JP3302924B2 - Chromatic dispersion compensation circuit - Google Patents
Chromatic dispersion compensation circuitInfo
- Publication number
- JP3302924B2 JP3302924B2 JP15607298A JP15607298A JP3302924B2 JP 3302924 B2 JP3302924 B2 JP 3302924B2 JP 15607298 A JP15607298 A JP 15607298A JP 15607298 A JP15607298 A JP 15607298A JP 3302924 B2 JP3302924 B2 JP 3302924B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- chromatic dispersion
- electric signal
- compensating circuit
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lasers (AREA)
- Semiconductor Lasers (AREA)
- Optical Communication System (AREA)
- Light Guides In General And Applications Therefor (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高速の時分割多重
(TDM)光通信における伝送路の波長分散を補償する
波長分散補償回路に関する。[0001] 1. Field of the Invention [0002] The present invention relates to a chromatic dispersion compensating circuit for compensating chromatic dispersion of a transmission line in high-speed time division multiplexing (TDM) optical communication.
【0002】[0002]
【従来の技術】将来のマルチメディアを担う超高速TD
M光通信システムでは、伝送路の波長分散の補償が重要
な課題の一つになっている。2. Description of the Related Art Ultra-high speed TD for future multimedia
In the M optical communication system, compensation of chromatic dispersion of a transmission line is one of important issues.
【0003】図7は、従来の光伝送系の概略構成を示
す。図において、71は送信系、72は伝送用光ファイ
バ、73は光中継器、74は波長分散補償手段、75は
受信系である。送信系71で発生させた光信号(図中
A)は伝送用光ファイバ72に送信され、所定の距離ご
とに挿入された光中継器73で光増幅されながら受信系
75に伝送される。FIG. 7 shows a schematic configuration of a conventional optical transmission system. In the figure, 71 is a transmission system, 72 is a transmission optical fiber, 73 is an optical repeater, 74 is a chromatic dispersion compensator, and 75 is a reception system. The optical signal (A in the figure) generated by the transmission system 71 is transmitted to the transmission optical fiber 72 and transmitted to the reception system 75 while being optically amplified by the optical repeater 73 inserted at a predetermined distance.
【0004】伝送直後の光信号は、伝送用光ファイバ7
2および光中継器73の波長分散により波形が劣化する
(図中B)。この光信号を直接受信すると、隣接光パル
ス間の干渉により信号読み取りに誤りが生じる。また、
光信号の速度が増加するほど、1タイムスロット(1ビ
ットの占める時間幅)が減少するので、波長分散による
伝送特性への影響は増大する。そこで、この伝送路(伝
送用光ファイバ72および光中継器73)の波長分散を
補償する波長分散補償手段74が用いられる。An optical signal immediately after transmission is transmitted through a transmission optical fiber 7.
2 and the wavelength of the optical repeater 73 degrade the waveform (B in the figure). When this optical signal is directly received, an error occurs in signal reading due to interference between adjacent optical pulses. Also,
As the speed of an optical signal increases, one time slot (the time width occupied by one bit) decreases, so that the influence of chromatic dispersion on transmission characteristics increases. Therefore, a chromatic dispersion compensator 74 for compensating the chromatic dispersion of the transmission path (the transmission optical fiber 72 and the optical repeater 73) is used.
【0005】従来の波長分散補償手段74は、伝送路と
逆の符号で絶対値が等しい分散値を有する光ファイバま
たは光ファイバグレーティングを用い、伝送路の波長分
散を補償していた(図中C)(参考文献1:小倉邦男,
「分散補償光ファイバーの最近の開発状況」,応用物
理,64,1,p.28,1995、参考文献2:J.Williams, "F
iber dispertion compensation using a chirped in-fi
ber Bragg grating", Electron. Lett., 30, 12, p.98
5, 1994) 。The conventional chromatic dispersion compensating means 74 compensates for the chromatic dispersion of the transmission line using an optical fiber or an optical fiber grating having a dispersion value equal to the absolute value of the sign opposite to that of the transmission line (C in the figure). (Reference 1: Kunio Ogura,
"Recent development of dispersion compensating optical fiber", Applied Physics, 64, 1, p. 28, 1995, Reference 2: J. Williams, "F
iber dispertion compensation using a chirped in-fi
ber Bragg grating ", Electron. Lett., 30, 12, p.98
5, 1994).
【0006】[0006]
【発明が解決しようとする課題】従来の波長分散補償手
段74では、分散補償量を光ファイバ長や光ファイバグ
レーティングのグレーティング間隔により調整できる。
しかし、一度作製したら分散補償量は固定である。した
がって、特定の伝送路の初期分散値の補償には適する
が、伝送路の交換や温度変化による分散値の変動には対
応できなかった。In the conventional chromatic dispersion compensating means 74, the amount of dispersion compensation can be adjusted by the length of the optical fiber or the grating interval of the optical fiber grating.
However, once fabricated, the amount of dispersion compensation is fixed. Therefore, the method is suitable for compensating the initial dispersion value of a specific transmission line, but cannot cope with the fluctuation of the dispersion value due to exchange of the transmission line or a temperature change.
【0007】一方、分散値の変動に対するこれまでの補
償法としては、送信系の光源の波長を分散値変動に合わ
せて常に最適な伝送特性が得られるように制御する方法
がある。しかし、そのためには高価な波長可変光源が必
要となる。また、光バンドパスフィルタを含む光中継器
では、光信号波長の変化により光増幅中継後の光信号パ
ワーが変化する問題があった。On the other hand, as a conventional compensation method for dispersion value fluctuation, there is a method of controlling a wavelength of a light source of a transmission system so as to always obtain an optimum transmission characteristic in accordance with dispersion value fluctuation. However, this requires an expensive tunable light source. Further, in the optical repeater including the optical bandpass filter, there is a problem that the optical signal power after optical amplification relay changes due to the change of the optical signal wavelength.
【0008】本発明は、超高速TDM光通信システムに
おいて、伝送路の波長分散の時間的な変動の補償を可能
とし、分散補償の許容量の拡大を図ることができる波長
分散補償回路を提供することを目的とする。The present invention provides a chromatic dispersion compensating circuit capable of compensating for a temporal variation in chromatic dispersion of a transmission line in an ultra-high-speed TDM optical communication system and expanding an allowable amount of dispersion compensation. The purpose is to:
【0009】[0009]
【課題を解決するための手段】本発明の波長分散補償回
路は、光増幅媒質に注入する励起光または励起電流(励
起レベル)に応じて、その波長分散値が変化することを
利用する。一方、光信号を電気信号に変換してクロック
周波数成分を抽出し、クロック周波数成分電力Pc と電
気信号の全電力Pa の比(Pc/Pa)を求め、波長分散
補償制御に供する。すなわち、光信号の分散補償が最適
な場合にはPc/Paが最大になるので、Pc/Paが最大
になるように光増幅媒質に注入する励起光または励起電
流を制御する。これにより波長分散補償量が最適化され
る。The chromatic dispersion compensation circuit of the present invention utilizes the fact that the chromatic dispersion value changes in accordance with the pumping light or pumping current (pumping level) injected into the optical amplification medium. On the other hand, the optical signal is converted into an electric signal to extract a clock frequency component, a ratio (Pc / Pa) between the clock frequency component power Pc and the total power Pa of the electric signal is obtained, and is provided for chromatic dispersion compensation control. That is, when dispersion compensation of an optical signal is optimal, Pc / Pa is maximized, so that the pumping light or excitation current injected into the optical amplification medium is controlled so that Pc / Pa is maximized. Thereby, the chromatic dispersion compensation amount is optimized.
【0010】また、光増幅媒質の後段に、出力パワーが
常に一定になるように制御する光増幅器を備えた場合に
は、上記のPa が常に一定になるので、Pc が最大にな
るように光増幅媒質に注入する励起光または励起電流を
制御してもよい。また、この場合には、電気信号のQ値
が最大になるように制御したり、ビット誤り率が最小に
なるように制御してもよい。If an optical amplifier for controlling the output power to be always constant is provided downstream of the optical amplifying medium, the above Pa is always constant, and the optical amplifier is controlled so that Pc is maximized. The excitation light or the excitation current injected into the amplification medium may be controlled. In this case, the control may be performed so that the Q value of the electric signal is maximized, or the bit error rate is minimized.
【0011】ここで、Q値の測定による波長分散補償量
の制御について説明する。伝送路からの光信号を電気信
号に変換し、この電気信号を抽出したクロック信号とと
もにサンプリングオシロスコープのような電気信号処理
回路に入力すると、アイパタンが得られる。このアイパ
タンにおいて、信号振幅(例えば電圧値)をμ、2値伝
送の場合の「マーク」または「1」レベルの雑音の標準
偏差をσ1 、「スペース」または「0」レベルの雑音の
標準偏差をσ0 としたときに、Q値は、 Q=μ/(σ1+σ0) …(1) と定義される。ガウス型の雑音振幅分布を仮定すると、
誤り率の低い領域では誤り率PとQ値は、 P=(1/Q(2π)1/2) exp(−Q2/2) …(2) の関係があり、Q値を測定できれば伝送路のビット誤り
率を推定することができる。Here, control of the chromatic dispersion compensation amount by measuring the Q value will be described. When an optical signal from the transmission path is converted into an electric signal, and the electric signal is input to an electric signal processing circuit such as a sampling oscilloscope together with the extracted clock signal, an eye pattern is obtained. In this eye pattern, the signal amplitude (for example, voltage value) is μ, the standard deviation of “mark” or “1” level noise in binary transmission is σ 1 , the standard deviation of “space” or “0” level noise the when the sigma 0, Q value, Q = μ / (σ 1 + σ 0) ... is defined as (1). Assuming a Gaussian noise amplitude distribution,
Transmission error rate P and Q values in a low error rate region is related to P = (1 / Q (2π ) 1/2) exp (-Q 2/2) ... (2), if measured Q values The bit error rate of the road can be estimated.
【0012】このQ値(ビット誤り率)は伝送品質の程
度を示す値であり、光信号の信号対雑音比が高く、かつ
適切な分散補償が行われている場合にのみ、高いQ値が
得られる。したがって、Q値が最大になる(ビット誤り
率が最小になる)ように光増幅媒質に注入する励起光ま
たは励起電流を制御することにより、波長分散補償量を
最適化することができる。This Q value (bit error rate) is a value indicating the degree of transmission quality. A high Q value is obtained only when the signal-to-noise ratio of an optical signal is high and proper dispersion compensation is performed. can get. Therefore, the amount of chromatic dispersion compensation can be optimized by controlling the pumping light or the pumping current injected into the optical amplification medium so that the Q value is maximized (the bit error rate is minimized).
【0013】[0013]
【発明の実施の形態】(第1の実施形態:請求項1,
2,3,4)図1は、本発明の波長分散補償回路の第1
の実施形態を示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment: Claim 1,
2, 3, 4) FIG. 1 shows a first example of the chromatic dispersion compensating circuit of the present invention.
An embodiment will be described.
【0014】図において、10は光増幅媒質、20は光
増幅媒質に注入する励起光または励起電流を発生する励
起手段、31は光増幅媒質の出力光の一部を分岐する光
分岐器、32は分岐した光を電気信号に変換する受光
器、33は受光器から出力される電気信号から光信号の
クロック周波数成分を抽出し、そのクロック周波数成分
に応じて励起手段20を制御する電気信号処理部であ
る。In the figure, 10 is an optical amplifying medium, 20 is an exciting means for generating an exciting light or an exciting current to be injected into the optical amplifying medium, 31 is an optical splitter for branching a part of output light of the optical amplifying medium, 32 Is a light receiver for converting the split light into an electric signal, and 33 is an electric signal processing for extracting a clock frequency component of the optical signal from the electric signal output from the light receiver and controlling the excitation means 20 according to the clock frequency component. Department.
【0015】光増幅媒質10および励起手段20の構成
例を図2および図3に示す。図2は、光増幅媒質10と
してエルビウム(Er)やネオジム(Nd)等の希土類を添
加した希土類添加光ファイバ11を用い、励起手段20
として励起光を発生する励起光源21、励起光と信号光
を合波して希土類添加光ファイバ11に導く光合波器2
2、励起光源への注入電流を調整する電流源23を用い
た例である。図2(a),(b),(c) は、それぞれ前方励起、
後方励起、双方向励起を示す。電流源23からの注入電
流によって励起光パワーが調整され、さらに希土類添加
光ファイバ11における波長分散補償量が制御される。FIGS. 2 and 3 show examples of the configuration of the optical amplification medium 10 and the excitation means 20. FIG. FIG. 2 shows a pumping means 20 using a rare earth-doped optical fiber 11 doped with a rare earth such as erbium (Er) or neodymium (Nd) as an optical amplifying medium 10.
An excitation light source 21 for generating excitation light, an optical multiplexer 2 for multiplexing the excitation light and the signal light and guiding the multiplexed light to the rare-earth-doped optical fiber 11
2. This is an example using a current source 23 for adjusting an injection current to an excitation light source. 2 (a), 2 (b) and 2 (c) show forward excitation,
Shows backward excitation and bidirectional excitation. The excitation light power is adjusted by the injection current from the current source 23, and the chromatic dispersion compensation amount in the rare-earth-doped optical fiber 11 is controlled.
【0016】図3は、光増幅媒質10として半導体光増
幅器12を用い、励起手段20として半導体光増幅器1
2に注入する励起電流を発生する励起電流源24を用い
た例である。この半導体光増幅器12は、励起電流源2
4によって励起電流が調整され、波長分散補償量が制御
される。FIG. 3 shows a semiconductor optical amplifier 12 as an optical amplifying medium 10 and a semiconductor optical amplifier 1 as an excitation means 20.
This is an example in which an excitation current source 24 that generates an excitation current to be injected into a sample 2 is used. The semiconductor optical amplifier 12 includes an excitation current source 2
The pump current is adjusted by 4 to control the amount of chromatic dispersion compensation.
【0017】上述したように、伝送路を通過した光信号
は伝送路が有する波長分散の影響を受けて波形が劣化す
る(図7のB)。この劣化した光信号を光増幅媒質10
に入力する。このとき、励起手段20から光増幅媒質1
0に注入する励起光または励起電流を調整し、光増幅媒
質10の波長分散値を変化させ、波長分散補償量を調整
する。この光増幅媒質10の波長分散値の励起レベル依
存性について以下に説明する。As described above, the waveform of the optical signal passing through the transmission path is deteriorated by the influence of the chromatic dispersion of the transmission path (FIG. 7B). The deteriorated optical signal is transmitted to the optical amplifying medium 10.
To enter. At this time, the excitation means 20 sends the light amplifying medium 1
The pumping light or the pumping current to be injected into 0 is adjusted, the chromatic dispersion value of the optical amplification medium 10 is changed, and the chromatic dispersion compensation amount is adjusted. The dependence of the wavelength dispersion value of the optical amplification medium 10 on the excitation level will be described below.
【0018】光増幅媒質10の屈折率と吸収係数の関係
は、Kramers−Kronig(クラマース−クローニヒ)の関
係により、The relationship between the refractive index and the absorption coefficient of the optical amplifying medium 10 is given by Kramers-Kronig (Kramers-Kronig).
【0019】[0019]
【数1】 (Equation 1)
【0020】と表される。ここで、δn(ω)は屈折率の
変化量、δα(ω)は吸収係数(利得係数)の変化、P.V.
は積分の主値である。この式は、屈折率の変化量は、吸
収係数の変化(の波長依存性)に依存することを意味し
ている。例えば、図4(a) のように利得吸収特性をもつ
光増幅媒質の場合には、屈折率変化は図4(b) のように
なる。なお、実線は励起光パワーが大の場合であり、点
線は励起光パワーが小の場合である。この屈折率変化
は、群遅延時間差Tに相当するので、波長分散D(=d
T/dλ)は、図4(c) のような特性になる。## EQU1 ## Here, δn (ω) is the change in refractive index, δα (ω) is the change in absorption coefficient (gain coefficient), PV
Is the principal value of the integral. This equation means that the amount of change in the refractive index depends on (the wavelength dependence of) the change in the absorption coefficient. For example, in the case of an optical amplifying medium having a gain absorption characteristic as shown in FIG. 4A, the refractive index changes as shown in FIG. 4B. The solid line indicates the case where the pumping light power is large, and the dotted line indicates the case where the pumping light power is small. Since this refractive index change corresponds to the group delay time difference T, the chromatic dispersion D (= d
T / dλ) has characteristics as shown in FIG.
【0021】ここで、エルビウム添加光ファイバの場合
に、その吸収/放出断面積(室温における実測値)から
利得と屈折率変化を計算した例を図5に示す(L=1
m)(参考文献3:E.Desuirvier, "Study of the comp
lex atomic susceptivity of EDFA", JLT-8(10), p.151
7, 1990 、参考文献4:S.C.Fleming et al., "Measurm
ent and analysis of pump-dependent refractive inde
x and dispertion effects in Erbium-doped fiber amp
lifier", JQE-32(7), p.1113, 1996) 。なお、実線は、
利得が1になる場合の励起光パワーPthに対する励起光
パワーPの比が40の場合を示す。同様に、破線は20の場
合を示し、点線は10の場合を示す。FIG. 5 shows an example in which gain and refractive index change are calculated from the absorption / emission cross section (actually measured values at room temperature) of an erbium-doped optical fiber (L = 1).
m) (Reference 3: E. Desuirvier, "Study of the comp
lex atomic susceptivity of EDFA ", JLT-8 (10), p.151
7, 1990, reference 4: SCFleming et al., "Measurm
ent and analysis of pump-dependent refractive inde
x and dispertion effects in Erbium-doped fiber amp
lifier ", JQE-32 (7), p.1113, 1996.
The case where the ratio of the pumping light power P to the pumping light power Pth when the gain is 1 is 40 is shown. Similarly, the broken line shows the case of 20, and the dotted line shows the case of 10.
【0022】励起による屈折率の変化分δnの分散は、
利得ピーク波長付近(1530nm)で最大となり、その値
はおよそδn/dλ= 0.1×10-6〔1/nm〕である。
励起による群速度分散の変化分は、利得変化量(δG)
が30dBの場合に、The dispersion of the refractive index change δn due to the excitation is
It becomes maximum near the gain peak wavelength (1530 nm), and its value is approximately δn / dλ = 0.1 × 10 −6 [1 / nm].
The change in group velocity dispersion due to excitation is the gain change (δG)
Is 30 dB,
【0023】[0023]
【数2】 (Equation 2)
【0024】となる。Kramers−Kronig の関係によ
り、エルビウム添加光ファイバの長さLを変えても、総
長の利得変化分が同じであれば屈折率変化は同一にな
る。また、実際の光ファイバでは、このKramers−Kro
nig の関係により決まる材料分散特性に構造分散や励起
による熱的な分散変化の効果も生じるので、分散量はよ
り大きく変化する。すなわち、光増幅媒質への励起レベ
ルを変化させることにより、光増幅媒質が有する波長分
散値を変化させることができ、可変の波長分散補償回路
を実現することができる。## EQU1 ## Due to the Kramers-Kronig relationship, even if the length L of the erbium-doped optical fiber is changed, the change in the refractive index is the same if the gain change of the total length is the same. In an actual optical fiber, the Kramers-Kro
Since the material dispersion characteristics determined by the nig relationship also have the effect of thermal dispersion change due to structural dispersion and excitation, the dispersion amount changes more greatly. That is, by changing the excitation level to the optical amplification medium, the chromatic dispersion value of the optical amplification medium can be changed, and a variable chromatic dispersion compensation circuit can be realized.
【0025】この波長分散補償回路における波長分散補
償量は、次のようにして最適値に制御される。図1に示
すように、光増幅媒質10から出力された光は光分岐器
31で2分岐される。その一方の光を受光器32で電気
信号に変換し、電気信号処理部33に入力する。電気信
号処理部33では、電気信号から光信号のクロック周波
数成分を抽出し、クロック周波数成分電力Pc と電気信
号の全電力Pa の比(Pc/Pa)を求める。ここで、光
信号の分散補償が最適な場合にはPc/Paが最大になる
ので、Pc/Paが最大になるように励起手段20を制御
する。励起手段20では、上述のように光増幅媒質10
に注入する励起光または励起電流を制御し、波長分散補
償量を最適化する。The chromatic dispersion compensation amount in this chromatic dispersion compensation circuit is controlled to an optimum value as follows. As shown in FIG. 1, the light output from the optical amplifying medium 10 is split into two by an optical splitter 31. One of the lights is converted into an electric signal by the light receiver 32 and input to the electric signal processing unit 33. The electrical signal processing unit 33 extracts the clock frequency component of the optical signal from the electrical signal, and obtains the ratio (Pc / Pa) between the clock frequency component power Pc and the total power Pa of the electrical signal. Here, when the dispersion compensation of the optical signal is optimal, Pc / Pa becomes maximum. Therefore, the pumping means 20 is controlled so that Pc / Pa becomes maximum. In the pumping means 20, as described above, the optical amplifying medium 10
To control the amount of chromatic dispersion compensation by controlling the pumping light or the pumping current injected into the substrate.
【0026】なお、RZ符号の光信号の場合には、光電
変換後の電気信号自体にクロック周波数成分を含むの
で、これを抽出する。一方、NRZ符号の光信号の場合
には、光電変換後の電気信号にクロック周波数成分がな
いので、光電変換後に非線形抽出回路を用いてクロック
周波数成分を抽出する。In the case of the optical signal of the RZ code, since the electric signal itself after the photoelectric conversion includes a clock frequency component, this is extracted. On the other hand, in the case of the optical signal of the NRZ code, since the electrical signal after the photoelectric conversion has no clock frequency component, the clock frequency component is extracted using the nonlinear extraction circuit after the photoelectric conversion.
【0027】また、光増幅媒質10では、増幅された誘
導放出光(ASE)が出力されるので、光信号の信号対
雑音比が劣化する。この雑音成分の影響を低減するため
に、図1に示すように光増幅媒質10の後段に、光信号
の波長域のみを透過する光バンドパスフィルタ34を配
置してもよい。これにより、電力比Pc/Paの測定精度
を高めることができる。In the optical amplifying medium 10, since the amplified stimulated emission light (ASE) is output, the signal-to-noise ratio of the optical signal is degraded. In order to reduce the influence of this noise component, an optical bandpass filter 34 that transmits only the wavelength range of the optical signal may be disposed downstream of the optical amplifying medium 10 as shown in FIG. As a result, the measurement accuracy of the power ratio Pc / Pa can be improved.
【0028】(第2の実施形態:請求項1,2,5,
6,7)第1の実施形態では、光増幅媒質10の利得を
変化させることにより、波長分散補償量を変化させてい
た。しかし、この場合には、波長分散補償回路の出力パ
ワーが一定にならず、波長分散補償量に応じて変化して
しまう。通常は、波長分散補償回路の後段に光出力一定
制御を行う光増幅器が配置されるので問題はないが、第
2の実施形態はこの光増幅器を波長分散補償回路内に含
むようにしたものである。(Second Embodiment: Claims 1, 2, 5,
6, 7) In the first embodiment, the amount of chromatic dispersion compensation is changed by changing the gain of the optical amplification medium 10. However, in this case, the output power of the chromatic dispersion compensating circuit is not constant, and changes according to the amount of chromatic dispersion compensation. Normally, there is no problem since an optical amplifier for performing constant optical output control is arranged at the subsequent stage of the chromatic dispersion compensating circuit. However, the second embodiment includes this optical amplifier in the chromatic dispersion compensating circuit. is there.
【0029】図6は、本発明の波長分散補償回路の第2
の実施形態を示す。本実施形態の構成は、図1に示す第
1の実施形態の構成において、光増幅媒質10と光分岐
器31との間に光増幅器35を配置したものであり、そ
の他の構成は第1の実施形態と同様である。この光増幅
器35は、光出力一定制御をかける一般的なものであ
る。このような構成により、光増幅媒質10の励起レベ
ル制御によって出力光信号のパワーが変化しても、常に
一定のパワーの光信号を出力することができる。FIG. 6 shows a second embodiment of the chromatic dispersion compensating circuit according to the present invention.
An embodiment will be described. The configuration of the present embodiment is the same as the configuration of the first embodiment shown in FIG. 1 except that an optical amplifier 35 is arranged between the optical amplification medium 10 and the optical splitter 31. This is the same as the embodiment. This optical amplifier 35 is a general one that performs constant optical output control. With such a configuration, even if the power of the output optical signal changes due to the control of the excitation level of the optical amplification medium 10, an optical signal having a constant power can be always output.
【0030】また、受光器32に入射する光信号のパワ
ーおよび光電変換した電気信号の全電力Pa も一定にな
る。したがって、電気信号処理部33では、第1の実施
形態のように電力比Pc/Paを求める必要はなく、単に
クロック周波数成分電力Pcのみをモニタし、それが最
大になるように励起手段20を制御すればよい。また、
クロック周波数成分電力Pc の代わりに、光信号や電気
信号のQ値やビット誤り率をモニタし、Q値が最大にな
るように制御したり、ビット誤り率が最小になるように
制御してもよい。The power of the optical signal incident on the photodetector 32 and the total power Pa of the photoelectrically converted electric signal are also constant. Therefore, the electric signal processing unit 33 does not need to obtain the power ratio Pc / Pa as in the first embodiment, but simply monitors only the clock frequency component power Pc, and sets the excitation unit 20 so that it becomes maximum. What is necessary is to control. Also,
Instead of the clock frequency component power Pc, the Q value or bit error rate of an optical signal or an electric signal is monitored, and control is performed so that the Q value is maximized or controlled so that the bit error rate is minimized. Good.
【0031】[0031]
【発明の効果】以上説明したように、本発明は、光増幅
媒質の波長分散値の励起レベル依存性を利用することに
より、可変型の波長分散補償回路を実現することができ
る。この波長分散補償回路を用いることにより、伝送路
の波長分散の時間的な変動をリアルタイムで補償するこ
とができる。また、分散補償の許容量を拡大することが
できる。これにより、光通信システムの伝送特性の劣化
を小さくすることができるので、超高速TDM光通信に
も適用することが可能になる。As described above, according to the present invention, a tunable chromatic dispersion compensating circuit can be realized by utilizing the excitation level dependence of the chromatic dispersion value of the optical amplification medium. By using this chromatic dispersion compensating circuit, it is possible to compensate for the temporal variation of the chromatic dispersion of the transmission line in real time. Further, the allowable amount of dispersion compensation can be expanded. As a result, the deterioration of the transmission characteristics of the optical communication system can be reduced, so that the present invention can be applied to ultra-high-speed TDM optical communication.
【図1】本発明の波長分散補償回路の第1の実施形態を
示すブロック図。FIG. 1 is a block diagram showing a first embodiment of a chromatic dispersion compensation circuit of the present invention.
【図2】光増幅媒質10および励起手段20の構成例を
示す図。FIG. 2 is a diagram showing a configuration example of an optical amplification medium 10 and an excitation unit 20.
【図3】光増幅媒質10および励起手段20の他の構成
例を示す図。FIG. 3 is a diagram showing another configuration example of the optical amplification medium 10 and the excitation unit 20.
【図4】光増幅媒質の波長分散値の励起レベル依存性を
示す図。FIG. 4 is a diagram showing the excitation level dependence of the wavelength dispersion value of the optical amplification medium.
【図5】光増幅媒質の波長分散値の励起レベル依存性の
具体例を示す図。FIG. 5 is a diagram showing a specific example of the excitation level dependence of the wavelength dispersion value of the optical amplification medium.
【図6】本発明の波長分散補償回路の第2の実施形態を
示すブロック図。FIG. 6 is a block diagram illustrating a chromatic dispersion compensating circuit according to a second embodiment of the present invention.
【図7】従来の光伝送系の概略構成を示す図。FIG. 7 is a diagram showing a schematic configuration of a conventional optical transmission system.
10 光増幅媒質 11 希土類添加光ファイバ 12 半導体光増幅器 20 励起手段 21 励起光源 22 光合波器 23 電流源 24 励起電流源 31 光分岐器 32 受光器 33 電気信号処理部 34 光バンドパスフィルタ 35 光増幅器 DESCRIPTION OF SYMBOLS 10 Optical amplification medium 11 Rare earth-doped optical fiber 12 Semiconductor optical amplifier 20 Excitation means 21 Excitation light source 22 Optical multiplexer 23 Current source 24 Excitation current source 31 Optical splitter 32 Optical receiver 33 Electric signal processing unit 34 Optical bandpass filter 35 Optical amplifier
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 - 10/28 H04J 14/00 - 14/08 G02B 6/00 H01S 3/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H04B 10/00-10/28 H04J 14/00-14/08 G02B 6/00 H01S 3/10
Claims (7)
光増幅媒質と、 前記光増幅媒質の励起レベルを調整し、入力された光信
号の分散補償を行う制御手段とを備えたことを特徴とす
る波長分散補償回路。1. An optical amplifying medium whose chromatic dispersion changes in accordance with an excitation level, and a control means for adjusting an excitation level of the optical amplifying medium and compensating for dispersion of an input optical signal. Wavelength dispersion compensation circuit.
光増幅媒質と、 前記光増幅媒質を励起する励起光または励起電流を発生
する励起手段と、 前記光増幅媒質の出力光の一部を分岐する光分岐手段
と、 分岐した光を電気信号に変換する光電変換手段と、 前記電気信号からクロック周波数成分を抽出し、このク
ロック周波数成分電力Pc と前記電気信号の全電力Pa
の比(Pc/Pa)が最大になるように前記励起手段を制
御する電気信号処理部とを備えたことを特徴とする波長
分散補償回路。2. An optical amplification medium whose chromatic dispersion changes according to an excitation level; an excitation unit for generating excitation light or an excitation current for exciting the optical amplification medium; and a part of output light of the optical amplification medium. Optical branching means for branching; photoelectric conversion means for converting the branched light into an electric signal; and extracting a clock frequency component from the electric signal, the clock frequency component power Pc and the total power Pa of the electric signal.
A chromatic dispersion compensating circuit comprising: an electric signal processing unit that controls the pumping means so that a ratio (Pc / Pa) of the chromatic dispersion is maximized.
散補償回路において、 光増幅媒質として希土類添加光ファイバを用い、 制御手段または励起手段は、前記希土類添加光ファイバ
に入力する励起光のレベルを制御する構成であることを
特徴とする波長分散補償回路。3. The chromatic dispersion compensating circuit according to claim 1, wherein a rare-earth-doped optical fiber is used as an optical amplifying medium, and the control means or the pumping means controls the pumping light input to the rare-earth-doped optical fiber. A chromatic dispersion compensating circuit having a configuration for controlling a level.
散補償回路において、 光増幅媒質として半導体光増幅器を用い、 制御手段または励起手段は、前記半導体光増幅器への注
入電流を制御する構成であることを特徴とする波長分散
補償回路。4. The chromatic dispersion compensating circuit according to claim 1, wherein a semiconductor optical amplifier is used as an optical amplifying medium, and the control means or the pumping means controls an injection current to the semiconductor optical amplifier. A chromatic dispersion compensating circuit characterized by the following.
いて、 光増幅媒質の後段に、出力パワーを一定に制御する光増
幅器を備えたことを特徴とする波長分散補償回路。5. The chromatic dispersion compensating circuit according to claim 1, further comprising an optical amplifier that controls output power to be constant at a subsequent stage of the optical amplifying medium.
いて、 光増幅媒質(10)と光分岐手段(31)との間に、光
出力パワーを一定に制御する光増幅器(35)を備え、 電気信号処理部は、電気信号のクロック周波数成分電力
Pc が最大になるように励起手段を制御する構成である
ことを特徴とする波長分散補償回路。6. The chromatic dispersion compensating circuit according to claim 2, wherein an optical signal is provided between the optical amplifying medium and the optical branching means.
An optical amplifier (35) for controlling the output power to be constant, and the electric signal processing unit is configured to control the pumping means so that the clock frequency component power Pc of the electric signal is maximized. Compensation circuit.
いて、 光増幅媒質(10)と光分岐手段(31)との間に、光
出力パワーを一定に制御する光増幅器(35)を備え、 電気信号処理部は、光信号や電気信号のQ値が最大にな
るように、またはビット誤り率が最小になるように励起
手段を制御する構成であることを特徴とする波長分散補
償回路。7. The chromatic dispersion compensating circuit according to claim 2, wherein light is transmitted between the optical amplifying medium and the optical branching means.
An optical amplifier (35) for controlling the output power to be constant, the electric signal processing unit controls the pumping means so that the Q value of the optical signal or the electric signal is maximized or the bit error rate is minimized. A chromatic dispersion compensating circuit characterized in that it has a configuration that performs the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15607298A JP3302924B2 (en) | 1998-06-04 | 1998-06-04 | Chromatic dispersion compensation circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15607298A JP3302924B2 (en) | 1998-06-04 | 1998-06-04 | Chromatic dispersion compensation circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11355207A JPH11355207A (en) | 1999-12-24 |
JP3302924B2 true JP3302924B2 (en) | 2002-07-15 |
Family
ID=15619700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15607298A Expired - Fee Related JP3302924B2 (en) | 1998-06-04 | 1998-06-04 | Chromatic dispersion compensation circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3302924B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4818142B2 (en) * | 2007-02-06 | 2011-11-16 | 富士通株式会社 | Optical receiver, control method therefor, and optical transmission system |
-
1998
- 1998-06-04 JP JP15607298A patent/JP3302924B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11355207A (en) | 1999-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6178038B1 (en) | Optical amplifier having an improved noise figure | |
JP3803000B2 (en) | Method for monitoring optical power deviation between wavelengths, and optical equalizer and optical amplifier using the same | |
US6359726B1 (en) | Wavelength division multiplexing optical amplifier with function of gain-equalizing and optical communication system | |
US6437906B1 (en) | All-optical gain controlled L-band EDFA structure with reduced four-wave mixing cross-talk | |
EP0871302A2 (en) | Dynamic gain control system for optical amplifier and method thereof | |
Nuyts et al. | Performance improvement of 10 Gb/s standard fiber transmission systems by using the SPM effect in the dispersion compensating fiber | |
US20040032643A1 (en) | Method and system for precision cross-talk cancellation in optical amplifiers | |
Lee et al. | A detailed experimental study on single-pump Raman/EDFA hybrid amplifiers: static, dynamic, and system performance comparison | |
EP1310054A1 (en) | Amplifier system with distributed and discrete raman fiber amplifiers | |
Feiste et al. | 40 Gbit/s transmission over 434 km standard-fiber using polarisation independent mid-span spectral inversion | |
KR100675461B1 (en) | Optical fiber amplifier having a controlled gain | |
KR19990017701A (en) | Multichannel Three Stage Fiber Amplifier | |
Diaz et al. | Fiber‐optic sensor active networking with distributed erbium‐doped fiber and Raman amplification | |
JPH1184440A (en) | Optical amplifier and optical transmission system using the same | |
JPH10513022A (en) | Scatter compensation in optical fiber transmission | |
Malik et al. | Performance optimization of hybrid optical amplifier for dense wavelength division multiplexed system | |
JP3799266B2 (en) | Noise light removal method, noise light removal apparatus and optical transmission system using stimulated Brillouin scattering | |
JP3302924B2 (en) | Chromatic dispersion compensation circuit | |
US6417960B1 (en) | Method of equalizing gain utilizing asymmetrical loss-wavelength characteristics and optical amplifying apparatus using same | |
US20070285765A1 (en) | Broadband hybrid two-stage optical amplifier | |
US6483634B1 (en) | Optical amplifier | |
US5914808A (en) | Intermediate isolator type fiber amplifier and fiber transmission system | |
Bhowmick et al. | Scope and application of Bi-directional EDFA for long distance optical transmissions | |
Diaz et al. | Double Raman amplified bus networks for wavelength-division multiplexing of fiber-optic sensors | |
EP0963066B1 (en) | Apparatus and method for reducing SPM/GVD in optical systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090426 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090426 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100426 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100426 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110426 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120426 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130426 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |