JP3312514B2 - In-cylinder internal combustion engine - Google Patents
In-cylinder internal combustion engineInfo
- Publication number
- JP3312514B2 JP3312514B2 JP00590195A JP590195A JP3312514B2 JP 3312514 B2 JP3312514 B2 JP 3312514B2 JP 00590195 A JP00590195 A JP 00590195A JP 590195 A JP590195 A JP 590195A JP 3312514 B2 JP3312514 B2 JP 3312514B2
- Authority
- JP
- Japan
- Prior art keywords
- exhaust
- valve
- cylinder
- intake
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Valve Device For Special Equipments (AREA)
- Exhaust Gas After Treatment (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、燃料を直接気筒内へ噴
射する筒内噴射式内燃機関に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection type internal combustion engine for directly injecting fuel into a cylinder.
【0002】[0002]
【従来の技術】近年、排気ガスの有害成分の排出規制が
厳しくなる傾向にあり、そのために、燃焼室で発生する
有害成分を低減することが望まれている。有害成分のう
ち酸化窒素は、排気ガスを燃焼室内へ再循環させること
で、排気ガスの主成分である不活性ガスの有する大きな
熱容量によって燃焼温度が低下するために、その発生量
を良好に低減することができるが、炭化水素及び一酸化
炭素に関しては実用的な発生量低減手段が存在せず、酸
化触媒コンバータにより良好に浄化する必要がある。2. Description of the Related Art In recent years, regulations on the emission of harmful components in exhaust gas have become strict, and it has been desired to reduce harmful components generated in a combustion chamber. Nitrogen oxide, a harmful component, reduces the amount of nitrogen oxides generated by recirculating exhaust gas into the combustion chamber, which reduces the combustion temperature due to the large heat capacity of the inert gas, which is the main component of the exhaust gas. However, there is no practical means for reducing the generation of hydrocarbons and carbon monoxide, and it is necessary to purify the hydrocarbon and the carbon monoxide with an oxidation catalytic converter.
【0003】排気ガス中に含まれる炭化水素及び一酸化
炭素を酸化触媒コンバータでほぼ全て酸化させるために
は、十分な量の酸素が必要であり、このために、燃焼室
内の混合気を理論空燃比よりリーンとすることが考えら
れるが、燃焼が悪化するために実用的ではない。従っ
て、一般的には、排気通路の酸化触媒コンバータの上流
側に二次空気を導入するための二次空気導入装置を設け
て、理論空燃比で燃焼させた排気ガスに二次空気を混入
させることが提案されている。[0003] In order to oxidize almost all hydrocarbons and carbon monoxide contained in exhaust gas by an oxidation catalytic converter, a sufficient amount of oxygen is required. Although it is conceivable to make the fuel leaner than the fuel ratio, it is not practical because combustion deteriorates. Therefore, in general, a secondary air introduction device for introducing secondary air is provided upstream of the oxidation catalytic converter in the exhaust passage to mix secondary air into exhaust gas burned at a stoichiometric air-fuel ratio. It has been proposed.
【0004】[0004]
【発明が解決しようとする課題】このような二次空気導
入装置は、二次空気を排気通路へ圧送するためのポンプ
を有するためにかなり高価であるだけでなく、内燃機関
を大型化させるものである。従って、本発明の目的は、
筒内噴射式内燃機関において、ポンプ等を有する一般的
な二次空気導入装置を必要とせずに、排気通路に二次空
気を供給可能とすることである。Such a secondary air introducing device is not only very expensive since it has a pump for pumping secondary air to an exhaust passage, but also increases the size of the internal combustion engine. It is. Therefore, the object of the present invention is to
In a cylinder injection type internal combustion engine, it is possible to supply secondary air to an exhaust passage without requiring a general secondary air introduction device having a pump or the like.
【0005】[0005]
【課題を解決するための手段】前述の目的を達成するた
めに、本発明による筒内噴射式内燃機関は、吸気行程に
おいて気筒内へ供給された新気の一部を開弁された排気
弁を介して圧縮行程初期のピストン動作により排気通路
へ排出する排出手段と、その後の圧縮行程において残り
の新気に対して所望空燃比を実現するように気筒内へ燃
料を供給する燃料供給手段、とを具備することを特徴と
する。SUMMARY OF THE INVENTION In order to achieve the above object, a direct injection internal combustion engine according to the present invention has an exhaust valve in which part of fresh air supplied to a cylinder during an intake stroke is opened.
Discharging means for discharging to an exhaust passage by a piston operation at an early stage of a compression stroke through a valve, and fuel supply means for supplying fuel into a cylinder so as to achieve a desired air-fuel ratio with respect to the remaining fresh air in a subsequent compression stroke , Are provided.
【0006】[0006]
【作用】前述の筒内噴射式内燃機関は、排出手段が、吸
気行程において気筒内へ供給され燃料供給手段により燃
料が供給される以前の新気の一部を、開弁された排気弁
を介して圧縮行程初期のピストン動作により二次空気と
して排気通路へ排出するために、排気通路への二次空気
供給に際してポンプ等を有する二次空気導入装置は不必
要である。In the above-described in-cylinder injection type internal combustion engine, the exhaust means is configured such that the exhaust valve is used to open a part of fresh air which is supplied into the cylinder during the intake stroke and before fuel is supplied by the fuel supply means.
A secondary air introduction device having a pump and the like is not required when supplying secondary air to the exhaust passage as secondary air is discharged to the exhaust passage by the piston operation at the beginning of the compression stroke through the compressor .
【0007】[0007]
【実施例】図1は、本発明による筒内噴射式内燃機関の
第一実施例を示す概略断面図である。同図において、1
はシリンダ、2はピストン、3はピストン2の頂面に形
成された燃焼室である。4は吸気弁5を介して気筒内へ
通じる吸気通路であり、6は排気弁7を介して気筒内へ
通じる排気通路である。各気筒の吸気通路4は、サージ
タンク4aで合流し、最上流部に位置するエアクリーナ
8を介して大気に通じている。FIG. 1 is a schematic sectional view showing a first embodiment of a direct injection internal combustion engine according to the present invention. In the figure, 1
Is a cylinder, 2 is a piston, and 3 is a combustion chamber formed on the top surface of the piston 2. Reference numeral 4 denotes an intake passage leading to the cylinder via the intake valve 5, and reference numeral 6 denotes an exhaust passage leading to the cylinder via the exhaust valve 7. The intake passages 4 of the respective cylinders join at a surge tank 4a and communicate with the atmosphere via an air cleaner 8 located at the most upstream portion.
【0008】各気筒の排気通路6は、合流して酸化触媒
コンバータ9を介して大気へ開放されている。吸気弁5
の動弁機構は、クランクシャフトに同期して回転するカ
ム10を利用する一般的なものが利用可能であるが、排
気弁6の動弁機構11は、電磁力又は油圧等を利用して
排気弁6を自由な時期に開閉可能とするものである。こ
のような動弁機構は、既に公知であるために、詳細な構
造は省略するが、例えば、排気弁に直結された油圧シリ
ンダへ油圧を供給することで閉弁方向に付勢するバネに
逆らって排気弁を開弁させ、油圧を開放することでこの
バネ力により排気弁を閉弁させるような機構が利用可能
である。The exhaust passages 6 of the respective cylinders join and are opened to the atmosphere via an oxidation catalytic converter 9. Intake valve 5
Although a general mechanism using a cam 10 that rotates in synchronization with a crankshaft can be used as the valve operating mechanism, the valve operating mechanism 11 of the exhaust valve 6 uses an electromagnetic force or a hydraulic pressure to perform exhaust. The valve 6 can be opened and closed at any time. Since such a valve operating mechanism is already known, its detailed structure is omitted, but for example, it is opposed to a spring which urges in a valve closing direction by supplying a hydraulic pressure to a hydraulic cylinder directly connected to an exhaust valve. A mechanism that opens the exhaust valve and releases the oil pressure to close the exhaust valve by this spring force can be used.
【0009】12は気筒内へ直接燃料を噴射するための
燃料噴射弁であり、13は点火プラグである。20は、
燃料噴射弁10における燃料噴射時期及び燃料噴射量制
御と、動弁機構11による排気弁7の開閉時期制御とを
担当する制御装置であり、機関運転状態を決定するため
の各センサ、例えば、機関回転数を検出するための回転
センサ21、機関負荷としてアクセルペダルのストロー
クを検出するためのアクセルペダルセンサ22、及び冷
却水温を検出するための冷却水温センサ23等が接続さ
れる。Reference numeral 12 denotes a fuel injection valve for directly injecting fuel into a cylinder, and reference numeral 13 denotes a spark plug. 20 is
This control device is responsible for controlling the fuel injection timing and fuel injection amount of the fuel injection valve 10 and controlling the opening / closing timing of the exhaust valve 7 by the valve operating mechanism 11. Each sensor for determining the engine operating state, for example, the engine A rotation sensor 21 for detecting a rotation speed, an accelerator pedal sensor 22 for detecting a stroke of an accelerator pedal as an engine load, a cooling water temperature sensor 23 for detecting a cooling water temperature, and the like are connected.
【0010】図2は、吸気弁5の開閉時期及び制御装置
20によって制御される排気弁7の開閉時期を示すタイ
ムチャートである。吸気弁5は、排気上死点TDC1直
後の第1クランク角度θ1から開弁されて吸気下死点B
DC1直後の第2クランク角度θ2で閉弁されるよう
に、カム10によりクランクシャフトに同期して開閉さ
れるようになっている。これに対して、排気弁7は、膨
張下死点BDC2直前の第3クランク角度θ3から開弁
されて排気上死点TDC1直後の第4クランク角度θ4
で閉弁される固定の第1開閉に加えて、開閉時期を自由
に変更可能な動弁機構11を活用して吸気下死点BDC
1から開弁され、制御装置20により決定される圧縮行
程中の第5クランク角度θで閉弁される第2開閉が行わ
れるようになっている。FIG. 2 is a time chart showing the opening / closing timing of the intake valve 5 and the opening / closing timing of the exhaust valve 7 controlled by the control device 20. The intake valve 5 is opened from the first crank angle θ1 immediately after the exhaust top dead center TDC1, and the intake bottom dead center B
The cam 10 opens and closes in synchronization with the crankshaft so that the valve is closed at the second crank angle θ2 immediately after DC1. On the other hand, the exhaust valve 7 is opened from the third crank angle θ3 immediately before the expansion bottom dead center BDC2 and becomes the fourth crank angle θ4 immediately after the exhaust top dead center TDC1.
In addition to the fixed first opening / closing that is closed by the valve, the intake bottom dead center BDC is utilized by using the valve mechanism 11 that can freely change the opening / closing timing.
The second opening / closing operation is performed in which the valve is opened from 1 and closed at the fifth crank angle θ during the compression stroke determined by the control device 20.
【0011】第5クランク角度θは、前述の各センサの
出力に基づく機関運転状態に応じて定まる必要吸気量が
多いほど吸気下死点BDC1に近づけられ、最大吸気量
が必要とされる時には吸気下死点BDC1に一致させら
れ、すなわち第2開閉は行われないように制御装置20
によって決定されるようになっている。The fifth crank angle θ is closer to the intake bottom dead center BDC1 as the required intake air amount, which is determined according to the engine operating state based on the output of each sensor described above, increases. The control device 20 is set so as to match the bottom dead center BDC1, that is, not to perform the second opening and closing.
Is determined by
【0012】このように吸気弁5及び排気弁7が開閉さ
れると、排気上死点TDC1直後において、排気弁7が
開弁され吸気弁5が閉弁されているために、ピストン2
の下降に伴い排気通路6に排出された排気ガスの一部が
気筒内へ吸入され、内部的な排気ガス再循環が行われ
る。その後、排気弁7が閉弁されるのに前後して吸気弁
5が開弁され、吸気下死点BDC1まで吸気通路4から
気筒内へ新気が吸入される。When the intake valve 5 and the exhaust valve 7 are opened and closed in this way, the exhaust valve 7 is opened and the intake valve 5 is closed immediately after the exhaust top dead center TDC1, so that the piston 2
A part of the exhaust gas discharged into the exhaust passage 6 is sucked into the cylinder with the lowering of the exhaust gas, and internal exhaust gas recirculation is performed. Thereafter, before and after the exhaust valve 7 is closed, the intake valve 5 is opened, and fresh air is drawn into the cylinder from the intake passage 4 to the intake bottom dead center BDC1.
【0013】次に、再び排気弁7が開弁され、ピストン
2の上昇に伴い気筒内の吸気(所定割合で排気ガスが混
入された新気)の一部を排気通路6に排出し、現在の機
関運転状態における必要量となった時点で排気弁7は閉
弁され、圧縮が開始される。排気弁7のこの閉弁直後か
ら燃料噴射弁10による燃料噴射が開始され、気筒内に
残る新気量に対して理論空燃比を実現する量の燃料を噴
射して終了する。この燃料噴射において、吸気量が多い
時ほど、第2開閉における排気弁7の閉弁時期が早まる
ために、多量の燃料を噴射することができる。Next, the exhaust valve 7 is opened again, and a part of the intake air (fresh air mixed with the exhaust gas at a predetermined ratio) in the cylinder is discharged to the exhaust passage 6 as the piston 2 rises. The exhaust valve 7 is closed and the compression is started when the required amount in the engine operation state is reached. Immediately after the closing of the exhaust valve 7, fuel injection by the fuel injection valve 10 is started, fuel is injected in such an amount as to achieve a stoichiometric air-fuel ratio with respect to the amount of fresh air remaining in the cylinder, and the process ends. In this fuel injection, as the intake air amount is larger, the closing timing of the exhaust valve 7 in the second opening / closing is earlier, so that a larger amount of fuel can be injected.
【0014】その後、圧縮上死点TDC2直前において
点火プラグによる点火が実行され、ピストン2頂面に形
成された燃焼室3での燃焼が開始され、排気弁7が膨張
下死点BDC2直前の第3クランク角度θ3から開弁さ
れて排気上死点TDC1直後の第4クランク角度θ4で
閉弁されるために、ピストン2の上昇に伴い膨張下死点
BDC2から排気上死点TDC1まで排気通路6への排
気が行われる。Thereafter, the ignition by the spark plug is performed immediately before the compression top dead center TDC2, and the combustion in the combustion chamber 3 formed on the top surface of the piston 2 is started, and the exhaust valve 7 is closed immediately before the expansion bottom dead center BDC2. Since the valve is opened from the third crank angle θ3 and closed at the fourth crank angle θ4 immediately after the exhaust top dead center TDC1, the exhaust passage 6 extends from the expansion bottom dead center BDC2 to the exhaust top dead center TDC1 as the piston 2 rises. Exhaust is performed.
【0015】この燃焼は、理論空燃比混合気の燃焼であ
るために良好なものであり、また、吸気行程初期におい
て排気ガスが気筒内へ吸入されているために、その大き
な熱容量によって燃焼温度が下げられ、発生する酸化窒
素量はかなり低減される。一方、一酸化炭素及び炭化水
素は通常通り発生するが、排気通路6には圧縮行程にお
いて吸気の一部が排出されており、排気行程において排
気通路6に排出される排気ガスを酸化触媒コンバータ9
の上流側において理論空燃比よりリーンな状態とするた
めに、酸化触媒コンバータ9によって排気ガスに含まれ
る一酸化炭素及び炭化水素は十分な量の酸素を使用して
ほぼ全てが浄化され、排気エミッションをかなり改善さ
せることができる。さらに、機関運転状態に応じた新気
量の制御にスロットル弁が使用されないために、ポンピ
ングロスが発生せず、その分機関発生トルクを増大させ
ることができる。This combustion is favorable because it is combustion of a stoichiometric air-fuel mixture, and the exhaust gas is sucked into the cylinder at the beginning of the intake stroke. And the amount of nitric oxide generated is significantly reduced. On the other hand, although carbon monoxide and hydrocarbons are generated as usual, part of the intake air is discharged into the exhaust passage 6 during the compression stroke, and the exhaust gas discharged into the exhaust passage 6 during the exhaust stroke is converted into the oxidation catalytic converter 9.
In order to obtain a state leaner than the stoichiometric air-fuel ratio on the upstream side, almost all of the carbon monoxide and hydrocarbons contained in the exhaust gas are purified by the oxidation catalytic converter 9 using a sufficient amount of oxygen, and the exhaust emission is reduced. Can be considerably improved. Further, since the throttle valve is not used for controlling the fresh air amount according to the engine operating state, no pumping loss occurs and the engine generated torque can be increased accordingly.
【0016】また、前述したタイムチャートにおいて、
排気弁7の第1開閉における閉弁時期を点線で示すよう
に、排気上死点TDC1直前の第4クランク角度θ4’
とすることも可能であり、それにより、排気行程で一部
の排気ガスが気筒内へ残り、排気ガス再循環として前述
同様な酸化窒素の低減効果を有することに加えて、気筒
内へ残す排気ガスは、一旦排気通路6へ排出することに
比較して高温度に維持されるために、燃料噴射開始時点
での吸気温度が高くなり噴射された燃料の気化状態が向
上し、燃焼速度が早まり燃焼をさらに良好なものとする
ことができる。In the above-mentioned time chart,
As indicated by a dotted line, the closing timing of the first opening and closing of the exhaust valve 7 is indicated by a fourth crank angle θ4 ′ immediately before the exhaust top dead center TDC1.
It is also possible that, during the exhaust stroke, part of the exhaust gas remains in the cylinder, and in addition to having the same effect of reducing nitrogen oxides as the exhaust gas recirculation, the exhaust gas remaining in the cylinder Since the gas is maintained at a higher temperature than once discharged to the exhaust passage 6, the intake air temperature at the start of fuel injection increases, the vaporized state of the injected fuel improves, and the combustion speed increases. Combustion can be better.
【0017】前述したタイムチャートにおいて、排気弁
7の第1開閉における開閉時期は固定されており、それ
により、各機関運転状態において、燃焼時の混合気に
は、ほぼ所定割合の排気ガスが混入されるようになって
いる。しかし、排気ガス再循環は多少の燃焼悪化を伴う
ものであり、高出力が必要な機関高負荷時及び燃焼が不
安定な機関低負荷時には、排気ガスの混入割合を減少さ
せることが好ましく、従って、機関運転状態に応じて排
気弁7の第1開閉における閉弁時期をこのような排気ガ
スの混入割合を実現するように動弁機構11を使用して
変化させることも可能である。In the above-mentioned time chart, the opening / closing timing of the first opening / closing of the exhaust valve 7 is fixed, so that in each engine operating state, a substantially predetermined ratio of exhaust gas is mixed into the mixture during combustion. It is supposed to be. However, the exhaust gas recirculation is accompanied by some deterioration of combustion, and it is preferable to reduce the mixing ratio of exhaust gas at the time of high engine load requiring high output and at the time of low engine load where combustion is unstable. It is also possible to change the valve closing timing of the first opening / closing of the exhaust valve 7 by using the valve mechanism 11 so as to realize such a mixing ratio of the exhaust gas according to the engine operating state.
【0018】図3は、本発明による筒内噴射式内燃機関
の第二実施例を示す概略断面図である。図1に示した第
一実施例との違いは、気筒内上部と排気通路6の酸化触
媒コンバータ9の上流側とが連通路30によって連通さ
れ、この連通路30には制御弁31が配置されており、
排気弁7の動弁機構は、特に開閉時期を自由に変更可能
なものは必要なく、前述のタイムチャートの第1開閉を
実現するように設定されたクランクシャフトに同期する
カムが使用されている。FIG. 3 is a schematic sectional view showing a second embodiment of the direct injection internal combustion engine according to the present invention. The difference from the first embodiment shown in FIG. 1 is that the upper part in the cylinder and the upstream side of the oxidation catalyst converter 9 of the exhaust passage 6 are communicated by a communication passage 30, and a control valve 31 is disposed in the communication passage 30. And
The valve mechanism of the exhaust valve 7 does not need to be particularly capable of freely changing the opening / closing timing, and a cam synchronized with a crankshaft set to realize the first opening / closing of the above-described time chart is used. .
【0019】連通路30に配置された制御弁31は、制
御装置20’によって前述のタイムチャートにおける排
気弁7の第2開閉と同様に開閉制御されるようになって
いる。従って、本実施例によっても、第一実施例と同様
に、吸気行程において吸入された新気の一部を圧縮行程
においてピストン2に上昇に伴って排気通路6に排出さ
せることができ、ポンプ等を有する一般的な二次空気導
入装置を必要とすることなく排気通路に二次空気を供給
することができる。The control valve 31 disposed in the communication passage 30 is controlled to be opened and closed by the control device 20 'in the same manner as the second opening and closing of the exhaust valve 7 in the time chart described above. Therefore, according to this embodiment, similarly to the first embodiment, a part of the fresh air sucked in the intake stroke can be discharged to the exhaust passage 6 as the piston 2 rises in the compression stroke, and the pump and the like can be used. The secondary air can be supplied to the exhaust passage without requiring a general secondary air introduction device having the following.
【0020】本発明は、前述したように、全ての機関運
転状態で排気通路に二次空気を供給する場合だけでな
く、例えば、排気通路に配置された三元触媒コンバータ
の冷間始動時における早期暖機を実現するために、リッ
チな混合気での燃焼における未燃燃料を、三元触媒コン
バータで全て燃焼させるように、この時に限り排気通路
に二次空気を供給するような場合においても利用可能で
あり、従って、酸化窒素の発生量を低減するための手段
としての排気ガス再循環は、本発明を限定するものでは
ない。As described above, the present invention is applicable not only to the case where secondary air is supplied to the exhaust passage in all engine operating states, but also to the case where the three-way catalytic converter disposed in the exhaust passage is cold started. In order to achieve early warm-up, even if the secondary air is supplied to the exhaust passage only at this time, all the unburned fuel in the combustion with the rich mixture is burned by the three-way catalytic converter. Exhaust gas recirculation as a means to be available, and thus to reduce the amount of nitric oxide generated, is not a limitation of the present invention.
【0021】[0021]
【発明の効果】このように、本発明による筒内噴射式内
燃機関によれば、排出手段が、吸気行程において気筒内
へ供給され燃料供給手段により燃料が供給される以前の
新気の一部を、開弁された排気弁を介して圧縮行程初期
のピストン動作により二次空気として排気通路へ排出す
るために、排気通路への二次空気供給に際してポンプ等
を有する二次空気導入装置は不必要であり、その分のコ
ストアップ及び二次空気導入装置によってもたらされる
内燃機関の大型化を防止することができる。As described above, according to the in-cylinder injection type internal combustion engine of the present invention, the discharge means supplies a part of fresh air to the cylinder during the intake stroke and before the fuel is supplied by the fuel supply means. At the beginning of the compression stroke via the opened exhaust valve.
Because secondary air is discharged into the exhaust passage as secondary air by the piston operation , a secondary air introduction device having a pump and the like is not necessary when supplying secondary air to the exhaust passage, which increases the cost and introduces secondary air. An increase in the size of the internal combustion engine caused by the device can be prevented.
【図1】本発明による第一実施例を示す筒内噴射式内燃
機関の概略断面図である。FIG. 1 is a schematic sectional view of a direct injection internal combustion engine showing a first embodiment according to the present invention.
【図2】吸気弁の開閉時期及び制御装置により制御され
る排気弁の開閉時期を示すタイムチャートである。FIG. 2 is a time chart showing the opening / closing timing of an intake valve and the opening / closing timing of an exhaust valve controlled by a control device.
【図3】本発明による第二実施例を示す筒内噴射式内燃
機関の概略断面図である。FIG. 3 is a schematic sectional view of a direct injection internal combustion engine showing a second embodiment according to the present invention.
2…ピストン 3…燃焼室 4…吸気通路 5…吸気弁 6…排気通路 7…排気弁 9…酸化触媒コンバータ 11…排気弁の動弁機構 12…燃料噴射弁 20,20’…制御装置 30…連通路 31…制御弁 DESCRIPTION OF SYMBOLS 2 ... Piston 3 ... Combustion chamber 4 ... Intake passage 5 ... Intake valve 6 ... Exhaust passage 7 ... Exhaust valve 9 ... Oxidation catalytic converter 11 ... Exhaust valve valve operating mechanism 12 ... Fuel injection valve 20, 20 '... Control device 30 ... Communication passage 31 ... Control valve
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F01N 3/08 - 3/36 F01L 9/02 F02D 13/02 F02D 41/02 F02D 41/34 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F01N 3/08-3/36 F01L 9/02 F02D 13/02 F02D 41/02 F02D 41/34
Claims (2)
気の一部を開弁された排気弁を介して圧縮行程初期のピ
ストン動作により排気通路へ排出する排出手段と、その
後の圧縮行程において残りの新気に対して所望空燃比を
実現するように気筒内へ燃料を供給する燃料供給手段、
とを具備することを特徴とする筒内噴射式内燃機関。In the intake stroke, a part of fresh air supplied to a cylinder is supplied to a cylinder in an initial stage of a compression stroke through an exhaust valve which is opened.
Discharging means for discharging to the exhaust passage by the stone operation, fuel supply means for supplying fuel into the cylinder so as to achieve a desired air-fuel ratio with respect to the remaining fresh air in a subsequent compression stroke,
A direct injection internal combustion engine, comprising:
弁は、現在の機関運転状態における必要吸気量が多いほThe valve is more likely to require a larger amount of intake air in the current engine operating conditions.
ど吸気下死点近くで閉弁されることを特徴とする請求項Wherein the valve is closed near the bottom dead center of the intake air.
1に記載の筒内噴射式内燃機関。2. A direct injection internal combustion engine according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00590195A JP3312514B2 (en) | 1995-01-18 | 1995-01-18 | In-cylinder internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00590195A JP3312514B2 (en) | 1995-01-18 | 1995-01-18 | In-cylinder internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08200051A JPH08200051A (en) | 1996-08-06 |
JP3312514B2 true JP3312514B2 (en) | 2002-08-12 |
Family
ID=11623808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00590195A Expired - Fee Related JP3312514B2 (en) | 1995-01-18 | 1995-01-18 | In-cylinder internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3312514B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004100561A (en) | 2002-09-09 | 2004-04-02 | Toyota Motor Corp | Valve gear of internal combustion engine |
-
1995
- 1995-01-18 JP JP00590195A patent/JP3312514B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08200051A (en) | 1996-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100241045B1 (en) | Exhaust temperature up apparatus | |
US6443108B1 (en) | Multiple-stroke, spark-ignited engine | |
KR100476780B1 (en) | Combustion method for multistage combustion engine | |
US7654245B2 (en) | Method of operating a spark ignition internal combustion engine | |
US7909025B2 (en) | Method of controlling scavenging of the burnt gas of an indirect-injection engine, notably a supercharged engine, and engine using such a method | |
EP1130240A2 (en) | Cylinder injection engine and control apparatus and method thereof | |
JP2000064876A (en) | Internal combustion engine operating method and internal combustion engine executing this method | |
EP0577352A1 (en) | Internal combustion engine | |
KR20060051868A (en) | Engine | |
JP4062056B2 (en) | Control device for internal combustion engine having variable valve system | |
EP1224383B1 (en) | Method of reducing emissions in the exhaust gases of an internal combustion engine | |
KR20040074595A (en) | Control device for supercharged engine | |
JPH10252512A (en) | Compressed ignition internal combustion engine | |
JP4180995B2 (en) | Control device for compression ignition internal combustion engine | |
JP3496593B2 (en) | Control device for spark ignition type direct injection engine | |
US8539754B2 (en) | Method for an emission-optimized transfer from a mode of an internal combustion engine to another mode | |
JP3062576B2 (en) | Two-stroke internal combustion engine | |
JP3312514B2 (en) | In-cylinder internal combustion engine | |
JPH11315739A (en) | Diesel engine combustion control system | |
JP2005061325A (en) | Control device for compression ignition internal combustion engine | |
JP4102268B2 (en) | Compression ignition internal combustion engine | |
JP2001182586A (en) | Exhaust-temperature raising device | |
JP3763177B2 (en) | Diesel engine control device | |
JP3948081B2 (en) | Spark ignition internal combustion engine | |
US6561170B2 (en) | Method of reducing emissions in the exhaust gases from an internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080531 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090531 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100531 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110531 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110531 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120531 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120531 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130531 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140531 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |