JP3308305B2 - Manufacturing method of aluminum alloy plate for anodizing treatment - Google Patents
Manufacturing method of aluminum alloy plate for anodizing treatmentInfo
- Publication number
- JP3308305B2 JP3308305B2 JP17866292A JP17866292A JP3308305B2 JP 3308305 B2 JP3308305 B2 JP 3308305B2 JP 17866292 A JP17866292 A JP 17866292A JP 17866292 A JP17866292 A JP 17866292A JP 3308305 B2 JP3308305 B2 JP 3308305B2
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- aluminum alloy
- less
- rolling
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 15
- 238000007743 anodising Methods 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 24
- 238000005097 cold rolling Methods 0.000 claims description 14
- 238000005098 hot rolling Methods 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 238000005096 rolling process Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- 238000005520 cutting process Methods 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 4
- 238000003887 surface segregation Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- 238000009749 continuous casting Methods 0.000 claims 1
- 238000005260 corrosion Methods 0.000 description 29
- 230000007797 corrosion Effects 0.000 description 29
- 239000010407 anodic oxide Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000011856 silicon-based particle Substances 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 239000003518 caustics Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000007670 refining Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 102220253765 rs141230910 Human genes 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 229910018084 Al-Fe Inorganic materials 0.000 description 2
- 229910018192 Al—Fe Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018575 Al—Ti Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 102100040160 Rabankyrin-5 Human genes 0.000 description 1
- 101710086049 Rabankyrin-5 Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical class [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000010731 rolling oil Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- ing And Chemical Polishing (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は陽極酸化皮膜の耐食性、
色調の均一性(安定性)、あるいはエッチングしたとき
の外観の均一性を必要とする各種の用途に使用される純
アルミ系合金板。建築用内外装パネル材、日用品、厨房
用品、平版印刷版支持体、装飾用部材などに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to corrosion resistance of anodized film,
Pure aluminum alloy plate used for various applications that require uniform color tone (stability) or uniform appearance when etched. The present invention relates to interior and exterior panel materials for buildings, daily necessities, kitchen supplies, lithographic printing plate supports, decorative members, and the like.
【0002】[0002]
【従来の技術】純アルミ系合金として工業的に使われる
JIS−A1100、1200ないし1050、106
0、1070および1N00、1N30、1230など
の合金では、その陽極酸化皮膜の耐食性や色調の均一性
は、純アルミ系以外の他の合金系のアルミニウム合金に
比べ優れている。しかし、酸性雨に代表されるように、
最近の地球環境は著しく悪化しており、建築用外装パネ
ルなどに使用した場合、従来の純アルミ系合金よりさら
に高度の耐食性が要求されている。2. Description of the Related Art JIS-A1100, 1200 to 1050, 106 industrially used as a pure aluminum alloy
In alloys such as 0, 1070 and 1N00, 1N30, 1230, etc., the corrosion resistance and color uniformity of the anodized film are superior to those of other alloys other than pure aluminum. However, as represented by acid rain,
In recent years, the global environment has deteriorated remarkably, and when used for exterior panels for buildings and the like, higher corrosion resistance is required than conventional pure aluminum alloys.
【0003】一方、色調の均一化についても、ビルなど
を単なる建築構造物としてではなく、都市のファッショ
ンの一部としてみられる今日では、従来より一層優れた
均一化が要求されている。これらの品質特性は、合金中
に含まれる不純物としてのFe、Siに支配されるの
で、一般にFe、Si量、すなわち、純アルミ系合金の
純度を規制することで対処している。[0003] On the other hand, with regard to uniform color tone, buildings and the like are not merely a building structure but are seen as a part of urban fashion. Since these quality characteristics are governed by Fe and Si as impurities contained in the alloy, they are generally dealt with by regulating the amounts of Fe and Si, that is, the purity of the pure aluminum alloy.
【0004】しかし、アルミ純度を高めることによって
耐食性や陽極酸化皮膜の色調の均一性を向上させること
は、地金コストが上昇し、また、機械的性質、特に硬
さ、強度の低下を招く。耐食性を向上させるために、陽
極酸化皮膜の膜厚を厚くする方法や、アルミ純度を高め
ることによる強度の低下を補うために板厚を厚くする方
法があるが、いずれもコスト上昇を招き好ましくない。
皮膜の色調の均一化に対しては膜厚で調整することが行
なわれるが、膜厚調整に手間取り、コストアップを招
く。[0004] However, improving the corrosion resistance and the uniformity of the color tone of the anodic oxide film by increasing the purity of aluminum increases the cost of the base metal and causes a decrease in mechanical properties, particularly hardness and strength. In order to improve the corrosion resistance, there is a method of increasing the thickness of the anodic oxide film, and a method of increasing the thickness of the plate to compensate for the decrease in strength due to increasing the purity of aluminum. .
In order to make the color tone of the film uniform, the film thickness is adjusted. However, the adjustment of the film thickness takes time and increases the cost.
【0005】[0005]
【発明が解決しようとする課題】本発明は酸化皮膜を厚
くしたり、板厚を厚くしなくても、耐食性が優れた陽極
酸化皮膜が生成し、かつ、皮膜の色調が均一なアルミニ
ウム合金板の製造方法を提供しようとするものである。SUMMARY OF THE INVENTION The present invention provides an aluminum oxide film having an excellent corrosion resistance and a uniform color tone without increasing the thickness of the oxide film or the thickness of the plate. It is an object of the present invention to provide a method for manufacturing an aluminum alloy plate.
【0006】[0006]
【課題を解決するための手段】陽極酸化皮膜の耐食性を
損う機構について研究した結果、アルミ合金中に含まれ
るSiが、単独のSi粒子として析出した状態で存在す
るとき、このようなアルミ合金板を陽極酸化処理する
と、Si粒子が皮膜中に残存し、これが、周囲の皮膜と
化学的性質が異るために、塩素イオンを含む腐食媒によ
って、選択的に溶解脱落して皮膜欠陥となり腐食が進行
することが明らかになった。As a result of research on the mechanism of impairing the corrosion resistance of the anodic oxide film, it has been found that, when Si contained in an aluminum alloy is present in a state of being precipitated as single Si particles, such an aluminum alloy is When the plate is subjected to anodizing treatment, Si particles remain in the film, which have different chemical properties from those of the surrounding film. It became clear that progressed.
【0007】また、皮膜の色調は、皮膜中に分布する1
μm以下の細かいSi粒子の粒度分布と陽極酸化処理の
前処理として表面の傷を除くための苛性エッチングの際
のエッチングむらによる光沢差に影響されることが判明
した。[0007] The color tone of the film is determined by the distribution of 1 in the film.
It was found that the particle size distribution of fine Si particles of less than μm and the gloss difference due to uneven etching during caustic etching for removing surface flaws as a pretreatment for anodizing treatment were found.
【0008】そこで、このSi粒子の析出を防止する方
法について検討し、適当量のMgを添加してMg2Si
なる化合物として析出させればよいことエッチングむら
を防止する方法としては、適当量のCuを添加すれば均
一に苛性エッチングされ、光沢が均一になることが分っ
た。添加するMg量は、固溶しているSiを化合物Mg
2Siとして形成させるに相当する量で十分である。Therefore, a method of preventing the precipitation of the Si particles was examined, and an appropriate amount of Mg was added to the Mg 2 Si.
As a method for preventing etching unevenness, it has been found that if an appropriate amount of Cu is added, caustic etching is performed uniformly and the gloss becomes uniform. The amount of Mg to be added is determined by converting the solid solution Si into a compound Mg.
An amount corresponding to the formation as 2 Si is sufficient.
【0009】上記研究の結果、本発明の構成は特許請求
の範囲に記載のとおりの色調が均一で耐食性が優れた陽
極酸化皮膜が得られるアルミニウム合金板の製造方法で
ある。As a result of the above research, the constitution of the present invention is a method for producing an aluminum alloy plate capable of obtaining an anodic oxide film having a uniform color tone and excellent corrosion resistance as described in the claims.
【0010】以下、上記構成について説明する。The above configuration will be described below.
【0011】機械的性質、化学的性質が一般的に知られ
る純アルミとして取扱える範囲内にとどめる必要がある
ので、添加する成分、不可避不純物を除いたAl純度は
99.00%以上でなければならない。It is necessary to keep the mechanical properties and chemical properties within a range that can be handled as generally known pure aluminum. Therefore, the Al purity excluding added components and unavoidable impurities must be 99.00% or more. No.
【0012】Feは再結晶粒を微細にするために添加さ
れる。0.15%未満ではその効果が小さくなる。0.
9%をこえるFeの添加は、粗大なAl−Fe系および
Al−Fe−Si系化合物を形成し、これが薄板の成形
性を低下させたり、化学的性質の局所的不均一性をもた
らすなどのために好ましくない。[0012] Fe is added to make the recrystallized grains fine. If it is less than 0.15%, the effect is reduced. 0.
The addition of Fe in excess of 9% forms coarse Al-Fe-based and Al-Fe-Si-based compounds, which reduce the formability of the sheet and cause local non-uniformity in chemical properties. Not preferred.
【0013】Siはアルミ地金中に必然的に含まれる分
が通常0.05%以上あり、0.05%未満にすること
は地金コスト上昇を招く。0.5%を越えるSiはFe
による再結晶粒微細化効果を損い、耐食性を低下させ
る。Usually, the content of Si inevitably contained in the aluminum metal is 0.05% or more, and if it is less than 0.05%, the cost of the metal increases. Si exceeding 0.5% is Fe
Impairs the refining grain refining effect and reduces corrosion resistance.
【0014】{Si+Fe}量は、材料強度をはじめと
する機械的性質、および化学的性質、さらには地金コス
トの観点から調整される。その量を0.30%未満にす
ることは、高純度の地金を使うことになりコスト高にな
り、また材料強度の低下となる。The amount of {Si + Fe} is adjusted from the viewpoint of mechanical properties such as material strength, and chemical properties, and furthermore, the cost of metal. If the amount is less than 0.30%, a high-purity metal is used, the cost is increased, and the material strength is reduced.
【0015】{Si+Fe}量が1.0%以上になる
と、Alが99.00%未満となり、純アルミとしての
特性が損なわれる。実際には次に記すCu、Ti、Mg
と不可避不純物との総和が1.0%未満でなければなら
ない。When the amount of {Si + Fe} is 1.0% or more, the content of Al becomes less than 99.00%, which impairs the properties as pure aluminum. Actually, the following Cu, Ti, Mg
And inevitable impurities must be less than 1.0%.
【0016】Si量がFe量よりも多くなると、Feに
よる再結晶粒の微細化効果が損なわれ、耐食性も低下す
るので、{Fe%}≧{Si%}が必要である。If the amount of Si is larger than the amount of Fe, the effect of reducing the fineness of the recrystallized grains by Fe is impaired and the corrosion resistance is reduced. Therefore, {Fe%} ≧ {Si%} is required.
【0017】Cuは陽極酸化処理の前処理として一般に
行われる苛性エッチングに影響を与える元素である。苛
性エッチングが不均一になると光沢むらとなり、陽極酸
化処理後の色調のばらつきの原因となる。Cuが0.0
5%以上0.5%以下の量で添加されると、苛性エッチ
ングが均一に行われ、光沢むらがなくなる。0.05%
未満ではその効果が得られない。0.5%を越える場
合、陽極酸化処理前の元板の耐食性が劣化するため好ま
しくない。Cu is an element which affects caustic etching which is generally performed as a pretreatment of the anodizing treatment. When the caustic etching becomes non-uniform, gloss unevenness is caused, which causes variation in color tone after anodizing. Cu is 0.0
When added in an amount of 5% or more and 0.5% or less, caustic etching is performed uniformly, and uneven gloss is eliminated. 0.05%
If less than that, the effect cannot be obtained. If it exceeds 0.5%, the corrosion resistance of the base plate before the anodizing treatment is deteriorated, which is not preferable.
【0018】Tiは、主として鋳塊の結晶粒微細化のた
めに添加される。0.01%未満では効果小さく、0.
05%を超えると、粗大なAl−Ti化合物を形成し、
圧延板に筋状に分布して陽極酸化皮膜の欠陥となること
がある。Ti is mainly added for refining the crystal grains of the ingot. When the content is less than 0.01%, the effect is small.
If it exceeds 05%, a coarse Al-Ti compound is formed,
It may be distributed in the form of streaks on the rolled sheet and may cause defects in the anodic oxide film.
【0019】Tiはまた圧延した板の再結晶粒を微細化
する効果もある。[0019] Ti also has the effect of refining the recrystallized grains of the rolled sheet.
【0020】結晶粒微細化のためには、Ti単独ではな
く、TiとBの複合添加による方法もある。この場合で
もTi量は0.01〜0.05%の範囲に調整するのが
好ましい。B量は不純物として計上するが、その添加量
は通常では30ppm以下である。For the refinement of the crystal grains, there is a method of adding Ti and B in combination instead of Ti alone. Even in this case, it is preferable to adjust the amount of Ti to a range of 0.01 to 0.05%. The amount of B is counted as an impurity, and the amount of B added is usually 30 ppm or less.
【0021】Mgは本発明の主要点に係る添加成分であ
る。陽極酸化皮膜の耐食性を損うSi粒子はAl−Fe
−Si化合物とならずにAl(マトリックス)中に固溶
するSiが、単独で析出したものである。Si粒子は陽
極酸化処理で溶解しないで皮膜中に残存する。Mgを添
加してMg2Siなる化合物にすれば、陽極酸化処理で
アルミニウムとともに溶解してしまうので皮膜欠陥にな
らなくなる。本合金に含まれる0.05〜0.5%のS
iのうち、一部はFe、Alと結合してAl−Fe−S
i系化合物となっており、この結合したSiは、Si粒
子として析出しない。Mg is an additive component according to the main point of the present invention. The Si particles that impair the corrosion resistance of the anodic oxide film are Al-Fe
-Si that forms a solid solution in Al (matrix) without becoming a Si compound and precipitates alone. The Si particles remain in the film without being dissolved by the anodic oxidation treatment. If Mg is added to form a compound of Mg 2 Si, it will be dissolved together with aluminum in the anodic oxidation treatment, and thus will not become a film defect. 0.05-0.5% S contained in this alloy
Some of i are bonded to Fe and Al to form Al-Fe-S
It is an i-based compound, and the bonded Si does not precipitate as Si particles.
【0022】すなわち、Mg2SiとするべきSiは、
Al−Fe−Si化合物とならずにAlマトリックス中
に固溶している分であって、X線マイクロアナライザー
による分析結果から推定すると、その量はSiの添加
量、同時に含まれるFe量、加工熱処理の条件などで変
化するが、Siの全添加量のおよそ20〜60%とみな
される。That is, Si to be Mg 2 Si is:
It is a solid solution in the Al matrix without being an Al-Fe-Si compound. Estimating from the analysis result by the X-ray microanalyzer, the amount is the amount of added Si, the amount of Fe contained at the same time, Although it varies depending on the conditions of heat treatment, it is considered to be about 20 to 60% of the total amount of Si added.
【0023】以上の事項を考慮し、本発明の目的を達成
するに必要なMg添加量につき種々検討した結果、0.
3×{Si%}≦Mg≦1.0×{Si%}の範囲にM
g量を制御することが必要であることが判った。In view of the above, various studies were made on the amount of Mg added to achieve the object of the present invention.
M in the range of 3 × {Si%} ≦ Mg ≦ 1.0 × {Si%}
It turned out that it was necessary to control the amount of g.
【0024】但し、{Si%}は含有Si量(%)とす
る。Here, {Si%} is the content of Si (%).
【0025】尚、Mgが少ないと、固溶Siが残り、S
i粒子として析出する。If the amount of Mg is small, solid solution Si remains and S
Precipitates as i-particles.
【0026】また、過剰なMgはAlマトリックス中に
固溶し、陽極酸化皮膜中には残らないので、耐食性や色
調には影響しない。僅かに材料強度を高め、あるいは化
学的性質を変化させるが、その影響は軽微である。Excess Mg forms a solid solution in the Al matrix and does not remain in the anodic oxide film, so that it does not affect the corrosion resistance and color tone. It slightly increases the material strength or changes the chemistry, but the effect is minor.
【0027】次に製造方法について述べる。Next, the manufacturing method will be described.
【0028】所定の組成に配合したアルミニウム合金
を、通常の方法により鋳塊とし、表面偏析層が最終製品
の品質上有害であれば、これを切削除去する。切削除去
するのは、均質化熱処理の後、熱間圧延の前でもよい。An aluminum alloy mixed with a predetermined composition is formed into an ingot by an ordinary method. If the surface segregation layer is detrimental to the quality of the final product, it is removed by cutting. Cutting and removal may be performed after the homogenization heat treatment and before the hot rolling.
【0029】つぎに、鋳塊は鋳造組織の均質化と、F
e、SiをAl−Fe−Si系化合物とするために熱処
理される。450℃より低温、あるいは600℃より高
温では、この化合物の形成が起りにくい。熱処理時間は
長い方が好ましいが、生産性(経済性)から20時間以
内とする。実用上3〜10時間で問題はない。Next, the ingot is used to homogenize the cast structure and
e, heat treatment is performed to convert Si into an Al-Fe-Si-based compound. If the temperature is lower than 450 ° C. or higher than 600 ° C., the formation of this compound hardly occurs. The heat treatment time is preferably longer, but should be within 20 hours from the viewpoint of productivity (economical efficiency). There is no problem in practically 3 to 10 hours.
【0030】この熱処理のあと、室温に冷却して表層切
削除去後再加熱するか、あるいは冷却することなく、4
00℃〜550℃で熱間圧延を開始し、多パスの圧延を
行なって、終了時材料温度が200〜300℃になるよ
うに圧延を終了する。After this heat treatment, the substrate is cooled to room temperature and reheated after cutting off the surface layer.
Hot rolling is started at 00 ° C. to 550 ° C., rolling is performed in multiple passes, and the rolling is completed so that the material temperature at the end is 200 to 300 ° C.
【0031】開始温度が400℃より低温だと圧延が困
難で、550℃より高温では、Al−Fe−Si化合物
が分解する可能性があり、圧延板面の酸化が進むなど好
ましくない。If the starting temperature is lower than 400 ° C., it is difficult to perform rolling. If the starting temperature is higher than 550 ° C., the Al—Fe—Si compound may be decomposed, which is not preferable because oxidation of the rolled sheet surface proceeds.
【0032】終了温度は結晶組織の微細化のために規制
する。200℃より低温では、圧延油が蒸発しきれずに
板面に残留して表面汚れや腐食を招く。300℃より高
温では、再結晶粒が粗大に成長し、最終板で帯状の組織
による色調(光沢)のムラになる。これらの温度範囲内
で、最適温度は、最終板の結晶組織、機械的性質の異方
性などを最適化するように決定される。The termination temperature is regulated for refining the crystal structure. If the temperature is lower than 200 ° C., the rolling oil cannot completely evaporate and remains on the plate surface to cause surface contamination and corrosion. At a temperature higher than 300 ° C., the recrystallized grains grow coarsely, and the final plate becomes uneven in color tone (gloss) due to a band-like structure. Within these temperature ranges, the optimal temperature is determined so as to optimize the crystal structure, mechanical property anisotropy, and the like of the final sheet.
【0033】熱間圧延をこのような温度範囲で行なうこ
とは、圧延中および圧延後の冷却中にMg2Siを形成
させるためにも重要である。Performing hot rolling in such a temperature range is also important for forming Mg 2 Si during rolling and during cooling after rolling.
【0034】熱間圧延のあと、冷間圧延と中間熱処理を
行なう。中間熱処理の前に冷間圧延を加えることで、中
間熱処理での再結晶粒が微細になり最終板をエッチング
したときの結晶粒に起因する筋状の色調(光沢)ムラが
防止される。熱間圧延終了温度が250℃より低いと冷
間圧延と同様の効果がある。中間熱処理を400℃以下
でかつ30分以上で行なうのは、固溶しているSiとM
gをMg2Siの化合物にするためである。400℃よ
り高温または30分未満では、この化合物が生成されに
くい。通常は、この中間熱処理で冷間圧延による加工組
織を再結晶させるので、300℃以上に加熱するが、再
結晶させる必要のない場合は300℃より低温でもよ
い。After hot rolling, cold rolling and intermediate heat treatment are performed. By performing cold rolling before the intermediate heat treatment, recrystallized grains in the intermediate heat treatment become finer, and streaky color tone (glossy) unevenness caused by the crystal grains when the final plate is etched is prevented. When the hot rolling end temperature is lower than 250 ° C., the same effect as in cold rolling is obtained. The reason why the intermediate heat treatment is performed at 400 ° C. or less and for 30 minutes or more is that the solid solution Si and M
This is because g is a compound of Mg 2 Si. If the temperature is higher than 400 ° C. or less than 30 minutes, this compound is not easily produced. Usually, since the work structure by cold rolling is recrystallized by this intermediate heat treatment, the structure is heated to 300 ° C. or higher. However, if recrystallization is not necessary, the temperature may be lower than 300 ° C.
【0035】中間熱処理のあとに行なう30%以上の最
終冷間圧延は、最終板の機械的性質を調整するためで、
その加工度が大きければ強度、硬さが増す。最適値は最
終板の用途にもとづいて選定される。The final cold rolling of 30% or more performed after the intermediate heat treatment is for adjusting the mechanical properties of the final sheet.
The greater the degree of processing, the greater the strength and hardness. The optimum value is selected based on the use of the final plate.
【0036】用途によっては、伸びの大きい焼なまし材
の方がよいことがある。このためには、最終冷間圧延の
あと、200〜400℃で熱処理を加えればよい。20
0℃より低温では、機械的性質の変化が遅い。400℃
より高温では、再結晶粒が粗大化する。また、形成され
ていたMg2Siの分解が起こり、MgとSiが再溶解
するので好ましくない。For some applications, an annealing material having a large elongation is better. For this purpose, heat treatment may be performed at 200 to 400 ° C. after the final cold rolling. 20
Below 0 ° C., the mechanical properties change slowly. 400 ° C
At higher temperatures, the recrystallized grains become coarse. Further, the formed Mg 2 Si is decomposed and Mg and Si are redissolved, which is not preferable.
【0037】中間熱処理を平均昇温速度10℃/秒の急
速加熱によって行なえば、再結晶粒が微細になり、成形
加工性やエッチングしたときの外観などが改善される。
再結晶させるには400℃以上に5秒間以上加熱するこ
とが必要である。この熱処理温度が500℃より高温で
あったり、保持時間が長すぎると、熱間圧延の後半およ
び終了後の冷却中に形成されたMg2Siの分解、再固
溶が起こる。規定した条件内であれば、実用上無害であ
る。If the intermediate heat treatment is carried out by rapid heating at an average heating rate of 10 ° C./sec, the recrystallized grains become finer and the formability and the appearance when etched are improved.
To recrystallize, it is necessary to heat to 400 ° C. or more for 5 seconds or more. If the heat treatment temperature is higher than 500 ° C. or the holding time is too long, the Mg 2 Si formed during the latter half of hot rolling and cooling after completion of hot rolling is decomposed and re-dissolved. It is practically harmless within the specified conditions.
【0038】こうして得られた最終板は、例えば苛性ソ
ーダ水溶液によりエッチングし、中和処理してから硫酸
水溶液中で陽極酸化処理して、美観および耐食性を附与
して使用される。The final plate thus obtained is etched with, for example, an aqueous solution of caustic soda, neutralized and then anodized in an aqueous solution of sulfuric acid to give aesthetic appearance and corrosion resistance.
【0039】[0039]
【実施例】以下、実施例によって本発明を具体的に説明
する。The present invention will be specifically described below with reference to examples.
【0040】実施例1 表1に示す化学成分をもつアルミニウム合金を溶解鋳造
し、鋳塊とした。表面偏析層を切削除去した後、500
℃×8時間熱処理したのち、そのまま熱間圧延に供し、
終了温度が245±15℃になるように圧延した。熱間
圧延板厚6mmから冷間圧延で3.5mmとしたのち、
360±10℃×2時間の中間熱処理を施してから、冷
間圧延して2.0mm厚みの板とした。最終冷間圧延の
板厚減少率は43%である。これをH14材とする。Example 1 An aluminum alloy having the chemical components shown in Table 1 was melt-cast to form an ingot. After cutting and removing the surface segregation layer, 500
℃ × 8 hours heat treatment, then subjected to hot rolling as it is,
It rolled so that end temperature might be set to 245 ± 15 degreeC. After hot rolling from 6 mm thick to 3.5 mm by cold rolling,
After performing an intermediate heat treatment at 360 ± 10 ° C. × 2 hours, the plate was cold-rolled into a 2.0 mm-thick plate. The thickness reduction rate of the final cold rolling is 43%. This is H14 material.
【0041】さらに冷間圧延して0.70mm厚み(板
厚減少率80%)にした板をH18材とする。Further, a sheet which has been cold-rolled to a thickness of 0.70 mm (a thickness reduction rate of 80%) is used as an H18 material.
【0042】さらにこのH18材を250℃×2時間加
熱して半なまし状態にした。(H24材) また、360℃×2時間加熱して完全焼きなまししたも
のを製作した。(O材) これら、各材料の陽極酸化皮膜の耐食性を次のようにし
て評価した。Further, this H18 material was heated to 250 ° C. × 2 hours to be in a half-annealed state. (H24 material) Moreover, what was heated and completely annealed at 360 ° C for 2 hours was manufactured. (O material) The corrosion resistance of the anodic oxide films of these materials was evaluated as follows.
【0043】まず、10%苛性ソーダ水溶液(40℃)
中で2分間エッチングした。水洗および中和処理のあ
と、15%硫酸浴(25℃)中で1A/dm2の電流密
度で10分間陽極酸化処理を施す。生成する皮膜の厚さ
はおよそ2.5μmである。つぎに、3%食塩水(25
℃)を用いて浸漬10分間、乾燥50分間の交互浸漬を
10サイクル行ない皮膜を腐食させる。次に、飽和硫酸
銅液(25℃)中で、2V×3分間の通電を行なう。こ
れによって、陽極酸化皮膜に微小孔など欠陥があると、
通電によってそこに銅が還元されて析出する。First, a 10% aqueous solution of caustic soda (40 ° C.)
For 2 minutes. After water washing and neutralization, anodizing is performed for 10 minutes at a current density of 1 A / dm 2 in a 15% sulfuric acid bath (25 ° C.). The thickness of the resulting film is approximately 2.5 μm. Next, 3% saline (25
10 ° C.), and alternately dipping for 10 minutes and drying for 50 minutes for 10 cycles to corrode the coating. Next, energization is performed in a saturated copper sulfate solution (25 ° C.) for 2 V × 3 minutes. As a result, if the anodic oxide film has defects such as micropores,
Copper is reduced and deposited there by the energization.
【0044】[0044]
【表1】 [Table 1]
【0045】このように処理した板を、光学顕微鏡で拡
大観察すると、点状に析出した銅を認めることができ
る。皮膜の耐食性の評価は、表1に示すNo.4,8,1
2,16(比較材)の皮膜に発生した銅の析出点(皮膜
欠陥)の密度をランク5とし、全く欠陥のない状態をラ
ンク0として、その間をランク4,3,2,1に分類し
た。When the plate treated in this manner is observed under magnification with an optical microscope, copper precipitated in the form of dots can be recognized. The evaluation of the corrosion resistance of the coating was carried out as shown in Table 1, No. 4, 8, 1
The density of copper precipitation points (film defects) generated in the films of 2,16 (comparative material) was set to rank 5, the state without any defect was set to rank 0, and the area between them was classified into ranks 4, 3, 2, and 1. .
【0046】従って、評価は相対評価である。また、陽
極酸化前の元板の耐食性の評価は、JIS Z 237
1塩水噴霧試験法に基づき、35℃の5%食塩水を10
0時間噴霧し、その結果を相対的に比較して次のように
3段階評価により表した。Therefore, the evaluation is a relative evaluation. The evaluation of the corrosion resistance of the base plate before anodic oxidation was performed according to JIS Z 237.
1 Based on the salt spray test method, 5%
Spraying was performed for 0 hour, and the results were relatively compared and expressed by a three-step evaluation as follows.
【0047】JIS A 1050と同等:○ JIS A 1050より若干劣る:△ JIS A 1050より劣る:× なお、H14、H18、H24、O材の調質による元板
の耐食性には大差がなかったため、H14材の結果につ
いて表した。Equivalent to JIS A 1050: ○ Slightly inferior to JIS A 1050: △ Inferior to JIS A 1050: × Note that there was no significant difference in the corrosion resistance of the base plate due to the tempering of H14, H18, H24 and O materials. The results for the H14 material are shown.
【0048】評価結果を表2に示す。Mg含有量の少な
い比較材に比べて、Mgを加えた発明材では皮膜の耐食
性が改良されており、Cuが本発明の成分範囲を越える
と、元板の耐食性が悪いことが分る。Table 2 shows the evaluation results. Compared with the comparative material having a low Mg content, the corrosion resistance of the coating is improved in the invention material to which Mg is added, and it is understood that when Cu exceeds the component range of the invention, the corrosion resistance of the base plate is poor.
【0049】[0049]
【表2】 [Table 2]
【0050】さらに、陽極酸化皮膜の色調安定性を次の
ようにして評価した。Further, the color tone stability of the anodic oxide film was evaluated as follows.
【0051】表1に示した合金のうち、No.13,1
7,18,19のH18材について、150〜450℃
で各8時間焼なまし処理を施し、6%苛性ソーダ水溶液
(70℃)中で3分間エッチングし、中和したあと、1
5%硫酸浴(20℃)中で1.5A/dm2×40mi
nの陽極酸化処理を行なって(皮膜厚み15μm),常
圧沸騰水中で封孔処理し、皮膜の色調を測定した。Of the alloys shown in Table 1, No. 13, 1
150-450 ° C for 7, 18, 19 H18 materials
Each for 8 hours, etching in 6% aqueous sodium hydroxide solution (70 ° C.) for 3 minutes, neutralizing,
1.5 A / dm 2 × 40 mi in a 5% sulfuric acid bath (20 ° C.)
n was subjected to anodic oxidation treatment (coating thickness 15 μm), sealed in boiling water at normal pressure, and the color tone of the coating was measured.
【0052】その結果を表3に示す。MgとCuを添加
した合金(No.13,17)では、200〜400℃の
範囲では焼なまし温度によって陽極酸化皮膜の色調が殆
ど変化しないことが分る。このことは、圧延板の製造工
程で熱間圧延温度や熱処理などの条件が変動した場合で
も、最終板の皮膜色調が殆ど変化せず、安定した色調が
複数のロット間あるいは1コイル内で得られることを示
している。Table 3 shows the results. In the alloy containing Mg and Cu (Nos. 13 and 17), it can be seen that the color tone of the anodized film hardly changes depending on the annealing temperature in the range of 200 to 400 ° C. This means that even when conditions such as hot rolling temperature and heat treatment change in the manufacturing process of a rolled plate, the film color of the final plate hardly changes, and a stable color can be obtained between a plurality of lots or within one coil. It is shown that it is possible.
【0053】[0053]
【表3】 [Table 3]
【0054】 (注)皮膜色調表示はJISZ8729−1980に準
拠。(Note) Film color indication conforms to JISZ8729-1980.
【0055】L*は 明るい(大)←→暗い(小) a*は 赤(+)←→緑(−) b*は 黄(+)←→青(−)を表わす。L * is light (large) ← → dark (small) a * is red (+) ← → green (−) b * is yellow (+) ← → blue (−)
【0056】実施例2 表4に示す合金、No.20及び21を造塊し、表面偏析
層を除去してから、540℃×4時間加熱して、480
℃に冷却し熱間圧延を開始。終了温度が275±15
℃、厚み5mmになるように熱間圧延し、引きつづいて
厚み2mmに冷間圧延した。ここで中間熱処理条件を種
々変えて処理したあと、板厚減少率50%の冷間圧延を
施して厚み1mmの板(H14材)とした。なお、中間
熱処理での昇温速度を30℃/秒とした。さらに360
℃×2時間の最終熱処理を施した板(0材)を用意し
て、それらの陽極酸化処理後の耐食性を実施例1と同様
にして評価した。また、陽極酸化処理した板面を目視で
外観検査し、結晶粒に起因する筋状の色調(光沢)むら
の程度を外観品質として評価した。評価値は同一合金材
の中での相対評価である。結果を表5に示す。中間熱処
理温度が低く短時間であると十分な再結晶が起らず、熱
間圧延で生成した粗大な結晶粒がそのまま圧延されるた
めに、最終板をエッチング、陽極酸化皮膜処理すると筋
状のむらが目立つようになる。中間熱処理温度を500
℃より高くすれば、再結晶が十分起るが、やや粗大化し
て筋状むらを呈し、また皮膜の耐食性が低下する。Example 2 The alloys shown in Table 4, Nos. 20 and 21, were agglomerated, the surface segregation layer was removed, and then heated at 540 ° C. for 4 hours.
Cool to ℃ and start hot rolling. End temperature is 275 ± 15
It hot-rolled so that it might be set to 5 mm in thickness at ℃, and then cold-rolled to 2 mm in thickness. Here, after variously changing the conditions of the intermediate heat treatment, cold rolling was performed at a sheet thickness reduction rate of 50% to obtain a 1 mm thick sheet (H14 material). The rate of temperature rise in the intermediate heat treatment was 30 ° C./sec. Further 360
Plates (0 material) that had been subjected to a final heat treatment at 2 ° C. × 2 hours were prepared, and their corrosion resistance after anodic oxidation treatment was evaluated in the same manner as in Example 1. Further, the anodized plate surface was visually inspected for appearance, and the degree of streaky color tone (glossy) unevenness caused by crystal grains was evaluated as appearance quality. The evaluation values are relative evaluations in the same alloy material. Table 5 shows the results. If the intermediate heat treatment temperature is low and short time does not occur, sufficient recrystallization does not occur, and the coarse crystal grains generated by hot rolling are rolled as they are. Becomes noticeable. Intermediate heat treatment temperature of 500
If the temperature is higher than ° C, recrystallization occurs sufficiently, but the film is slightly coarsened to exhibit streak-like unevenness, and the corrosion resistance of the film is reduced.
【0057】陽極酸化皮膜の耐食性は中間熱処理温度が
低い方が良好であった。The corrosion resistance of the anodic oxide film was better when the intermediate heat treatment temperature was lower.
【0058】最終0材では、十分に冷間圧延された板が
再結晶して、筋状むらはH14材より軽微になったが、
中間熱処理の不適当なものではまだその影響が認められ
た。In the final 0 material, the sufficiently cold-rolled sheet was recrystallized, and the line-like unevenness became lighter than the H14 material.
Inappropriate intermediate heat treatment still had its effect.
【0059】[0059]
【表4】 [Table 4]
【0060】[0060]
【表5】 [Table 5]
【0061】注)外観品質の説明 ○:良好、△:筋状の光沢むらが認められるが軽微、
×:筋状の光沢むらが部分的に認められる、××:筋状
の光沢むらが全面に認められる。Note: Description of appearance quality ○: good, Δ: streaky unevenness in gloss is observed, but slight
X: Streak-like uneven gloss is partially observed. XX: Streak-like uneven gloss is observed over the entire surface.
【0062】実施例3 表6に示す合金No.22を造塊して、小さく切断し、均
質化熱処理、熱間圧延、冷間圧延、中間熱処理および冷
間圧延してH14担当材を作製し、その陽極酸化皮膜の
耐食性と皮膜の色調を実施例1と同様にして評価した。Example 3 Alloy No. 22 shown in Table 6 was ingot, cut into small pieces, and subjected to homogenizing heat treatment, hot rolling, cold rolling, intermediate heat treatment and cold rolling to produce a material in charge of H14. The corrosion resistance of the anodic oxide film and the color tone of the film were evaluated in the same manner as in Example 1.
【0063】結果を表7に示す。400℃を越える高温
での長時間の中間熱処理、あるいは450℃未満の低温
での均質化処理では、陽極酸化皮膜の耐食性がよくなか
った。Table 7 shows the results. The prolonged intermediate heat treatment at a high temperature exceeding 400 ° C. or the homogenization treatment at a low temperature of less than 450 ° C. resulted in poor corrosion resistance of the anodic oxide film.
【0064】[0064]
【表6】 [Table 6]
【0065】[0065]
【表7】 [Table 7]
【0066】[0066]
【表8】 [Table 8]
【0067】[0067]
【発明の効果】以上、説明したように、従来は、地金純
度を高めて対処した陽極酸化皮膜の耐食性と色調安定性
の改良に対し、少量のMgとCuの添加により純度の良
い合金と同様の効果が得られるので、地金コストの上昇
が避けられ、経済的効果が大きい。同一純度(Si,F
e量)の地金を使う場合は耐食性が向上し、製品寿命が
長くなる。As described above, conventionally, the improvement of the corrosion resistance and the color tone stability of the anodic oxide film, which has been dealt with by increasing the purity of the base metal, has improved the purity of the alloy by adding a small amount of Mg and Cu. Since the same effect can be obtained, increase in the cost of bullion can be avoided, and the economic effect is large. Same purity (Si, F
In the case of using the metal of (e), the corrosion resistance is improved and the product life is prolonged.
【0068】また、従来その量を特に管理していなかっ
た不純物扱いのMgを、積極的に添加し調整したことに
よって使用地金によって変動していた耐食性のばらつき
が解消され、品質安定化が達成される。In addition, variation of the corrosion resistance, which fluctuates depending on the metal used, is eliminated by actively adding and adjusting the amount of Mg treated as an impurity, the amount of which has not been particularly controlled, and the quality is stabilized. Is done.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 671 C22F 1/00 671 682 682 683 683 685 685Z 686 686B 691 691A 691B 691C 694 694A 694B (58)調査した分野(Int.Cl.7,DB名) C22F 1/04 - 1/057 C22C 21/00 - 21/18 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI C22F 1/00 671 C22F 1/00 671 682 682 683 683 685 685Z 686 686B 691 691A 691B 691C 694 694A 694B (58) investigated the field ( Int.Cl. 7 , DB name) C22F 1/04-1/057 C22C 21/00-21/18
Claims (3)
Fe;0.15〜0.9%、Si+Fe;0.30%以
上、1.0%未満、Si%≦Fe%であって、更に、C
u;0.05〜0.5%、Ti;0.01〜0.05
%、Mg;{Si%}×{0.3〜1.0}%を含み、
これらの成分と各0.05%以下の不可避不純物と残部
が99.00%以上のAlからなるアルミニウム合金
を、半連続式鋳造によって造塊した後、必要に応じて表
面偏析層を切削除去し、450℃以上600℃以下で1
〜20時間熱処理して400℃以上550℃以下で熱間
圧延を開始して、材料温度が200℃以上300℃以下
となるよう圧延を終了し、続いて冷間圧延と400℃以
下で30分以上の中間熱処理を行ない、板厚減少率30
%以上の最終冷間圧延をすることを特徴とする陽極酸化
処理用アルミニウム合金板の製造方法。1. Si on a weight basis: 0.05-0.5%;
Fe: 0.15 to 0.9%, Si + Fe: 0.30% or more, less than 1.0%, Si% ≦ Fe%, and C
u: 0.05 to 0.5%, Ti: 0.01 to 0.05
%, Mg; {Si%} × {0.3-1.0}%,
These components, inevitable impurities of 0.05% or less, and the balance
Of an aluminum alloy consisting of 99.00% or more of aluminum by semi-continuous casting, and then, if necessary, cutting and removing the surface segregation layer.
Heat rolling for 20 to 20 hours to start hot rolling at 400 ° C. or more and 550 ° C. or less, finish rolling so that the material temperature becomes 200 ° C. or more and 300 ° C. or less, and then perform cold rolling and 400 ° C. or less for 30 minutes The above intermediate heat treatment was performed, and the thickness reduction rate was 30
Anodic oxidation, characterized in that the percent of the final cold rolling
Manufacturing method of aluminum alloy plate for processing .
以上で、400℃を超え500℃以下で5秒以上30秒
以内の保持とすることを特徴とする請求項1記載の陽極
酸化処理用アルミニウム合金板の製造方法。2. The intermediate heat treatment is performed at an average rate of 10 ° C./sec.
Above, at more than 400 ° C and below 500 ° C for 5 seconds or more and 30 seconds
The anode according to claim 1, wherein the anode is held within the range of:
A method for producing an aluminum alloy plate for oxidation treatment .
で最終熱処理をすることを特徴とする請求項1または請
求項2記載の陽極酸化処理用アルミニウム合金板の製造
方法。3. 200-400 ° C. after final cold rolling
The aluminum alloy sheet for anodizing treatment according to claim 1 or 2, wherein a final heat treatment is performed.
How .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17866292A JP3308305B2 (en) | 1992-07-06 | 1992-07-06 | Manufacturing method of aluminum alloy plate for anodizing treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17866292A JP3308305B2 (en) | 1992-07-06 | 1992-07-06 | Manufacturing method of aluminum alloy plate for anodizing treatment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0625808A JPH0625808A (en) | 1994-02-01 |
JP3308305B2 true JP3308305B2 (en) | 2002-07-29 |
Family
ID=16052383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17866292A Expired - Fee Related JP3308305B2 (en) | 1992-07-06 | 1992-07-06 | Manufacturing method of aluminum alloy plate for anodizing treatment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3308305B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000075145A (en) | 1998-09-01 | 2000-03-14 | Fujitsu Ltd | Optical fiber holder |
US6521046B2 (en) | 2000-02-04 | 2003-02-18 | Kabushiki Kaisha Kobe Seiko Sho | Chamber material made of Al alloy and heater block |
EP2653577B2 (en) * | 2012-04-20 | 2023-02-15 | UACJ Corporation | Method for producing an aluminum alloy sheet that exhibits excellent surface quality after anodizing |
CN115584404B (en) * | 2022-09-07 | 2023-10-10 | 河南明晟新材料科技有限公司 | Preparation method of high-strength high-conductivity 1-series aluminum alloy cathode plate base material |
-
1992
- 1992-07-06 JP JP17866292A patent/JP3308305B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0625808A (en) | 1994-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5562784A (en) | Aluminum alloy substrate for electrolytically grainable lithographic printing plate and process for producing same | |
US7938916B2 (en) | Aluminum alloy sheet for lithographic printing plate and method of producing the same | |
JP2000087198A (en) | MANUFACTURE OF Al-Mg-Si ALLOY SHEET EXCELLENT IN THERMAL CONDUCTIVITY AND STRENGTH | |
EP0638435B1 (en) | Support for planographic printing plate | |
JP3308305B2 (en) | Manufacturing method of aluminum alloy plate for anodizing treatment | |
WO2003023079A1 (en) | Ai alloy for lithographic sheet | |
JP4040787B2 (en) | Aluminum alloy rolled plate with stable gray color after anodization and method for producing the same | |
US5110371A (en) | Aluminum alloys for forming colored anodic oxide films thereon and method for producing a sheet material of the alloy | |
JP2858068B2 (en) | Light-colored thick aluminum alloy rolled sheet for building materials with stable color tone after anodizing and method for producing the same | |
JP2711970B2 (en) | High-strength aluminum alloy wrought material having a matte dark gray to black color after anodizing and a method for producing the same | |
JPH05202453A (en) | Manufacture of aluminum alloy sheet capable of obtaining anodically oxidized film having uniform color tone and excellent in corrosion resistance | |
JP2764463B2 (en) | Aluminum alloy having black color after anodizing and method for producing the same | |
JP2668760B2 (en) | Aluminum alloy wrought material for alkaline chemical roughening and method for producing the same | |
JP2001040461A (en) | Production of aluminum alloy sheet for can barrel | |
JPH0971831A (en) | Gray-colored aluminum alloy sheet little in yellowish and reddish color tone after anodic oxidation treatment and its production | |
JP3355058B2 (en) | Aluminum alloy plate for lighting reflector and method of manufacturing the same | |
JP2524884B2 (en) | Aluminum alloy material with dark gray color after anodizing treatment and method for producing the same | |
JP3644817B2 (en) | Method for producing rolled aluminum alloy sheet with gray color after anodizing treatment | |
JP3209627B2 (en) | Aluminum alloy support for printing plate and method for producing the same | |
JP2006052436A (en) | Shot finished aluminum-alloy plate for alumite treatment, and method for manufacturing aluminum-alloy part using it | |
JPH06346176A (en) | Aluminum sheet for printing plate and its production | |
JPH06116667A (en) | Far infrared radiator | |
JP2931155B2 (en) | Aluminum alloy plate having streak pattern and method of manufacturing the same | |
JPH05132731A (en) | Aluminum alloy having a gold color tone after anodic oxidation treatment and its production | |
JPH11140609A (en) | Production of aluminum alloy for building material excellent in surface treatment property and workability by using continuously cast coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |