[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3444607B2 - Electrolyte for lithium secondary battery - Google Patents

Electrolyte for lithium secondary battery

Info

Publication number
JP3444607B2
JP3444607B2 JP17969692A JP17969692A JP3444607B2 JP 3444607 B2 JP3444607 B2 JP 3444607B2 JP 17969692 A JP17969692 A JP 17969692A JP 17969692 A JP17969692 A JP 17969692A JP 3444607 B2 JP3444607 B2 JP 3444607B2
Authority
JP
Japan
Prior art keywords
formate
lithium
acetate
electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17969692A
Other languages
Japanese (ja)
Other versions
JPH0620719A (en
Inventor
勝昭 長谷川
邦久 島
秀 越名
博美 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Mitsubishi Chemical Corp
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP17969692A priority Critical patent/JP3444607B2/en
Publication of JPH0620719A publication Critical patent/JPH0620719A/en
Application granted granted Critical
Publication of JP3444607B2 publication Critical patent/JP3444607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はリチウム二次電池用電解
液に関するものであり、さらに詳しくは、充放電効率に
優れ且つ耐酸化性に優れたリチウム二次電池用電解液に
関するものである。 【0002】 【従来の技術】リチウム金属、リチウムインターカレー
ト化合物またはリチウム合金を負極に用いたリチウム電
池は高エネルギーを有し、かつ自己放電が少ないという
利点がある。近年この種の電池の適用分野の広がりに従
い、電子機器の駆動用電源として小型・軽量で、高エネ
ルギー密度を有する二次電池の実用化が望まれている。
そのためとくに、正極活物質として4Vの高電圧を示す
LiCoO2やLiMn24系の材料が注目されている。一
方、負極としては金属リチウム、リチウム合金およびリ
チウムイオンを吸蔵・放出できる炭素材などが検討され
ている。また、リチウム二次電池に従来から使用されて
いる電解液としては、過塩素酸リチウム、ホウフッ化リ
チウム、六フッ化リン酸リチウム、三フッ化メタンスル
ホン酸リチウム、六フッ化砒酸リチウム等のリチウム塩
を溶かしたプロピレンカーボネート溶液等が知られてい
る。 【0003】 【発明が解決しようとする課題】しかしながら、これら
正極・負極・電解液の組み合わせにより構成されたリチ
ウム二次電池においては、充放電効率が100%に満た
ず、充放電を繰り返すと電池容量の低下を引き起こすと
いう問題点がある。この問題点を解決する目的で、様々
な有機電解液が提案されている。例えば、特開昭57-170
463号公報では、エチレンカーボネートが充電効率に優
れていることに着目し、エチレンカーボネートとプロピ
レンカーボネートとの混合溶液を使用することが記載さ
れている。また、特開平3-49166号公報ではジメチルス
ルホキシドとチオフェン誘導体との混合液を使用するこ
とが記載されている。さらに、特開平3-55770号公報で
は、電池の低温特性を改良するためエチレンカーボネー
トとジエチルカーボネートとの混合溶液に2−メチルテ
トラヒドロフラン、1,2−ジメトキシエタン、4−メ
チル−1,3−ジオキソラン等を混合した溶媒を有機電
解液の成分として用いることが提案されている。しかし
ながら、上記のような提案のいずれにおいても、得られ
たリチウム二次電池の充放電効率は98〜99%程度に
留まり、依然としてこの問題点は解決されていない。一
方、米国特許第4,804,596号には、電解液として酢酸メ
チル、ギ酸メチル等の鎖状カルボン酸エステル類を用い
ることが提案されている。この電解液は、充放電効率に
優れているが、これらの溶媒は、エチレンカーボネート
やプロピレンカーボネート等と比べ酸化され易いという
性質があるため、充放電サイクルを繰り返すと徐々に消
耗されていくという欠点がある。本発明は、上記のよう
な従来の課題を解決し、充放電効率に優れ且つ耐酸化性
に優れたリチウム二次電池用電解液を提供することを目
的とするものである。 【0004】 【課題を解決するための手段】本発明者らは、鋭意検討
の結果、上記のような従来の課題を解決することができ
た。すなわち本発明は、リチウム塩を有機溶媒に溶解さ
せたリチウム二次電池用電解液において、前記有機溶媒
として一般式RCOOR(式中、Rは水素または
飽和炭化水素基、Rは飽和炭化水素基を表し、R
よびRの水素のうち少なくとも1つがフッ素で置換さ
れ、RおよびRの炭素原子数の合計は1ないし6で
あり、Rおよび/またはRの飽和炭化水素基におい
て、R は、炭素数1〜5のアルコキシ基および炭素数
2〜4のアルコキシアルコキシ基からなる群から選ばれ
る基で、R は、炭素数1〜4のアルコキシ基および炭
素数2〜4のアルコキシアルコキシ基からなる群から選
ばれる基で、置換されていてもよい)で表されるフッ素
置換鎖状カルボン酸エステルを含むことを特徴とする、
リチウム二次電池用電解液を提供するものである。 【0005】以下、本発明をさらに詳細に説明する。本
発明のリチウム二次電池用電解液は、上記のような特定
の有機溶媒をリチウム二次電池用電解液の一部として用
いているために、充放電効率および耐酸化性に優れてい
るものである。 【0006】本発明のリチウム二次電池用電解液に使用
される有機溶媒は、フッ素置換カルボン酸エステルを含
むものであるが、このフッ素置換カルボン酸エステル
は、一般式R1COOR2(式中、R1およびR2は、上記
と同じ意味である)で表されるものである。具体的に
は、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソ
プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸sec−ブ
チル、ギ酸tert−ブチル、ギ酸ペンチル、ギ酸イソペン
チル、ギ酸ヘキシル等の炭素数が2〜7のカルボン酸エ
ステルのフッ素置換体、酢酸メチル、酢酸エチル、酢酸
プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブ
チル、酢酸sec−ブチル、酢酸tert−ブチル、酢酸ペン
チル、酢酸イソペンチル、プロピオン酸メチル、プロピ
オン酸エチル、プロピオン酸プロピル、プロピオン酸イ
ソプロピル、酪酸メチル、酪酸エチル等の炭素数が3〜
7の脂肪族カルボン酸エステルのフッ素置換体等、さら
にR1および/またはR2の飽和炭化水素基に酸素原子を
含むものとして、ギ酸メトキシメチル、ギ酸メトキシエ
チル、ギ酸メトキシプロピル、ギ酸メトキシブチル、ギ
酸メトキシペンチル、ギ酸エトキシメチル、ギ酸エトキ
シエチル、ギ酸エトキシプロピル、ギ酸エトキシブチ
ル、ギ酸プロポキシメチル、ギ酸プロポキシエチル、ギ
酸プロポキシプロピル、ギ酸ブトキシメチル、ギ酸ブト
キシエチル、ギ酸ペントキシメチル、ギ酸メトキシエト
キシメチル、ギ酸メトキシエトキシエチル、ギ酸メトキ
シエトキシプロピル、ギ酸エトキシエトキシメチル、ギ
酸エトキシエトキシエチル、酢酸メトキシメチル、酢酸
メトキシエチル、酢酸メトキシプロピル、酢酸メトキシ
ブチル、酢酸エトキシメチル、酢酸エトキシエチル、酢
酸エトキシプロピル、酢酸プロポキシメチル、酢酸プロ
ポキシエチル、酢酸メトキシエトキシメチル、酢酸メト
キシエトキシエチル、酢酸エトキシエトキシメチル、メ
トキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸
プロピル、メトキシ酢酸ブチル、エトキシ酢酸メチル、
エトキシ酢酸エチル、エトキシ酢酸プロピル、プロポキ
シ酢酸メチル、プロポキシ酢酸エチル、ブトキシ酢酸メ
チル、メトキシエトキシ酢酸メチル、メトキシエトキシ
酢酸エチル、エトキシメトキシ酢酸メチル、エトキシメ
トキシ酢酸エチル、エトキシエトキシ酢酸メチル、メト
キシ酢酸メトキシメチル、メトキシ酢酸メトキシエチ
ル、メトキシ酢酸メトキシプロピル、メトキシ酢酸エト
キシメチル、メトキシ酢酸エトキシエチル、メトキシ酢
酸プロポキシメチル、エトキシ酢酸メトキシメチル、エ
トキシ酢酸メトキシエチル、エトキシ酢酸エトキシメチ
ル、プロポキシ酢酸メトキシメチル、メトキシ酢酸メト
キシエトキシメチル、メトキシ酢酸エトキシメトキシメ
チル、メトキシエトキシ酢酸メトキシメチル、プロピオ
ン酸メトキシメチル、プロピオン酸メトキシエチル、プ
ロピオン酸メトキシプロピル、プロピオン酸エトキシメ
チル、プロピオン酸エトキシエチル、プロピオン酸プロ
ポキシメチル、プロピオン酸メトキシエトキシメチル、
プロピオン酸エトキシメトキシメチル、メトキシプロピ
オン酸メチル、メトキシプロピオン酸エチル、メトキシ
プロピオン酸プロピル、エトキシプロピオン酸メチル、
エトキシプロピオン酸エチル、プロポキシプロピオン酸
メチル、メトキシプロピオン酸メトキシメチル、メトキ
シプロピオン酸メトキシエチル、メトキシプロピオン酸
エトキシメチル、エトキシプロピオン酸メトキシメチ
ル、酪酸メトキシメチル、酪酸メトキシエチル、酪酸エ
トキシメチル、メトキシ酪酸メチル、メトキシ酪酸エチ
ル、エトキシ酪酸メチル等、また、窒素原子を含むもの
として、ギ酸ジメチルアミノメチル、ギ酸ジメチルアミ
ノエチル、ギ酸ジメチルアミノプロピル、ギ酸ジメチル
アミノブチル、ギ酸ジエチルアミノメチル、ギ酸ジエチ
ルアミノエチル、酢酸ジメチルアミノメチル、酢酸ジメ
チルアミノエチル、酢酸ジメチルアミノプロピル、酢酸
ジエチルアミノメチル、ジメチルアミノ酢酸メチル、ジ
メチルアミノ酢酸エチル、ジメチルアミノ酢酸プロピ
ル、ジメチルアミノ酢酸ジメチルアミノメチル、プロピ
オン酸ジメチルアミノメチル、プロピオン酸ジメチルア
ミノエチル、ジメチルアミノプロピオン酸メチル、ジメ
チルアミノプロピオン酸エチル、酪酸ジメチルアミノメ
チル、ジメチルアミノ酪酸メチル等の炭素数が3〜7の
カルボン酸エステルのフッ素置換体等が挙げられる。な
お、上記のようなカルボン酸エステル中の水素原子すべ
てがフッ素で置換されている必要はなく、1個以上が置
換されていればよい。好ましくは、カルボン酸エステル
中にn個の水素原子をもつ場合、1〜(n−2)個の水
素原子がフッ素で置換されているのがよい。 【0007】本発明のリチウム二次電池用電解液に使用
される有機溶媒は、上記のようなフッ素置換カルボン酸
エステル以外のものも含むことができる。例えば誘電率
を高めるために、エチレンカーボネート、ジエチルカー
ボネート、プロピレンカーボネート、ガンマブチロラク
トン等のラクトン類、さらにスルホラン等を使用するこ
とができる。フッ素置換カルボン酸エステル以外の上記
のような有機溶媒に対するフッ素置換カルボン酸の体積
比率は、充放電効率および耐酸化性を損なわない範囲で
適宜決定すればよいが、例えば5〜80%である。 【0008】本発明のリチウム二次電池用電解液に用い
ることのできる溶質としては、各種のリチウム含有塩を
用いることができる。例えば、六フッ化リン酸リチウ
ム、ホウフッ化リチウム、過塩素酸リチウム、三フッ化
メタンスルホン酸リチウム、六フッ化砒酸リチウム等が
挙げられる。 【0009】 【作用】本発明者らは、酢酸メチル等の鎖状カルボン酸
エステルの酸化性は官能基であるカルボキシル基に起因
するものであると考え、カルボキシル基の両側の飽和炭
化水素基に電子吸引効果を持つ置換基あるいは、立体障
害効果を持つ置換基を導入することを検討し、その結
果、フッ素置換カルボン酸エステル類が、鎖状カルボン
酸エステルのもつ良好な充放電効率を維持しながら、耐
酸化性に優れた溶媒であることを見いだした。フッ素置
換カルボン酸エステル類は、通常の鎖状カルボン酸エス
テル類に比べ高い耐酸化性を示すと同時に、低凝固点を
有し優れた低温特性を示す。一方、この溶媒の欠点は、
通常の鎖状カルボン酸エステル同様に、溶質であるリチ
ウム塩が溶解されにくいことと、フッ素置換基の影響に
より電解液の電導度が僅かに低下することであるが、こ
れは従来の技術で知られているように誘電率の大きなエ
チレンカーボネート等の環状カーボネートまたはジエチ
ルカーボネート等の鎖状カーボネートを適量配合するこ
とで解決できる。 【0010】 【実施例】以下本発明の実施例について詳述する。実施例 1 溶媒として酢酸トリフルオロエチル(CH3COOCH2
CF3)を用い、この溶媒に溶質として六フッ化リン酸
リチウム(LiPF6)を1.0モル/lの濃度となるよ
うに溶解したものを電解液とした。この電解液をAとす
る。この電解液の分解電位を銀電極を参照電極、グラッ
シーカーボン電極を作用極、対極として測定したとこ
ろ、還元電位は−3.6V、酸化電位は2.9Vであっ
た。 【0011】実施例 2 溶媒として酢酸トリフルオロエチルとエチレンカーボネ
ートとジエチルカーボネートの容量比1:0.5:1.5
の混合溶媒を用い、この混合溶媒に溶質として六フッ化
リン酸リチウム(LiPF6)を1.0モル/1の濃度と
なるように溶解したものを電解液とした。この電解液を
Bとする。実施例1と同様にして、電解液Bの分解電位
を測定したところ、還元電位は−3.7V、酸化電位は
2.9Vであった。 【0012】実施例 3 溶媒として酢酸トリフルオロエチルとジエチルカーボネ
ートの容量比1:2の混合溶媒を用い、この混合溶媒に
溶質として六フッ化リン酸リチウム(LiPF6)を1.
0モル/lの濃度となるように溶解したものを電解液と
した。この電解液をCとする。実施例1と同様にして、
電解液Cの分解電位を測定したところ、還元電位は−
3.6V、酸化電位は2.9Vであった。 【0013】実施例 4 溶媒としてトリフルオロ酢酸メチル(CF3COOC
3)とエチレンカーボネートとジエチルカーボネート
の容量比1:0.5:1.5の混合溶媒を用い、この混合
溶媒に溶質として六フッ化リン酸リチウム(LiP
6)を1.0モル/lの濃度となるように溶解したもの
を電解液とした。この電解液をDとする。実施例1と同
様にして、電解液Dの分解電位を測定したところ、還元
電位は−3.7V、酸化電位は2.9Vであった。 【0014】実施例 5 溶媒としてトリフルオロ酢酸メチルとジエチルカーボネ
ートの容量比1:2の混合溶媒を用い、この混合溶媒に
溶質として六フッ化リン酸リチウム(LiPF6)を1.
0モル/lの濃度となるように溶解したものを電解液と
した。この電解液をEとする。実施例1と同様にして、
電解液Eの分解電位を測定したところ、還元電位は−
3.8V、酸化電位は2.9Vであった。 【0015】比較例 1 溶媒として酢酸エチル(CH3COOCH2CH3)を用
い、この溶媒に溶質として六フッ化リン酸リチウム(L
iPF6)を1.0モル/lの濃度となるように溶解した
ものを電解液とした。この電解液をFとする。実施例1
と同様にして、電解液Fの分解電位を測定したところ、
還元電位は−3.5V、酸化電位は2.6Vであった。 【0016】比較例 2 溶媒として酢酸エチルとエチレンカーボネートとジエチ
ルカーボネートの容量比1:0.5:1.5の混合溶媒を
用い、この混合溶媒に溶質として六フッ化リン酸リチウ
ム(LiPF6)を1.0モル/lの濃度となるように溶
解したものを電解液とした。この電解液をGとする。実
施例1と同様にして、電解液Gの分解電位を測定したと
ころ、還元電位は−3.6V、酸化電位は2.3Vであっ
た。 【0017】比較例 3 溶媒として酢酸エチルとジエチルカーボネートの容量比
1:2の混合溶媒を用い、この混合溶媒に溶質として六
フッ化リン酸リチウム(LiPF6)を1.0モル/lの
濃度となるように溶解したものを電解液とした。この電
解液をHとする。実施例1と同様にして、電解液Hの分
解電位を測定したところ、還元電位は−3.6V、酸化
電位は2.3Vであった。 【0018】本実施例では、電解質の溶質として六フッ
化リン酸リチウムを用いたが、他のリチウム含有塩、例
えばホウフッ化リチウム、過塩素酸リチウム、三フッ化
メタンスルホン酸リチウム、六フッ化砒酸リチウム等で
も同様の結果が得られた。さらに本実施例では、電解液
の混合溶媒としてエチレンカーボネートとジエチルカー
ボネートを使用しているが、プロピレンカーボネート等
の他の環状カーボネートやガンマブチロラクトン等のラ
クトン類、さらにスルホラン等の他の溶媒でも同様の結
果が得られた。さらに、本発明の電解液A〜Eは、室温
付近の電導度が良好であることはもちろん、−20℃で
も1.5〜2.50mS/cmの電導度を有し、溶質の析出
などの問題はないことが判明した。 【0019】 【発明の効果】実施例より明白なように、本発明のリチ
ウム二次電池用電解液A〜Eは、比較電解液F〜Hに比
して高い酸化電位を有することが判る。従って、耐酸化
性に優れるため、充放電時に酸化分解を受けにくく、充
放電効率が向上するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte for a lithium secondary battery, and more particularly, to a lithium secondary battery excellent in charge / discharge efficiency and oxidation resistance. The present invention relates to an electrolyte for a secondary battery. 2. Description of the Related Art A lithium battery using a lithium metal, a lithium intercalate compound or a lithium alloy for a negative electrode has advantages of high energy and low self-discharge. 2. Description of the Related Art In recent years, with the expansion of the application field of this type of battery, it has been desired to commercialize a small and lightweight secondary battery having a high energy density as a power supply for driving electronic devices.
For this reason, LiCoO 2 and LiMn 2 O 4 -based materials exhibiting a high voltage of 4 V have attracted particular attention as positive electrode active materials. On the other hand, as the negative electrode, metallic lithium, a lithium alloy, a carbon material capable of occluding and releasing lithium ions, and the like have been studied. In addition, as an electrolytic solution conventionally used for lithium secondary batteries, lithium perchlorate, lithium borofluoride, lithium hexafluorophosphate, lithium trifluoride methanesulfonate, lithium hexafluoride arsenate and the like are used. A propylene carbonate solution in which a salt is dissolved is known. [0003] However, in a lithium secondary battery composed of a combination of the positive electrode, the negative electrode, and the electrolytic solution, the charge / discharge efficiency is less than 100%, and when the charge / discharge is repeated, the battery is recharged. There is a problem that the capacity is reduced. For the purpose of solving this problem, various organic electrolytes have been proposed. For example, JP-A-57-170
Japanese Patent No. 463 focuses on the fact that ethylene carbonate is excellent in charging efficiency, and describes using a mixed solution of ethylene carbonate and propylene carbonate. JP-A-3-49166 discloses that a mixed solution of dimethyl sulfoxide and a thiophene derivative is used. Further, in Japanese Patent Application Laid-Open No. 3-55770, 2-methyltetrahydrofuran, 1,2-dimethoxyethane, 4-methyl-1,3-dioxolane are added to a mixed solution of ethylene carbonate and diethyl carbonate in order to improve the low-temperature characteristics of the battery. It has been proposed to use a solvent obtained by mixing these as a component of an organic electrolytic solution. However, in any of the proposals described above, the charge / discharge efficiency of the obtained lithium secondary battery is only about 98 to 99%, and this problem has not been solved yet. On the other hand, US Pat. No. 4,804,596 proposes using a chain carboxylic acid ester such as methyl acetate and methyl formate as an electrolytic solution. Although this electrolytic solution is excellent in charge and discharge efficiency, these solvents have a property that they are easily oxidized as compared with ethylene carbonate, propylene carbonate, and the like, so that they are gradually consumed when the charge and discharge cycle is repeated. There is. An object of the present invention is to solve the conventional problems as described above, and to provide an electrolyte for a lithium secondary battery having excellent charge / discharge efficiency and excellent oxidation resistance. The inventors of the present invention have made intensive studies and as a result, have been able to solve the above-mentioned conventional problems. That is, the present invention provides an electrolytic solution for a lithium secondary battery in which a lithium salt is dissolved in an organic solvent, wherein the organic solvent has a general formula R 1 COOR 2 (where R 1 is hydrogen or a saturated hydrocarbon group, and R 2 is Represents a saturated hydrocarbon group, wherein at least one of the hydrogens of R 1 and R 2 is substituted with fluorine, the total number of carbon atoms of R 1 and R 2 is 1 to 6, and R 1 and / or R 2 Saturated hydrocarbon group smell
R 2 is an alkoxy group having 1 to 5 carbon atoms and a carbon number
Selected from the group consisting of 2 to 4 alkoxyalkoxy groups
R 1 is an alkoxy group having 1 to 4 carbon atoms and a carbon
Selected from the group consisting of alkoxyalkoxy groups having 2 to 4 prime numbers
Which may be substituted) with a fluorine-substituted linear carboxylic acid ester represented by the formula:
An object of the present invention is to provide an electrolyte for a lithium secondary battery. Hereinafter, the present invention will be described in more detail. The electrolyte for a lithium secondary battery of the present invention has excellent charge / discharge efficiency and oxidation resistance because the specific organic solvent as described above is used as a part of the electrolyte for a lithium secondary battery. It is. The organic solvent used in the electrolyte for a lithium secondary battery of the present invention contains a fluorine-substituted carboxylic acid ester. The fluorine-substituted carboxylic acid ester has the general formula R 1 COOR 2 (where R 1 and R 2 have the same meanings as described above). Specifically, the number of carbon atoms such as methyl formate, ethyl formate, propyl formate, isopropyl formate, butyl formate, isobutyl formate, sec-butyl formate, tert-butyl formate, pentyl formate, isopentyl formate, hexyl formate, etc. is 2 to 7. Fluorinated carboxylate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, tert-butyl acetate, pentyl acetate, isopentyl acetate, methyl propionate, ethyl propionate, 3 to 3 carbon atoms such as propyl propionate, isopropyl propionate, methyl butyrate, ethyl butyrate
7 as a fluorine-substituted aliphatic carboxylic acid ester, and those containing an oxygen atom in the saturated hydrocarbon group of R 1 and / or R 2 include methoxymethyl formate, methoxyethyl formate, methoxypropyl formate, methoxybutyl formate, Methoxypentyl formate, ethoxymethyl formate, ethoxyethyl formate, ethoxypropyl formate, ethoxybutyl formate, propoxymethyl formate, propoxyethyl formate, propoxypropyl formate, butoxymethyl formate, butoxyethyl formate, pentoxymethyl formate, methoxyethoxymethyl formate, Methoxyethoxyethyl formate, methoxyethoxypropyl formate, ethoxyethoxymethyl formate, ethoxyethoxyethyl formate, methoxymethyl acetate, methoxyethyl acetate, methoxypropyl acetate, methoxybutyl acetate, ethoxybutyl acetate Cimethyl, ethoxyethyl acetate, ethoxypropyl acetate, propoxymethyl acetate, propoxyethyl acetate, methoxyethoxymethyl acetate, methoxyethoxyethyl acetate, ethoxyethoxymethyl acetate, methyl methoxyacetate, ethyl methoxyacetate, propyl methoxyacetate, butyl methoxyacetate, ethoxy Methyl acetate,
Ethyl ethoxyacetate, propyl ethoxyacetate, methyl propoxyacetate, ethyl propoxyacetate, methyl butoxyacetate, methyl methoxyethoxyacetate, ethyl methoxyethoxyacetate, methyl ethoxymethoxyacetate, ethyl ethoxymethoxyacetate, methyl ethoxyethoxyacetate, methoxymethyl methoxyacetate, Methoxyethyl methoxyacetate, methoxypropyl methoxyacetate, ethoxymethyl methoxyacetate, ethoxyethyl methoxyacetate, propoxymethyl methoxyacetate, methoxymethyl ethoxyacetate, methoxyethyl ethoxyacetate, ethoxymethyl ethoxyacetate, methoxymethyl propoxyacetate, methoxyethoxymethyl methoxyacetate Ethoxymethoxymethyl methoxyacetate, methoxymethyl methoxyethoxyacetate, methoxymethyl propionate Methoxyethyl propionate, propionate methoxypropyl, ethoxymethyl propionate, ethoxyethyl propionate, propionic acid propoxymethyl, propionate methoxyethoxymethyl,
Ethoxymethoxymethyl propionate, methyl methoxypropionate, ethyl methoxypropionate, propyl methoxypropionate, methyl ethoxypropionate,
Ethyl ethoxypropionate, methyl propoxypropionate, methoxymethyl methoxypropionate, methoxyethyl methoxypropionate, ethoxymethyl methoxypropionate, methoxymethyl ethoxypropionate, methoxymethyl butyrate, methoxyethyl butyrate, ethoxymethyl butyrate, methyl methoxybutyrate, methyl methoxybutyrate, Ethyl methoxybutyrate, methyl ethoxybutyrate, etc., and those containing a nitrogen atom include dimethylaminomethyl formate, dimethylaminoethyl formate, dimethylaminopropyl formate, dimethylaminobutyl formate, diethylaminomethyl formate, diethylaminomethyl formate, dimethylaminomethyl acetate Dimethylaminoethyl acetate, dimethylaminopropyl acetate, diethylaminomethyl acetate, dimethylaminomethyl acetate, dimethylaminoacetic acid Dimethylaminoacetate, dimethylaminomethyl dimethylaminoacetate, dimethylaminomethyl propionate, dimethylaminoethyl propionate, methyl dimethylaminopropionate, ethyl dimethylaminopropionate, dimethylaminomethyl butyrate, dimethylaminomethyl butyrate, etc. Examples include fluorine-substituted carboxylic acid esters having 3 to 7 numbers. It is not necessary that all of the hydrogen atoms in the carboxylic acid ester described above be substituted with fluorine, and it is sufficient that at least one hydrogen atom is substituted. Preferably, when the carboxylic acid ester has n hydrogen atoms, 1 to (n-2) hydrogen atoms may be substituted with fluorine. The organic solvent used in the electrolyte for a lithium secondary battery according to the present invention may contain other than the above-mentioned fluorine-substituted carboxylic acid ester. For example, lactones such as ethylene carbonate, diethyl carbonate, propylene carbonate, gamma-butyrolactone, and sulfolane can be used to increase the dielectric constant. The volume ratio of the fluorine-substituted carboxylic acid to the above-mentioned organic solvent other than the fluorine-substituted carboxylic acid ester may be appropriately determined as long as the charge-discharge efficiency and the oxidation resistance are not impaired. As the solute that can be used in the electrolyte for a lithium secondary battery of the present invention, various lithium-containing salts can be used. For example, lithium hexafluorophosphate, lithium borofluoride, lithium perchlorate, lithium trifluoride methanesulfonate, lithium hexafluoroarsenate and the like can be mentioned. The present inventors believe that the oxidizability of a chain carboxylic acid ester such as methyl acetate is caused by a carboxyl group which is a functional group, and that the carboxylic acid is not oxidized by a saturated hydrocarbon group on both sides of the carboxyl group. We examined the introduction of substituents having an electron-withdrawing effect or substituents having a steric hindrance effect. As a result, the fluorine-substituted carboxylic esters maintained the good charge / discharge efficiency of the chain carboxylic esters. However, it was found that the solvent was excellent in oxidation resistance. Fluorine-substituted carboxylic esters show higher oxidation resistance than ordinary chain carboxylic esters, and also have a low freezing point and excellent low-temperature properties. On the other hand, the disadvantages of this solvent are:
Like a normal chain carboxylic acid ester, it is difficult to dissolve the solute lithium salt, and the conductivity of the electrolyte slightly decreases due to the influence of the fluorine substituent. This is known in the prior art. As described above, the problem can be solved by adding an appropriate amount of a cyclic carbonate having a large dielectric constant such as ethylene carbonate or a chain carbonate such as diethyl carbonate. Embodiments of the present invention will be described below in detail. Example 1 Trifluoroethyl acetate (CH 3 COOCH 2
Using CF 3 ), a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) as a solute in this solvent so as to have a concentration of 1.0 mol / l was used as an electrolytic solution. This electrolyte is designated as A. When the decomposition potential of this electrolytic solution was measured with the silver electrode as the reference electrode, the glassy carbon electrode as the working electrode, and the counter electrode, the reduction potential was -3.6 V and the oxidation potential was 2.9 V. EXAMPLE 2 As a solvent, a volume ratio of trifluoroethyl acetate, ethylene carbonate and diethyl carbonate of 1: 0.5: 1.5.
And a mixed solvent of lithium hexafluorophosphate (LiPF 6 ) dissolved as a solute to a concentration of 1.0 mol / 1 was used as an electrolytic solution. This electrolyte is designated as B. When the decomposition potential of the electrolytic solution B was measured in the same manner as in Example 1, the reduction potential was -3.7 V and the oxidation potential was 2.9 V. Example 3 A mixed solvent of trifluoroethyl acetate and diethyl carbonate in a volume ratio of 1: 2 was used as a solvent, and lithium hexafluorophosphate (LiPF 6 ) was used as a solute in this mixed solvent.
A solution dissolved at a concentration of 0 mol / l was used as an electrolytic solution. This electrolyte is designated as C. In the same manner as in Example 1,
When the decomposition potential of the electrolytic solution C was measured, the reduction potential was −
The oxidation potential was 3.6 V and 2.9 V. Example 4 Methyl trifluoroacetate (CF 3 COOC) was used as a solvent.
H 3 ), a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 0.5: 1.5, and lithium hexafluorophosphate (LiP
F 6 ) was dissolved at a concentration of 1.0 mol / l to obtain an electrolytic solution. This electrolyte is designated as D. When the decomposition potential of the electrolytic solution D was measured in the same manner as in Example 1, the reduction potential was -3.7 V and the oxidation potential was 2.9 V. Example 5 A mixed solvent of methyl trifluoroacetate and diethyl carbonate in a volume ratio of 1: 2 was used as a solvent, and lithium hexafluorophosphate (LiPF 6 ) was used as a solute in this mixed solvent.
A solution dissolved at a concentration of 0 mol / l was used as an electrolytic solution. This electrolyte is designated as E. In the same manner as in Example 1,
When the decomposition potential of the electrolytic solution E was measured, the reduction potential was −
3.8 V and the oxidation potential were 2.9 V. Comparative Example 1 Ethyl acetate (CH 3 COOCH 2 CH 3 ) was used as a solvent, and lithium hexafluorophosphate (L) was used as a solute in this solvent.
iPF 6 ) dissolved at a concentration of 1.0 mol / l was used as an electrolytic solution. This electrolyte is designated as F. Example 1
When the decomposition potential of the electrolytic solution F was measured in the same manner as
The reduction potential was -3.5 V and the oxidation potential was 2.6 V. Comparative Example 2 A mixed solvent of ethyl acetate, ethylene carbonate and diethyl carbonate in a volume ratio of 1: 0.5: 1.5 was used as a solvent, and lithium hexafluorophosphate (LiPF 6 ) was used as a solute in the mixed solvent. Was dissolved to a concentration of 1.0 mol / l to obtain an electrolytic solution. This electrolyte is referred to as G. When the decomposition potential of the electrolytic solution G was measured in the same manner as in Example 1, the reduction potential was -3.6 V and the oxidation potential was 2.3 V. Comparative Example 3 A mixed solvent of ethyl acetate and diethyl carbonate having a volume ratio of 1: 2 was used as a solvent, and lithium hexafluorophosphate (LiPF 6 ) was used as a solute in the mixed solvent at a concentration of 1.0 mol / l. Was dissolved to obtain an electrolytic solution. This electrolyte is designated as H. When the decomposition potential of the electrolytic solution H was measured in the same manner as in Example 1, the reduction potential was -3.6 V and the oxidation potential was 2.3 V. In this embodiment, lithium hexafluorophosphate was used as the solute of the electrolyte. However, other lithium-containing salts, for example, lithium borofluoride, lithium perchlorate, lithium trifluoride methanesulfonate, hexafluoride Similar results were obtained with lithium arsenate and the like. Further, in the present embodiment, ethylene carbonate and diethyl carbonate are used as a mixed solvent of the electrolytic solution, but other cyclic carbonates such as propylene carbonate and lactones such as gamma-butyrolactone, and other solvents such as sulfolane have the same effect. The result was obtained. Furthermore, the electrolytic solutions A to E of the present invention have not only good conductivity around room temperature but also 1.5 to 2.50 mS / cm even at -20 ° C. Turns out no problem. As is clear from the examples, it can be seen that the electrolytes A to E for lithium secondary batteries of the present invention have a higher oxidation potential than the comparative electrolytes F to H. Therefore, since it is excellent in oxidation resistance, it is less susceptible to oxidative decomposition during charge and discharge, and the charge and discharge efficiency is improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島 邦久 三重県四日市市東邦町1番地 三菱油化 株式会社四日市総合研究所内 (72)発明者 越名 秀 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 奥野 博美 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭62−290073(JP,A) 特開 昭63−114076(JP,A) 特開 昭62−290071(JP,A) 特開 昭62−290072(JP,A) 特開 平3−155061(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Kunihisa Shima               1 Tohocho, Yokkaichi, Mie Prefecture Mitsubishi Yuka               Yokkaichi Research Institute, Inc. (72) Inventor Hide Koshina               1006 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric               Kiki Sangyo Co., Ltd. (72) Inventor Hiromi Okuno               1006 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric               Kiki Sangyo Co., Ltd.                (56) References JP-A-62-290073 (JP, A)                 JP-A-63-114076 (JP, A)                 JP-A-62-290071 (JP, A)                 JP-A-62-290072 (JP, A)                 JP-A-3-150506 (JP, A)

Claims (1)

(57)【特許請求の範囲】 【請求項1】 リチウム塩を有機溶媒に溶解させたリチ
ウム二次電池用電解液において、前記有機溶媒として一
般式RCOOR(式中、Rは水素または飽和炭化
水素基、Rは飽和炭化水素基を表し、RおよびR
の水素のうち少なくとも1つがフッ素で置換され、R
およびRの炭素原子数の合計は1ないし6であり、R
および/またはRの飽和炭化水素基において、R
は、炭素数1〜5のアルコキシ基および炭素数2〜4の
アルコキシアルコキシ基からなる群から選ばれる基で、
は、炭素数1〜4のアルコキシ基および炭素数2〜
4のアルコキシアルコキシ基からなる群から選ばれる基
で、置換されていてもよい)で表されるフッ素置換鎖状
カルボン酸エステルを含むことを特徴とする、リチウム
二次電池用電解液。
(57) [Claim 1] In an electrolyte for a lithium secondary battery in which a lithium salt is dissolved in an organic solvent, the organic solvent is a compound represented by the general formula R 1 COOR 2 (where R 1 is hydrogen Or a saturated hydrocarbon group, R 2 represents a saturated hydrocarbon group, and R 1 and R 2
At least one is substituted with a fluorine among hydrogen, R 1
And the total number of carbon atoms in R 2 is 1 to 6,
In the saturated hydrocarbon group of 1 and / or R 2 , R 2
Is an alkoxy group having 1 to 5 carbon atoms and an alkoxy group having 2 to 4 carbon atoms.
A group selected from the group consisting of alkoxyalkoxy groups,
R 1 is an alkoxy group having 1 to 4 carbon atoms and 2 to 2 carbon atoms.
A group selected from the group consisting of 4 alkoxyalkoxy groups
And a substituted carboxylic acid ester represented by the formula (1):
JP17969692A 1992-07-07 1992-07-07 Electrolyte for lithium secondary battery Expired - Lifetime JP3444607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17969692A JP3444607B2 (en) 1992-07-07 1992-07-07 Electrolyte for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17969692A JP3444607B2 (en) 1992-07-07 1992-07-07 Electrolyte for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0620719A JPH0620719A (en) 1994-01-28
JP3444607B2 true JP3444607B2 (en) 2003-09-08

Family

ID=16070280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17969692A Expired - Lifetime JP3444607B2 (en) 1992-07-07 1992-07-07 Electrolyte for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3444607B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013033579A1 (en) 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
WO2013180783A1 (en) 2012-06-01 2013-12-05 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
WO2014165748A1 (en) 2013-04-04 2014-10-09 E. I. Du Pont De Nemours And Company Nonaqueous electrolyte compositions
WO2017074556A1 (en) 2015-10-26 2017-05-04 E. I. Du Pont De Nemours And Company Nonaqueous electrolyte compositions comprising a fluorinated solvent and a 2-furanone
US9673450B2 (en) 2011-09-02 2017-06-06 Solvay Sa Lithium ion battery
WO2017209762A1 (en) 2016-06-03 2017-12-07 E. I. Du Pont De Nemours And Company Nonaqueous electrolyte compositions comprising fluorinated sulfones
US10074874B2 (en) 2012-06-01 2018-09-11 Solvay Sa Additives to improve electrolyte performance in lithium ion batteries

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092222A (en) * 1996-09-17 1998-04-10 Tokuyama Sekiyu Kagaku Kk Solvent for electrolytic solution
DE19724709A1 (en) * 1997-06-13 1998-12-17 Hoechst Ag Electrolyte system for lithium batteries and its use and method for increasing the safety of lithium batteries
DE19858924A1 (en) * 1998-12-19 2000-06-21 Aventis Res & Tech Gmbh & Co Improving the safety of lithium batteries for use in electronic devices by using an electrolyte containing a diol-derived partly-fluorinated compound
DE10016816A1 (en) * 2000-04-05 2001-10-11 Solvay Fluor & Derivate Use of alkoxy esters
EP1311018B1 (en) * 2000-08-11 2011-10-12 Ube Industries, Ltd. Nonaqueous electrolytic solution and lithium secondary battery
JP4150202B2 (en) * 2002-04-02 2008-09-17 ソニー株式会社 battery
US7985502B2 (en) 2004-03-22 2011-07-26 Ube Industries, Ltd. Nonaqueous electrolyte solution and lithium secondary battery using same
FR2879826B1 (en) * 2004-12-17 2007-01-26 Accumulateurs Fixes LITHIUM ACCUMULATOR OPERATING AT VERY LOW TEMPERATURE
JP5034224B2 (en) * 2005-08-05 2012-09-26 宇部興産株式会社 Non-aqueous electrolyte and lithium secondary battery using the same
WO2008102493A1 (en) * 2007-02-20 2008-08-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte for rechargeable battery and rechargeable battery with nonaqueous electrolyte
WO2009022848A1 (en) * 2007-08-16 2009-02-19 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
JP5461883B2 (en) 2008-08-05 2014-04-02 三洋電機株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
CN103262329B (en) * 2010-12-15 2016-02-10 陶氏环球技术有限责任公司 Containing some based on the cell electrolyte solution of the solvent of ester and the battery containing such electrolyte solution
WO2012084066A1 (en) * 2010-12-21 2012-06-28 Westfälische Wilhelms-Universität Electrolytes comprising propylene carbonate for batteries and accumulators
WO2012132060A1 (en) 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
WO2013008439A1 (en) * 2011-07-08 2013-01-17 パナソニック株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary cell employing same
JP6036697B2 (en) * 2011-09-20 2016-11-30 日本電気株式会社 Non-aqueous secondary battery
KR20140145127A (en) * 2012-03-27 2014-12-22 아사히 가라스 가부시키가이샤 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
JP7020208B2 (en) * 2018-03-16 2022-02-16 トヨタ自動車株式会社 Electrolyte and lithium-ion battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979050B2 (en) 2011-09-02 2018-05-22 Solvay Sa Fluorinated electrolyte compositions
WO2013033579A1 (en) 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
US9673450B2 (en) 2011-09-02 2017-06-06 Solvay Sa Lithium ion battery
WO2013180783A1 (en) 2012-06-01 2013-12-05 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
US10074874B2 (en) 2012-06-01 2018-09-11 Solvay Sa Additives to improve electrolyte performance in lithium ion batteries
US10044066B2 (en) 2012-06-01 2018-08-07 Solvary SA Fluorinated electrolyte compositions
EP3588657A1 (en) 2013-04-04 2020-01-01 Solvay SA Nonaqueous electrolyte compositions
WO2014165748A1 (en) 2013-04-04 2014-10-09 E. I. Du Pont De Nemours And Company Nonaqueous electrolyte compositions
US10686220B2 (en) 2013-04-04 2020-06-16 Solvay Sa Nonaqueous electrolyte compositions
US10916805B2 (en) 2013-04-04 2021-02-09 Solvay Sa Nonaqueous electrolyte compositions
WO2017074556A1 (en) 2015-10-26 2017-05-04 E. I. Du Pont De Nemours And Company Nonaqueous electrolyte compositions comprising a fluorinated solvent and a 2-furanone
US12046717B2 (en) 2015-10-26 2024-07-23 Syensqo Sa Nonaqueous electrolyte compositions comprising a fluorinated solvent and a 2-furanone
WO2017209762A1 (en) 2016-06-03 2017-12-07 E. I. Du Pont De Nemours And Company Nonaqueous electrolyte compositions comprising fluorinated sulfones
US11374260B2 (en) 2016-06-03 2022-06-28 Solvay Sa Nonaqueous electrolyte compositions comprising fluorinated sulfones

Also Published As

Publication number Publication date
JPH0620719A (en) 1994-01-28

Similar Documents

Publication Publication Date Title
JP3444607B2 (en) Electrolyte for lithium secondary battery
JP4557381B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4577482B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP6081264B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JP2000133304A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP2004022336A (en) Electrolyte for secondary battery and secondary battery using it
WO2021073465A1 (en) Electrolyte for lithium ion battery, lithium ion battery, battery module, battery pack and device
JP2008153118A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery using same
WO2021047500A1 (en) Electrolyte, and lithium ion battery, battery module, battery pack and device comprising same
TW200810208A (en) Additive having cyano group for non-aqueous electrolyte and electrochemical device using the same
JP4328915B2 (en) Non-aqueous electrolyte for secondary battery and secondary battery using the same
JP2001057236A (en) Non-aqueous electrolyte and secondary battery using the same
CN107093765A (en) A kind of nonaqueous electrolytic solution and secondary cell
JP2006172721A (en) Electrolyte for secondary battery, and secondary battery using the same
JP5300054B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
CN105006593A (en) Lithium ion secondary battery and electrolyte thereof
JP2000294278A (en) Nonaqueous electrolyte and secondary battery using it
CN108352572B (en) Additive for nonaqueous electrolyte solution, and electricity storage device
JP2001307770A (en) Electrolytic solution for lithium storage battery and secondary battery using the same
JP4701601B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
WO2023159798A1 (en) Electrolyte used for alkali metal battery and alkali metal battery thereof
JP2001307769A (en) Electrolyt solution for lithium storage battery and secondary battery using the same
CN108987809A (en) A kind of non-aqueous electrolyte for lithium ion cell and the lithium ion battery using the electrolyte
JP2017004638A (en) Electrolyte salt, non-aqueous electrolytic solution containing electrolyte salt, and power storage device using non-aqueous electrolytic solution
JPH11126632A (en) Lithium storage battery provided with organic electrolyte and carbon anode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100627

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100627

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100627

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120627

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120627

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130627

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10