引き下げ、処理を間引く
(ステップ102)、逆に処理開始からの経過時間の方
が小さい場合(復号処理が間に合っている場合)は、処
理できる対象の画像や音声を増やすために、優先度の閾
値CutOffPriorityを引き上げる(ステップ103)。
ップされているならば処理は行わない。そうでなけれ
ば、画像フレーム(もしくは音声のフレーム)の優先度
に優先度のオフセット値を付加し、優先度の閾値と比較
し、閾値をこえていなければ、デコーダに復号すべきデ
ータを渡す(ステップ104)。
能をあらかじめ調べ、受信端末へオフセットを通知して
おくという使い方(利用者が受信端末で指示してもよ
い)、複数のビデオとサウンドストリームのストリーム
単位の優先度を変更するという使い方(例えば、一番後
ろの背景はオフセット値をあげて処理を間引くようにす
る)ができる。
リーム毎の優先度を付加し、画像や音声のデコードのス
キップ判定をしてもよい。加えて、リアルタイム通信に
おいてもH.263のTR(テンポラリーリファレン
ス)をDTSと同様にして取り扱い利用することで、端
末でのデコード処理が進んでいるか、遅れているかを判
定でき、上記で述べた同様のスキップ処理を実現するこ
とができる。
て、優先度の時間変化を調べたものである。
度の変化を示している。この優先度は端末が過負荷であ
る際の復号の可否を決定するための優先度であり、各フ
レーム毎に付加される。優先度は値が小さいほど優先度
が高い。同図の例では0が最も優先度が高い。優先度の
閾値が3であるとき、3よりも大きな値の優先度のフレ
ームは復号されずに廃棄され、3以下の値の優先度が付
加されているフレームは復号される。優先度による選択
的なフレームの廃棄を行うことで、端末の負荷を押さえ
ることが可能である。この優先度の閾値は、現在の処理
時刻と各フレームに付加される復号処理時間(DTS)
との関係から動的に決定してもよい。本手法は映像フレ
ームだけでなく、音声に対しても同様な要領で適用が可
能である。
合、伝送途中で紛失した符号化された情報の再送が必要
な場合、再送すべき符号化された情報の優先度の閾値を
決定する再送要求優先度決定部を受信管理部11に備
え、優先度決定部が管理する優先度や、再送回数、情報
の損失率、フレーム内符号化されたフレームの挿入間
隔、優先度の粒度(たとえば、5段階の優先度など)の
情報をもとに、再送要求すべき符号化された情報に付加
された優先度の閾値を決定することで、受信端末で必要
とする画像や音声のみを再送要求することができる。再
送回数や情報の損失率が大きければ、再送すべき対象と
する情報の優先度を引き上げて、再送や損失率を低下さ
せる必要がある。また、優先度決定部で使用されている
優先度を知ることで、処理対象外の情報の伝送をなくす
ことができる。
目標転送レートよりも実際の転送レートが超える場合
や、送信バッファへの符号化された情報の書き込みが、
現在までの転送処理開始からの経過時間と符号化された
情報に付加されている復号もしくは表示される時刻とを
比較して、送信バッファへの情報の書き込みが遅れてい
る場合、符号化された情報に付加され、受信端末の優先
度決定部で利用される端末が過負荷時の優先度を用い
て、情報の送信を間引くことで、目標レートにあった画
像や音声の伝送が可能となる。また、受信側端末で行っ
ているような過負荷時の処理のスキップ機能を送信側端
末でも導入することで送信側端末の過負荷による破綻を
押さえることができる。
て、必要な情報だけを伝送できるようにすることによっ
て、アナログ電話回線のような狭帯域の通信路には伝送
情報量を調節できるので有効である。実現方法として
は、送信側端末でデータ自身に付加するデータ管理情報
を予めデータ送信前に決定し、受信端末に使用するデー
タ管理情報を制御情報(たとえば、ランダムアクセスフ
ラグだけを使用するとか)として通知するとともに、受
信側端末では得られた制御情報をもとに、前記伝送フォ
ーマット記憶部103で記憶する伝送構造に関する情報
(どのALの情報を使用するか表している)を書き換え
ることにより、送信側で使用するALの情報(データ管
理情報)の組み替えが可能になる(図19〜図20参
照)。
付加するヘッダ情報の動的な変更方法について説明する
図である。図の例では、伝送すべきデータ(ES)をデ
ータ片に分解し、得られたデータ片に、データの順序関
係を示すための識別情報(シーケンス番号)と、データ
片の処理可能な開始位置であるかどうかを示す情報(マ
ーカービット)と、データ片の転送に関する時間情報
(タイムスタンプ)とを、本発明の伝送管理情報に対応
するものとして、通信ヘッダの形でデータ片に付加して
いる。
ime Transfer Protocol、RFC
1889)では上記のシーケンス番号、マーカービッ
ト、タイムスタンプ、オブジェクトID(SSRCと呼
ばれている)、バージョン番号などの情報を通信ヘッダ
として使用している。ヘッダ情報の項目の拡張は可能で
あるが、上記の項目は固定の項目として必ず付加され
る。しかし、複数の異なる符号化の画像や音声を複数、
同時に伝送する通信環境で、TV電話のようにリアルタ
イム通信とビデオ・オン・デマンドのように蓄積メディ
アの伝送が混在する場合、通信ヘッダの持つ意味合いが
異なり、識別する手段が必要である。
G1/2の場合は前述したように再生時刻であるPTS
を示すが、H.261やH.263ではエンコードされ
た時間間隔を表す。しかし、H.263を音声と同期を
とって処理を行いたい場合、タイムスタンプがPTSの
情報であることを示す必要がある。なぜならば、H.2
63の場合、タイムスタンプの情報は、エンコードされ
たフレーム間の時間間隔を示すのであって、1枚目のフ
レームのタイムスタンプはランダムであるとRTPで定
義されているからである。
あるかないかを示すフラグを通信ヘッダ情報(通信ヘッ
ダの拡張が必要になる)もしくは、(b)H.263や
H.261のペイロードのヘッダ情報(つまり、ALの
情報)として付加する必要がある(この場合、ペイロー
ド情報の拡張が必要になる)。
理可能な開始位置であるかどうかを示す情報であるマー
カビットが付加されているが、ALの情報としても前述
したように、データに対してアクセスできる開始時点で
あることを示すアクセスフラグ、ランダムにデータに対
してアクセスすることができることを示すランダムアク
セスフラグを持たせたい場合がある。重複して、通信ヘ
ッダに持たせるのは効率が悪くなるため、ALのフラグ
を通信ヘッダで用意しているフラグで代用させる方法も
考えられる。
ダに付加しているヘッダでALのフラグを代用させるこ
とを示すフラグを通信ヘッダに新たに設けるか、通信ヘ
ッダのマーカービットはALのものと同じであると定義
することで、問題は解決される(ALに持たせるよりも
解釈が早くできことが期待できる)。つまり、マーカー
ビットがALのフラグと同じ意味を持つかどうかを示す
フラグである。この場合、通信ヘッダの改良もしくは、
拡張領域に記述することが考えられる。
意味をALに少なくともランダムアクセスフラグもしく
は、アクセスフラグのいずれかが存在することを意味す
るように解釈するようにしてもよい。この場合、従来と
は解釈の意味が変わったことを知るには通信ヘッダのバ
ージョン番号で対応できる。これ以外に、単純な方法と
しては、通信ヘッダもしくはALのヘッダにのみアクセ
スフラグやランダムアクセスフラグを設ければ処理は簡
単である(前者の場合、フラグを両方とも設ける場合も
考えられるが、通信ヘッダの新たな拡張が必要にな
る)。
報として付加することは述べたが、通信ヘッダにデータ
の処理の優先度を付加することによって、データ処理の
優先度の処理の判定がネットワーク上においてもデータ
の中身を解釈せずに行うことが可能となる。なお、IP
v6の場合、RTPのレベルより下位のレイヤーで付加
することが可能である。
期間を示すためのタイマーもしくはカウンタを付加する
ことで、伝送されてくるパケットのある状態変化がどの
ように変化しているかを判断することができる。たとえ
ば、必要となるデコーダソフトウェアが、アクセス速度
の遅い記憶装置に記憶されている場合、デコーダが必要
になるという情報と、タイマーやカウンターにより、い
つの時点で必要になるかを判断することが可能になる。
この場合、用途によってはALの情報にタイマーやカウ
ンター、データの処理の優先度の情報は不要である。
図6(d)は、AL情報の付加方法について説明する図
である。
きデータの先頭にのみ付加するか、あるいは、図5
(b)に示した様に、伝送すべきデータ(ES)を1つ
以上のデータ片に分解した後のデータ片のそれぞれに付
加するかを通知する制御情報を、受信端末へ送付するこ
とにより伝送情報の取り扱い粒度を選択できるようにす
ることが可能になる。ALを細分化されたデータに対し
てつけることで、アクセス遅延が問題になるような場合
には有効である。
報の組み替えや、データ管理情報のデータへの配置方法
の変更が行われることを予め受信側端末に通知するため
に、フラグ、カウンター、タイマーのような表現方法を
用いて、ALの情報として用意したり、通信ヘッダとし
て用意して受信端末に通知することで、受信端末対応が
スムーズにできる。
通信ヘッダ)とALの情報の重複を回避する方法や、R
TPの通信ヘッダやALの情報を拡張する方法について
述べた。しかし、本発明は、必ずしもRTPである必要
はない。たとえば、UDPやTCPを使って独自の通信
ヘッダやAL情報を新たに定義してもよい。インターネ
ットプロファイルではRTPを使うことはあるが、Ra
wプロファイルではRTPのような多機能なヘッダは定
義されていない。AL情報と通信ヘッダに関する考え方
としては、次の4通りの考え方ができる(図6(a)〜
図6(d)参照)。
ているヘッダ情報が重複しないように、RTPのヘッダ
情報もしくはALの情報を修正、拡張する(とくにタイ
ムスタンプの情報が重複、タイマーやカウンター、デー
タの処理の優先度情報が拡張情報となる)。あるいは、
RTPのヘッダも拡張せず、ALの情報もRTPのもの
と重複していても考慮しない方法でもよい。これらに関
してはこれまでに示した内容に相当する。RTPは既に
一部、H.323で実用化されているので、互換性を保
ったRTPの拡張は有効である(図6(a)参照)。
を簡略にして(たとえば、シーケンス番号だけにすると
か)、残りをAL情報に多機能な制御情報として持たせ
る。また、AL情報で使用する項目を通信前に可変に設
定できるようにすることで、柔軟な伝送フォーマットが
規定できる(図6(b)参照)。
を簡略にして(極端な例では、ALには情報を付加しな
い)、通信ヘッダにすべての制御情報を持たせる。通信
ヘッダとして頻繁によく参照されうるシーケンス番号、
タイムスタンプ、マーカービット、ペイロードタイプ、
オブジェクトIDに関しては固定のヘッダ情報としてお
き、データ処理の優先度情報、タイマー情報に関しては
拡張情報として、拡張情報が存在するどうかを示す識別
子を設けておいて、拡張情報が定義されていれば参照す
るようにしてもよい(図6(c)参照)。
ALの情報を簡略にして、これら通信ヘッダやAL情報
とは、別のパケットとして、フォーマットを定義して、
伝送する。例えば、ALの情報はマーカービット、タイ
ムスタンプ、オブジェクトIDだけ定義し、通信ヘッダ
もシーケンス番号だけを定義し、これらの情報とは別の
伝送パケット(第2のパケット)として、ペイロード情
報、データ処理の優先度情報、タイマー情報などを定義
し、伝送する方法も考えられる(図6(d)参照)。
音声に付加されているヘッダ情報を考慮すれば、用途に
あわせて、通信ヘッダ、ALの情報、データとは別に伝
送するパケット(第2のパケット)を自由に定義できる
(カスタイマイズできる)ようにするのが望ましい。
重化、分離して情報の伝送を行う方法について説明する
図である。論理的な伝送路の数を節約するために、利用
者の指示もしくは論理的な伝送路の数に応じて、複数の
データもしくは制御情報を伝送するための論理的な伝送
路の情報の多重化を開始したり、終了させることが可能
な情報多重部を伝送部13に、多重化された情報を分離
する情報分離部を受信管理部11に設けることにより実
現できる。
MUX”とよんでおり、具体的にはH.223のよう
な多重化方式を用いればよい。このGroup MUX
は送受信端末で設けてもよいし、中継のルータや端末に
設けることによって、狭帯域通信路への対応や、Gro
up MUXをH.223で実現すればH.324と相
互接続できる。
情報)を素早く取り出すために、情報多重部の制御情報
を情報多重部でデータと多重化して送信するのではな
く、多重化せずに別の論理的な伝送路で伝送すること
で、多重化による遅延を低減することができる。これに
伴って、情報多重部に関する制御情報をデータと多重化
して伝送するのか、データと多重化して送信するのでは
なく、多重化せずに別の論理的な伝送路で伝送するのか
を通知して伝送することで、従来の多重化と整合性を保
たせたり、多重化による遅延を低減させるかを利用者で
選択することが可能になる。ここで、情報多重部に関す
る多重化制御情報とは、例えば、情報多重部が、各デー
タに対して、どの様な多重化を行っているのかという、
多重化の内容を示す情報である。
化の開始と終了を通知する情報、多重化すべき論理的な
伝送路の組合せを通知するための情報、多重化に関する
制御情報(多重化制御情報)の伝送方法の通知を、フラ
グ、カウンタ、タイマーのような表現方法で、制御情報
として伝送、もしくはデータ管理情報としてデータとと
もに、受信側端末に伝送することで、受信側でのセット
アップの時間を短縮できる。また、前述したようにフラ
グ、カウンタ、タイマーを表現する項目はRTPの送信
ヘッダに設けてもよい。
る場合、情報多重部や情報分離部を識別するための識別
子とともに制御情報(多重化制御情報)を伝送すれば、
どの情報多重部に関する制御情報(多重化制御情報)か
を識別することができる。制御情報(多重化制御情報)
としては、多重化のパターンなどがあげられる。また、
情報多重部や情報分離部の識別子を乱数を用いて、端末
間で決定することで情報多重部の識別子を生成すること
ができる。たとえば、送受信端末間で決められた範囲で
の乱数を発生させ、大きい方の値を情報多重部の識別子
(識別番号)とすればよい。
来、RTPで定義されているメディアタイプとは異なる
ため、RTPのペイロード・タイプに、情報多重部で多
重化された情報であることを示す情報(新たなメディア
タイプ、H.223を定義)を定義すればよい。
を向上させる方法として、情報多重部で伝送もしくは記
録する情報を制御情報、データ情報の順に配置すること
で多重化された情報の解析を早くできることが期待でき
る。また、制御情報に付加するデータ管理情報で記述す
る項目は固定にし、データとは異なる識別子(ユニーク
なパターン)を付加して多重化することでヘッダ情報の
解析を早くできる。
るための図である。論理的な伝送路の識別子と放送番組
の識別子の対応関係を放送番組の情報として制御情報を
伝送するか、放送番組の識別子をデータ管理情報(AL
情報)としてデータに付加して伝送することで複数の伝
送路で伝送されるデータがどの番組のために放送されて
いるのかを識別することが可能となる。また、データの
識別子(RTPではSSRC)と論理的な伝送路の識別
子(たとえば、LANのポート番号)との関係を制御情
報として受信側端末に伝送して、受信側端末では受信可
能であることを確認後(Ack/Reject)、対応するデー
タを伝送することにより、制御情報とデータを独立した
伝送路で伝送しても、データ間の対応関係がとれる。
を示す識別子と、放送番組やデータが情報として利用で
きる有効期限を示すためのカウンタもしくはタイマーの
情報とを組み合わせて、放送番組やデータに付加して伝
送することで、戻りチャンネルなしで放送が実現できる
(有効期限が過ぎそうになったら、不足の情報があって
も放送番組の情報やデータの再生を開始する)。単一の
通信ポートのアドレス(マルチキャストアドレス)を使
って、制御情報とデータに分離せずに放送する方法も考
えられる。
場合、データの構造情報を受信端末が知ることができる
ように、制御情報はデータよりも十分、前もって伝送し
ておく必要がある。また、制御情報は一般には、パケッ
トロスのない信頼性の高い伝送チャンネルで伝送すべき
であるが、信頼性の低い伝送チャネルを用いる場合は周
期的に同じ伝送シーケンス番号を持った制御情報を繰り
返し伝送する必要がある。これはセットアップ時間に関
する制御情報を送る場合に限った話ではない。
目(たとえば、アクセスフラグ、ランダムアクセスフラ
グ、データの再生時刻(PTS)、データ処理の優先度
情報など)を選択して、制御情報としてデータの識別子
(SSRC)とともにデータとは別の論理的な伝送路で
伝送するか、データとともにデータ管理情報(ALの情
報)として伝送するかを、データ送信前に送信側で決定
して、受信側に制御情報として通知して伝送することで
柔軟なデータの管理と伝送が可能となる。
ータ情報の伝送を行うことができるので、RTPを用い
て画像や音声のデータを伝送する際に、従来から定義さ
れているペイロードの定義を拡張する必要がなくなる。
データの読み込み、立ち上げ時間を考慮した画像や音声
の伝送方法を示す図である。特に、衛星放送や携帯端末
のように戻りチャンネルがなく一方向で、端末の資源が
限られている場合で、プログラムやデータが受信側端末
に存在して利用する場合、必要となるプログラム(例え
ば、H.263、MPEG1/2、音声のデコーダのソ
フトウェアなど)やデータ(たとえば、画像データや音
声のデータ)が、読み込みに時間がかかる記憶装置(た
とえば、DVD、ハードディスク、ネットワーク上のフ
ァイルサーバなど)に存在する場合に、予め必要となる
プログラムやデータを識別する識別子と、伝送されるス
トリームの識別子(たとえば、SSRCや、Logic
al Channel Number)、受信端末で必
要となる時点を推定するためのフラグ、カウンタ(カウ
ントアップ、ダウン)、タイマーのような表現方法で、
制御情報として受信、もしくはデータ管理情報としてデ
ータとともに受信することで、必要となるプログラムや
データのセットアップ時間の短縮が可能となる(図2
2)。
合、プログラムやデータの受信端末での記憶先(たとえ
ば、ハードディスク、メモリー)、起動や読み込みにか
かる時間、端末の種類や記憶先と起動や読みとりにかか
る時間の対応関係(例えば、CPUパワー、記憶デバイ
スと平均的な応答時間の関係)、利用順序を示す情報と
ともにプログラムやデータを送信側から伝送すること
で、受信側端末で必要となるプログラムやデータを実際
に必要となる場合、プログラムやデータの記憶先や読み
出す時間に関してスケジューリングが可能となる。
グ(TVのチャンネル切り替え)に対する対応方法につ
いて説明する図である。
送とは異なり、プログラムを受信端末で実行しなければ
ならないとき、プログラムの読み込みや立ち上がるまで
のセットアップの時間が大きな問題となる。これは、携
帯端末のように利用資源が限られる場合でも同じことが
いえる。
するための主視聴部と、利用者が視聴している以外の番
組で、必要となるプログラムやデータが、読み込みに時
間がかかる記憶装置に存在する場合に、利用者が視聴し
ている番組以外の番組を受信端末が周期的に視聴する副
視聴部を備え、予め必要となるプログラムやデータを識
別する識別子と、受信端末で必要となる時点を推定する
ためのフラグ、カウンタ、タイマーといった情報と、番
組との対応関係を、制御情報(データとは別のパケット
で伝送される、端末処理を制御するための情報)として
受信、もしくはデータ管理情報(ALの情報)としてデ
ータとともに受信して、プログラムやデータの読み込み
を準備しておくことで、受信側端末でのセットアップ時
間が短縮できることが期待できる。
ネルで放送される画像の見出し画像だけを放送する放送
チャンネルを設け、視聴者が視聴番組を切り替えること
で、必要となるプログラムやデータが、読み込みに時間
がかかる記憶装置に存在した場合、一旦、視聴したい番
組の見出し画像を選択して視聴者に提示するか、読み込
み中であることを提示するとともに、記憶装置から必要
となるプログラムやデータを読み込み、読み込み終了
後、視聴者が視聴したい番組を再開することで、セット
アップ時に発生する画面の停止が防止できる。ここでい
う見出し画像は、周期的に複数個のチャンネルで放送さ
れる番組をサンプリングした放送画像を指す。
送信側から送られてくるデータストリームをデコードす
るのに必要なプログラムは現在からいつの時点で必要と
なるかを示す。カウンタは送受信端末間で決めた基本時
間単位で、何回目かを示す情報であればよい。フラグ
は、セットアップに必要な時間前に送出するデータもし
くは、制御情報(データとは別のパケットで伝送され
る、端末処理を制御する情報)とともに伝送して通知す
る。タイマー、カウンターともデータの中に埋め込んで
伝送してよいし、制御情報として伝送してもよい。
ては、例えば、クロックベースで動作しているISDN
のような伝送路を用いた場合、送信側端末から受信端末
でプログラムやデータが必要となる時点を通知するため
に、伝送管理情報として伝送の順序関係を識別するため
の送信シリアル番号を用いて、データ管理情報としてデ
ータとともに、もしくは、制御情報として受信端末に通
知することで、セットアップが行われる時刻の予測が可
能になる。また、インターネットのようにジッタや遅延
により、伝送時間が変動する場合は、RTCP(インタ
ーネットのメディア伝送プロトコル)で既に実現されて
いるような手段で、ジッタや遅延時間から、伝送の伝播
遅延を加味してセットアップ時間に付加しておけばよ
い。
信されるプロトコルの具体例を示す図である。
1で記述した。又、本伝送フォーマットは、ITUの
H.245をベースに拡張を行った。図11にもあるよ
うに、画像や音声のオブジェクトは階層構造をなしてい
てもよく、ここの例では、各オブジェクトIDは放送番
組の識別子(ProgramID)とオブジェクトID
(SSRC)の属性をもち、画像間の構造情報、合成方
法はJava,VRMLといったスクリプト言語で記述
する。
の例を示す図である。
声、CG、テキストなどのメディアである。同図の例で
は、オブジェクトは階層構造を成している。各オブジェ
クトは、プログラム番号(TVのチャンネルに相当、
“Program ID”)とオブジェクトを識別する
オブジェクト識別子“Object ID”を持つ。R
TP(インターネットで用いられるメディア伝送のプロ
トコル、Realtime Transfer Pro
tocol)で各オブジェクトを伝送する場合は、オブ
ジェクト識別子はSSRC(同期ソース識別子)に対応
させることで容易にオブジェクトの識別が可能である。
なお、オブジェクト間の構造記述はJAVA、VRML
といった記述言語で記述することが可能である。
考えられる。1つは放送型であり、送信側端末から一方
的に伝送する形態である。もう1つは送受信端末間(端
末A、端末B)でオブジェクトの伝送を行う形態(通信
型)も考えられる。
の場合はRTPを用いることができる。制御情報は、T
V電話の規格ではLCNOと呼ばれる伝送チャンネルを
用いて伝送する。同図の例では伝送に複数の伝送チャン
ネルを用いているが、これらのチャンネルは同一の番組
チャンネル(Program ID)が割り当てられて
いる。
ためのプロトコルの実現方法について説明する図であ
る。ここではTV電話の規格(H.324,H.32
3)で用いられる伝送プロトコル(H.245)を用い
て説明する。H.245の拡張を行うことで本発明で述
べた機能を実現する。
と呼ばれるプロトコル記述方式である。“Termin
al Capability Set”は端末の性能を
表現する。同図の例では、“mpeg4 Capabi
lity”と記した機能を従来からあるH.245に対
して拡張している。
lity”は端末で同時に処理できる最大の映像の数
(“Max Number Of Video”)、最
大の音声の数(“Max Number Of Sou
nds”)、端末で実現できる最大の多重化機能の数
(“Max Number Of Mux”)を記して
いる。
最大のオブジェクト数(“Number Of Pro
cess Object”)として表現している。ま
た、通信ヘッダ(同図ではALと表現)の変更が可能で
あるかを記すフラグが記されている。この値が真である
とき通信ヘッダの変更が可能である。“MPEG4 C
apability”を用いて端末間で処理できるオブ
ジェクト数をお互いに通知する場合に、通知された側が
受け入れ(処理)可能であれば“MEPG4 Capa
bility Ack”を、そうでなければ“MEPG
4 Capability Reject”を、“ME
PG4 Capability”を送信してきた端末に
返す。
例ではLANの伝送チャンネル)を複数の論理的なチャ
ンネルで共有して使用するために複数の論理的なチャン
ネルを1つの伝送チャンネルに多重化する前述のGro
up MUXを使用するためのプロトコルの記述方法に
ついて示している。同図の例では、LAN(ローカルエ
リアネトワーク)の伝送チャンネル(“LAN Por
t Number”)に多重化手段(Group MU
X)を対応づけている。“Group MuxID”
は、多重化手段を識別するための識別子である。“Cr
eate Group Mux”を用いて端末間で多重
化手段を使用する場合にお互いに通知する場合に、通知
された側が受け入れ(使用)可能であれば“Creat
e Group Mux Ack”を、そうでなければ
“Create Group Mux Reject”
を、“Create Group Mux”を送信して
きた端末に返す。多重化手段の逆の動作を行う手段であ
る分離手段は、同様な方法で実現出来る。
去する場合について記述している。
数の論理的なチャンネルの関係について記述している。
rt Number”で、複数の論理的なチャンネルは
“Logical Port Number”で記述す
る。
ネルに対して最大15個の論理的なチャンネルを対応づ
けることが可能である。
が、1個だけの場合は、GroupMux IDは、不
要である。又、Muxを複数使用する場合は、H.22
3の各コマンドに対してGroup Mux IDが必
要である。又、多重化と分離手段との間で用いられるポ
ートの対応関係を通知するためのフラグを設けても良
い。又、制御情報も多重化するか、別の論理的な伝送路
を介して伝送するかを選択出来るようにするためのコマ
ンドを設けても良い。
はLANであるが、H.223、MPEG2のようにイ
ンターネットプロトコルを使わない方式でもよい。
Channel”は伝送チャンネルの属性を定義する
ためのプロトコル記述を示している。同図の例では、
H.245のプロトコルに対して、“MPEG4 Lo
gical ChannelParameters”を
拡張定義している。
して、プログラム番号(TVのチャンネルに相当)と、
プログラムの名前とを対応づけている(“MPEG4
Logical Cannel Parameter
s”)ことを示している。
Channel Program”は、LANの伝送
チャンネルとプログラム番号との対応付けを放送型で送
信する場合の記述方法である。同図の例では、最大10
23個の伝送チャンネルとプログラム番号の対応関係を
送付することが可能である。放送の場合は送信側から受
信側へ一方的に送信するだけであるため、これらの情報
を伝送中の損失を考慮して周期的に伝送する必要があ
る。
オブジェクト(例えば、映像、音声など)の属性につい
て記述している(“MPEG4 Object Cla
ssdefinition”)。プログラムの識別子
(“Program ID”)に対してオブジェクトの
情報(“Object Structure Elem
ent”)を対応付けている。最大で1023個のオブ
ジェクトを対応付けることが可能である。オブジェクト
の情報としては、LANの伝送チャンネル(“LAN
Port Number”)、スクランブルが使用され
ているか否かのフラグ(“Scramble Fla
g”)、端末が過負荷である場合の処理の優先度を変更
するためのオフセット値を定義するフィールド(“CG
D Offset”)、そして、伝送するメディア(映
像、音声など)のタイプを識別するための識別子(Me
dia Type)を記述する。
ム分の映像に相当するデータ列と定義する)の復号処理
を管理するためにAL(ここでは1フレーム分の映像を
復号するために必要な付加情報と定義する)が付加され
ている。ALの情報としては、(1)Random A
ccess Flag(単独で再生可能であるかどうか
を示すフラグ、フレーム内符号化された映像フレームで
あれば真である)、(2)Presentation
Time Stamp(フレームの表示時刻)、(3)
CGD Priority(端末が過負荷時に処理の優
先度を決定するための優先度の値)が定義されている。
これらの1フレーム分のデータ列を、RTP(インター
ネットで連続メディアを伝送するためのプロトコル,R
ealtime Transfer Protoco
l)を用いて伝送する場合の例を示している。“AL
Reconfiguration”は、上記のALで表
現できる最大値を変更するための伝送表現である。
ss Flag Max Bit”として、最大で2ビ
ットの表現が可能である。例えば0ならば、Rando
mAccess Flagは使用しない。2ならば最大
値は3である。
良い(例えば、3^6)。又、非設定時は、デフォルト
で決められた状態で動作することにしても良い。
t”は、セットアップ時間を送信するための伝送表現を
示している。プログラムを送信する前に“Setup
Request”は送信され、伝送される伝送チャンネ
ル番号(“LogicalChannel Numbe
r”)と、実行するプログラムID(“excute
Program Number”)、使用するデータI
D(“data Number”)、実行するコマンド
のID(“execute CommandNumbe
r”)を対応付けて受信端末へ送付する。また、別の表
現方法として、伝送チャンネル番号と対応付けて、実行
の許可のフラグ(“flag”)、あと何回Setup
Requestを受信したら実行するかを記したカウ
ンタ(“counter”)、あとどれくらいの時間で
実行するかを示すタイマー値(“timer”)であっ
てもよい。
AL情報の書き換え、GroupMuxの立ち上がり時
間の確保などがあげられる。
有無を送信端末から受信端末へ通知するための伝送表現
について説明する図である(“Control AL
definition”)。
ss Flag Use”が真ならばRandom A
ccess Flagは使用する。そうでなければ使用
しない。このALの変更通知は制御情報としてデータと
は別の伝送チャンネルで伝送してもよいし、データとと
もに同一の伝送チャンネルで伝送してもよい。
ダプログラムなどがあげられる。又、セットアップのリ
クエストは、放送であっても通信であっても利用出来
る。又、制御情報としての項目を、ALの情報としてど
の項目を使用するかを上記のリクエストで受信端末に指
示する。又、同様に通信ヘッダにどの項目を、ALの情
報としてどの項目を、制御情報としてごの項目を使用す
るかを受信端末に指示出来る。
der ID”)を用いて、伝送するヘッダ情報(デー
タ管理情報、伝送管理情報、制御情報)の構造を送受信
端末間で用途に応じて変更するための伝送表現の例を示
している。
ader”は、データと同じ伝送チャンネルで伝送され
るデータ管理情報や、伝送管理情報の伝送される情報の
構造を、情報枠組み識別子により送受信端末間で区別し
ている。
らば、buffer Size ESの項目だけ用い、
“header ID”の値が1ならば“reserv
ed”の項目を加えて用いる。
der Extension”)を用いることでデフォ
ルトの形式の情報の枠組みを用いるか、用いないかを判
定する。“use Header Extensio
n”が真であれば、if文の内部の項目が用いられる。
これらの構造情報に関しては予め送受信端末間で取り決
められているものとする。なお、情報枠組み識別子とデ
フォルト識別子は、何れか一方を使用する構成であって
もよい。
tion”は、データとは異なる伝送チャンネルで伝送
される制御情報の構造を送受信端末間で用途に応じて変
更する場合の例を示している。情報枠組み識別子とデフ
ォルト識別子の使用方法は図23の場合と同じである。
成して表示させるシステムの実現方法について、下記の
観点から具体的に述べた。
や音声の伝送(通信と放送)及び、それらを制御する方
法。特に、制御情報とデータをそれぞれ、伝送する論理
的な伝送路を独立させて伝送する方法について述べた。
加するヘッダ情報(ALの情報)の動的な変更方法。
ダ情報の動的な変更方法。
ALの情報と通信用ヘッダで重複している情報について
統合して管理する方法や、ALの情報を制御情報として
伝送する方法について述べた。
重化、分離して情報の伝送を行う方法。
率的な多重化を実現する方法について述べた。
ち上げ時間を考慮した画像や音声の伝送方法。様々な機
能、用途で見かけ上のセットアップ時間の短縮方法につ
いて述べた。
送方法。
定されない。2次元の画像と3次元の画像を組み合わせ
た表現形式でもよいし、広視野画像(パノラマ画像)の
ように複数の画像を隣接するように画像合成するような
画像合成方法も含めてもよい。
は、有線の双方向CATVやB−ISDNだけではな
い。例えば、センター側端末から家庭側端末への映像や
音声の伝送は電波(例えば、VHF帯、UHF帯)、衛
星放送で、家庭側端末からセンター側端末への情報発信
はアナログの電話回線やN−ISDNであってもよい
(映像、音声、データも必ずしも多重化されている必要
はない)。
ンディー・ホン)や無線LANのような無線を利用した
通信形態であってもよい。さらに、対象とする端末は、
携帯情報端末のように携帯型の端末であっても、セット
トップBOX、パーソナルコンピュータのように卓上型
の端末であってもよい。なお、応用分野としては、TV
電話、多地点の監視システム、マルチメディアのデータ
ベース検索システム、ゲームなどが挙げられ、本発明は
受信端末だけではなく、受信端末に接続されるサーバや
中継の機器なども含まれる。
信)ヘッダとALの情報の重複を回避する方法や、RT
Pの通信ヘッダやALの情報を拡張する方法について述
べた。しかし、本発明は、必ずしもRTPである必要は
ない。たとえば、UDPやTCPを使って独自の通信ヘ
ッダやAL情報を新たに定義してもよい。インターネッ
トプロファイルではRTPを使うことはあるが、Raw
プロファイルではRTPのような多機能なヘッダは定義
されていない。AL情報と通信ヘッダに関する考え方と
しては、前述したように4通りの考え方ができる。
るデータ管理情報、伝送管理情報、制御情報の各情報の
枠組み(例えば、1番最初は、ランダムアクセスのフラ
グで1ビットのフラグ情報として割り当て、2番めはシ
ーケンス番号で16ビット割り当てるといった、付加す
る情報の順序とビット数をともなった情報の枠組み)を
動的に決定することで、状況に応じた情報の枠組みの変
更が可能になり、用途や伝送路に応じた変更ができる。
〜図6(d)において既に示したものあってもよいし、
RTPならば、データ管理情報(AL)はメディア毎の
ヘッダ情報(例えば、H.263ならH.263固有の
ビデオのヘッダ情報や、ペイロードのヘッダ情報)、伝
送管理情報はRTPのヘッダ情報で、制御情報はRTC
PのようなRTPを制御するような情報であってもよ
い。
公知の情報の枠組みで、情報の送受信して処理するか、
否かを示すためのデフォルト識別子をデータ管理情報、
伝送管理情報、制御情報(データとは別のパケットで伝
送される、端末処理を制御する情報)に、それぞれ設け
ることで、情報の枠組みの変更が行われているかどうか
を知ることができ、変更が行なわれている時だけ、デフ
ォルト識別子をセットし、前述の図19〜図20に示し
たような方法で変更内容(たとえば、タイムスタンプ情
報を32ビットから16ビットに変更する)を通知する
ことで、情報の枠組み情報を変更しない場合でも不要に
コンフィグレーション情報を送信しなくても済む。
を変更したいときには、次の2つの方法が考えられる。
まず、データ自身にデータ管理情報の情報の枠組みの変
更方法を記述する場合、データ管理情報の情報の枠組み
に関して記述されたデータ内に存在する情報のデフォル
ト識別子(固定の領域、位置に書き込む必要がある)を
セットし、そのあとに情報の枠組みの変更内容に関して
記述する。
み制御情報)にデータの情報の枠組みの変更方法を記述
して、データ管理情報における情報の枠組みを変更する
場合、制御情報に設けられたデフォルト識別子をセット
し、変更するデータ管理情報の情報の枠組みの内容を記
述し、ACK/Rejectで受信端末にデータ管理情
報の情報の枠組みが変更されたことを通知、確認してか
ら、情報の枠組みが変更されたデータを伝送する。伝送
管理情報、制御情報自身の情報の枠組みを変更する場合
も、同様に上記の2つの方法で実現できる(図23〜図
24)。
G2のヘッダ情報は固定であるが、MPEG2−TS
(トランスポート・ストリーム)のビデオ・ストリー
ム、オーディオ・ストリームを関係づけるプログラム・
マップテーブル(PSIで定義される)にデフォルト識
別子を設け、ビデオ・ストリーム、オーディオ・ストリ
ームの情報の枠組みの変更方法を記述したコンフィグレ
ーション・ストリームを定義しておくことで、デフォル
ト識別子がセットされていれば、まず、コンフィグレー
ション・ストリームを解釈してから、コンフィグレーシ
ョン・ストリームの内容に応じて、ビデオとオーディオ
のストリームのヘッダーを解釈することができる。コン
フィグレーションストリームは図23〜図24で示した
内容でよい。
は伝送するデータの構造に関する内容(伝送フォーマッ
ト情報)は、上記実施の形態では、例えば、情報の枠組
みに対応している。
る、伝送方法に関する及び/又は伝送するデータの構造
に関する内容を伝送する場合を中心に述べたが、これに
限らず例えば、その内容の識別子のみを伝送する構成で
も勿論良い。この場合、送信装置としては、例えば、図
52に示す様に、(1)伝送方法に関する及び/又は伝
送するデータの構造に関する内容、又はその内容を示す
識別子を、伝送フォーマット情報として、前記伝送する
データの伝送路と同一の伝送路、又は、前記伝送路とは
別の伝送路を用いて伝送する伝送手段5001と、
(2)前記伝送方法に関する及び/又は伝送するデータ
の構造に関する内容と、その識別子とを複数種類格納す
る格納手段5002とを備え、前記識別子が、データ管
理情報、伝送管理情報又は、端末側の処理を制御するた
めの情報の内、少なくとも一つの情報の中に含まれてい
る画像・音声送信装置であってもよい。又、受信装置と
しては、例えば、図53に示す様に、上記画像・音声送
信装置から送信されてくる前記伝送フォーマット情報を
受信する受信手段5101と、前記受信した伝送フォー
マット情報を解釈する伝送情報解釈手段5102とを備
えた画像・音声受信装置であってもよい。更に、この画
像・音声受信装置は、前記伝送方法に関する及び/又は
伝送するデータの構造に関する内容と、その識別子とを
複数種類格納する格納手段5103を備え、前記伝送フ
ォーマット情報として前記識別子を受信した場合には、
前記識別子の内容を解釈する際に、前記格納手段に格納
されている内容を利用する構成であっても良い。
複数、送受信端末で取り決めて用意しておき、それら複
数種類の情報の枠組みの識別と、複数種のデータ管理情
報、伝送管理情報、制御情報(情報枠組み制御情報)を
識別するための情報枠組み識別子をデータとともに、も
しくは、制御情報として伝送することで、複数種のデー
タ管理情報、伝送管理情報、制御情報の各情報を識別す
ることが可能となり、伝送すべきメディアの形式や伝送
路の太さに応じて各情報の情報の枠組みを自由に選択す
ることができる。尚、本発明の識別子は、上記情報の枠
組み識別子に対応する。
別子は、伝送される情報の予め決められた固定長の領域
もしくは、位置に付加することで、受信側端末で、情報
の枠組みが変更されていても読み取り、解釈することが
できる。
に、複数個のチャンネルで放送される画像の見出し画像
だけを放送する放送チャンネルを設け、視聴者が視聴番
組を切り替えることで、必要となるプログラムやデータ
のセットアップに時間がかかる場合、一旦、視聴したい
番組の見出し画像を選択して視聴者に提示する構成とし
ても良い。
受信端末で使用するデータ管理情報、伝送管理情報、制
御情報の各情報の枠組みを動的に決定することで、状況
に応じた情報の枠組みの変更が可能になり、用途や伝送
路に応じた変更ができる。
公知の情報の枠組みで、情報の送受信して処理するか、
否かを示すためのデフォルト識別子をデータ管理情報、
伝送管理情報、制御情報に、それぞれ設けることで、情
報の枠組みの変更が行われているかどうかを知ることが
でき、変更が行なわれている時だけ、デフォルト識別子
をセットし、変更内容を通知することで、情報の枠組み
情報を変更しない場合でも不要にコンフィグレーション
情報を送信しなくても済む。
端末で取り決めて用意しておき、複数種のデータ管理情
報、伝送管理情報、制御情報を識別するための情報枠組
み識別子をデータとともに、もしくは、制御情報として
伝送することで、複数種のデータ管理情報、伝送管理情
報、制御情報の各情報を識別することが可能となり、伝
送すべきメディアの形式や伝送路の太さに応じて各情報
の情報の枠組みを自由に選択することができる。
子は、伝送される情報の予め決められた固定長の領域も
しくは、位置に付加することで、受信側端末で、情報の
枠組みが変更されていても読み取り、解釈することがで
きる。
参照して説明する。
〜(B2)の何れか一つを解決するものである。
と動画の両方を含む。また、対象とする画像は、コンピ
ュータ・グラフィックス(CG)のような2次元画像と
ワイヤーフレーム・モデルから構成されるような3次元
の画像データであってもよい。
像符号化、画像復号化装置の概略構成図である。
録する送信管理部4011は、同軸ケーブル、CAT
V、LAN、モデム等の情報を伝送する手段である。画
像符号化装置4101は、H.263、MPEG1/
2、JPEG、あるいは、ハフマン符号化といった画像
情報の符号化を行う画像符号部4012と、上記送信管
理部4011とを具備する構成である。又、画像復号化
装置4102は、符号化された種々の情報を受信する受
信管理部4013と、その受信された種々の画像情報の
復号を行う画像復号部4014と、復号された1つ以上
の画像を合成する画像合成部4015と、画像を出力す
るディスプレイやプリンターなどから構成される出力部
4016とを備えた構成である。
声符号化、音声復号化装置の概略構成図である。
種々の情報を送信もしくは記録する送信管理部4021
と、G.721、MPEG1オーディオといった音声情
報の符号化を行う音声符号部4022とを具備する構成
である。又、音声復号化装置4202は、符号化された
種々の情報を受信する受信管理部4023と、前記種々
の音声情報の復号を行う音声復号部4024と、復号さ
れた1つ以上の音声を合成する音声合成部4025と、
音声を出力する出力部4026とを備えた構成である。
は上記の各装置で、符号化、又は復号化される。
ンターネットのように多重化の手段を意識せずに複数の
論理的な伝送路が利用できる通信環境であってもよし、
アナログ電話や衛星放送のように多重化手段を意識しな
ければならない通信環境であってもよい。また、端末の
接続形態としては、TV電話やTV会議システムのよう
に端末間で双方向で映像や音声を送受信する形態や、衛
星放送やCATV、インターネット上での放送型の映像
や音声放送の形態が挙げられる。
は、JAVA、VRML、MHEGといったスクリプト
言語で、画像・音声と画像・音声の構造情報(表示位置
や表示時間)、画像・音声同士のグルーピングの方法、
画像の表示のレイヤ(深さ)、そして、オブジェクトI
D(画像、音声といった個々のオブジェクトを識別する
ためのID)と、これらの属性の関係を記述することに
よって画像や音声の合成方法が定義できる。合成方法を
記述したスクリプトはネットワークやローカルの記憶装
置から得られる。
声符号化装置、音声復号化装置を、それぞれ任意の個数
で、任意の組み合わせで送受信の端末を構成してもよ
い。
を管理する優先度付加部、優先度決定部について説明す
る図である。H.263やG.723などの符号化方法
で、符号化された情報の過負荷時の処理の優先度を予め
決められた基準で決定し、符号化された情報と決定され
た優先度を対応づける優先度付加部4031を画像符号
化装置4101や音声符号化装置4201に備える。
あればシーンチェンジ、編集者や利用者が指示した画像
フレームやストリーム、音声であれば、有音区間と無音
区間である。
の付加方法は、通信ヘッダへ付加する方法と符号化時に
ビデオやオーディオの符号化されるビットストリームの
ヘッダに埋め込む方法が考えられる。前者は、復号せず
に優先度に関する情報が得ることが可能であり、後者は
システムに依存せずにビットストリーム単体で独立に扱
うことが可能である。
に優先度情報を付加する場合、1つの画像フレーム(例
たとえば、フレーム内符号化されたIフレーム、フレー
ム間符号化されたP、Bフレーム)が複数個の送信パケ
ットに分割される場合、画像であれば単独の情報として
アクセス可能な画像フレームの先頭部分を伝送する通信
ヘッダのみに優先度を付加する(同一の画像フレーム内
で優先度が等しい場合、次のアクセス可能な画像フレー
ムの先頭が現れるまで、優先度は変わらないものとすれ
ばよい)。
符号化された情報の過負荷時の優先度に従って、処理の
方法を決定する優先度決定部4032を画像復号化装置
4102や音声復号化装置4202に備える。
について説明する図である。端末での過負荷時の処理の
優先度を決定する2種類の優先度を用いて、デコード処
理を行なう。
リーム単位での過負荷時の処理の優先度を定義するスト
リーム優先度(Stream Priority;時系
列データ間優先度)と、同一ストリーム内の映像フレー
ムといったフレーム単位での過負荷時の処理の優先度を
定義するフレーム優先度(Frame Priorit
y;時系列データ内優先度)を定義する(図34参
照)。
オやオーディオの取り扱いが可能になる。後者のフレー
ム優先度により映像のシーンチェンジや編集者の意図に
応じて、同一のフレーム内符号化された映像フレーム
(Iフレーム)でも異なる優先度の付加が可能になる。
ては、相対的な値として扱う場合と、絶対的な値として
扱う場合が考えられる(図35、図36参照)。
扱いが行なわれるのはネットワーク上であれば、ルータ
やゲートウェイといった中継端末、端末であれば、送信
端末と受信端末があげられる。
通り考えられる。1つは、図35で示した方法であり、
もう1つは図36で示した方法である。
集者や機械的に付加された画像ストリームや音声ストリ
ームが過負荷時に処理される(又は、処理されるべき)
順序をあらわす値である(実際のネットワークや端末の
負荷変動を考慮した値ではない)。相対的な値の優先度
は、端末やネットワークの負荷に応じて、絶対的な優先
度の値を変更するための値である。
して管理することで、ネットワークの負荷の変動などに
応じて、送信側や中継装置で相対的な値だけを変更する
ことで、元来、画像や音声ストリームに付加されていた
絶対的な優先度を残したままで、ハードディスクやVT
Rへの記録が可能となる。このように絶対的な優先度の
値が記録されていれば、ネットワークの負荷変動などの
影響を受けていない形での映像や音声の再生が可能とな
る。なお、相対的な優先度や絶対的な優先度はデータと
は独立に制御チャンネルを通して伝送してもよい。
りも粒度を細かくして、過負荷時のフレームの処理の優
先度を定義するフレーム優先度を、相対的な優先度の値
として扱ったり、絶対的な優先度の値として扱うことも
可能である。たとえば、絶対的なフレーム優先度を符号
化された画像の情報内に記述し、ネットワークや端末の
負荷で変動を反映させるために、先の映像フレームに付
加した絶対的な優先度に対する相対的なフレーム優先度
を符号化された情報を伝送するための通信パケットの通
信ヘッダに記述することで、フレームレベルでも、オリ
ジナルの優先度を残しながらも、ネットワークや端末の
負荷に応じた優先度の付加が可能である。
なくデータとは独立して制御チャネルでフレームとの対
応関係を記述して伝送してもよい。これにより、元来、
画像や音声ストリームに付加されていた絶対的な優先度
を残したままで、ハードディスクやVTRへの記録が可
能となる。
行なわずに、ネットワークを介して伝送しながら受信端
末で再生を行なう場合、受信端末で絶対的な値と相対的
な値を分離して管理する必要がないため、送信側で予
め、フレーム、ストリームの両方のレベルの場合におい
ても、絶対値な優先度の値と相対的な優先度の値を送信
前に計算して絶対値のみを送ってもよい。
は、Stream Priorityと、Frame
Priorityの関係から求められるフレーム間で一
意に決定される値である。相対的な値の優先度は、編集
者や機械的に付加された画像ストリームや音声ストリー
ムが過負荷時に処理される(又は、処理されるべき)順
序をあらわす値である。図36の例では、映像、音声の
各ストリームのフレーム優先度(relative;相
対値)とストリーム毎にストリーム優先度が付加されて
いる。
e;絶対値)は相対的なフレーム優先度と、ストリーム
優先度の和から求められる(即ち、絶対的なフレーム優
先度=相対的なフレーム優先度+ストリーム優先度)。
なお、この算出方法は減算したり、定数を掛け合わせる
ような方法でもよい。
ワークで用いる。これはルータやゲイトウエイといった
中継装置で、Stream PriorityとFra
mePriorityとを加味してフレーム毎の優先度
を決定する必要が絶対値による表現では不要になるから
である。この絶対的なフレーム優先度を用いることで中
継装置でのフレームの廃棄などの処理が容易になる。
記録、編集を行なう蓄積系への応用が期待できる。編集
作業では、複数の映像、音声ストリームを同時に扱うこ
とがある。そのような場合に、端末やネットワークの負
荷により再生できる映像ストリームやフレームの数には
限界が生じる可能性がある。
orityと、Frame Priorityとを分離
して管理しておくだけで、例えば、編集者が、優先的に
表示させたい、あるいは、ユーザが、見たいストリーム
のStream Priorityを変更するだけで、
絶対値の表現を行なっている時とは違い、FrameP
riorityをすべて計算し直す必要がない。このよ
うに用途に応じて、絶対的な表現、相対的な表現を使い
分ける必要がある。
として用いるか、絶対的な値として用いるかを記述する
ことで、伝送時にも、蓄積する場合にも有効な優先度の
表現が可能となる。
して、ストリーム優先度が表現する値が絶対値である
か、相対値であるかを表現するフラグや識別子を設けて
区別する。フレーム優先度の場合は、通信ヘッダに相対
的な値が記述され、符号化されたフレーム内に絶対的な
値が記述されるため、フラグや識別子は不要である。
であるか相対値であるかを識別するためのフラグもしく
は識別子を設けている。絶対値であれば、ストリーム優
先度と相対的なフレーム優先度から算出されている優先
度であるから、算出の処理を中継装置や端末で行なわな
い。また、受信端末では、算出式が端末間で既知である
場合、絶対的なフレーム優先度とストリーム優先度から
相対的なフレーム優先度を逆算することが可能である。
例えば、伝送するパケットの絶対的な優先度(Acce
ss Unit Priority)を、Access
Unit Priority=ストリーム優先度−フ
レーム優先度、という関係式から求めても良い。ここ
で、フレーム優先度は、ストリーム優先度を減算するこ
とから、劣後優先度と表現しても良い。
CP/IPの論理チャンネル(LANのポート番号)を
流れるデータの処理の優先度に対応付けて、データの処
理を管理してもよい。
情報よりも低いストリーム優先度やフレーム優先度を割
り当てることで再送処理の必要が低減できることが期待
できる。これは画像や音声は一部分が失われても、問題
が発生しない場合も多いからである。
度の割り当て方法について説明する図である。
ストリームから構成される場合、サブストリームにスト
リーム優先度の付加を行い、蓄積時もしくは伝送時に論
理和もしくは論理積の記述を行うことでサブストリーム
の処理方法の定義を行うことが可能である。
ムを複数の異なる解像度の映像フレームに分解すること
が可能である。また、DCTベースの符号化方式でも高
周波の成分と低周波の成分に分割して符号化することで
異なる解像度の映像フレームへの分解は可能である。
れる複数個の映像ストリームに付加されるストリーム優
先度のほかに、映像のストリーム間の関係を記述するた
めにAND(論理積)とOR(論理和)で関係を定義す
る。具体的な使用方法は、ストリームAのストリーム優
先度が5であり、ストリームBのストリーム優先度が1
0である場合(数字の少ない方が優先度が高い)、優先
度によりストリームデータの廃棄ならば、ストリームB
の方は廃棄されるが、ストリーム間の関係記述を行なう
ことで、ANDの場合にはストリームBの優先度が閾値
の優先度よりも低くても、廃棄せずに伝送、処理するよ
うに定義しておく。
されずに処理できるようになる。ORの場合には逆に、
廃棄可能であると定義する。これまでと同様に、廃棄処
理は送受信端末でも行なっても、中継端末で行なっても
よい。
なじビデオクリップを24Kbpsと48Kbpsの別
のストリームに符号化した場合、どちらかを再生すれば
良いという場合がある(関係記述として排他的論理和E
X−OR)。
場合、ユーザは優先度に基づいて後者を再生してもよい
し、優先度に従わずユーザは後者を選んでもよい。
て説明する図である。
合、サブストリームに付加したストリーム優先度に応じ
て、たとえば優先度の高い順に、送信パケットを構成す
ることで送信パケットレベルでの廃棄が容易になる。ま
た、粒度を細かくして、フレーム優先度の高いオブジェ
クト同士の情報をひとつにまとめて通信パケットを構成
しても通信パケットレベルでの廃棄が容易になる。
に対応付けることでパケット落ちしたときの復帰が容易
である。つまり、動画像のスライス構造をパケットの構
造に対応付けることで、再同期のためのリシンクマーカ
ーが不要になる。スライス構造と通信パケットの構造が
一致していなければ、パケット落ちなどで情報が損失し
た場合、再同期ができるようにリシンクマーカー(復帰
する位置を知らせるための印)を付加する必要がある。
トには高いエラープロテクションをかけることが考えら
れる。なお、画像のスライス構造とはGOBやMBとい
ったまとまった画像情報の単位をさす。
ける方法について説明する図である。ストリームやオブ
ジェクトの通信パケットへの対応付けの方法を制御情報
もしくはデータとともに伝送することで、通信状況や用
途に応じて任意のデータフォーマットが生成できる。た
とえば、RTP(Real time Transfe
r Protocol)では、扱う符号化毎にRTPの
ペイロードが定義されている。現行のRTPの形式は固
定である。H.263の場合、同図に示したように、M
ode AからMode Cの3つのデータ形式が定義さ
れている。H.263では、多重解像度の映像フォーマ
ットを対象とした通信ペイロードは定義されていない。
の関係記述( AND、OR )を、Mode Aのデー
タフォーマットに追加して定義している。
先度と通信パケット優先度との対応について説明する図
である。
される優先度を通信パケット優先度とし、ストリーム優
先度やフレーム優先度を、通信パケット優先度に対応さ
せる例である。
声データに付加されたフレーム優先度やストリーム優先
度を下位のIPパケットの優先度にパケットに対応付け
てデータを伝送する必要がある。画像や音声データは分
割され、IPのパケットに分割されて伝送されるため優
先度の対応付けが必要がある。図の例では、ストリーム
優先度は0から3までの値をとり、フレーム優先度は0
から5までの値をとるため、上位のデータでは0から1
5までの優先度を取りうる。
から7までは輻輳制御されたトラフィックのために予約
されている、優先度のうち8から15までは実時間通信
トラフィックまたは輻輳制御されていないトラフィック
のために予約されている。優先度15は最も優先度が高
く、優先度8が最も優先度が低い。これはIPのパケッ
トのレベルでの優先度になる。
ら15までの優先度を下位のIPの優先度である8から
15までの優先度に対応付ける必要がある。対応付けは
上位の優先度の一部をクリッピングする方式でもよい
し、評価関数をもうけて対応付けてもよい。上位のデー
タと下位のIPの優先度の対応付けは、中継ノード(ル
ータやゲートウェイなど)、送受信端末で管理を行う。
けではなく、ATMやMPEG2のTS(トランスポー
ト・ストリーム)のように廃棄可能かそうでないかのフ
ラグをもった伝送パケットを対象としてもよい。
リーム優先度は、伝送媒体やデータ記録媒体へ適用が可
能である。データ記録媒体としてフロッピーディスク、
光ディスクなどを用いて行うことができる。
ド、ROMカセット等、プログラムを記録できるもので
あれば同様に実施することができる。さらに、データの
中継を行うルータやゲートウェイといった画像音声中継
装置を対象としてもよい。
(時系列データ間優先度)や、Frame Prior
ity(時系列データ内優先度)の情報に基づいて再送
すべき時系列データを決定することで、優先的な再送処
理が可能となる。たとえば、優先度情報に基づいて受信
端末でデコードを行なっている場合、処理の対象外であ
るストリームやフレームの再送を防止することができ
る。
とは別に、再送回数と送信成功回数の関係から再送すべ
き優先度のストリームやフレームを決定してもよい。
am Priority(時系列データ間優先度)やF
rame Priority(時系列データ内優先度)
の情報に基づいて送信すべき時系列データを決定するこ
とで、優先的な送信処理が可能となる。たとえば、平均
転送レートや、再送回数に基づいて送信すべきストリー
ムやフレームの優先度を決定することで、ネットワーク
が過負荷である際にも適応的な映像や音声の伝送が可能
になる。
成だけに限定したものではない。2次元の画像と3次元
の画像を組み合わせた表現形式でもよいし、広視野画像
(パノラマ画像)のように複数の画像を隣接するように
画像合成するような画像合成方法も含めてもよい。ま
た、本発明で対象としている通信形態は、有線の双方向
CATVやB−ISDNだけではない。たとえば、セン
ター側端末から家庭側端末への映像や音声の伝送は電波
(例えば、VHF帯、UHF帯)、衛星放送で、家庭側
端末からセンター側端末への情報発信はアナログの電話
回線やN−ISDNであってもよい(映像、音声、デー
タも必ずしも多重化されている必要はない)。また、I
rDA、PHS(パーソナル・ハンディー・ホン)や無
線LANのような無線を利用した通信形態であってもよ
い。
のように携帯型の端末であっても、セットトップBO
X、パーソナルコンピュータのように卓上型の端末であ
っても良い。
オストリームや複数のオーディオストリームの取り扱い
や、編集者の意図を反映させて、重要なシーンカットを
重点的にオーディオとともに同期再生をさせることが容
易となる。
ながら説明する。
述した課題(C1)〜(C3)の何れかを解決するもの
である。
の構成を示すものである。2101は画像入力端子であ
って、一枚の画像サイズは例えば縦144画素、横17
6画素である。2102は動画像符号化装置であって、
4つの構成要素1021,1022,1023,102
4から成る(Recommendation H.26
1参照)。
ク(縦16画素、横16画素の正方形領域)に分割し、
このブロックの符号化を、イントラ/インタどちらで符
号化するかを決定する切替器、1022は前回の符号化
結果から計算できるローカルデコード画像をもとに動き
補償画像を作成し、これと入力画像との差分を計算し、
結果をマクロブロック単位に出力する動き補償手段であ
って、動き補償には、処理時間の長いハーフペル動き補
償と処理時間の短いフルペル動き補償がある。1023
はそれぞれのマクロブロックに対してDCT変換を施す
直交変換手段、1024はこのDCT変換結果及び他の
符号化情報に対してエントロピー符号化を施すための可
変長符号化手段である。
化装置2102の4つの構成要素の実行回数を計数し、
入力画像ごとに、結果を変換手段に出力する。この時、
動き補償手段1022からは、ハーフペルとフルペルの
2通りについてそれぞれの実行回数を計数する。
すようなデータ列を出力する。2105は送信手段であ
って、動画像符号化装置2102からの可変長符号と、
変換手段2104からのデータ列を多重化して、一本の
データ列とし、データ出力端子2109に出力するもの
である。
(切替器1021,直交変換手段1023,可変長符号
化手段1024)と非必須処理(動き補償手段102
2)の各実行回数を伝達することができる。
送信方法のフローチャートである。
形態と似ているので、対応する要素を付記しておく。8
01にて、画像を入力し(画像入力端子2101)、8
02にて画像をマクロブロックに分割する。以降、80
7の条件分岐により、すべてのマクロブロックに対する
処理を完了するまで、803から806までの処理を繰
りかえす。なお、803から806までの処理の回数
を、特定の変数に記録できるように、それぞれの処理を
実行した場合には、対応する変数を1だけインクリメン
トする。
ックをイントラ/インタどちらで符号化するかを判定す
る(切替器1021)。インタの場合は、804にて動
き補償を行う(動き補償手段1022)。その後、80
5,806にて、DCT変換、可変長符号化を、行う
(直交変換手段1023,可変長符号化手段102
4)。すべてのマクロブロックに対する処理を完了した
ら(807にてYesの時)、808にて、それぞれの
処理に対応する実行回数を示す変数を読み、図2に示す
ようなデータ列を生成し、このデータ列と符号とを多重
化し、出力する。以上の801から808までの処理
を、入力画像が続くかぎり、繰り返し実行する。
信することができる。
信装置の構成を示すものである。
の送信装置の出力を入力するための入力端子、301は
第1の実施の形態の送信装置の出力をもとに可変長符号
とデータ列を逆多重化により取り出し出力する受信手段
であって、この時、一枚分のデータを受信するのに要し
た時間を計測しておき、これも出力するものとする。
復号化装置であって、5つの構成要素から成る。303
1は可変長符号からDCT係数及び他の符号化情報を取
り出すための可変長復号化手段、3032はDCT係数
に対して逆DCT変換処理を施す逆直交変換手段、30
33は切替器であって、マクロブロックごとに、イント
ラ/インタどちらで符号化されているかの符号化情報に
基づき、出力を上下に振りわける動作をする。3034
は動き補償手段であって、前回の復号画像と動きの符号
化情報とを用い、動き補償画像を作成し、この画像に逆
直交変換手段3032の出力を加算して出力する。30
35は実行時間計測手段であって、復号化装置303に
可変長符号が入力されてから画像の復号化及び出力を完
了するまでの実行時間を計測し、これを出力する。30
2は、受信手段301からのデータ列から各要素(可変
長復号化手段3031,逆直交変換手段3032,切替
器3033,動き補償手段3034)の実行回数と、実
行時間計測手段3035から実行時間とを受け取り、各
要素の実行時間を推定する推定手段である。
ば、推定実行時間を目的変数y、各要素の実行回数を説
明変数x_iとすれば良い。この場合、回帰パラメタa
_iは、各要素の実行時間とみなせるであろう。また、
線型回帰の場合、過去のデータを充分多く蓄積しておく
必要があり、メモリを沢山消費することになるが、これ
を嫌う場合には、カルマンフィルタによる内部状態変数
の推定を利用しても良い。この場合、観測値が実行時
間、各要素の実行時間を内部状態変数とし、観測行列C
が各要素の実行回数でステップごとに変化する場合、と
考えれば良い。304は、フルペル動き補償の実行回数
を減らし、相当数だけハーフペル動き補償の実行回数を
増やすように、各要素の実行回数を変更する回数削減手
段である。この相当数の計算方法は、以下の通りであ
る。
数と推定実行時間とを受けとり、実行時間を予想する。
この時間が、受信手段301からのデータを受信するの
に要した時間を越える場合に、越えなくなるまで、フル
ペル動き補償の実行回数を増やし、ハーフペル動き補償
の実行回数を減らす。306は復号化画像の出力端子で
ある。
報からハーフペル動き補償を行うよう指示されている場
合であるが、ハーフペル動き補償の所定実行回数を越え
てしまった場合には、ハーフペルの動きを丸めて、フル
ペルの動きとして、フルペル動き補償を実行する。
の実施の形態によれば、推定された各要素の実行時間か
ら復号化処理の実行時間を予測し、これが一枚分のデー
タを受信するのに要した時間(指定時間)を越えるよう
であれば、実行時間の長いハーフペルの動き補償を、フ
ルペルの動き補償で置き替える。これによって、実行時
間が指定時間を越えないようにでき、課題(C1)を解
決することができる。
て、高周波成分を使用しないようにすることで、IDC
T計算の処理時間を減らすことができる。つまり、ID
CT計算のうち、低周波成分の計算を必須処理、高周波
成分の計算を非必須処理とみなして、IDCT計算の高
周波成分の計算回数を削減するようにしても良い。
受信方法のフローチャートである。
形態と似ているので、対応する要素を付記しておく。ス
テップ901にて各要素の実行時間を表現する変数a_
iを初期化する(推定手段302)。902にて多重化
データの入力と、これに要する時間の計測を行う(受信
手段301)。903にてこの多重化データを、可変長
符号とデータ列とに分離し、出力する(受信手段30
1)。904にてデータ列(図2)から各実行回数を取
り出し、これらをx_iに設定する。905にて、各要
素の実行時間a_iと各実行回数x_iとから、実際の
実行回数を算出する(回数削減手段304)。906に
て、復号化処理の実行時間の計測を開始し、907にて
後述する復号化処理ルーチンを起動し、その後、908
にて復号化処理の実行時間の計測を終了する(動画像の
復号化装置303,実行時間計測手段3035)。90
8では、908での復号化処理の実行時間と905での
各要素の実際の実行回数とから各要素の実行時間を推定
し、a_iを更新する(推定手段302)。以上の処理
を入力される多重化データごとに実行する。
10にて可変長復号化を行い(可変長復号化手段303
1)、911にて逆直交変換を行い(逆直交変換手段3
032)、912にて、910での処理で取り出された
イントラ/インタの情報で分岐する(切替器303
3)。インタの場合は、913にて動き補償を施す(動
き補償手段3034)。この913にて、ハーフペル動
き補償の実行回数を計数しておき、これが905で求め
た実際の実行回数を越えた場合には、ハーフペル動き補
償をフルペル動き補償で置き替えて実行する。以上の処
理を、すべてのマクロブロックについて完了後(ステッ
プ914)、このルーチンを終了する。
の実施の形態によれば、推定された各要素の実行時間か
ら復号化処理の実行時間を予測し、これが一枚分のデー
タを受信するのに要した時間(指定時間)を越えるよう
であれば、実行時間の長いハーフペルの動き補償を、フ
ルペルの動き補償で置き替える。これによって、実行時
間が指定時間を越えないようにでき、課題(C1)を解
決することができる。
信装置の構成を示すものである。
2の実施の形態で説明したのと同じであり、2つの構成
要素の追加と、1つの構成要素の修正のみであるのでそ
の点を説明する。
手段302に推定の結果得た各要素の実行時間を、回数
制限手段304への出力とは別に、出力するよう修正し
たものである。408は送信手段であって、各要素の実
行時間から図45に示すようなデータ列を生成し、これ
を出力するものである。実行時間は、マイクロセコンド
を単位として、16bitで表現すれば最大で、約65
ミリセコンドを表現できるので、充分であろう。409
はこのデータ列を送信手段に送るための出力端子であ
る。
信方法は、図45に示すようなデータ列を生成するステ
ップを図48の808の直後に追加したもので良い。
信装置の構成を示すものである。
1の実施の形態で説明したのと同じであり、2つの構成
要素の追加のみであるのでその点を説明する。606は
第3の実施の形態の受信装置の出力するデータ列を受信
するための入力端子、607はこのデータ列を受信し、
各要素の実行時間を出力する受信手段である。608
は、各要素の実行回数を求める決定手段であって、その
手順は以下の通りである。まず、画像中のすべてのマク
ロブロックについて、切替器1021での処理を行い、
この時点での切替器1021の実行回数を求める。ま
た、このあとの、動き補償手段1022、直交変換手段
1023,可変長符号化手段1024での実行回数は、
この時点までの処理結果によって、一意に決定できる。
そこで、これら実行回数と、受信手段607からの実行
時間を用いて、受信装置側での復号化に要する実行時間
を予測する。この予測復号化時間は、各要素の実行時間
と実行回数の積の、要素ごとの総和として、求まる。そ
して、予測復号化時間が、レートコントローラなどが指
定した今回の画像で発生すべき符号量(例えば16kb
its)の伝送に要する時間(例えば、伝送速度が64
kbit/secなら250msec)以上であれば、
復号化時間が伝送に要する時間を越えないように、フル
ペル動き補償の実行回数を増やし、ハーフペル動き補償
の実行回数を減らす(フルペル動き補償のほうが、実行
時間が短いので、これの回数を減らすことで実行時間を
小さくすることができる。)。
定手段608の指定した実行回数に基づき、各処理を行
う。例えば、動き補償手1022は、指定されたハーフ
ペルの動き補償実行回数分だけ、ハーフペル動き補償を
実行完了すれば、その後は、フルペルの動き補償だけを
実行するようになる。
一様にちらばるように、選択方法を工夫しても良い。た
とえば、まず、ハーフペルの動き補償を必要とするマク
ロブロックをすべて求め、この数(例えば12)をハー
フペルの動き補償実行回数(例えば4)で割った商
(3)を求め、ハーフペルの動き補償を必要とするマク
ロブロックの始めからの順序が、この商で割りきれるも
の(0,3,6,9)だけにハーフペルの動き補償を施
す、という方法でも良い。
の実施の形態によれば、推定された各要素の実行時間を
送信側に伝送し、送信側にて復号化処理の実行時間を予
測し、これが一枚分のデータを受信するのに要するであ
ろう時間(指定時間)を越えないように実行時間の長い
ハーフペルの動き補償を、フルペルの動き補償で置き替
える。これによって、送られた符号化情報のうち、ハー
フペル動き補償の情報が捨てられることなく、実行時間
が指定時間を越えないようにでき、課題(C2)を解決
することができる。
ロブロック符号化を普通の動き補償、8x8動き補償、
オーバラップ動き補償の3つに分割しても良い。
送信方法のフローチャートである。
形態と似ているので、対応する要素を付記しておく。1
001にて、各処理の実行時間の初期値を設定する。8
01にて画像を入力し(入力端子2101)、にて画像
をマクロブロックに分割する。1002にて、すべての
マクロブロックについて、イントラ/インタどちらで符
号化するかを判定する(切替器1021)。この結果、
1005から806までの各処理の実行回数がわかるの
で、1003では、この実行回数と、各処理の実行時間
とから、実際の実行回数を算出する(決定手段60
8)。
マクロブロックに対する処理を完了するまで、1005
から806までの処理を繰りかえす。
数を、特定の変数に記録できるように、それぞれの処理
を実行した場合には、対応する変数を1だけインクリメ
ントする。まず、1005にて、1002での判定結果
に基き、分岐する(切替器1021)。インタの場合
は、804にて動き補償を行う(動き補償手段102
2)。ここで、ハーフペル動き補償の回数を計数してお
き、これが1003で求めた実際の実行回数を越えた場
合には、ハーフペル動き補償を実行せずかわりにフルペ
ル動き補償を実行する。その後、805,806にて、
DCT変換、可変長符号化を、行う(直交変換手段10
23,可変長符号化手段1024)。すべてのマクロブ
ロックに対する処理を完了したら(807にてYesの
時)、808にて、それぞれの処理に対応する実行回数
を示す変数を読み、図2に示すようなデータ列を生成
し、このデータ列と符号とを多重化し、出力する。10
04では、データ列を受信し、これから各処理の実行時
間を取り出し、設定する。
入力画像が続くかぎり、繰り返し実行する。
明部分の最後の「また」で始まるパラグラフと、第7の
実施の形態とによれば、推定された各要素の実行時間を
送信側に伝送し、送信側にて復号化処理の実行時間を予
測し、これが一枚分のデータを受信するのに要するであ
ろう時間(指定時間)を越えないように実行時間の長い
ハーフペルの動き補償を、フルペルの動き補償で置き替
える。これによって、送られた符号化情報のうち、ハー
フペル動き補償の情報が捨てられることなく、実行時間
が指定時間を越えないようにでき、課題(C2)を解決
することができる。
信装置の構成を示すものである。
1の実施の形態で説明したのと同じであり、4つの構成
要素の追加のみであるのでその点を説明する。
号化装置2102に画像が入力されてから画像の符号化
及び符号の出力を完了するまでの実行時間を計測し、こ
れを出力する。706は、計数手段2103からのデー
タ列からの各要素(切替器1021、動き補償手段10
22、直交変換手段1023,可変長復号化手段102
4)の実行回数と、実行時間計測手段7010からの実
行時間とを受け取り、各要素の実行時間を推定する推定
手段である。推定方法は、第2の実施の形態の推定手段
302で説明したものと同じで良い。707はユーザか
らのフレームレート値を入力するための入力端子、70
8は、各要素の実行回数を求める決定手段であって、そ
の手順は以下の通りである。
ついて、切替器1021での処理を行い、この時点での
切替器1021の実行回数を求める。また、このあと
の、動き補償手段1022、直交変換手段1023,可
変長符号化手段1024での実行回数は、この時点まで
の処理結果によって、一意に決定できる。つぎに、この
実行回数と推定手段706からの各要素の推定実行時間
との積の、要素ごとの総和を求め予測符号化時間を算出
する。そして、予測符号化時間が、707からのフレー
ムレートの逆数から求まる一枚の画像の符号化に使用可
能な時間以上であれば、フルペル動き補償の実行回数を
増やし、ハーフペル動き補償の実行回数を減らす。
を、予測符号化時間が使用可能な時間以下になるまで、
繰り返すことで、それぞれの実行回数を決定する。
定手段608の指定した実行回数に基づき、各処理を行
う。例えば、動き補償手1022は、指定されたハーフ
ペルの動き補償実行回数分だけ、ハーフペル動き補償を
実行完了すれば、その後は、フルペルの動き補償だけを
実行するようになる。
一様にちらばるように、選択方法を工夫しても良い。た
とえば、まず、ハーフペルの動き補償を必要とするマク
ロブロックをすべて求め、この数(例えば12)をハー
フペルの動き補償実行回数(例えば4)で割った商
(3)を求め、ハーフペルの動き補償を必要とするマク
ロブロックの始めからの順序が、この商で割りきれるも
の(0,3,6,9)だけにハーフペルの動き補償を施
す、という方法でも良い。
処理の実行時間を推定し、この推定実行時間に基き、符
号化に要する実行時間を予め予測し、この予測符号化時
間が、フレームレートから決まる画像の符号化に使用可
能な時間以下になるように、実行回数を決定することに
より、課題(C3)を解決することができる。
クトルを検出するために、左右上下15画素の範囲のベ
クトルのうち、もっともSAD(画素ごとに差の絶対値
の和)を小さくするものを検出するフルサーチ動きベク
トル検出方法存在するが、これ以外に、3step動き
ベクトル検出方法というものもある(H.261のan
nex.に記述がある)。これは、上記の探索範囲にて
均等な配置関係の9点を選び、これのSAD最小の点を
選ぶ。次に、この点の近傍のせばめた範囲にて、再度、
9点を選び、SAD最小の点を選ぶ。このような処理を
もう一度実行するのが、3step動きベクトル検出方
法である。
なし、実行時間をそれぞれ推定し、推定実行時間にもと
づき、符号化に要する実行時間を予測し、この予測実行
時間がユーザ指定時間以下になるように、適宜、フルサ
ーチ動きベクトル検出方法の実行回数を減らし、かわり
に3step動きベクトル検出方法の実行回数を増やす
ようにしても良い。
以外に、もっと処理を簡略化した固定探索回数による動
きベクトル検出方法や、(0,0)動きベクトルのみを
結果として返す動きベクトル検出方法を併用しても良
い。
送信方法のフローチャートである。
形態と似ているので、対応する要素を付記しておく。各
フローでの詳しい動作は、対応する要素の説明を参照の
こと。また、第2の実施の形態とほぼ同じであるので、
異なる点のみを説明する。
変数a_iに設定する。また、1102にてフレームレー
トを入力する(入力端子707)。l103は、110
2でのフレームレート、各処理の実行時間a_i、100
2でのイントラ/インタ判定結果から求まる各処理の実
行回数、とから実際の実行回数を決定する(決定手段7
08)。1105,1106は、符号化処理の実行時間
を計測するためのものである。1104は、1106で
の実行時間と各処理の実際の実行回数とから各処理の実
行時間を推定し、変数a_iを更新する(推定手段70
6)。
処理の実行時間を推定し、この推定実行時間に基き、符
号化に要する実行時間を予め予測し、この予測符号化時
間が、フレームレートから決まる画像の符号化に使用可
能な時間以下になるように、実行回数を決定することに
より、課題(C3)を解決することができる。
でのデータ列生成時に、図2に示すスタートコードの直
後に、2バイトの領域を追加し、ここに、符号の長さの
二進表現を追加しても良い。
2での多重化データの入力時にこの2バイトの領域から
符号の長さを抽出し、この符号長さと、符号の伝送速度
とから求まる符号の伝送時間を、905での実行回数計
算に用いるようにしても良い(符号の伝送時間を越えな
いように、ハーフペル動き補償の実行回数を減らす)。
4でのデータ列生成時に、図2に示すスタートコードの
直後に、2バイトの領域を追加し、ここに、符号の長さ
の二進表現を追加しても良い。
1での多重化データの入力時にこの2バイトの領域から
符号の長さを抽出し、この符号長さと、符号の伝送速度
とから求まる符号の伝送時間を、304での実行回数計
算に用いるようにしても良い(符号の伝送時間を越えな
いように、ハーフペル動き補償の実行回数を減らす)。
直後に、ハーフペル動き補償の実際の実行回数を記録
し、これの最大値を算出する。そして、この最大値が充
分小さな値(例えば、2とか3)以下の場合には、ハー
フペル動き補償を使用しないことを示すデータ列(特定
のビットパターンから成るデータ列)を生成し、これを
送信しても良い。さらに、第2の実施の形態において、
808直後にて、このデータ列の受信有無を確認し、ハ
ーフペル動き補償を使用しないことを示すデータ列を受
信した場合には、808にて動き補償の処理を常にフル
ペル動き補償とするようにしても良い。
用できる。たとえば、DCT計算で、高周波成分を使用
しないようにすることで、DCT計算の処理時間を減ら
すことができる。つまり、受信方法にて、IDCT計算
の実行時間の全体の実行時間に占める割合が一定値を越
える場合には、その旨を示すデータ列を送信側に伝送す
る。送信側では、このデータ列を受信した場合には、D
CT計算において低周波成分のみを計算し、高周波成分
はすべて0にしても良い。
態を説明したが、画像以外の音声などに、上記の各方法
を適用しても良い。
4にて、ハーフペル動き補償の実際の実行回数を記録
し、これの最大値を算出する。そして、この最大値が充
分小さな値(例えば、2とか3)以下の場合には、ハー
フペル動き補償を使用しないことを示すデータ列(特定
のビットパターンから成るデータ列)を生成し、これを
送信しても良い。さらに、第1の実施の形態において、
ハーフペル動き補償を使用しないことを示すデータ列を
受信した場合には、1022での動き補償の処理を常に
フルペル動き補償とするようにしても良い。
用できる。たとえば、DCT計算で、高周波成分を使用
しないようにすることで、DCT計算の処理時間を減ら
すことができる。つまり、受信方法にて、IDCT計算
の実行時間の全体の実行時間に占める割合が一定値を越
える場合には、その旨を示すデータ列を送信側に伝送す
る。
には、DCT計算において低周波成分のみを計算し、高
周波成分はすべて0にしても良い。
態を説明したが、画像以外の音声などに、上記の方法を
適用しても良い。
例えば第1の実施の形態、第3の実施の形態によれば、
推定された各要素の実行時間から復号化処理の実行時間
を予測し、これが一枚分のデータを受信するのに要した
時間(指定時間)を越えるようであれば、実行時間の長
いハーフペルの動き補償を、フルペルの動き補償で置き
替える。これによって、実行時間が指定時間を越えない
ようにでき、課題(C1)を解決することができる。
施の形態によれば、推定された各要素の実行時間を送信
側に伝送し、送信側にて復号化処理の実行時間を予測
し、これが一枚分のデータを受信するのに要するであろ
う時間(指定時間)を越えないように実行時間の長いハ
ーフペルの動き補償を、フルペルの動き補償で置き替え
る。これによって、送られた符号化情報のうち、ハーフ
ペル動き補償の情報が捨てられることなく、実行時間が
指定時間を越えないようにでき、課題(C2)を解決す
ることができる。
各処理の実行時間を推定し、この推定実行時間に基き、
符号化に要する実行時間を予め予測し、この予測符号化
時間が、フレームレートから決まる画像の符号化に使用
可能な時間以下になるように、実行回数を決定すること
により、課題(C3)を解決することができる。
大してもゆるやかに品質を落とす機能(CGD:Comput
ational Graceful Degradation)を実現出来、実施に伴
う利益は非常に大である。
つに記載の各ステップ(又は、各手段)の全部又は一部
のステップ(又は、各手段の動作)をコンピュータに実
行させるためのプログラムを記録した磁気記録媒体や、
光記録媒体などの記録媒体を作成し、その記録媒体を用
いてコンピュータにより上記と同様の動作を行っても良
い。
例えば、送信端末と受信端末で使用するデータ管理情
報、伝送管理情報、制御情報の各情報の枠組みを動的に
決定することで、状況に応じた情報の枠組みの変更が可
能になり、用途や伝送路に応じた変更ができる。
概略構成図
送、制御する方法を示す図
ダ情報の動的な変更方法を示す図
す図
て情報の伝送を行う方法を示す図
場合における、プログラムやデータの読み込み、立ち上
げ時間を考慮した画像や音声の伝送方法を示す図 (b):プログラム、データが送信される場合におけ
る、プログラムやデータの読み込み、立ち上げ時間を考
慮した画像や音声の伝送方法を示す図
法を示す図
体例を示す図
体例を示す図
体例を示す図
体例を示す図
体例を示す図
体例を示す図
体例を示す図
体例を示す図
体例を示す図
体例を示す図
体例を示す図
体例を示す図
体例を示す図
体例を示す図
テム構成図
を示す図
ついて記した図
す図
号化装置の概略構成図
号化装置の概略構成図
管理する優先度付加部、優先度決定部を示す図
方法を示す図
示す図
信パケット優先度との対応を示す図
の構成図
の構成図
の構成図
の構成図
の構成図
のフローチャート
のフローチャート
のフローチャート
のフローチャート
成図
成図
優先度を付加する優先度付加手段について説明する図
付加された優先度を解釈し、復号処理の可否を決定する
優先度決定手段について説明する図
Claims (4)
- 【請求項1】 伝送方法に関する及び/又は伝送するデ
ータの構造に関する内容、又はその内容を示す識別子
を、伝送フォーマット情報として受信装置へ送信する送
信手段を有する送信装置において、 前記伝送フォーマット情報は、(1)前記受信装置にお
いて時間的に後の段階で処理のために使用されることに
なるプログラム又はデータを識別する識別子と、(2)
前記プログラム又はデータが処理のために使用されるこ
とになる時点の情報、又は前記プログラム又はデータを
処理するための使用の有効期間を知るための情報とを含
み、 前記受信装置が、前記識別子及び前記情報を判断して、
前記識別されたプログラム又はデータを、前記情報に従
って前記識別されたプログラム又はデータを処理するた
めの使用に先だってセットアップするために用いられる
ことを特徴とする送信装置。 - 【請求項2】 前記プログラム又はデータが処理のため
に使用されることになる時点の情報、又は前記プログラ
ム又はデータを処理するための使用の有効期間を知るた
めの情報は、フラグ、カウンタ、又はタイマーのうち少
なくとも1つであることを特徴とする請求項1記載の送
信装置。 - 【請求項3】 伝送方法に関する及び/又は伝送するデ
ータの構造に関する内容、又はその内容を示す識別子
を、伝送フォーマット情報として受信する受信手段と、 前記伝送フォーマット情報を判断し、データを処理する
制御手段とを有する受信装置において、 前記伝送フォーマット情報は、(1)受信装置において
時間的に後の段階で処理のために使用されることになる
プログラム又はデータを識別する識別子と、(2)前記
プログラム又はデータが処理のために使用されることに
なる時点の情報、又は前記プログラム又はデータを処理
するための使用の有効期間を知るための情報とを含み、 前記制御手段は、前記識別子及び前記情報を判断して、
前記識別されたプログラム又はデータを、前記情報に従
って前記識別されたプログラム又はデータを処 理するた
めの使用に先だってセットアップする ことを特徴とする
受信装置。 - 【請求項4】 前記プログラム又はデータが処理のため
に使用されることになる時点の情報、又は前記プログラ
ム又はデータを処理するための使用の有効期間を知るた
めの情報は、フラグ、カウンタ、又はタイマーのうち少
なくとも1つであることを特徴とする請求項3記載の受
信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002230064A JP3448047B2 (ja) | 1997-03-17 | 2002-08-07 | 送信装置及び受信装置 |
Applications Claiming Priority (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-62667 | 1997-03-17 | ||
JP6266797 | 1997-03-17 | ||
JP9-90640 | 1997-04-09 | ||
JP9064097 | 1997-04-09 | ||
JP17934297 | 1997-07-04 | ||
JP9-179342 | 1997-07-04 | ||
JP22604597 | 1997-08-22 | ||
JP9-226045 | 1997-08-22 | ||
JP9-226027 | 1997-08-22 | ||
JP22602797 | 1997-08-22 | ||
JP33210197 | 1997-12-02 | ||
JP9-332101 | 1997-12-02 | ||
JP2002230064A JP3448047B2 (ja) | 1997-03-17 | 2002-08-07 | 送信装置及び受信装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06558198A Division JP3516585B2 (ja) | 1997-03-17 | 1998-03-16 | データ処理装置及びデータ処理方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003061020A Division JP2004048657A (ja) | 1997-03-17 | 2003-03-07 | 画像・音声受信装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003199062A JP2003199062A (ja) | 2003-07-11 |
JP3448047B2 true JP3448047B2 (ja) | 2003-09-16 |
Family
ID=27617970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002230064A Expired - Lifetime JP3448047B2 (ja) | 1997-03-17 | 2002-08-07 | 送信装置及び受信装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3448047B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4935776B2 (ja) * | 2008-07-29 | 2012-05-23 | 沖電気工業株式会社 | 画像品質管理システム、方法及びプログラム |
JP2017228895A (ja) * | 2016-06-21 | 2017-12-28 | Necプラットフォームズ株式会社 | 階層符号化信号間引き装置、制御方法およびプログラム |
CN114078479A (zh) * | 2020-08-18 | 2022-02-22 | 北京有限元科技有限公司 | 语音传输和语音传输数据准确性判定的方法和装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5461415A (en) * | 1994-03-15 | 1995-10-24 | International Business Machines Corporation | Look-ahead scheduling to support video-on-demand applications |
JPH0818524A (ja) * | 1994-06-28 | 1996-01-19 | Sofuitsuku:Kk | データのスクランブル装置 |
JPH09191453A (ja) * | 1995-11-07 | 1997-07-22 | Sony Corp | データ送受信、データ記録再生のための装置及びその方法並びに記録媒体 |
JP3165635B2 (ja) * | 1996-02-07 | 2001-05-14 | 三洋電機株式会社 | 多重放送受信装置 |
JP3431465B2 (ja) * | 1996-09-11 | 2003-07-28 | 松下電器産業株式会社 | データの提示を制御するデータ提示制御装置、データの提示を制御するために用いる情報を送信するデータ送信装置 |
JPH10232658A (ja) * | 1996-12-20 | 1998-09-02 | Fujitsu Ltd | 表示切替システムおよび記録媒体 |
JPH10243374A (ja) * | 1997-02-27 | 1998-09-11 | Hitachi Ltd | 画像音声情報配信システム |
-
2002
- 2002-08-07 JP JP2002230064A patent/JP3448047B2/ja not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
藤原洋監修,タイム・スタンプによるAV同期方式,最新MPEG教科書,日本,(株)アスキー,1995年 8月 1日,p236−237 |
Also Published As
Publication number | Publication date |
---|---|
JP2003199062A (ja) | 2003-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3516585B2 (ja) | データ処理装置及びデータ処理方法 | |
KR100557103B1 (ko) | 데이터 처리방법 및 데이터 처리장치 | |
EP3038367B1 (en) | Streaming encoded video data | |
US7006575B2 (en) | Picture and sound decoding apparatus picture and sound encoding apparatus and information transmission system | |
US8238438B2 (en) | Image data transmitting apparatus and method and image data reproducing apparatus and method | |
JP3448047B2 (ja) | 送信装置及び受信装置 | |
JP4102223B2 (ja) | データ処理装置及びデータ処理方法 | |
JP3519722B2 (ja) | データ処理方法及びデータ処理装置 | |
KR100530919B1 (ko) | 동화상 데이터의 처리 및 송수신 방법 및 장치 | |
JP2007221826A (ja) | 受信端末および受信方法 | |
KR100530920B1 (ko) | 화상 · 음성 송신장치 및 수신장치 | |
JP2006304309A (ja) | 送信装置、受信装置および通信システム | |
CN100473158C (zh) | 发送和接收动态图像数据的方法 | |
JP2004048657A (ja) | 画像・音声受信装置 | |
KR100802180B1 (ko) | 엠펙-4 비디오 신호의 비트율을 동적인 통신 용량 변화에따라 제어하는 방법 | |
TW410298B (en) | Video/audio transmission apparatus, video/audio receiving apparatus, data processing apparatus, data processing method, data processing apparatus and data processing method, transmission method and apparatus for waveform data | |
Angelides et al. | Capabilities and Limitations of PC’s in the Networked Multimedia Environment | |
Murugan | Multiplexing H. 264/AVC Video with MPEG-AAC Audio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070704 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080704 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090704 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090704 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100704 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120704 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130704 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |