[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3331212B2 - Servo displacement meter - Google Patents

Servo displacement meter

Info

Publication number
JP3331212B2
JP3331212B2 JP2001150430A JP2001150430A JP3331212B2 JP 3331212 B2 JP3331212 B2 JP 3331212B2 JP 2001150430 A JP2001150430 A JP 2001150430A JP 2001150430 A JP2001150430 A JP 2001150430A JP 3331212 B2 JP3331212 B2 JP 3331212B2
Authority
JP
Japan
Prior art keywords
servo
rotor
positive displacement
differential pressure
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001150430A
Other languages
Japanese (ja)
Other versions
JP2002156257A (en
Inventor
勝夫 三角
胖 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001150430A priority Critical patent/JP3331212B2/en
Application filed by Oval Corp filed Critical Oval Corp
Priority to EP02771699A priority patent/EP1403626B1/en
Priority to PCT/JP2002/004539 priority patent/WO2002095340A1/en
Priority to KR10-2003-7013588A priority patent/KR100536432B1/en
Priority to CNB2005100844985A priority patent/CN100538286C/en
Priority to CNB02810448XA priority patent/CN100468012C/en
Priority to TW091109903A priority patent/TW561247B/en
Publication of JP2002156257A publication Critical patent/JP2002156257A/en
Application granted granted Critical
Publication of JP3331212B2 publication Critical patent/JP3331212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サーボ形容積式流
量計に関し、より詳細には、小流量域から大流量域ま
で、器差が、ほとんどゼロに近い優れた特性をもつサー
ボ形容積式流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a servo-type positive displacement flowmeter, and more particularly, to a servo-type positive displacement flowmeter having excellent characteristics in which the instrumental difference is almost zero from a small flow rate range to a large flow rate range. It relates to a flow meter.

【0002】[0002]

【従来の技術】一対の回転子を有する代表的な容積式流
量計は、計量室と、計量室内で回転する一対の回転子を
有し、計量室と回転子とで形成される容積を基準容積と
して計量室内に流入する被測定流体を回転子の回転に応
じて流出することにより、回転子の回転数から流量を求
める流量計である。すなわち、理想的には、基準容積に
相当する体積の被測定流体が回転子の回転に比例して排
出される。
2. Description of the Related Art A typical positive displacement type flow meter having a pair of rotors has a measuring chamber and a pair of rotors rotating in the measuring chamber, and a volume defined by the measuring chamber and the rotor is used as a reference. This is a flow meter that obtains a flow rate from the number of revolutions of a rotor by flowing a fluid to be measured flowing into a measuring chamber as a volume in accordance with the rotation of the rotor. That is, ideally, a volume of the fluid to be measured corresponding to the reference volume is discharged in proportion to the rotation of the rotor.

【0003】しかし、実際の容積式流量計においては、
回転子の回転を可能とするために回転子と計量室との間
には、微小な隙間が設けられており、回転子は計量室と
接触することなく回転する。また、回転子が回転するた
めには、機械的要素の負荷、例えば軸受摩擦や計数部の
負荷に打ち勝つ回転トルクが必要で、この回転トルクを
被測定流体が回転子に作用する流体差圧による回転モー
メントにより得ている。このため、被測定流体のエネル
ギーで回転子を回転させた場合(自力式容積式流量
計)、この隙間から、極わずかではあるが、入口側から
出口側に漏洩が発生する。
However, in an actual positive displacement type flow meter,
A minute gap is provided between the rotor and the measuring chamber to enable rotation of the rotor, and the rotor rotates without contacting the measuring chamber. In addition, in order for the rotor to rotate, a rotational torque that overcomes the load of a mechanical element, for example, the friction of the bearing or the load of the counting unit is required, and this rotational torque is generated by the fluid differential pressure applied to the rotor by the fluid to be measured. Obtained by rotational moment. For this reason, when the rotor is rotated by the energy of the fluid to be measured (self-acting positive displacement type flow meter), leakage occurs from the inlet side to the outlet side, though only slightly, from this gap.

【0004】図4は、自力式容積式流量計の器差特性の
一例を示す図である。図のように、この漏れの大きさ
は、流体差圧によるモーメントに対して、摩擦トルクの
割合が大きい小流量の範囲で大きく、器差がマイナスと
なり、その他の流量域において生ずる差圧の大きさによ
っても異なり、さらには、全流量域において被測定流体
の粘度に逆比例して大きく変化する。
FIG. 4 is a diagram showing an example of an instrumental difference characteristic of a self-acting positive displacement type flow meter. As shown in the figure, the magnitude of this leakage is large in the range of small flow rate where the ratio of friction torque to the moment due to fluid differential pressure is large, the instrumental difference is negative, and the magnitude of the differential pressure generated in other flow rate ranges The viscosity varies greatly depending on the viscosity of the fluid to be measured in the entire flow rate range.

【0005】一方、容積式流量計は、直接体積流量が測
定でき精度も高いことから、産業用、取り引き用の流量
計として広く使用されている。しかし、上述したように
原理的に計量室内で回転子が回転するために計量室と回
転子との間に存在する隙間による漏洩が、微少流量の測
定や、さらに高精度を追求する測定の場合には、無視で
きなくなる。また、この漏れ量は、容積式流量計の流出
入口間の圧力損失に比例する。
On the other hand, positive displacement flowmeters are widely used as industrial and commercial flowmeters because they can directly measure the volumetric flow rate and have high accuracy. However, as described above, since the rotor rotates in principle in the measuring chamber, leakage due to the gap existing between the measuring chamber and the rotor may cause a small flow rate measurement or a measurement pursuing higher precision. Can no longer be ignored. The amount of leakage is proportional to the pressure loss between the outlet and the inlet of the positive displacement flowmeter.

【0006】被測定流体の粘度や密度などの物性値に影
響されずに安定した高精度の流量の測定が可能なよう
に、流量計の流出入口間の圧力損失を正確に検出して、
この圧力損失が、常に、ゼロになるように回転子に外部
からサーボモータで駆動力を与えてやり、そのときの回
転子の動作回転数から流量を測定するようにした流量計
が、サーボ形容積式流量計である。
[0006] The pressure loss between the outlet and the inlet of the flow meter is accurately detected so that the flow rate can be measured stably and accurately without being affected by the physical properties such as the viscosity and density of the fluid to be measured.
A servometer is used to apply a driving force to the rotor from outside using a servomotor so that this pressure loss always becomes zero, and measure the flow rate from the operating speed of the rotor at that time. It is a positive displacement type flow meter.

【0007】図5は、従来のサーボ形容積式流量計の一
実施例の構成を説明するための概念図である。図中、1
は容積式流量計、2はケーシング、3は計量室、4は第
1回転子軸、5は第2回転子軸、6は第1回転子、7は
第2回転子、8は流入口、9は流出口、10は流入側圧
力検出口、11は流出側圧力検出口、12は差圧計、1
3はディストリビュータA、14は調節計、15は目標
設定器、16はサーボモータ駆動回路、17はサーボモ
ータ(S.M)、18はタコジェネレータ(T.G)、
19は流量発信器(P.G)である。
FIG. 5 is a conceptual diagram for explaining the configuration of one embodiment of a conventional servo-type positive displacement flowmeter. In the figure, 1
Is a positive flow meter, 2 is a casing, 3 is a measuring chamber, 4 is a first rotor shaft, 5 is a second rotor shaft, 6 is a first rotor, 7 is a second rotor, 8 is an inlet, 9 is an outlet, 10 is an inlet pressure detector, 11 is an outlet pressure detector, 12 is a differential pressure gauge,
3 is a distributor A, 14 is a controller, 15 is a target setter, 16 is a servo motor drive circuit, 17 is a servo motor (SM), 18 is a tacho generator (TG),
19 is a flow transmitter (PG).

【0008】容積式流量計1は、流入口8と流出口9に
連通し、流路(ケーシング2)に形成された計量室3
と、この計量室3内に固着された第1回転子軸4及び第
2回転子軸5に各々軸支された第1回転子6及び第2回
転子7とからなっている。第1回転子6、及び第2回転
子7には本体外部、すなわち計量室3外部のそれぞれの
回転子に設けたパイロット歯車(図示せず。)との噛合
により、互いに反対方向に、同期回転可能で、第1回転
子6側(本実施例では第1回転子6側となっているが、
第2回転子7側でもよい)のパイロット歯車には、サー
ボモータ(S.M)17の駆動軸が接合されている。
The positive displacement type flow meter 1 communicates with an inlet 8 and an outlet 9 and has a measuring chamber 3 formed in a flow path (casing 2).
And a first rotor 6 and a second rotor 7 which are respectively supported by the first rotor shaft 4 and the second rotor shaft 5 fixed in the measuring chamber 3. The first rotor 6 and the second rotor 7 are engaged with pilot gears (not shown) provided on the respective rotors outside the main body, that is, outside the measuring chamber 3, so that synchronous rotation is performed in opposite directions. The first rotor 6 side (in this embodiment, the first rotor 6 side,
A drive shaft of a servo motor (SM) 17 is joined to the pilot gear of the second rotor 7).

【0009】容積式流量計1の流入口8と流出口9に
は、それぞれ流入側圧力検出口10、流出側圧力検出口
11が設けられ、流入口8及び流出口9の圧力は、両圧
力検出口10,11から導管により、差圧計12に導か
れ、容積式流量計1の流出入口間の圧力損失が測定され
る。サーボモータ(S.M)17の駆動軸には、タコジ
ェネレータ(T.G)18も直結されており、サーボモ
ータ(S.M)17、タコジェネレータ(T.G)18
及び第1回転子6側のパイロット歯車は互いに縦接続さ
れている。
An inlet 8 and an outlet 9 of the positive displacement flowmeter 1 are provided with an inlet pressure detecting port 10 and an outlet pressure detecting port 11, respectively. The pressure loss is measured between the outlet and the inlet of the positive displacement type flow meter 1 by being guided to the differential pressure gauge 12 by the conduit from the detection ports 10 and 11. A tacho generator (TG) 18 is also directly connected to the drive shaft of the servo motor (SM) 17, and the servo motor (SM) 17 and the tach generator (TG) 18
The pilot gears on the first rotor 6 side are longitudinally connected to each other.

【0010】タコジェネレータ(T.G)18は、サー
ボモータ(S.M)17の回転に比例した電圧値を発生
して、その出力は、サーボモータ駆動回路16を介し、
サーボモータ(S.M)17にフィードバックされる。
流量発信器(P.G)19は、第1回転子6(本実施例
では、第1回転子6となっているが、第2回転子7でも
よい)の回転数を計測する機構を有し、流量に比例する
パルスを発生する。
A tachogenerator (TG) 18 generates a voltage value proportional to the rotation of a servo motor (SM) 17, and its output is sent through a servo motor drive circuit 16.
It is fed back to the servo motor (SM) 17.
The flow transmitter (PG) 19 has a mechanism for measuring the number of rotations of the first rotor 6 (in the present embodiment, the first rotor 6 is used, but the second rotor 7 may be used). And generates a pulse proportional to the flow rate.

【0011】差圧計12からの差圧信号は、ディストリ
ビュータA13を介して差圧に比例した電圧値Vpに変
換されたのち、調節計14に入力され、目標設定器15
からの目標設定値と比較され、その出力V1は、サーボ
モータ駆動回路16の一方の入力端子に接続されてい
る。サーボモータ駆動回路16のもう一方の入力端子に
は、タコジェネレータ(T.G)18の出力V2がフィー
ドバックされて接続されて、調節計14からの容積式流
量計1の流出入口間の圧力損失ΔPに相当する差圧計1
2からの差圧信号Vpと目標設定値との比較値V1と、
サーボモータ(S.M)17の回転数に相当するタコジ
ェネレータ(T.G)18の出力V2が等しくなるよう
に、サーボモータ(S.M)17の回転を制御するサー
ボ機構を形成している。
The differential pressure signal from the differential pressure gauge 12 is converted into a voltage value Vp proportional to the differential pressure via a distributor A13, and then input to a controller 14, where the target setter 15
The output V 1 is compared with the target set value from the control circuit and the output V 1 is connected to one input terminal of the servo motor drive circuit 16. The output V 2 of the tacho generator (TG) 18 is fed back and connected to the other input terminal of the servo motor drive circuit 16, and the pressure between the outlet and the inlet of the positive displacement type flow meter 1 from the controller 14. Differential pressure gauge 1 corresponding to loss ΔP
A comparison value V 1 between the differential pressure signal Vp from 2 and the target set value,
A servo mechanism for controlling the rotation of the servo motor (SM) 17 is formed so that the output V 2 of the tachogenerator (TG) 18 corresponding to the rotation speed of the servo motor (SM) 17 becomes equal. ing.

【0012】被測定流体が、矢印方向に流れた状態で
は、差圧計12の差圧信号は増加するが、サーボモータ
駆動回路16とサーボモータ(S.M)17からなるサ
ーボ制御系を駆動することにより、流量計の入口と出口
間の差圧ΔPを無差圧に制御する。このとき、調節計1
4の目標値を、差圧ゼロに設定し、サーボモータ17で
回転子を強制的に回転させ、ΔPをゼロになるよう制御
している。従来、サーボ形容積式流量計は、上記したよ
うに、流量の大小にかかわらず、流量計の入口側と出口
側の差圧ΔPを、ΔP=0になるように、回転子の回転
をサーボモータで強制駆動し制御していた。これは、容
積式流量計の流出入口間の圧力損失がゼロになるように
流量を測定することができれば、漏れ量もゼロになると
いう理論に基づいたものである。
When the fluid to be measured flows in the direction of the arrow, the differential pressure signal of the differential pressure gauge 12 increases, but the servo control system including the servo motor drive circuit 16 and the servo motor (SM) 17 is driven. Thus, the pressure difference ΔP between the inlet and the outlet of the flow meter is controlled to no pressure difference. At this time, the controller 1
The target value of No. 4 is set to zero differential pressure, the rotor is forcibly rotated by the servo motor 17, and control is performed so that ΔP becomes zero. Conventionally, as described above, a servo-type positive displacement flowmeter servo-controls the rotation of the rotor so that the differential pressure ΔP between the inlet side and the outlet side of the flowmeter becomes ΔP = 0 regardless of the flow rate. The motor was forcibly driven and controlled. This is based on the theory that if the flow rate can be measured so that the pressure loss between the outlet and the inlet of the positive displacement type flow meter becomes zero, the leak amount becomes zero.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、従来の
サーボ形容積式流量計で流量を実際に計測してみると、
小流量域においては、従来の自力式容積式流量計におけ
る大きなマイナス器差が改善されるものの、器差は全般
にプラスに転じ、しかも、流量、密度の上昇と共に増大
する特性を示すようになる。
However, when the flow rate is actually measured by the conventional servo type positive displacement flow meter,
In the small flow rate range, although the large negative instrumental difference in the conventional self-acting positive displacement flowmeter is improved, the instrumental error generally turns positive and shows a characteristic that increases as the flow rate and density increase. .

【0014】プラス器差の原因としては、容積式流量計
の流出入口間の圧力損失を無差圧に制御するために、サ
ーボモータで回転子を強制的に回転させた場合、容積式
流量計の流出入口間の圧力損失ΔPがゼロとなっても、
計量室内の回転子の回転方向前面側の圧力は、上昇し、
背面側は降下することになり、回転子の回転方向の前面
と背面側に、差圧ΔP0が発生してしまい、ケーシング
と回転子間に存在する隙間から、この差圧ΔP0によ
り、流出側から流入側に被測定流体の漏洩が発生するこ
とにある。
[0014] The cause of the plus instrumental difference is that when the rotor is forcibly rotated by a servomotor in order to control the pressure loss between the outlet and the inlet of the positive displacement flowmeter to no pressure difference, Even if the pressure loss ΔP between the outlet and inlet of
The pressure in the rotation direction front side of the rotor in the measuring chamber rises,
The rear side descends, and a differential pressure ΔP 0 is generated between the front side and the rear side in the rotation direction of the rotor, and the pressure difference ΔP 0 flows out of the gap existing between the casing and the rotor. The leakage of the fluid to be measured occurs from the side to the inflow side.

【0015】本発明は、上述のごとき実情に鑑みてなさ
れたものであり、従来、サーボ形容積式流量計の流入側
と流出側の差圧ΔPをゼロに制御せずに、後述する外部
圧力損失ΔPeで制御することによりΔP0=0となり、
流出側から流入側への漏洩による器差特性の悪化を防ぐ
ことが可能なサーボ形容積式流量計を提供することを目
的とする。
The present invention has been made in view of the above-mentioned circumstances. Conventionally, without controlling the differential pressure ΔP between the inflow side and the outflow side of a servo type positive displacement flowmeter to zero, an external pressure By controlling with the loss ΔP e , ΔP 0 = 0, and
An object of the present invention is to provide a servo-type positive displacement flowmeter capable of preventing deterioration of instrumental characteristics due to leakage from an outflow side to an inflow side.

【0016】[0016]

【課題を解決するための手段】本発明は、流路内に設け
られた計量室と、該計量室内で流体差圧により回転し、
該回転毎に一定体積の流体を流出する対をなす第1及び
第2回転子とを備え、該回転子の回転から流量を計測す
るサーボ形容積式流量計であって、前記第1又は第2回
転子の何れかと連結されたサーボモータと、前記計量室
の上流側と下流側の差圧を検出する差圧計と、該差圧計
の差圧信号を入力し、該差圧信号をk(γ/2g)V2
(但し、γ:被測定流体の密度、V:流体の流速、g:
重力加速度、k:流量計の各部分の構造寸法、管摩擦係
数で決まる定数)となるように前記サーボモータを駆動
するサーボ機構とを備えたことを特徴としたものであ
る。ここで、kは、流量計の入口、出口の形状・寸法及
び、内部形状・寸法、管摩擦係数等で決まる定数で、例
えばk=λ(L/D)で表わされ、各部分部分で計算し
た総和である(λ:管摩擦係数、L:流量計各部の管軸
長さ、D:流量計各部の内径)。また、Vは、管内の流
速または流量としても回転子の回転速度としても良い。
According to the present invention, there is provided a measuring chamber provided in a flow path, wherein the measuring chamber rotates by a fluid differential pressure in the measuring chamber,
A servo type positive displacement flowmeter comprising a pair of first and second rotors for discharging a fixed volume of fluid at each rotation, and measuring a flow rate from rotation of the rotor, wherein the first or the second A servomotor connected to one of the two rotors, a differential pressure gauge for detecting a differential pressure between the upstream side and the downstream side of the measuring chamber, and a differential pressure signal of the differential pressure gauge are input, and the differential pressure signal is k ( γ / 2g) V 2
(However, γ: density of the fluid to be measured, V: flow velocity of the fluid, g:
And a servo mechanism for driving the servo motor so as to obtain a gravitational acceleration (k: a structural dimension of each part of the flow meter, a constant determined by a pipe friction coefficient). Here, k is a constant determined by the shapes and dimensions of the inlet and outlet of the flow meter, the internal shape and dimensions, the coefficient of pipe friction, and the like. For example, k is represented by k = λ (L / D). This is a calculated sum (λ: pipe friction coefficient, L: pipe shaft length of each part of the flow meter, D: inner diameter of each part of the flow meter). V may be the flow velocity or flow rate in the pipe or the rotation speed of the rotor.

【0017】さらに、本発明は、前記サーボ形容積式流
量計において、前記γを前記圧力検出器の何れかから
得、そして、前記Vを、前記第1又は第2回転子の何れ
かと連結された流量発信器から得て、両者を乗算器で乗
算することにより前記k(γ/2g)V2を求めるよう
にした気体用サーボ形容積式流量計である。
Further, according to the present invention, in the servo type positive displacement flowmeter, the γ is obtained from any one of the pressure detectors, and the V is connected to either the first or second rotor. This is a gas servo type positive displacement flow meter which obtains k (γ / 2g) V 2 by obtaining the above from a flow transmitter and multiplying the two by a multiplier.

【0018】さらに、本発明は、前記サーボ形容積式流
量計において、前記γを外部から入力し、そして、前記
Vを、前記第1又は第2回転子の何れかと連結された流
量発信器から得て、両者を乗算器で乗算することにより
前記k(γ/2g)V2を求めるようにした液体用サー
ボ形容積式流量計である。
Further, according to the present invention, in the servo type positive displacement flowmeter, the γ is inputted from outside, and the V is supplied from a flow transmitter connected to either the first or second rotor. This is a liquid servo type positive displacement flowmeter for obtaining the k (γ / 2g) V 2 by multiplying the two by a multiplier.

【0019】さらに、本発明は、前記サーボ形容積式流
量計において、前記差圧信号をk(γ/2g)V2とな
るように前記サーボモータを駆動するサーボ機構を、マ
イクロコンピュータに組み込んだプログラムにより実現
するようにしたものである。
Further, according to the present invention, in the servo type positive displacement flowmeter, a servo mechanism for driving the servo motor so that the differential pressure signal becomes k (γ / 2g) V 2 is incorporated in a microcomputer. This is realized by a program.

【0020】[0020]

【発明の実施の形態】一般に、容積式流量計に流体を流
したとき、回転子より充分離れた差圧検出位置におい
て、ΔPの圧力損失が生じたとすると、 ΔP=ΔPi+ΔPe が成立する。ここで、ΔPiは回転子を回転させるため
に費やされる圧力損失で、流量計内部の漏れに直接関与
するため内部圧力損失という。また、ΔPeは流体が流
量計を流れるために費やされる圧力損失で、漏れには直
接関与しないため外部圧力損失という。
DETAILED DESCRIPTION OF THE INVENTION In general, when flowing a fluid to a volume flow meter, in sufficient distant differential pressure detecting position from the rotor, if the pressure loss [Delta] P has occurred, ΔP = ΔP i + ΔP e is satisfied . Here, ΔP i is the pressure loss expended to rotate the rotor, and is referred to as the internal pressure loss because it directly contributes to the leakage inside the flow meter. Further, ΔP e is a pressure loss consumed for the fluid to flow through the flow meter, and is referred to as an external pressure loss because it does not directly contribute to leakage.

【0021】一対の回転子を内蔵した容積式流量計にお
いて、流量計内部の漏れに関与する回転子前後の差圧Δ
iに対し、単位時間当たりの流量計内部の漏洩量Δq
は、μを流体の粘度、Qを流量として、 Δq=ka・(ΔPi/μ)+kb・Q …(1) で表される。ただし、ka,kbは回転子とケーシングの
形状により決まる定数である。したがって、単位時間当
たりの流量計内部の漏洩量は、回転子前後の差圧に比例
する一方で流体の粘度に反比例する項と流量に比例する
項に分けられる。
In a positive displacement type flow meter incorporating a pair of rotors, a differential pressure Δ before and after the rotor related to leakage inside the flow meter.
To P i, per unit time flow meter internal leakage amount Δq
The viscosity of the fluid mu, as a flow rate of Q, represented by Δq = k a · (ΔP i / μ) + k b · Q ... (1). Here, k a and k b are constants determined by the shapes of the rotor and the casing. Therefore, the amount of leakage inside the flowmeter per unit time is divided into a term that is proportional to the differential pressure across the rotor and inversely proportional to the viscosity of the fluid, and a term that is proportional to the flow rate.

【0022】ここで、Iを校正される受験器の指示量、
Qを標準器の真実の値とすると、器差Eは、 E=((I−Q)/Q)×100 (%) …(2) で表される。また、流量計内部の漏洩量Δqとの関係よ
り I−Q=−Δq …(3) が成立する。したがって、(1),(2),(3)式よ
り、器差Eは、 E=−(Δq/Q)=−(ka・(ΔPi/(μ・Q))+kb)…(4) で表すことができる。ここで、器差Eをゼロにするため
には、(4)式第1項の回転子前後の差圧ΔPiをゼロ
にすれば、流量計内部の漏洩量もゼロとなり、流量は回
転数に正確に比例することにより、器差もだいたいゼロ
付近に表れることになる。なお(4)式の第2項は、メ
ータファクタを変更することにより調節可能であるか
ら、問題にはならない。
Here, the indicated amount of the test device for which I is to be calibrated,
Assuming that Q is a true value of the standard device, the instrumental error E is represented by E = ((I−Q) / Q) × 100 (%) (2). IQ = −Δq (3) is established from the relationship with the leakage amount Δq inside the flow meter. Thus, (1), (2), (3) from, instrumental error E is, E = - (Δq / Q ) = - (k a · (ΔP i / (μ · Q)) + k b) ... ( 4) can be represented by Here, in order to make the instrumental error E zero, if the differential pressure ΔP i before and after the rotor in the first term of the equation (4) is made zero, the amount of leakage inside the flow meter becomes zero, and the flow rate becomes the rotational speed. , The instrumental error also appears near zero. The second term in the equation (4) can be adjusted by changing the meter factor, and does not pose a problem.

【0023】したがって、サーボ形容積式流量計の器差
をゼロにするためには、圧力損失ΔPを検出する位置で
の差圧を内部圧力損失ΔPi=0に制御すればよい。つ
まり、制御目標差圧と外部圧力損失ΔPeが同じになる
ように外部から駆動力を与えることにより、内部圧力損
失ΔPiがゼロになるため、流量計内部のリークがなく
なり、必然的にノンリークつまり器差ゼロの流量計が具
現化できる。
Therefore, in order to reduce the instrumental error of the servo-type positive displacement flowmeter to zero, the differential pressure at the position where the pressure loss ΔP is detected may be controlled to the internal pressure loss ΔP i = 0. That is, by applying a driving force from the outside so that the control target differential pressure becomes equal to the external pressure loss ΔP e , the internal pressure loss ΔP i becomes zero. That is, a flow meter with zero instrumental difference can be realized.

【0024】図1は、本発明のサーボ形容積式流量計の
原理を説明するための図で、従来のサーボ形容積式流量
計の流体圧分布の状態を示す模式図である。上述のごと
く、サーボ形容積式流量計において流入側と流出側の差
圧ΔPをゼロに制御した場合には、回転子の回転方向の
前面と背面で差圧ΔP0が発生する。この差圧ΔP0によ
り、ケーシングと回転子の隙間から、流出側から流入側
に漏れる漏洩量は、被測定流体の密度γ及び回転子の回
転速度Vと相関する圧力、流量の増加と共に増大し、器
差がプラスとなるのである。
FIG. 1 is a diagram for explaining the principle of a servo-type positive displacement flowmeter of the present invention, and is a schematic diagram showing a state of fluid pressure distribution of a conventional servo-type positive displacement flowmeter. As described above, when controlling the differential pressure [Delta] P on the inflow side and the outflow side to zero in the servo type volumetric flowmeter, the differential pressure [Delta] P 0 is generated in the front and back of the rotational direction of the rotor. Due to the differential pressure ΔP 0 , the amount of leakage from the gap between the casing and the rotor from the outflow side to the inflow side increases with an increase in pressure and flow rate correlated with the density γ of the fluid to be measured and the rotation speed V of the rotor. The instrumental difference is positive.

【0025】本発明は、外部圧力損失ΔPeを鑑み、サ
ーボ形容積式流量計の流入側と流出側の差圧ΔPをゼロ
に制御せずに、ΔP=Pi+ΔPeにおいて、回転子の前
後の圧力損失ΔP0すなわち内部圧力損失ΔPi=0に制
御するため、ΔP=ΔPe=k1(γ/2g)V2分だ
け、流入側の圧力を高くするようにサーボ形容積式流量
計を制御することにより、回転子の回転方向前面側と背
面側間の内部圧力損失ΔPi=0とし、ケーシングと回
転子間の隙間からの被測定流体の漏洩をなくすようにし
たものである。ここで、k1は、流量計の内部形状・寸
法、管摩擦係数で決まる定数で、k1=λ(L/D)で
表される(λ:管摩擦係数、L:流量計内部の管軸長
さ、D:流量計内部の内径)。また、Vを回転子の回転
速度としたが管内の流速または流量としても良い。
In view of the external pressure loss ΔP e , the present invention does not control the differential pressure ΔP between the inflow side and the outflow side of the servo-type positive displacement flowmeter to zero, and at ΔP = P i + ΔP e , In order to control the pressure loss before and after ΔP 0, that is, the internal pressure loss ΔP i = 0, the servo type positive displacement flow rate is increased so that the pressure on the inflow side is increased by ΔP = ΔP e = k 1 (γ / 2g) V 2. By controlling the gauge, the internal pressure loss ΔP i = 0 between the front side and the back side in the rotation direction of the rotor is set to zero, and leakage of the fluid to be measured from the gap between the casing and the rotor is eliminated. . Here, k 1 is a constant determined by the internal shape and dimensions of the flow meter and the pipe friction coefficient, and is represented by k 1 = λ (L / D) (λ: pipe friction coefficient, L: pipe inside the flow meter) Shaft length, D: inside diameter inside the flow meter). Further, V is set to the rotation speed of the rotor, but may be set to the flow velocity or flow rate in the pipe.

【0026】本発明によるサーボ形容積式流量計の実施
形態を、図面に基づいて、以下に説明する。図2は、本
発明に係るサーボ形容積式流量計の構成の一実施例を示
す概念図である。図中、1は容積式流量計、2はケーシ
ング、3は計量室、4は第1回転子軸、5は第2回転子
軸、6は第1回転子、7は第2回転子、8は流入口、9
は流出口、10は流入側圧力検出口、11は流出側圧力
検出口、12は差圧計、13はディストリビュータA、
14は調節計、16はサーボモータ駆動回路、17はサ
ーボモータ(S.M)、18はタコジェネレータ(T.
G)、19は流量発信器(P.G)であり、これらは、
図5に示した従来のサーボ形容積式流量計の構成要素と
共通し、同じ機能を有しており(詳細な説明は省略す
る。)、同一の符号を付している。
An embodiment of a servo-type positive displacement flowmeter according to the present invention will be described below with reference to the drawings. FIG. 2 is a conceptual diagram showing one embodiment of the configuration of the servo-type positive displacement flowmeter according to the present invention. In the figure, 1 is a positive displacement flowmeter, 2 is a casing, 3 is a measuring chamber, 4 is a first rotor shaft, 5 is a second rotor shaft, 6 is a first rotor, 7 is a second rotor, 8 Is the inlet, 9
Is an outlet, 10 is an inlet side pressure detecting port, 11 is an outlet side pressure detecting port, 12 is a differential pressure gauge, 13 is a distributor A,
14 is a controller, 16 is a servo motor drive circuit, 17 is a servo motor (SM), 18 is a tachometer (T.
G) and 19 are flow transmitters (PG), which are:
The components are common to those of the conventional servo-type positive displacement flowmeter shown in FIG. 5 and have the same functions (detailed description is omitted), and are denoted by the same reference numerals.

【0027】本実施例のサーボ形容積式流量計において
は、図5における従来装置の目標設定器15の代わり
に、F/V変換器20、リニアライザ21、圧力計2
2、ディストリビュータB23、乗算器24を設けてい
る。F/V変換器20は、流量発信器(P.G)19か
らの流量を表すパルス信号を、その周波数に比例するア
ナログ電圧に変換するもので、回転子の回転速度Vに相
当する信号を出力する。リニアライザ21は、F/V変
換器20の出力を平方し、回転子の回転速度Vの2乗に
相当する信号V2を出力する。
In the servo-type positive displacement flowmeter of this embodiment, an F / V converter 20, a linearizer 21, and a pressure gauge 2 are used instead of the target setter 15 of the conventional apparatus shown in FIG.
2. Distributor B23 and multiplier 24 are provided. The F / V converter 20 converts a pulse signal representing a flow rate from the flow rate transmitter (PG) 19 into an analog voltage proportional to the frequency thereof, and converts a signal corresponding to the rotation speed V of the rotor into a signal. Output. The linearizer 21 squares the output of the F / V converter 20 and outputs a signal V 2 corresponding to the square of the rotation speed V of the rotor.

【0028】圧力計22は、流入側圧力検出口10(あ
るいは、流出側圧力検出口11)の圧力を、流体圧力P
に相当する電圧信号に変換する。ディストリビュータB
23は、圧力計22からの流体圧力(P)に相当する電
圧信号を、被測定流体が気体の場合、流体圧力(P)と
比例する流体密度(γ)に相当する電圧信号に変換す
る。なお、液体の場合は、流体圧力(P)により流体密
度(γ)は変わらなく、液体の種類により決まるので、
圧力計22は不要であり、乗算器24に、直接、外部か
ら乗算器24に被測定液体に応じた値を設定入力する。
The pressure gauge 22 measures the pressure of the inflow side pressure detection port 10 (or the outflow side pressure detection port 11) by the fluid pressure P
To a voltage signal corresponding to Distributor B
23 converts a voltage signal corresponding to the fluid pressure (P) from the pressure gauge 22 into a voltage signal corresponding to a fluid density (γ) proportional to the fluid pressure (P) when the fluid to be measured is a gas. In the case of a liquid, the fluid density (γ) does not change with the fluid pressure (P) and is determined by the type of the liquid.
The pressure gauge 22 is unnecessary, and a value corresponding to the liquid to be measured is set and input to the multiplier 24 directly from the outside.

【0029】乗算器24は、リニアライザ21からの回
転子の回転速度(V)の2乗に相当する信号(V2
と、ディストリビュータB23からの密度(γ)に相当
する信号を乗算し、(k0・γ・V2)に相当する信号V
sを、調節計14の目標設定値として出力する。なお、
0は定数で、k0=k(1/2g)=λ(L/D)・
(1/2g)となる。調節計14のもう一方の端子に
は、従来の装置と同様、流量計の入口側と出口側の差圧
ΔPに相当する信号Vpが入力され、調節計14では、
乗算器24からの信号Vsと比較され、Vp−Vs=
(ΔP−k0・γ・V2)に相当する信号V 1が、サーボ
モータ駆動回路16の一方の入力端子に出力される。サ
ーボモータ駆動回路16のもう一方の入力端子には、タ
コジェネレータ(T.G)18からのサーボモータ(S.
M)17の回転数に比例した電圧V2がフィードバック
されて接続されており、調節計14からの信号V1と等
しくなるようにサーボ機構が作動し、サーボモータ
(S.M)17の回転を制御する。
The multiplier 24 outputs a signal from the linearizer 21.
A signal (V) corresponding to the square of the rotation speed (V) of the trochanterTwo)
And equivalent to the density (γ) from distributor B23
Multiplied by (k0・ Γ ・ VTwo) Signal V
s is output as a target set value of the controller 14. In addition,
k0Is a constant and k0= K (1 / 2g) = λ (L / D)
(1/2 g). To the other terminal of controller 14
Is the differential pressure between the inlet and outlet of the flow meter
A signal Vp corresponding to ΔP is input.
The signal is compared with the signal Vs from the multiplier 24, and Vp−Vs =
(ΔP-k0・ Γ ・ VTwo) Signal V 1But servo
The signal is output to one input terminal of the motor drive circuit 16. Sa
The other input terminal of the servo motor drive circuit 16
Servo motor (S.G.) from co-generator (TG) 18
M) Voltage V proportional to rotation speed of 17TwoHas feedback
And the signal V from the controller 141And so on
The servo mechanism operates so that the
(SM) The rotation of 17 is controlled.

【0030】被測定流体が、矢印方向に流れた状態で
は、従来のようにサーボ形容積式流量計の流入側と流出
側の差圧ΔPをゼロに制御せずに、回転子の回転速度
(V)に応じて流量計内部で発生する外部圧力損失ΔP
e=k1(γ/2g)V2分だけ、流入側の圧力を高くす
るようにサーボ形容積式流量計を制御することにより、
回転子の回転方向前面側と背面側の差圧ΔP0をゼロと
する。これにより、従来のサーボ形容積式流量計におい
て、流入側と流出側の差圧ΔPをゼロに制御したことに
より生ずる回転子の前後面間の前記差圧ΔP0とは逆方
向の差圧を消去することができ、それに伴うケーシング
と回転子間の隙間からの逆流による漏洩をより少なくす
ることができた。
In the state where the fluid to be measured flows in the direction of the arrow, the differential pressure ΔP between the inflow side and the outflow side of the servo-type positive displacement flowmeter is not controlled to zero as in the prior art, and the rotation speed of the rotor ( V) external pressure loss ΔP generated inside the flow meter in accordance with V)
By controlling the servo-type positive displacement flowmeter to increase the pressure on the inflow side by e = k 1 (γ / 2g) V 2 ,
The pressure difference ΔP 0 between the front side and the back side in the rotation direction of the rotor is set to zero. Thereby, in the conventional servo-type positive displacement flowmeter, the differential pressure ΔP 0 between the front and rear surfaces of the rotor, which is caused by controlling the differential pressure ΔP between the inflow side and the outflow side to zero, is reduced. As a result, the leakage due to the backflow from the gap between the casing and the rotor could be further reduced.

【0031】図3は、本実施例のサーボ形容積式流量計
による器差特性の一例を示す図である。なお、図におい
て、P1,P2,P3は、それぞれ被測定流体の流体圧力
を示す。図のように、本発明によるサーボ形容積式流量
計の器差特性は、被測定流体の圧力の大きさに拘わら
ず、小流量域から大流量域まで、器差が、ほとんどゼロ
に近い直線的な優れた特性を示していることがわかる。
FIG. 3 is a diagram showing an example of an instrumental difference characteristic by the servo-type positive displacement flowmeter of this embodiment. In the drawing, P 1 , P 2 , and P 3 indicate the fluid pressures of the fluid to be measured, respectively. As shown in the figure, the instrumental error characteristic of the servo-type positive displacement flowmeter according to the present invention is such that the instrumental error is almost zero from a small flow rate range to a large flow rate range regardless of the magnitude of the pressure of the fluid to be measured. It can be seen that it shows excellent characteristics.

【0032】なお、回転子の回転速度Vは、回転子の先
端と、回転子の根本で、速度が異なるため平均速度で計
算した値で制御するか、ケーシングと回転子の先端との
隙間を考慮し、回転子の先端の速度で計算した値に近い
値の差圧に制御すると、より精度の向上が計られる。
The rotation speed V of the rotor is controlled at a value calculated by the average speed because the speed is different between the tip of the rotor and the root of the rotor, or the gap between the casing and the tip of the rotor is controlled. In consideration of this, if the pressure difference is controlled to a value close to the value calculated at the speed of the tip of the rotor, the accuracy can be further improved.

【0033】以上は、ハード構成で、制御系を構成した
場合であるが、マイクロコンピュータで制御系を組む場
合には、上記と同様な動作処理をソフトウェア化して組
めばよいし、被測定流体の名称と密度の関係をテーブル
化しておけば、被測定流体の名称を選択するだけで、密
度設定ができる。
The above description is for the case where the control system is configured with a hardware configuration. However, when the control system is configured with a microcomputer, the same operation processing as described above may be performed by software, and the control of the fluid to be measured may be performed. If the relationship between the name and the density is tabulated, the density can be set simply by selecting the name of the fluid to be measured.

【0034】[0034]

【発明の効果】本発明は、回転子の回転速度に応じて発
生する差圧分だけ流入側の圧力を高くするようにサーボ
形容積式流量計を制御することにより、回転子の回転方
向前面側と背面側の差圧ΔP0=0となりケーシングと
回転子間の隙間からのリークをなくすことができるため
高精度の流量計測が可能となる。また、本発明のサーボ
形容積式流量計は、気体用、液体用の何れも適用可能で
ある。
According to the present invention, the servo type positive displacement flowmeter is controlled so that the pressure on the inflow side is increased by the differential pressure generated in accordance with the rotational speed of the rotor, so that the front surface in the rotational direction of the rotor is controlled. The pressure difference ΔP 0 = 0 between the side and the back side makes it possible to eliminate the leak from the gap between the casing and the rotor, so that the flow rate can be measured with high accuracy. Further, the servo type positive displacement flowmeter of the present invention is applicable to both gas and liquid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のサーボ形容積式流量計の原理を説明
するための図で、従来のサーボ形容積式流量計の流体圧
分布の状態を示す模式図である。
FIG. 1 is a diagram for explaining the principle of a servo-type positive displacement flowmeter of the present invention, and is a schematic diagram showing a state of fluid pressure distribution of a conventional servo-type positive displacement flowmeter.

【図2】 本発明に係るサーボ形容積式流量計の構成の
一実施例を示す概念図である。
FIG. 2 is a conceptual diagram showing one embodiment of a configuration of a servo-type positive displacement flowmeter according to the present invention.

【図3】 図2の実施例のサーボ形容積式流量計による
器差特性の一例を示す図である。
FIG. 3 is a diagram showing an example of an instrumental difference characteristic by the servo-type positive displacement flowmeter of the embodiment in FIG. 2;

【図4】 自力式容積式流量計の器差特性の一例を示す
図である。
FIG. 4 is a diagram illustrating an example of an instrumental difference characteristic of a self-powered positive displacement flowmeter.

【図5】 従来のサーボ形容積式流量計の一実施例の構
成を説明するための概念図である。
FIG. 5 is a conceptual diagram for explaining the configuration of one embodiment of a conventional servo-type positive displacement flowmeter.

【符号の説明】[Explanation of symbols]

1…容積式流量計、2…ケーシング、3…計量室、4…
第1回転子軸、5…第2回転子軸、6…第1回転子、7
…第2回転子、8…流入口、9…流出口、10…流入側
圧力検出口、11…流出側圧力検出口、12…差圧計、
13…ディストリビュータA、14…調節計、15…目
標設定器、16…サーボモータ駆動回路、17…サーボ
モータ(S.M)、18…タコジェネレータ(T.
G)、19…流量発信器(P.G)、20…F/V変換
器、21…リニアライザ、22…圧力計、23…ディス
トリビュータB、24…乗算器。
DESCRIPTION OF SYMBOLS 1 ... Volumetric flow meter, 2 ... Casing, 3 ... Measuring chamber, 4 ...
1st rotor shaft, 5 ... second rotor shaft, 6 ... first rotor, 7
... 2nd rotor, 8 ... inflow port, 9 ... outflow port, 10 ... inflow side pressure detection port, 11 ... outflow side pressure detection port, 12 ... differential pressure gauge,
13: Distributor A, 14: Controller, 15: Target setter, 16: Servo motor drive circuit, 17: Servo motor (SM), 18: Tacho generator (T.
G), 19: flow transmitter (PG), 20: F / V converter, 21: linearizer, 22: pressure gauge, 23: distributor B, 24: multiplier.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01F 1/00 - 9/02 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01F 1/00-9/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流路内に設けられた計量室と、該計量室
内で流体差圧により回転し、該回転毎に一定体積の流体
を流出する対をなす第1及び第2回転子とを備え、該回
転子の回転から流量を計測するサーボ形容積式流量計で
あって、前記第1又は第2回転子の何れかと連結された
サーボモータと、前記計量室の上流側と下流側の差圧を
検出する差圧計と、該差圧計の差圧信号を入力し、該差
圧信号をk(γ/2g)V2(但し、γ:被測定流体の
密度、V:流体の流速、g:重力加速度、k:流量計の
構造寸法、管摩擦係数等で決まる定数)となるように前
記サーボモータを駆動するサーボ機構とを備えたことを
特徴とするサーボ形容積式流量計。
1. A measuring chamber provided in a flow path, and a pair of first and second rotors which rotate by a fluid differential pressure in the measuring chamber and flow out a fixed volume of fluid at each rotation. A servo-type positive displacement flowmeter for measuring a flow rate from rotation of the rotor, comprising: a servomotor connected to one of the first and second rotors; and an upstream and downstream side of the measuring chamber. A differential pressure gauge for detecting a differential pressure and a differential pressure signal of the differential pressure gauge are input, and the differential pressure signal is converted into k (γ / 2 g) V 2 (where γ is the density of the fluid to be measured, V is the flow velocity of the fluid, g: a gravitational acceleration, k: a constant determined by the structural dimensions of the flow meter, the coefficient of pipe friction, etc.) and a servo mechanism for driving the servo motor.
【請求項2】 請求項1に記載のサーボ形容積式流量計
において、前記γを前記圧力検出器の何れかから得、そ
して、前記Vを、前記第1又は第2回転子の何れかと連
結された流量発信器から得て、両者を乗算器で乗算する
ことにより前記k(γ/2g)V2を求めるようにした
ことを特徴とする気体用サーボ形容積式流量計。
2. The servo-type positive displacement flowmeter according to claim 1, wherein said γ is obtained from any one of said pressure detectors, and said V is connected to either said first or second rotor. A servo type positive displacement flowmeter for gas, wherein k (γ / 2g) V 2 is obtained by multiplying the two by a multiplier, obtained from a flow transmitter set as described above.
【請求項3】 請求項1に記載のサーボ形容積式流量計
において、前記γを外部から入力し、そして、前記V
を、前記第1又は第2回転子の何れかと連結された流量
発信器から得て、両者を乗算器で乗算することにより前
記k(γ/2g)V2を求めるようにしたことを特徴と
する液体用サーボ形容積式流量計。
3. The servo-type positive displacement flowmeter according to claim 1, wherein said γ is inputted from the outside, and
From a flow transmitter connected to either the first or second rotor, and multiplying both by a multiplier to obtain the k (γ / 2g) V 2. Servo type positive displacement flowmeter for liquids.
【請求項4】 請求項1乃至3のいずれか一項に記載の
サーボ形容積式流量計において、前記差圧信号をk(γ
/2g)V2となるように前記サーボモータを駆動する
サーボ機構を、マイクロコンピュータに組み込んだプロ
グラムにより実現するようにしたことを特徴とするサー
ボ形容積式流量計。
4. The servo-type positive displacement flowmeter according to claim 1, wherein the differential pressure signal is k (γ
/ 2 g) a servo mechanism for driving the servo motor such that V 2, the servo type volumetric flowmeter which is characterized in that so as to realize the program incorporating the microcomputer.
JP2001150430A 2000-09-07 2001-05-21 Servo displacement meter Expired - Lifetime JP3331212B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001150430A JP3331212B2 (en) 2000-09-07 2001-05-21 Servo displacement meter
PCT/JP2002/004539 WO2002095340A1 (en) 2001-05-21 2002-05-09 Servo type volumetric flowmeter
KR10-2003-7013588A KR100536432B1 (en) 2001-05-21 2002-05-09 Servo type volumetric flowmeter
CNB2005100844985A CN100538286C (en) 2001-05-21 2002-05-09 Serro type volumetric flowmeter
EP02771699A EP1403626B1 (en) 2001-05-21 2002-05-09 Servo type volumetric flowmeter
CNB02810448XA CN100468012C (en) 2001-05-21 2002-05-09 Serro type volumetric flowmeter
TW091109903A TW561247B (en) 2001-05-21 2002-05-13 Servo type volumetric flowmeter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000271046 2000-09-07
JP2000-271046 2000-09-07
JP2001150430A JP3331212B2 (en) 2000-09-07 2001-05-21 Servo displacement meter

Publications (2)

Publication Number Publication Date
JP2002156257A JP2002156257A (en) 2002-05-31
JP3331212B2 true JP3331212B2 (en) 2002-10-07

Family

ID=26599409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150430A Expired - Lifetime JP3331212B2 (en) 2000-09-07 2001-05-21 Servo displacement meter

Country Status (1)

Country Link
JP (1) JP3331212B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096666A1 (en) 2007-02-05 2008-08-14 Oval Corporation Pump unit type servo-displacement flowmeter
WO2008096665A1 (en) 2007-02-05 2008-08-14 Oval Corporation Path structure for flow and differential-pressure detections in servo-type displacement flowmeter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10935407B2 (en) * 2017-07-25 2021-03-02 Ecolab Usa Inc. Fluid flow meter with viscosity correction
CN113375743B (en) * 2021-07-21 2022-10-04 西安利都仪表测控设备有限公司 Three-rotor flow meter based on remote regulation and control of 5G Internet of things

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096666A1 (en) 2007-02-05 2008-08-14 Oval Corporation Pump unit type servo-displacement flowmeter
WO2008096665A1 (en) 2007-02-05 2008-08-14 Oval Corporation Path structure for flow and differential-pressure detections in servo-type displacement flowmeter
US7905142B2 (en) 2007-02-05 2011-03-15 Oval Corporation Servo type volumetric flowmeter employing a pump unit system
US7905141B2 (en) 2007-02-05 2011-03-15 Oval Corporation Path structure related to flow of fluid to be measured and pressure difference detection in servo type volumetric flowmeter

Also Published As

Publication number Publication date
JP2002156257A (en) 2002-05-31

Similar Documents

Publication Publication Date Title
US6591697B2 (en) Method for determining pump flow rates using motor torque measurements
US3633420A (en) Continuous flow metering and control apparatus
JP3331212B2 (en) Servo displacement meter
US3735637A (en) Flow-meter and viscometer
KR100536432B1 (en) Servo type volumetric flowmeter
JP4254967B2 (en) Servo type volumetric flow meter
JP3494634B2 (en) Servo type positive displacement flowmeter
JP3744904B2 (en) Portable servo volumetric flow meter
JPS62259016A (en) Flow rate measuring instrument
US3073158A (en) Gas mass metering device
US3747406A (en) Fluid flowmeter
CN100538286C (en) Serro type volumetric flowmeter
RU175419U1 (en) GAS FLOW METER
JPS6370119A (en) Flow rate measuring apparatus
SU1095883A3 (en) Turbine flow meter
US3318148A (en) Mass flowmeter
JPS5819511A (en) Servo-type volume flowmeter
RU2106640C1 (en) Device measuring speed of flow
CN118310587A (en) Turbine flowmeter
RU1775608C (en) Turbine flowmeter
JPS62259015A (en) Flow rate measuring instrument
JP3348116B2 (en) Small volume prober
JPH0422823A (en) Mass flow meter
JPS59155740A (en) Viscosity measuring apparatus
JP2001336963A (en) Servo type positive-displacement flowmeter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3331212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term