JP3321929B2 - Electronic components - Google Patents
Electronic componentsInfo
- Publication number
- JP3321929B2 JP3321929B2 JP23970593A JP23970593A JP3321929B2 JP 3321929 B2 JP3321929 B2 JP 3321929B2 JP 23970593 A JP23970593 A JP 23970593A JP 23970593 A JP23970593 A JP 23970593A JP 3321929 B2 JP3321929 B2 JP 3321929B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- dielectric
- component
- terms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000203 mixture Substances 0.000 claims description 44
- 229910052748 manganese Inorganic materials 0.000 claims description 14
- 229910052725 zinc Inorganic materials 0.000 claims description 12
- 238000010586 diagram Methods 0.000 claims description 7
- 239000003989 dielectric material Substances 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 8
- 239000011572 manganese Substances 0.000 claims 8
- 229910052758 niobium Inorganic materials 0.000 claims 8
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims 8
- 239000011701 zinc Substances 0.000 claims 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 4
- 239000000463 material Substances 0.000 claims 2
- 239000004065 semiconductor Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 32
- 230000007423 decrease Effects 0.000 description 24
- 239000000843 powder Substances 0.000 description 17
- 238000010304 firing Methods 0.000 description 16
- 239000007858 starting material Substances 0.000 description 13
- 229910052759 nickel Inorganic materials 0.000 description 12
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 8
- 150000004679 hydroxides Chemical class 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- 229910018651 Mn—Ni Inorganic materials 0.000 description 4
- 229910003286 Ni-Mn Inorganic materials 0.000 description 4
- 239000003985 ceramic capacitor Substances 0.000 description 4
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は例えば積層セラミックコ
ンデンサ等の電子部品に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic component such as a multilayer ceramic capacitor.
【0002】[0002]
【従来の技術】従来のこの種積層セラミックコンデンサ
においては、その誘電体材料として、BaTiO3−N
b2O5−MnO2系等が用いられていた。2. Description of the Related Art In a conventional monolithic ceramic capacitor of this kind, BaTiO 3 -N
b 2 O 5 -MnO 2 system and the like have been used.
【0003】[0003]
【発明が解決しようとする課題】上記従来の構成の誘電
体材料を用いて積層セラミックコンデンサを製造する
と、誘電体表面に板状あるいは針状結晶の二次相が析出
するため、内部電極を押上げ、内部電極の不連続点が生
じコンデンサの容量がばらつくという問題点を有してい
た。When a monolithic ceramic capacitor is manufactured using the dielectric material having the above-mentioned conventional structure, a plate-like or needle-like secondary phase is precipitated on the dielectric surface. In addition, there is a problem that the discontinuity of the internal electrode occurs and the capacitance of the capacitor varies.
【0004】また、このコンデンサを実装するときに
は、上記二次相による表面の凸凹により安定性が悪くて
位置ずれが起きやすいという問題点もあった。Further, when this capacitor is mounted, there is a problem that the stability is poor due to the unevenness of the surface due to the secondary phase, and the displacement is likely to occur.
【0005】そこで本発明は、上記板状あるいは針状の
二次相の発生を抑制するとともに、比誘電率が高く、誘
電体損失が小さく、その上誘電率の温度変化も小さい電
子部品を提供することを目的とするものである。Accordingly, the present invention provides an electronic component which suppresses the generation of the above-mentioned plate-like or needle-like secondary phase, has a high relative dielectric constant, a small dielectric loss, and a small temperature change of the dielectric constant. It is intended to do so.
【0006】[0006]
【課題を解決するための手段】この目的を達成するため
に、本発明の電子部品は、その誘電体を、xBaO+y
TiO2+zDyO3/2 (但し、x、y、zはモル比を示
しx+y+z=1)の三元成分図において、(表5)に
示すa,b,c,d,eを頂点とする5角形の領域内で
表される組成のものを主成分とし、副成分としてNbを
Nb2O5に換算して0.6〜2.4重量部、NiをNi
Oに換算して0.05〜0.8重量部、MnをMnO 2
に換算して0.01〜0.4重量部のうち少なくとも一
種類を含有させたものである。In order to achieve this object, an electronic component according to the present invention is characterized in that its dielectric is made of xBaO + y
TiO 2 + zDyO 3/2 (where x, y, and z indicate molar ratios)
X + y + z = 1) , the component represented by a pentagonal region having vertices a, b, c, d, and e shown in Table 5 as a main component, and a subcomponent 0.6 to 2.4 parts by weight in terms of Nb converted to Nb 2 O 5 and Ni as Ni
0.05 to 0.8 parts by weight in terms of O, Mn is MnO 2
It contains at least one of 0.01 to 0.4 parts by weight in terms of.
【0007】[0007]
【表5】 [Table 5]
【0008】[0008]
【作用】この構成によると、Ba/Tiが1より大きく
なっているため、Ti過剰による二次相の発生を極めて
抑えることができる。また、常温での比誘電率が約20
00〜4300という高い値を示し、誘電体損失(ta
nδ)は1.0%以下という小さい値を示す。さらに誘
電率の温度変化率は20℃を基準にして、JIS−C−
5130に規定されるJD特性以上を満足するものであ
る。According to this structure, since Ba / Ti is larger than 1, generation of a secondary phase due to excessive Ti can be extremely suppressed. Further, the relative dielectric constant at room temperature is about 20.
It shows a high value of 00 to 4300, and the dielectric loss (ta
nδ) shows a small value of 1.0% or less. Further, the temperature change rate of the dielectric constant is based on 20 ° C., and the JIS-C-
It satisfies the JD characteristics specified in 5130 and above .
【0009】[0009]
(実施例1)図5は、本発明の電子部品を作る時の製造
工程図である。また図6は本発明の一実施例における電
子部品の斜視図である。(Embodiment 1) FIG. 5 is a manufacturing process diagram for manufacturing an electronic component of the present invention. FIG. 6 is a perspective view of an electronic component according to an embodiment of the present invention.
【0010】まず、誘電体の出発原料としてBa/Ti
のモル比が1に調整された高純度のBaTiO3粉末
と、BaCO3,Dy2O3,MnO2,NiO,Nb2O5
の各粉末を準備し、焼成後の組成が(表6)に示すよう
になるようにそれぞれ秤量した。First, Ba / Ti is used as a starting material for the dielectric.
High purity BaTiO 3 powder whose molar ratio is adjusted to 1, and BaCO 3 , Dy 2 O 3 , MnO 2 , NiO, Nb 2 O 5
Were prepared and weighed so that the composition after firing was as shown in (Table 6).
【0011】[0011]
【表6】 [Table 6]
【0012】そしてめのうボールを備えたゴム内張りの
ボールミルに純水とともに入れ、18時間湿式混合した
後、脱水、乾燥した。Then, it was put into a rubber-lined ball mill equipped with an agate ball together with pure water, wet-mixed for 18 hours, dehydrated and dried.
【0013】その後この乾燥粉末に、ポリビニルアルコ
ールの5wt%溶液をバインダーとして適量加え、均質と
した後、32メッシュのふるいを通して整粒し、金型と
油圧プレスを用いて成形圧力1.5ton/cmで図6に示
すように直径16mm、厚み0.6〜0.8mmの円板に成
形した。After that, a proper amount of a 5 wt% solution of polyvinyl alcohol was added as a binder to the dried powder, and the mixture was homogenized, sized through a 32 mesh sieve, and formed with a mold and a hydraulic press at a molding pressure of 1.5 ton / cm. As shown in FIG. 6, a disk having a diameter of 16 mm and a thickness of 0.6 to 0.8 mm was formed.
【0014】次いで、この成形体をジルコニア粉末を敷
いたアルミナ質のサヤに入れ、空気中にて1250〜1
350℃で2時間保持して焼成した。誘電体1の密度が
最大となる温度を最適焼成温度とし、得られた誘電体1
の上下両面全体に銀電極2を塗布後焼き付けして電子部
品を得た。Next, this compact is placed in an alumina sheath covered with zirconia powder, and is placed in air in the range of 1250 to 1
It was baked while being kept at 350 ° C. for 2 hours. The temperature at which the density of the dielectric 1 is maximum is determined as the optimum firing temperature, and the obtained dielectric 1
A silver electrode 2 was applied to the entire upper and lower surfaces of the substrate and baked to obtain an electronic component.
【0015】このようにして製造した電子部品の誘電
率、誘電体損失、容量を周波数1kHz、室温20℃の条
件で測定した。The dielectric constant, dielectric loss, and capacitance of the electronic component manufactured as described above were measured at a frequency of 1 kHz and a room temperature of 20 ° C.
【0016】そして容量温度変化率を20℃での容量を
基準として−25℃と85℃について求めた。その結果
を(表7)に示す。The temperature change rate of the capacity was determined at -25 ° C. and 85 ° C. based on the capacity at 20 ° C. The results are shown in (Table 7).
【0017】[0017]
【表7】 [Table 7]
【0018】試料No.1,4,7はJIS−C−513
0規格におけるJD特性を満足し、他の試料はJIS−
C−5130規格においてさらに容量温度変化の小さい
DR特性を満足している。(表7)において、試料No.
1,4,7についてはキュリー温度での最大容量変化率
を(ΔC/ΔC20)max(%)として示し、それ以外の
試料については−55℃〜125℃の範囲における最大
容量変化率の絶対値を|ΔC/ΔC20|max(%)とし
て示す。Sample Nos. 1, 4 and 7 are JIS-C-513.
The JD characteristics in the 0 standard are satisfied, and the other samples are JIS-
The C-5130 standard satisfies the DR characteristic with a smaller capacitance temperature change. In Table 7, the sample No.
For 1, 4 and 7, the maximum capacity change rate at the Curie temperature is shown as (ΔC / ΔC 20 ) max (%), and for other samples, the absolute value of the maximum capacity change rate in the range of −55 ° C. to 125 ° C. The value is shown as | ΔC / ΔC 20 | max (%).
【0019】(表7)を見ると、本実施例における電子
部品は比誘電率が約2100〜4500と高く、誘電体
損失が1.0%以下という非常に優れたものであること
がわかる。It can be seen from Table 7 that the electronic component of this embodiment has a very high relative dielectric constant of about 2100 to 4500 and a very high dielectric loss of 1.0% or less.
【0020】次に、本実施例の誘電体の組成の決定理由
を図1を参照しながら説明する。直線a−eより上部で
は、容量変化率が大きくなりJIS−C−5130規格
でのJD特性を満足できない。直線a−b、b−cより
左部では、焼結しにくくなり、実用的ではない。直線c
−dより下部では、Ndを入れた効果が薄く誘電率が低
下し焼結性も劣る。直線d−eより右部では、誘電体1
の表面に二次相の発生が著しく、誘電率も低下方向にあ
るので実用的でない。Next, the reason for determining the composition of the dielectric of the present embodiment will be described with reference to FIG. Above the straight line ae, the rate of change in capacitance is large, and the JD characteristics in JIS-C-5130 cannot be satisfied. On the left side of the straight lines ab and bc, sintering becomes difficult, which is not practical. Straight line c
Below -d, the effect of adding Nd is small, the dielectric constant is reduced, and the sinterability is poor. On the right side of the straight line de, the dielectric 1
This is not practical because a secondary phase is remarkably generated on the surface and the dielectric constant tends to decrease.
【0021】また、Nb−Ni、Nb−MnあるいはN
b−Mn−Niの組合わせにおいて、Nb2O5が0.6
wt%未満では、焼結性が悪化し、誘電体損失が大きく
なり、2.4wt%を越えると誘電率が低下し実用的で
はなくなる。MnO2は0.01wt%未満ではその添
加効果がなく、0.4wt%を越えると、誘電率が低下
し、容量温度変化率が大きくなるため実用的ではない。
さらに、NiOについても同様に0.8wt%を越える
と、誘電率が低下し、容量変化率が大きくなり、0.0
5wt%未満ではその添加効果がなく、実用的ではなく
なる。但し、Nb−Ni−Mnの組合わせにおいてNi
とMnを両方同時に加える場合、NiとMnO 2 の合計
が、0.8wt%を越えると誘電率が低下し、容量変化
率が大きくなるため実用的ではない。In addition, Nb-Ni, Nb-Mn or N
In the combination of b-Mn-Ni, Nb 2 O 5 is 0.6
If it is less than wt%, the sinterability deteriorates, and the dielectric loss increases. If it exceeds 2.4 wt%, the dielectric constant is lowered and it is not practical. If the content of MnO 2 is less than 0.01 wt%, there is no effect of adding it, and if it exceeds 0.4 wt%, the dielectric constant is lowered and the rate of change in capacitance with temperature is increased, so that it is not practical.
Furthermore, when NiO exceeds 0.8 wt%, the dielectric constant decreases and the capacity change rate increases.
If it is less than 5 wt%, the effect of the addition is not obtained, and it is not practical. However, in the combination of Nb-Ni-Mn, Ni
When both Ni and Mn are added at the same time, when the total of Ni and MnO 2 exceeds 0.8 wt%, the dielectric constant is lowered and the rate of change in capacitance is increased, which is not practical.
【0022】以上のような理由により本実施例の誘電体
1の組成を決定した。なお、本実施例において誘電体1
の出発原料にNb2O5,MnO2,Dy2O3等の酸化物
を用いたが、焼成後の組成が所望したものになるのであ
れば、炭酸塩、水酸化物等を用いても同様の特性を得る
ことができる。For the reasons described above, the composition of the dielectric 1 of this embodiment was determined. In this embodiment, the dielectric 1
Although oxides such as Nb 2 O 5 , MnO 2 and Dy 2 O 3 were used as starting materials for the above, carbonates, hydroxides and the like may be used if the composition after firing becomes a desired one. Similar characteristics can be obtained.
【0023】また、主成分をあらかじめ仮焼した後に、
副成分を添加したとしてもその効果に変わりはない。After the main component is calcined in advance,
Even if the auxiliary component is added, the effect does not change.
【0024】(実施例2)誘電体1の出発原料として、
Ba/Tiのモル比が1に調整された高純度のBaTi
O3粉末とBaCO3,CeO2,MnO2,NiO,Nb
2O5の各粉末を焼成後の組成が(表8)に示すようにな
るようにそれぞれ秤量した。Example 2 As a starting material for the dielectric 1,
High purity BaTi with Ba / Ti molar ratio adjusted to 1
O 3 powder and BaCO 3 , CeO 2 , MnO 2 , NiO, Nb
Each powder of 2 O 5 was weighed so that the composition after firing was as shown in (Table 8).
【0025】[0025]
【表8】 [Table 8]
【0026】そして実施例1と同様にして図6に示す電
子部品を製造し、周波数1kHz、室温20℃の条件で、
誘電率、誘電体損失、容量を測定した。そして容量変化
率も20℃での容量を基準として、−25℃と85℃に
ついて求めた。その結果を(表9)に示す。Then, an electronic part shown in FIG. 6 was manufactured in the same manner as in Example 1, and the frequency was 1 kHz and the room temperature was 20 ° C.
The dielectric constant, dielectric loss, and capacitance were measured. The capacity change rate was also determined at −25 ° C. and 85 ° C. based on the capacity at 20 ° C. The results are shown in (Table 9).
【0027】[0027]
【表9】 [Table 9]
【0028】試料No.1,4,5,7はJIS−C−5
130規格におけるJD特性を満足し、他の試料はJI
S−C−5130規格において、さらに容量温度変化率
の小さいDR特性を満足する。そして試料No.1,4,
5,7についてはキュリー温度での最大容量変化率を
(ΔC/C20)max(%)として示し、それ以外の試料
については−55℃〜125℃の範囲における最大容量
変化率の絶対値|ΔC/C20|max(%)として示す。Sample Nos. 1, 4, 5, and 7 are JIS-C-5
Satisfies JD characteristics in 130 standard, other samples are JI
In the SC-5130 standard, a DR characteristic with a smaller rate of change in capacitance with temperature is satisfied. And sample No.1,4
For 5 and 7, the maximum capacity change rate at the Curie temperature is shown as (ΔC / C 20 ) max (%), and for other samples, the absolute value of the maximum capacity change rate in the range of −55 ° C. to 125 ° C. | It is shown as ΔC / C 20 | max (%).
【0029】(表9)を見ると、本実施例における電子
部品は比誘電率が約2100〜4600と高く、誘電体
損失(tanδ)は1.1%以下という非常に優れたも
のであることがわかる。Referring to (Table 9), the electronic component in this embodiment has a very high relative dielectric constant of about 2100 to 4600 and a very high dielectric loss (tan δ) of 1.1% or less. I understand.
【0030】次に本実施例における誘電体1の組成の決
定理由を図2を参照して説明する。直線a−eより上部
では、容量変化率が大きくなりJIS−C−5130規
格でのJD特性を満足できない。直線a−b、b−cよ
り左部では、焼結しにくくなり、実用的ではない。直線
c−dより下部では、Ndを入れた効果が薄く誘電率が
低下し焼結性も劣る。直線d−eより右部では、焼結体
の表面に二次相の発生が著しく、誘電率も低下方向にあ
るので実用的でない。Next, the reason for determining the composition of the dielectric 1 in this embodiment will be described with reference to FIG. Above the straight line ae, the rate of change in capacitance is large, and the JD characteristics in JIS-C-5130 cannot be satisfied. On the left side of the straight lines ab and bc, sintering becomes difficult, which is not practical. Below the line cd, the effect of adding Nd is small, the dielectric constant is lowered, and the sinterability is also poor. On the right side of the straight line de, generation of a secondary phase is remarkable on the surface of the sintered body, and the dielectric constant tends to decrease, which is not practical.
【0031】また、Nb−Ni、Nb−Mn、あるいは
Nb−Mn−Niの組合わせにおいて、Nb2O5が0.
6wt%未満では、焼結性が悪化し、誘電体損失が大きく
なり、2.4wt%を越えると誘電率が低下し、実用的で
はなくなる。MnO2は、0.01wt%未満ではその添
加効果がなく、0.4wt%を越えると、誘電率が低下
し、容量温度変化率が大きくなるため、実用的ではな
い。さらに、NiOについても同様に0.8wt%を越え
ると、誘電率が低下し、容量変化率が大きくなり、0.
05wt%未満ではその添加効果がなく、実用的ではなく
なる。但し、Nb−Ni−Mnの組合わせにおいてNi
とMnを両方同時に加える場合、NiとMnの合計が、
0.8wt%を越えると誘電率が低下し、容量変化率が大
きくなるため、実用的ではない。In the combination of Nb—Ni, Nb—Mn, or Nb—Mn—Ni, Nb 2 O 5 is 0.1%.
If it is less than 6 wt%, the sinterability deteriorates, and the dielectric loss increases. If it exceeds 2.4 wt%, the dielectric constant decreases, which is not practical. MnO 2 has no effect when it is less than 0.01 wt%, and when it exceeds 0.4 wt%, the dielectric constant is lowered and the rate of change in capacity with temperature is increased, so that it is not practical. Further, when NiO exceeds 0.8 wt%, the dielectric constant decreases and the capacity change rate increases.
If it is less than 05 wt%, there is no effect of the addition, and it is not practical. However, in the combination of Nb-Ni-Mn, Ni
And Mn are added simultaneously, the sum of Ni and Mn is
If it exceeds 0.8 wt%, the dielectric constant is lowered and the rate of change in capacitance is increased, so that it is not practical.
【0032】以上のような理由により、本実施例におけ
る誘電体1の組成を決定した。なお、本実施例において
も誘電体1の出発原料としてNb2O5,MnO2,Ce
O2等の酸化物を用いたが、実施例1と同様、焼成後の
組成が所望したものになるのならば、炭酸塩、水酸化物
等を用いても同様の特性を得ることができる。For the reasons described above, the composition of the dielectric 1 in this embodiment was determined. In this embodiment, Nb 2 O 5 , MnO 2 , and Ce are used as starting materials for the dielectric 1.
Although oxides such as O 2 were used, similar properties can be obtained by using carbonates, hydroxides, and the like, as in Example 1, provided that the composition after firing becomes a desired composition. .
【0033】また、あらかじめ主成分を仮焼してから副
成分を添加しても、その効果に変わりはない。Further, even if the main component is calcined in advance and then the subcomponent is added, the effect remains unchanged.
【0034】(実施例3)まず誘電体1の出発原料とし
て、Ba/Tiのモル比が1に調整された高純度のBa
TiO3粉末と、BaCO3,Nd2O3,MnO2,Ni
O,Nb2O5の各粉末を(表10)に示す組成になるよ
うにそれぞれ秤量した。Example 3 First, as a starting material of the dielectric 1, high-purity Ba whose molar ratio of Ba / Ti was adjusted to 1 was used.
TiO 3 powder, BaCO 3 , Nd 2 O 3 , MnO 2 , Ni
Each powder of O and Nb 2 O 5 was weighed so as to have a composition shown in (Table 10).
【0035】[0035]
【表10】 [Table 10]
【0036】そして実施例1と同様に図6に示す電子部
品を製造し、周波数1kHz、室温20℃の条件で、誘電
率、誘電体損失、容量を測定した。そして容量変化率を
20℃での容量を基準として、−25℃と85℃につい
て求めた。その結果を(表11)に示す。Then, the electronic component shown in FIG. 6 was manufactured in the same manner as in Example 1, and the dielectric constant, the dielectric loss, and the capacitance were measured at a frequency of 1 kHz and a room temperature of 20 ° C. Then, the capacity change rate was determined at −25 ° C. and 85 ° C. based on the capacity at 20 ° C. The results are shown in (Table 11).
【0037】[0037]
【表11】 [Table 11]
【0038】試料No.1,4,7はJIS−C−513
0規格におけるJD特性を満足し、その他の試料は、さ
らに容量温度変化率の小さいJIS−C−5130規格
におけるDR特性を満足する。Sample Nos. 1, 4 and 7 are JIS-C-513.
The other sample satisfies the JD characteristic in the JIS-C-5130 standard, and the other sample satisfies the DR characteristic in the JIS-C-5130 standard having a smaller capacity temperature change rate.
【0039】また(表11)において試料No.1,4,
7はキュリー温度での最大容量変化率を(ΔC/C20)
max(%)として示し、その他の試料については−55
℃〜125℃の範囲における最大容量変化率の絶対値を
|ΔC/C20|max(%)として示す。In Table 11, samples Nos. 1, 4,
7 is the maximum capacity change rate at the Curie temperature (ΔC / C 20 )
max (%), -55 for other samples
° C. to 125 of the maximum rate of change of capacity at the range of ° C. The absolute value | shown as max (%) | ΔC / C 20.
【0040】(表11)を見ると、本実施例における電
子部品は比誘電率が約2100〜4900と高く、誘電
体損失は1.1%以下と優れたものであることがわか
る。It can be seen from Table 11 that the electronic component of this example has a high relative dielectric constant of about 2100 to 4900 and an excellent dielectric loss of 1.1% or less.
【0041】次に、本実施例における誘電体1の組成の
決定理由を図3を参照して説明する。直線a−eより上
部では、容量変化率が大きくなりJIS−C−5130
規格でのJD特性を満足できない。直線a−b、b−c
より左部では、焼結しにくくなり、実用的ではない。直
線c−dより下部では、Ndを入れた効果が薄く誘電率
が低下し焼結性も劣る。直線d−eより右部では、焼結
体の表面に二次相の発生が著しく、誘電率も低下方向に
あるので実用的ではない。Next, the reason for determining the composition of the dielectric 1 in this embodiment will be described with reference to FIG. Above the straight line ae, the rate of change in capacitance becomes large and JIS-C-5130
The JD characteristics in the standard cannot be satisfied. Straight lines ab, bc
On the left side, sintering becomes difficult and is not practical. Below the line cd, the effect of adding Nd is small, the dielectric constant is lowered, and the sinterability is also poor. On the right side of the straight line de, generation of a secondary phase is remarkable on the surface of the sintered body, and the dielectric constant tends to decrease, which is not practical.
【0042】また、Nb−Ni、Nb−Mn、あるいは
Nb−Mn−Niの組合わせにおいて、Nb2O5が0.
6wt%未満では、焼結性が悪化し、誘電体損失が大きく
なり、2.4wt%を越えると誘電率が低下し、実用的で
はなくなる。MnO2は、0.01wt%未満ではその添
加効果がなく、0.4wt%を越えると、誘電率が低下
し、容量温度変化率が大きくなるため、実用的ではな
い。さらに、NiOについても同様に0.8wt%を越え
ると、誘電率が低下し、容量変化率が大きくなり、0.
05wt%未満ではその添加効果がなく、実用的ではなく
なる。但し、Nb−Ni−Mnの組合わせにおいてNi
とMnを両方同時に加える場合、NiとMnの合計が、
0.8wt%を越えると誘電率が低下し、容量変化率が大
きくなるため、実用的ではない。In a combination of Nb-Ni, Nb-Mn or Nb-Mn-Ni, Nb 2 O 5 is 0.1%.
If it is less than 6 wt%, the sinterability deteriorates, and the dielectric loss increases. If it exceeds 2.4 wt%, the dielectric constant decreases, which is not practical. MnO 2 has no effect when it is less than 0.01 wt%, and when it exceeds 0.4 wt%, the dielectric constant is lowered and the rate of change in capacity with temperature is increased, so that it is not practical. Further, when NiO exceeds 0.8 wt%, the dielectric constant decreases and the capacity change rate increases.
If it is less than 05 wt%, there is no effect of the addition, and it is not practical. However, in the combination of Nb-Ni-Mn, Ni
And Mn are added simultaneously, the sum of Ni and Mn is
If it exceeds 0.8 wt%, the dielectric constant is lowered and the rate of change in capacitance is increased, so that it is not practical.
【0043】以上のような理由により、本実施例におけ
る誘電体1の組成を決定した。なお、本実施例において
も誘電体1の出発原料としてNb2O5,MnO2,Nd2
O3等の酸化物を用いたが、実施例1と同様、焼成後の
組成が所望したものになるならば 、炭酸塩、水酸化物
等を用いても同様の特性を得ることができる。For the reasons described above, the composition of the dielectric 1 in this embodiment was determined. In this embodiment, Nb 2 O 5 , MnO 2 , Nd 2
Although oxides such as O 3 were used, similar properties can be obtained by using carbonates, hydroxides, and the like, as in Example 1, provided that the composition after firing becomes a desired composition.
【0044】また、あらかじめ主成分を仮焼してから、
副成分を添加したとしても、その効果に変わりはない。After calcining the main component in advance,
Even if the auxiliary component is added, the effect does not change.
【0045】(実施例4)まず誘電体1の出発原料とし
て、Ba/Tiのモル比が1に調整された高純度のBa
TiO3粉末と、BaCO3,Sm2O3,MnO2,Ni
O,Nb2O5の各粉末を、焼成後の組成が(表12)に
なるようにそれぞれ秤量した。Example 4 First, as a starting material of the dielectric 1, high-purity Ba whose molar ratio of Ba / Ti was adjusted to 1 was used.
TiO 3 powder, BaCO 3 , Sm 2 O 3 , MnO 2 , Ni
Each powder of O and Nb 2 O 5 was weighed so that the composition after firing became (Table 12).
【0046】[0046]
【表12】 [Table 12]
【0047】そして、実施例1と同様に図6に示す電子
部品を製造し、周波数1kHz、室温20℃の条件で、誘
電率、誘電体損失、容量を測定した。そして容量変化率
を20℃での容量を基準として、−25℃と85℃につ
いて求めた。その結果を(表13)に示す。Then, the electronic component shown in FIG. 6 was manufactured in the same manner as in Example 1, and the dielectric constant, the dielectric loss, and the capacitance were measured at a frequency of 1 kHz and a room temperature of 20 ° C. Then, the capacity change rate was determined at −25 ° C. and 85 ° C. based on the capacity at 20 ° C. The results are shown in (Table 13).
【0048】[0048]
【表13】 [Table 13]
【0049】試料No.1,4,5,7はJIS−C−5
130規格におけるJD特性を満足し、その他の試料は
JIS−C−5130規格においてさらに容量温度変化
率の小さいRD特性を満足する。Sample Nos. 1, 4, 5, and 7 are JIS-C-5
The other samples satisfy the JD characteristics in the 130 standard, and the other samples satisfy the RD characteristics in which the rate of change in capacitance with temperature is smaller in the JIS-C-5130 standard.
【0050】また、試料No.1,4,5,7について
は、キュリー温度での最大容量変化率を(ΔC/C20)
max(%)として示し、他の試料については−55℃〜
125℃の範囲において最大容量変化率の絶対値を|Δ
C/C20|max(%)として示す。For Sample Nos. 1, 4, 5, and 7, the maximum capacity change rate at the Curie temperature was (ΔC / C 20 ).
max (%), for other samples from -55 ° C
The absolute value of the maximum capacity change rate in the range of 125 ° C. is | Δ
C / C 20 | max (%).
【0051】(表13)を見ると、本実施例における電
子部品は比誘電率が約2200〜4800と大きく、誘
電体損失は1.1%以下と優れたものであることがわか
る。As can be seen from Table 13, the electronic component of this example has a large relative dielectric constant of about 2200 to 4800 and an excellent dielectric loss of 1.1% or less.
【0052】次に、本実施例における誘電体1の組成の
決定理由を図4を参照して説明する。直線a−eより上
部では、容量変化率が大きくなりJIS−C−5130
規格でのJD特性を満足できない。直線a−b、b−c
より左部では、焼結しにくくなり、実用的ではない。直
線c−dより下部では、Ndを入れた効果が薄く誘電率
が低下し焼結性も劣る。直線d−eより右部では、焼結
体の表面に二次相の発生が著しく、誘電率も低下方向に
あるので実用的ではない。Next, the reason for determining the composition of the dielectric 1 in this embodiment will be described with reference to FIG. Above the straight line ae, the rate of change in capacitance becomes large and JIS-C-5130
The JD characteristics in the standard cannot be satisfied. Straight lines ab, bc
On the left side, sintering becomes difficult and is not practical. Below the line cd, the effect of adding Nd is small, the dielectric constant is lowered, and the sinterability is also poor. On the right side of the straight line de, generation of a secondary phase is remarkable on the surface of the sintered body, and the dielectric constant tends to decrease, which is not practical.
【0053】また、Nb−Ni、Nb−Mn、あるいは
Nb−Mn−Niの組合わせにおいて、Nb2O5が0.
6wt%未満では、焼結性が悪化し、誘電体損失が大きく
なり、2.4wt%を越えると誘電率が低下し、実用的で
はなくなる。MnO2は、0.01wt%未満ではその添
加効果がなく、0.4wt%を越えると、誘電率が低下
し、容量温度変化率が大きくなるため、実用的ではなく
なる。さらに、NiOについても同様に0.8wt%を越
えると、誘電率が低下し、容量変化率が大きくなり、
0.05wt%未満ではその添加効果がなく、実用的では
なくなる。但し、Nb−Ni−Mnの組合わせにおいて
NiとMnを両方同時に加える場合、NiとMnの合計
が、0.8wt%を越えると誘電率が低下し、容量変化率
が大きくなるため、実用的ではなくなる。In a combination of Nb-Ni, Nb-Mn or Nb-Mn-Ni, Nb 2 O 5 is 0.1%.
If it is less than 6 wt%, the sinterability deteriorates, and the dielectric loss increases. If it exceeds 2.4 wt%, the dielectric constant decreases, which is not practical. If the content of MnO 2 is less than 0.01% by weight, there is no effect of addition, and if it exceeds 0.4% by weight, the dielectric constant is lowered and the rate of change in capacity with temperature is increased, so that it is not practical. Further, when NiO exceeds 0.8 wt%, the dielectric constant decreases, and the capacitance change rate increases.
If it is less than 0.05% by weight, the effect of the addition is not obtained, and it is not practical. However, when both Ni and Mn are simultaneously added in the combination of Nb—Ni—Mn, the dielectric constant decreases and the capacity change rate increases when the total of Ni and Mn exceeds 0.8 wt%, which is practical. Not.
【0054】以上のような理由により、本実施例におけ
る誘電体1の組成を決定した。なお、本実施例において
も誘電体1の出発原料としてNb2O5,MnO2,Sm2
O3等の酸化物を用いたが、実施例1と同様に焼成後の
組成が所望したものになるならば、炭酸塩、水酸化物等
を用いても同様の特性が得られる。For the reasons described above, the composition of the dielectric 1 in this embodiment was determined. In this embodiment, Nb 2 O 5 , MnO 2 , Sm 2
Although oxides such as O 3 were used, similar properties can be obtained by using carbonates, hydroxides, and the like, as in Example 1, provided that the composition after firing becomes a desired composition.
【0055】また、あらかじめ主成分を仮焼してから、
副成分を添加したとしても、その効果に変わりはない。After the main component is calcined in advance,
Even if the auxiliary component is added, the effect does not change.
【0056】(実施例5)まず、誘電体1の出発原料と
してBa/Tiモル比が1に調整された高純度のBaT
iO3粉末とBaCO3,Dy2O3,MnO2,ZnO,
Nb2O5の各粉末を焼成後の組成が(表14)に示すよ
うになるようにそれぞれ秤量した。Example 5 First, as a starting material for the dielectric 1, a high-purity BaT whose Ba / Ti molar ratio was adjusted to 1 was used.
iO 3 powder and BaCO 3 , Dy 2 O 3 , MnO 2 , ZnO,
Each powder of Nb 2 O 5 was weighed so that the composition after firing was as shown in (Table 14).
【0057】[0057]
【表14】 [Table 14]
【0058】そして実施例1と同様にして図6に示すよ
うな電子部品を製造し、周波数1kHz、室温20℃の条
件で、誘電率、誘電体損失(tanδ)、容量を測定し
た。そして容量変化率を20℃での容量を基準として、
−25℃と85℃について求めた。その結果を(表1
5)に示す。Then, an electronic component as shown in FIG. 6 was manufactured in the same manner as in Example 1, and the dielectric constant, dielectric loss (tan δ), and capacitance were measured at a frequency of 1 kHz and room temperature of 20 ° C. And the capacity change rate is based on the capacity at 20 ° C.
It was determined for -25 ° C and 85 ° C. The results are shown in Table 1.
It is shown in 5).
【0059】[0059]
【表15】 [Table 15]
【0060】試料No.1,4,6はJIS−C−513
0規格におけるJD特性を満足し、その他の試料はJI
S−C−5130規格においてさらに容量温度変化率の
小さいRD特性を満足する。Samples Nos. 1, 4, and 6 are JIS-C-513.
JD characteristics in standard 0, other samples are JI
In the SC-5130 standard, the RD characteristic with a smaller capacitance temperature change rate is satisfied.
【0061】また、試料No.1,4,6については、キ
ュリー温度での最大容量変化率を(ΔC/C20)
max(%)として示し、他の試料については−55℃〜
125℃の範囲において最大容量変化率の絶対値を|Δ
C/C20|max(%)として示す。For samples Nos. 1, 4 and 6, the maximum capacity change rate at the Curie temperature was (ΔC / C 20 ).
max (%), for other samples from -55 ° C
The absolute value of the maximum capacity change rate in the range of 125 ° C. is | Δ
C / C 20 | max (%).
【0062】(表15)を見ると、本実施例における電
子部品は比誘電率が約2300〜5100と大きく、誘
電体損失が1.0%以下と優れたものであることがわか
る。It can be seen from Table 15 that the electronic component of this example has a large relative dielectric constant of about 2300 to 5100 and an excellent dielectric loss of 1.0% or less.
【0063】次に、本実施例における誘電体1の組成の
決定理由を図1を参照して説明する。直線a−eより上
部では、容量変化率が大きくなりJIS−C−5130
規格でのJD特性を満足できない。直線a−b、b−c
より左部では、焼結しにくくなり、実用的ではない。直
線c−dより下部では、Ndを入れた効果が薄く誘電率
が低下し焼結性も劣る。直線d−eより右部では、焼結
体の表面に二次相の発生が著しく、誘電率も低下方向に
あるので実用的ではない。Next, the reason for determining the composition of the dielectric 1 in this embodiment will be described with reference to FIG. Above the straight line ae, the rate of change in capacitance becomes large and JIS-C-5130
The JD characteristics in the standard cannot be satisfied. Straight lines ab, bc
On the left side, sintering becomes difficult and is not practical. Below the line cd, the effect of adding Nd is small, the dielectric constant is lowered, and the sinterability is also poor. On the right side of the straight line de, generation of a secondary phase is remarkable on the surface of the sintered body, and the dielectric constant tends to decrease, which is not practical.
【0064】また、副成分としてのNb−Zn、あるい
はNb−Zn−Mnの組合わせにおいて、Nb2O5が
0.6wt%未満では、焼結性が悪化し、誘電体損失が大
きくなり、2.4wt%を越えると誘電率が低下し、実用
的ではなくなる。また、ZnOは、0.05wt%未満で
はその添加効果がなく、0.80wt%を越えると、誘電
率が低下し、容量温度変化率が大きくなるため、実用的
ではない。さらに、ZnOとMnO2の両者を添加する
場合、その合計の添加量が0.05wt%以上であれば添
加効果が得られるが、その合計の添加が0.8wt%を越
えると、誘電率が低下し、容量変化率が大きくなり、実
用的ではなくなる。また、MnO2の添加量が0.40w
t%を越えると同様に誘電率が低下し、容量温度変化率
が大きくなるため、実用的ではない。When Nb—Zn or Nb—Zn—Mn is used as a subcomponent and Nb 2 O 5 is less than 0.6% by weight, sinterability deteriorates and dielectric loss increases. If it exceeds 2.4% by weight, the dielectric constant decreases, and it is not practical. If ZnO is less than 0.05% by weight, there is no effect of addition, and if it exceeds 0.80% by weight, the dielectric constant is lowered and the rate of change in capacitance with temperature is increased, so that it is not practical. Further, when both ZnO and MnO 2 are added, the addition effect can be obtained if the total addition amount is 0.05 wt% or more, but if the total addition exceeds 0.8 wt%, the dielectric constant becomes lower. And the rate of change in capacity becomes large, making it impractical. The amount of MnO 2 added was 0.40 watts.
If it exceeds t%, the dielectric constant similarly decreases, and the rate of change in capacitance with temperature increases, which is not practical.
【0065】以上のような理由により、本実施例におけ
る誘電体1の組成を決定した。なお、本実施例において
も誘電体1の出発原料としてNb2O5,MnO2,Dy2
O3等の酸化物を用いたが、実施例1と同様、焼成後の
組成が所望したものになるならば、炭酸塩、水酸化物等
を用いても同様の特性を得ることができる。For the reasons described above, the composition of the dielectric 1 in this example was determined. In this embodiment, Nb 2 O 5 , MnO 2 , Dy 2
Although oxides such as O 3 were used, similar properties can be obtained by using carbonates, hydroxides, and the like, as in Example 1, provided that the composition after firing becomes a desired composition.
【0066】また、あらかじめ主成分を仮焼してから、
副成分を添加したとしても、その効果に変わりはない。Also, after calcining the main component in advance,
Even if the auxiliary component is added, the effect does not change.
【0067】(実施例6)まず誘電体1の出発原料とし
て、Ba/Tiのモル比が1に調整された高純度のBa
TiO3粉末と、BaCO3,CeO2,MnO2,Zn
O,Nb2O5の各粉末を、焼成後の組成が(表16)に
なるようにそれぞれ秤量した。Example 6 First, as a starting material for the dielectric 1, high-purity Ba whose Ba / Ti molar ratio was adjusted to 1 was used.
TiO 3 powder, BaCO 3 , CeO 2 , MnO 2 , Zn
The powders of O and Nb 2 O 5 were weighed so that the composition after firing became (Table 16).
【0068】[0068]
【表16】 [Table 16]
【0069】そして実施例1と同様に図6に示す電子部
品を製造し、周波数1kHz、室温20℃の条件で、誘電
率、誘電体損失、容量を測定した。そして容量変化率を
20℃での容量を基準として、−25℃と85℃につい
て求めた。その結果を(表17)に示す。Then, the electronic component shown in FIG. 6 was manufactured in the same manner as in Example 1, and the dielectric constant, the dielectric loss, and the capacitance were measured at a frequency of 1 kHz and a room temperature of 20 ° C. Then, the capacity change rate was determined at −25 ° C. and 85 ° C. based on the capacity at 20 ° C. The results are shown in (Table 17).
【0070】[0070]
【表17】 [Table 17]
【0071】試料No.1,4,5,6はJIS−C−5
130規格におけるJD特性を満足し、その他の試料は
JIS−C−5130規格においてRD特性を満足す
る。Sample Nos. 1, 4, 5, and 6 are JIS-C-5
The other samples satisfy the JD characteristics in the 130 standard, and the other samples satisfy the RD characteristics in the JIS-C-5130 standard.
【0072】また試料No.1,4,5,6については、
キュリー温度での最大容量変化率を(ΔC/C20)max
(%)として示し、他の試料については−55℃〜12
5℃の範囲において最大容量変化率の絶対値を|ΔC/
C20|max(%)として示す。For samples Nos. 1, 4, 5, and 6,
The maximum capacity change rate at Curie temperature is (ΔC / C 20 ) max
(%), -55 ° C. to 12
In the range of 5 ° C., the absolute value of the maximum capacity change rate is | ΔC /
C 20 | max (%).
【0073】(表17)を見ると、本実施例における電
子部品は比誘電率が約2300〜5100と大きく、誘
電体損失が、1.1%以下と優れたものであることがわ
かる。Table 17 shows that the electronic component of this example has a large relative dielectric constant of about 2300 to 5100 and an excellent dielectric loss of 1.1% or less.
【0074】次に、本実施例における誘電体1の組成の
決定理由を図2を参照して説明する。直線a−eより上
部では、容量変化率が大きくなりJIS−C−5130
規格でのJD特性を満足しない。直線a−b、b−cよ
り左部では、焼結しにくくなり、実用的ではない。直線
c−dより下部では、Ndを入れた効果が薄く誘電率が
低下し焼結性も劣る。直線d−eより右部では、焼結体
の表面に二次相の発生が著しく、誘電率も低下方向にあ
るので実用的ではない。Next, the reason for determining the composition of the dielectric 1 in this embodiment will be described with reference to FIG. Above the straight line ae, the rate of change in capacitance becomes large and JIS-C-5130
Does not satisfy the JD characteristics in the standard. On the left side of the straight lines ab and bc, sintering becomes difficult, which is not practical. Below the line cd, the effect of adding Nd is small, the dielectric constant is lowered, and the sinterability is also poor. On the right side of the straight line de, generation of a secondary phase is remarkable on the surface of the sintered body, and the dielectric constant tends to decrease, which is not practical.
【0075】また、副成分としてのNb−Zn、あるい
はNb−Zn−Mnの組合わせにおいて、Nb2O5が
0.6wt%未満では、焼結性が悪化し、誘電体損失が大
きくなり、2.4wt%を越えると誘電率が低下し、実用
的ではなくなる。また、ZnOは、0.05wt%未満で
はその添加効果がなく、0.80wt%を越えると、誘電
率が低下し、容量温度変化率が大きくなるため、実用的
ではない。さらに、ZnOとMnO2の両者を添加する
場合、その合計の添加量が0.05wt%以上であれば添
加効果が得られるが、その合計の添加が0.8wt%を越
えると、誘電率が低下し、容量変化率が大きくなり、実
用的ではなくなる。また、MnO2の添加量が0.40w
t%を越えると同様に誘電率が低下し、容量温度変化率
が大きくなり、実用的ではない。When Nb—Zn or Nb—Zn—Mn is used as a sub-component and Nb 2 O 5 is less than 0.6% by weight, sinterability deteriorates and dielectric loss increases. If it exceeds 2.4% by weight, the dielectric constant decreases, and it is not practical. If ZnO is less than 0.05% by weight, there is no effect of addition, and if it exceeds 0.80% by weight, the dielectric constant is lowered and the rate of change in capacitance with temperature is increased, so that it is not practical. Further, when both ZnO and MnO 2 are added, the addition effect can be obtained if the total addition amount is 0.05 wt% or more, but if the total addition exceeds 0.8 wt%, the dielectric constant becomes lower. And the rate of change in capacity becomes large, making it impractical. The amount of MnO 2 added was 0.40 watts.
If it exceeds t%, the dielectric constant similarly decreases, and the capacitance temperature change rate increases, which is not practical.
【0076】以上のような理由により、本実施例におけ
る組成を決定した。なお、本実施例においても誘電体1
の出発原料としてNb2O5,MnO2,CeO2等の酸化
物を用いたが、実施例1と同様、焼成後の組成が所望し
たものになるならば、炭酸塩、水酸化物等を用いても同
様の特性を得ることができる。For the above reasons, the composition in this example was determined. In this embodiment, the dielectric 1
Although oxides such as Nb 2 O 5 , MnO 2 , and CeO 2 were used as starting materials, carbonates, hydroxides, and the like were used as in Example 1 if the composition after firing was as desired. The same characteristics can be obtained even when used.
【0077】また、あらかじめ主成分を仮焼してから、
副成分を添加したとしても、その効果に変わりはない。After the main component is calcined in advance,
Even if the auxiliary component is added, the effect does not change.
【0078】(実施例7)まず誘電体1の出発原料とし
て、Ba/Tiのモル比が1に調整された高純度のBa
TiO3粉末と、BaCO3,Nd2O3,MnO2,Zn
O,Nb2O5の各粉末を、焼成後の組成が(表18)に
なるようにそれぞれ秤量した。Example 7 First, as a starting material of the dielectric 1, high-purity Ba whose Ba / Ti molar ratio was adjusted to 1 was used.
TiO 3 powder, BaCO 3 , Nd 2 O 3 , MnO 2 , Zn
The powders of O and Nb 2 O 5 were weighed so that the composition after firing became (Table 18).
【0079】[0079]
【表18】 [Table 18]
【0080】そして、実施例1と同様に図6に示す電子
部品を製造し、周波数1kHz、室温20℃の条件で、誘
電率、誘電体損失、容量を測定した。そして容量変化率
を20℃での容量を基準として、−25℃と85℃につ
いて求めた。その結果を(表19)に示す。Then, the electronic component shown in FIG. 6 was manufactured in the same manner as in Example 1, and the dielectric constant, the dielectric loss, and the capacitance were measured at a frequency of 1 kHz and a room temperature of 20 ° C. Then, the capacity change rate was determined at −25 ° C. and 85 ° C. based on the capacity at 20 ° C. The results are shown in (Table 19).
【0081】[0081]
【表19】 [Table 19]
【0082】試料No.1,4,6はJIS−C−513
0規格におけるJD特性を満足し、その他の試料はJI
S−C−5130規格においてさらに容量温度変化率の
小さいRD特性を満足する。Samples Nos. 1, 4 and 6 are JIS-C-513.
JD characteristics in standard 0, other samples are JI
In the SC-5130 standard, the RD characteristic with a smaller capacitance temperature change rate is satisfied.
【0083】また、試料No.1,4,6については、キ
ュリー温度での最大容量変化率を(ΔC/C20)
max(%)として示し、他の試料については−55℃〜
125℃の範囲において最大容量変化率の絶対値を|Δ
C/C20|max(%)として示す。For Samples Nos. 1, 4, and 6, the maximum capacity change rate at Curie temperature was (ΔC / C 20 ).
max (%), for other samples from -55 ° C
The absolute value of the maximum capacity change rate in the range of 125 ° C. is | Δ
C / C 20 | max (%).
【0084】(表19)を見ると本実施例における電子
部品は比誘電率が、約2400〜5200と高く、誘電
体損失は、1.0%以下と非常に優れたものであること
がわかる。From Table 19, it can be seen that the electronic component of this example has a high relative dielectric constant of about 2400 to 5200 and a very high dielectric loss of 1.0% or less. .
【0085】次に、本実施例における誘電体1の組成の
決定理由を図3を参照して説明する。直線a−eより上
部では、容量変化率が大きくなりJIS−C−5130
規格でのJD特性を満足しない。直線a−b、b−cよ
り左部では、焼結しにくくなり、実用的ではない。直線
c−dより下部では、Ndを入れた効果が薄く誘電率が
低下し焼結性も劣る。直線d−eより右部では、焼結体
の表面に二次相の発生が著しく、誘電率も低下方向にあ
るので実用的ではない。Next, the reason for determining the composition of the dielectric 1 in this embodiment will be described with reference to FIG. Above the straight line ae, the rate of change in capacitance becomes large and JIS-C-5130
Does not satisfy the JD characteristics in the standard. On the left side of the straight lines ab and bc, sintering becomes difficult, which is not practical. Below the line cd, the effect of adding Nd is small, the dielectric constant is lowered, and the sinterability is also poor. On the right side of the straight line de, generation of a secondary phase is remarkable on the surface of the sintered body, and the dielectric constant tends to decrease, which is not practical.
【0086】また、副成分としてのNb−Zn、あるい
はNb−Zn−Mnの組合わせにおいて、Nb2O5が
0.6wt%未満では、焼結性が悪化し、誘電体損失が大
きくなり、2.4wt%を越えると誘電率が低下し、実用
的ではなくなる。また、ZnOは、0.05wt%未満で
はその添加効果がなく、0.80wt%を越えると、誘電
率が低下し、容量温度変化率が大きくなるため、実用的
ではない。さらに、ZnOとMnO2の両者を添加する
場合、その合計の添加量が0.05wt%以上であれば添
加効果が得られるが、その合計の添加が0.8wt%を越
えると、誘電率が低下し、容量変化率が大きくなり、実
用的ではなくなる。また、MnO2の添加量が0.40w
t%を越えると同様に誘電率が低下し、容量温度変化率
が大きくなり、実用的ではない。In the case of Nb—Zn or Nb—Zn—Mn as a subcomponent, if Nb 2 O 5 is less than 0.6 wt%, the sinterability deteriorates, and the dielectric loss increases. If it exceeds 2.4% by weight, the dielectric constant decreases, and it is not practical. If ZnO is less than 0.05% by weight, there is no effect of addition, and if it exceeds 0.80% by weight, the dielectric constant is lowered and the rate of change in capacitance with temperature is increased, so that it is not practical. Further, when both ZnO and MnO 2 are added, the addition effect can be obtained if the total addition amount is 0.05 wt% or more, but if the total addition exceeds 0.8 wt%, the dielectric constant becomes lower. And the rate of change in capacity becomes large, making it impractical. The amount of MnO 2 added was 0.40 watts.
If it exceeds t%, the dielectric constant similarly decreases, and the capacitance temperature change rate increases, which is not practical.
【0087】以上のような理由により、本実施例におけ
る組成を決定した。なお、本実施例においても誘電体1
の出発原料としてNb2O5,MnO2,Nd2O3等の酸
化物を用いたが、実施例1と同様、焼成後の組成が所望
したものになるならば、炭酸塩、水酸化物等を用いても
同様の特性を得ることができる。For the above reasons, the composition in this example was determined. In this embodiment, the dielectric 1
Oxides such as Nb 2 O 5 , MnO 2 , Nd 2 O 3 were used as starting materials for the above. However, as in Example 1, if the composition after firing becomes the desired one, carbonates, hydroxides The same characteristics can be obtained by using these methods.
【0088】また、あらかじめ主成分を仮焼してから、
副成分を添加したとしても、その効果に変わりはない。Further, after calcining the main component in advance,
Even if the auxiliary component is added, the effect does not change.
【0089】(実施例8)まず誘電体1の出発原料とし
て、Ba/Tiのモル比が1に調整された高純度のBa
TiO3粉末と、BaCO3,Sm2O3,MnO2,Zn
O,Nb2O5の各粉末を、焼成後の組成が(表20)に
なるようにそれぞれ秤量した。(Embodiment 8) First, as a starting material of the dielectric 1, high-purity Ba whose molar ratio of Ba / Ti was adjusted to 1 was used.
TiO 3 powder, BaCO 3 , Sm 2 O 3 , MnO 2 , Zn
Each powder of O and Nb 2 O 5 was weighed so that the composition after firing became (Table 20).
【0090】[0090]
【表20】 [Table 20]
【0091】そして、実施例1と同様に図6に示す電子
部品を製造し、周波数1kHz、室温20℃の条件で、誘
電率、誘電体損失、容量を測定した。そして容量変化率
を20℃での容量を基準として、−25℃と85℃につ
いて求めた。その結果を(表21)に示す。Then, the electronic component shown in FIG. 6 was manufactured in the same manner as in Example 1, and the dielectric constant, the dielectric loss, and the capacitance were measured under the conditions of a frequency of 1 kHz and a room temperature of 20 ° C. Then, the capacity change rate was determined at −25 ° C. and 85 ° C. based on the capacity at 20 ° C. The results are shown in (Table 21).
【0092】[0092]
【表21】 [Table 21]
【0093】試料No.1,4,5,6はJIS−C−5
130規格におけるJD特性を満足し、その他の試料は
JIS−C−5130規格においてさらに容量温度変化
率の小さいRD特性を満足する。Sample Nos. 1, 4, 5, and 6 are JIS-C-5
The other samples satisfy the JD characteristics in the 130 standard, and the other samples satisfy the RD characteristics in which the rate of change in capacitance with temperature is smaller in the JIS-C-5130 standard.
【0094】また、試料No.1,4,5,6について
は、キュリー温度での最大容量変化率を(ΔC/C20)
max(%)として示し、他の試料については−55℃〜
125℃の範囲において最大容量変化率の絶対値を|Δ
C/C20|max(%)として示す。For samples Nos. 1, 4, 5, and 6, the maximum capacity change rate at the Curie temperature was (ΔC / C 20 ).
max (%), for other samples from -55 ° C
The absolute value of the maximum capacity change rate in the range of 125 ° C. is | Δ
C / C 20 | max (%).
【0095】(表21)を見ると本実施例における電子
部品は比誘電率が約2400〜5200と大きくく、誘
電体損失は1.2%以下と非常に優れたものであること
がわかる。From Table 21, it can be seen that the electronic component of this example has a large relative dielectric constant of about 2400 to 5200 and a very high dielectric loss of 1.2% or less.
【0096】次に、本実施例における誘電体1の組成の
決定理由を図4を参照して説明する。直線a−eより上
部では、容量変化率が大きくなりJIS−C−5130
規格でのJD特性を満足しない。直線a−b、b−cよ
り左部では、焼結しにくくなり、実用的ではない。直線
c−dより下部では、Ndを入れた効果が薄く誘電率が
低下し焼結性も劣る。直線d−eより右部では、焼結体
の表面に二次相の発生が著しく、誘電率も低下方向にあ
るので実用的ではない。Next, the reason for determining the composition of the dielectric 1 in this embodiment will be described with reference to FIG. Above the straight line ae, the rate of change in capacitance becomes large and JIS-C-5130
Does not satisfy the JD characteristics in the standard. On the left side of the straight lines ab and bc, sintering becomes difficult, which is not practical. Below the line cd, the effect of adding Nd is small, the dielectric constant is lowered, and the sinterability is also poor. On the right side of the straight line de, generation of a secondary phase is remarkable on the surface of the sintered body, and the dielectric constant tends to decrease, which is not practical.
【0097】また、副成分としてのNb−Zn、あるい
はNb−Zn−Mnの組合わせにおいて、Nb2O5が
0.6wt%未満では、焼結性が悪化し、誘電体損失が大
きくなり、2.4wt%を越えると誘電率が低下し、実用
的ではなくなる。また、ZnOは、0.05wt%未満で
はその添加効果がなく、0.80wt%を越えると、誘電
率が低下し、容量温度変化率が大きくなるため、実用的
ではない。さらに、ZnOとMnO2の両者を添加する
場合、その合計の添加量が0.05wt%以上であれば添
加効果が得られるが、その合計の添加が0.8wt%を越
えると、誘電率が低下し、容量変化率が大きくなり、実
用的ではなくなる。また、MnO2の添加量が0.40w
t%を越えると同様に誘電率が低下し、容量温度変化率
が大きくなり、実用的ではない。In the case of Nb—Zn or Nb—Zn—Mn as a subcomponent, if Nb 2 O 5 is less than 0.6% by weight, sinterability deteriorates and dielectric loss increases. If it exceeds 2.4% by weight, the dielectric constant decreases, and it is not practical. If ZnO is less than 0.05% by weight, there is no effect of addition, and if it exceeds 0.80% by weight, the dielectric constant is lowered and the rate of change in capacitance with temperature is increased, so that it is not practical. Further, when both ZnO and MnO 2 are added, the addition effect can be obtained if the total addition amount is 0.05 wt% or more, but if the total addition exceeds 0.8 wt%, the dielectric constant becomes lower. And the rate of change in capacity becomes large, making it impractical. The amount of MnO 2 added was 0.40 watts.
If it exceeds t%, the dielectric constant similarly decreases, and the capacitance temperature change rate increases, which is not practical.
【0098】以上のような理由により、本実施例におけ
る組成を決定した。なお、本実施例においても誘電体1
の出発原料としてNb2O5,MnO2,SmO3/2等の酸
化物を用いたが、実施例1と同様、焼成後の組成が所望
したものになるならば、炭酸塩、水酸化物等を用いても
同様の特性を得ることができる。For the above reasons, the composition in this example was determined. In this embodiment, the dielectric 1
Oxides such as Nb 2 O 5 , MnO 2 , SmO 3/2 were used as starting materials for the above. However, as in Example 1, if the composition after firing becomes a desired one, carbonates, hydroxides, etc. The same characteristics can be obtained by using these methods.
【0099】また、あらかじめ主成分を仮焼してから、
副成分を添加したとしても、その効果に変わりはない。Also, after the main component is calcined in advance,
Even if the auxiliary component is added, the effect does not change.
【0100】なお上記実施例においては、誘電体1単品
によるコンデンサで説明したが、誘電体を層状とし、こ
の誘電体層と電極層を交互に積層するとともに、電極層
を交互に両端側に引出し、そこに外部電極を形成した積
層セラミックコンデンサの誘電体にも適用できる。In the above embodiment, the description has been made of the capacitor using only one dielectric. However, the dielectric is made into a layer, the dielectric and the electrode are alternately laminated, and the electrode is alternately drawn to both ends. The present invention can also be applied to a dielectric of a multilayer ceramic capacitor having external electrodes formed thereon.
【0101】[0101]
【発明の効果】以上のように、本発明の電子部品は、焼
結体表面への二次相の発生を抑制したものであり、しか
も比誘電率は高く、誘電体損失(tanδ)は小さく、
誘電体の温度変化率はJIS−C−5130規格におけ
るJD特性を満足している。As described above, the electronic component of the present invention suppresses the generation of the secondary phase on the surface of the sintered body, and has a high relative dielectric constant and a small dielectric loss (tan δ). ,
The temperature change rate of the dielectric material satisfies the JD characteristics in JIS-C-5130 standard.
【0102】また、誘電体の組成中にパラジウムと反応
しやすいビスマスを含有していないので、電極にPdを
用いることができる。Since the composition of the dielectric does not contain bismuth which easily reacts with palladium, Pd can be used for the electrode.
【図1】本発明のBaO−TiO2−DyO3/2の三元成
分図FIG. 1 is a ternary component diagram of BaO-TiO 2 -DyO 3/2 of the present invention.
【図2】本発明のBaO−TiO2−CeO2の三元成分
図FIG. 2 is a ternary component diagram of BaO—TiO 2 —CeO 2 of the present invention.
【図3】本発明のBaO−TiO2−NdO3/2の三元成
分図FIG. 3 is a ternary component diagram of BaO—TiO 2 —NdO 3/2 of the present invention.
【図4】本発明のBaO−TiO2−SmO3/2の三元成
分図FIG. 4 is a ternary component diagram of BaO—TiO 2 —SmO 3/2 of the present invention.
【図5】本発明の一実施例における電子部品の製造工程
図FIG. 5 is a manufacturing process diagram of an electronic component according to an embodiment of the present invention.
【図6】本発明の一実施例における電子部品の斜視図FIG. 6 is a perspective view of an electronic component according to one embodiment of the present invention.
1 誘電体 2 銀電極 1 Dielectric 2 Silver electrode
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−229602(JP,A) 特開 平2−64060(JP,A) 特開 昭55−53007(JP,A) 特開 平3−45557(JP,A) 特開 平4−114962(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 3/12 303 C04B 35/46 H01G 4/12 358 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-229602 (JP, A) JP-A-2-64060 (JP, A) JP-A-55-53007 (JP, A) JP-A-3-302 45557 (JP, A) JP-A-4-114962 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 3/12 303 C04B 35/46 H01G 4/12 358
Claims (12)
設けた電極とを備え、前記誘電体は、xBaO+yTi
O2+zDyO3/2 (但し、x、y、zはモル比を示しx
+y+z=1)の三元成分図において、(表1)に示す
a,b,c,d,eを頂点とする5角形の領域内で表さ
れる組成を主成分とし、副成分としてNbをNb2O5に
換算して0.6〜2.4重量部、NiをNiOに換算し
て0.05〜0.8重量部、MnをMnO 2 に換算して
0.01〜0.4重量部のうち少なくとも一種類を含有
させたもので形成した電子部品。 【表1】 1. A semiconductor device comprising: a dielectric; and at least two electrodes provided on the dielectric, wherein the dielectric comprises xBaO + yTi.
O 2 + zDyO 3/2 (where x, y, and z are molar ratios and x
+ Y + z = 1) , a composition represented in a pentagonal region having vertices of a, b, c, d, and e shown in (Table 1) as a main component, and Nb as a subcomponent. 0.6 to 2.4 parts by weight in terms of nb 2 O 5, 0.05~0.8 parts by weight in terms of Ni to NiO, and Mn in terms of MnO 2 0.01 to 0.4 An electronic component formed of at least one of the parts by weight. [Table 1]
て、副成分として、ニオブをNb2O5に換算して0.6
〜2.4重量部、亜鉛をZnOに換算して0.05〜
0.8重量部含有させた請求項1記載の電子部品。2. The composition according to claim 1, wherein niobium is converted into Nb 2 O 5 as a sub-component in the amount of 0.6 as a sub-component.
22.4 parts by weight, converted from zinc to ZnO 0.050.05
2. The electronic component according to claim 1, wherein 0.8 parts by weight are contained.
て、副成分として、ニオブをNb2O5に換算して0.6
〜2.4重量部、亜鉛とマンガンをZnO、MnO2に
換算して合計で0.05〜0.8重量部(但し、0<M
nO2≦0.4重量部)含有させた請求項1記載の電子
部品。3. The composition according to claim 1, wherein niobium is converted into Nb 2 O 5 as a sub-component in an amount of 0.6 as a sub-component.
To 2.4 parts by weight, and a total of 0.05 to 0.8 parts by weight in terms of zinc and manganese converted to ZnO and MnO 2 (provided that 0 <M
The electronic component according to claim 1, wherein nO 2 ≦ 0.4 parts by weight.
設けた電極とを備え、前記誘電体は、xBaO+yTi
O2+zCeO2 (但し、x、y、zはモル比を示しx+
y+z=1)の三元成分図において、(表2)に示す
a,b,c,d,eを頂点とする5角形の領域内で表さ
れる組成を主成分とし、副成分としてNbをNb2O5に
換算して0.6〜2.4重量部、NiをNiOに換算し
て0.05〜0.8重量部、MnをMnO 2 に換算して
0.01〜0.4重量部のうち少なくとも一種類を含有
させたもので形成した電子部品。 【表2】 4. A dielectric comprising: a dielectric; and at least two electrodes provided on the dielectric, wherein the dielectric comprises xBaO + yTi.
O 2 + z CeO 2 (where x, y, and z indicate molar ratios and x +
In the ternary component diagram of ( y + z = 1) , a composition represented in a pentagonal region having vertices of a, b, c, d, and e shown in (Table 2) is a main component, and Nb is a subcomponent. 0.6 to 2.4 parts by weight in terms of nb 2 O 5, 0.05~0.8 parts by weight in terms of Ni to NiO, and Mn in terms of MnO 2 0.01 to 0.4 An electronic component formed of at least one of the parts by weight. [Table 2]
て、副成分として、ニオブをNb2O5に換算して0.6
〜2.4重量部、亜鉛をZnOに換算して0.05〜
0.8重量部含有させた請求項4記載の電子部品。5. A dielectric material according to claim 4, wherein niobium is converted into Nb 2 O 5 as a sub-component by 0.6 as a sub-component.
22.4 parts by weight, converted from zinc to ZnO 0.050.05
5. The electronic component according to claim 4, wherein 0.8 parts by weight are contained.
て、副成分として、ニオブをNb2O5に換算して0.6
〜2.4重量部、亜鉛とマンガンをZnO、MnO2に
換算して合計で0.05〜0.8重量部(但し、0<M
nO2≦0.4重量部)含有させた請求項4記載の電子
部品。6. A niobium equivalent to 0.6% in terms of Nb 2 O 5 as a subcomponent instead of the subcomponent of the dielectric according to claim 4.
To 2.4 parts by weight, and a total of 0.05 to 0.8 parts by weight in terms of zinc and manganese converted to ZnO and MnO 2 (provided that 0 <M
5. The electronic component according to claim 4, wherein nO 2 ≦ 0.4 parts by weight.
設けた電極とを備え、前記誘電体は、xBaO+yTi
O2+zNdO3/2 (但し、x、y、zはモル比を示しx
+y+z=1)の三元成分図において、(表3)に示す
a,b,c,d,eを頂点とする5角形の領域内で表さ
れる組成を主成分とし、副成分として、NbをNb2O5
に換算して0.6〜2.4重量部、NiをNiOに換算
して0.05〜0.8重量部、MnをMnO 2 に換算し
て0.01〜0.4重量部のうち少なくとも一種類を含
有させたもので形成した電子部品。 【表3】 7. A dielectric comprising: a dielectric; and at least two electrodes provided on the dielectric, wherein the dielectric comprises xBaO + yTi.
O 2 + zNdO 3/2 (where x, y, and z are molar ratios and x
+ Y + z = 1) , a composition represented in a pentagonal region having vertices of a, b, c, d, and e shown in (Table 3) as a main component, and Nb as a subcomponent To Nb 2 O 5
0.6 to 2.4 parts by weight in terms of, 0.05 to 0.8 parts by weight in terms of Ni to NiO, of 0.01 to 0.4 parts by weight in terms of Mn to MnO 2 An electronic component formed of a material containing at least one type. [Table 3]
て、副成分として、ニオブをNb2O5に換算して0.6
〜2.4重量部、亜鉛をZnOに換算して0.05〜
0.8重量部含有させた請求項7記載の電子部品。8. A niobium equivalent to Nb 2 O 5 , which is 0.6% as a minor component, in place of the minor component of the dielectric according to claim 7.
22.4 parts by weight, converted from zinc to ZnO 0.050.05
The electronic component according to claim 7, wherein 0.8 parts by weight are contained.
て、副成分として、ニオブをNb2O5に換算して0.6
〜2.4重量部、亜鉛とマンガンをZnO、MnO2に
換算して合計で0.05〜0.8重量部(但し、0<M
nO2≦0.4重量部)含有させた請求項7記載の電子
部品。9. Instead of the sub-component of the dielectric according to claim 7, as a sub-component, in terms of niobium Nb 2 O 5 0.6
To 2.4 parts by weight, and a total of 0.05 to 0.8 parts by weight in terms of zinc and manganese converted to ZnO and MnO 2 (provided that 0 <M
The electronic component according to claim 7, wherein nO 2 ≦ 0.4 parts by weight.
つ設けた電極とを備え、前記誘電体は、xBaO+yT
iO2+zSmO3/2 (但し、x、y、zはモル比を示し
x+y+z=1)の三元成分図において、(表4)に示
すa,b,c,d,eを頂点とする5角形の領域内で表
される組成を主成分とし、副成分としてNbをNb2O5
に換算して0.6〜2.4重量部、NiをNiOに換算
して0.05〜0.8重量部、MnをMnO 2 に換算し
て0.01〜0.4重量部のうち少なくとも一種類を含
有させたもので形成した電子部品。 【表4】 10. A dielectric and at least two dielectrics on the dielectric.
Provided with two electrodes, wherein the dielectric is xBaO + yT
iO 2 + zSmO 3/2 (where x, y, and z indicate molar ratios)
x + y + z = 1) , the main component is a composition represented in a pentagonal region having vertices of a, b, c, d, and e shown in (Table 4), and Nb is a subcomponent. Nb 2 O 5
0.6 to 2.4 parts by weight in terms of, 0.05 to 0.8 parts by weight in terms of Ni to NiO, of 0.01 to 0.4 parts by weight in terms of Mn to MnO 2 An electronic component formed of a material containing at least one type. [Table 4]
えて、副成分として、ニオブをNb2O5に換算して0.
6〜2.4重量部、亜鉛をZnOに換算して0.05〜
0.8重量部含有させた請求項10記載の電子部品。11. A dielectric material according to claim 10, wherein niobium is converted into Nb 2 O 5 as a sub-component to form a sub-component of 0.1%.
6 to 2.4 parts by weight, converted from zinc to ZnO, from 0.05 to
The electronic component according to claim 10, wherein the content is 0.8 parts by weight.
えて、副成分として、ニオブをNb2O5に換算して0.
6〜2.4重量部、亜鉛とマンガンをZnO、MnO2
に換算して合計で0.05〜0.8重量部(但し、0<
MnO2≦0.4重量部)含有させた請求項10記載の
電子部品。12. The dielectric component according to claim 10, wherein niobium is converted into Nb 2 O 5 as a sub-component to form a sub-component of 0.1%.
6 to 2.4 parts by weight, zinc and manganese are ZnO, MnO 2
0.05 to 0.8 parts by weight (provided that 0 <
The electronic component according to claim 10, further comprising (MnO 2 ≦ 0.4 parts by weight).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23970593A JP3321929B2 (en) | 1993-09-27 | 1993-09-27 | Electronic components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23970593A JP3321929B2 (en) | 1993-09-27 | 1993-09-27 | Electronic components |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0794019A JPH0794019A (en) | 1995-04-07 |
JP3321929B2 true JP3321929B2 (en) | 2002-09-09 |
Family
ID=17048701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23970593A Expired - Fee Related JP3321929B2 (en) | 1993-09-27 | 1993-09-27 | Electronic components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3321929B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4392821B2 (en) * | 2000-10-24 | 2010-01-06 | 株式会社村田製作所 | Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor |
JP3841148B2 (en) | 2001-04-23 | 2006-11-01 | 日産自動車株式会社 | Cell plate and stack for solid oxide fuel cell |
KR20190116111A (en) * | 2019-06-14 | 2019-10-14 | 삼성전기주식회사 | Dielectric ceramic composition and multilayer ceramic capacitor comprising the same |
-
1993
- 1993-09-27 JP JP23970593A patent/JP3321929B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0794019A (en) | 1995-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3326513B2 (en) | Multilayer ceramic chip capacitors | |
US5361187A (en) | Ceramic dielectric compositions and capacitors produced therefrom | |
JP3130214B2 (en) | Multilayer ceramic chip capacitors | |
JP3321929B2 (en) | Electronic components | |
JP3064518B2 (en) | Dielectric porcelain composition | |
JP3289379B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3319024B2 (en) | High dielectric constant dielectric porcelain composition | |
JP2958826B2 (en) | Dielectric porcelain composition | |
JP3385630B2 (en) | Non-reducing dielectric porcelain composition | |
JP3368599B2 (en) | Non-reducing dielectric porcelain composition | |
JP3385631B2 (en) | Non-reducing dielectric porcelain composition | |
JP3289377B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3289387B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3321826B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3319025B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3309477B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3289378B2 (en) | High dielectric constant dielectric porcelain composition | |
JP3106371B2 (en) | Dielectric porcelain composition | |
JP3064519B2 (en) | Dielectric porcelain composition | |
JP3603842B2 (en) | Non-reducing dielectric ceramic composition | |
JP3130961B2 (en) | Dielectric porcelain composition | |
JPH1029856A (en) | High dielectric constant dielectric porcelain composition | |
JPH1029861A (en) | High dielectric constant dielectric porcelain composition | |
JPH04334807A (en) | Dielectric porcelain composite | |
JPH1029855A (en) | High dielectric constant dielectric porcelain composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080628 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090628 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |