[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3301658B2 - Method and apparatus for measuring particle size of fine particles in fluid - Google Patents

Method and apparatus for measuring particle size of fine particles in fluid

Info

Publication number
JP3301658B2
JP3301658B2 JP21231593A JP21231593A JP3301658B2 JP 3301658 B2 JP3301658 B2 JP 3301658B2 JP 21231593 A JP21231593 A JP 21231593A JP 21231593 A JP21231593 A JP 21231593A JP 3301658 B2 JP3301658 B2 JP 3301658B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
fine particles
light beam
test fluid
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21231593A
Other languages
Japanese (ja)
Other versions
JPH0749302A (en
Inventor
寛 越塚
Original Assignee
ミクニキカイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミクニキカイ株式会社 filed Critical ミクニキカイ株式会社
Priority to JP21231593A priority Critical patent/JP3301658B2/en
Publication of JPH0749302A publication Critical patent/JPH0749302A/en
Application granted granted Critical
Publication of JP3301658B2 publication Critical patent/JP3301658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、流体中の微粒子の粒径
を計測する方法と装置に関する。より詳細には、純水あ
るいは超純水等の被検流体に不溶解物として存在する微
粒子を検知してその粒径を計測することができる新規な
方法と、それを実施するための装置の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the particle size of fine particles in a fluid. More specifically, a novel method capable of detecting fine particles present as an insoluble substance in a test fluid such as pure water or ultrapure water and measuring the particle size, and an apparatus for performing the method. Regarding the configuration.

【0002】[0002]

【従来の技術】流体中の微粒子の検出方法として、平行
光線の光軸上を通過した微粒子の影による減光を検出す
る方法、メンブレンフィルタで濾過して被検流体から採
取した微粒子を走査型電子顕微鏡で観測する方法、光を
被検流体に照射して微粒子により生じる散乱光を光電子
増倍管等により電気信号に変換する方法等が提案され、
また実施されている。
2. Description of the Related Art As a method of detecting fine particles in a fluid, there is a method of detecting light attenuation due to a shadow of fine particles passing on the optical axis of a parallel light beam, and a method of detecting fine particles collected from a test fluid by filtering with a membrane filter. A method of observing with an electron microscope, a method of irradiating a test fluid with light and converting scattered light generated by fine particles into an electric signal by a photomultiplier tube or the like have been proposed,
It has also been implemented.

【0003】上述のような各種方法のうち、第1の方法
は検出限界が1μm程度でサブミクロン粒子は検出でき
ない。第2の方式は1回の観測作業に半日以上かかり、
製造現場等で実用的に利用するには相応しくない。第3
の方式は大型の大出力レーザと光電子増倍管のような高
感度光検出器が必要なので、装置の規模が巨大になると
共に極めて高価なものにならざるを得ず、また、操作に
も高度な技術が要求される。
[0003] Among the various methods described above, the first method has a detection limit of about 1 µm and cannot detect submicron particles. The second method takes more than half a day for one observation work,
It is not suitable for practical use in manufacturing sites. Third
The method requires a large-sized high-power laser and a high-sensitivity photodetector such as a photomultiplier tube, so the size of the device becomes huge and it must be extremely expensive. Technology is required.

【0004】このように、サブミクロン粒子を検出する
ためには、高価かつ精密な装置が必要であり、その操作
も容易ではない。しかしながら、環境保護への配慮から
フロンに代替して超純水を工業的に使用するなど、多く
の分野で微粒子検出技術の必要性が拡大しつつある。
As described above, expensive and precise equipment is required for detecting submicron particles, and its operation is not easy. However, there is an increasing need for fine particle detection technology in many fields, such as industrial use of ultrapure water instead of chlorofluorocarbon in consideration of environmental protection.

【0005】これに対して、本件特許出願人は、特願平
4-56418号として、新しい原理に基づき、極めて簡素な
構成で超微粒子を検出できる全く新規な微粒子検出方法
と装置を提案している。
On the other hand, the present applicant has proposed, as Japanese Patent Application No. 4-56418, a completely novel particle detection method and apparatus which can detect ultrafine particles with an extremely simple configuration based on a new principle. I have.

【0006】一般に、ビーム中の微粒子の存在により平
行ビームはフラウンホーファー回折を示す。ここで「回
折」とは「光の直進性によって説明できない諸現象の総
称」と定義されており、光を波とするホイヘンス−フレ
ネルの原理によって説明されている。但し、フラウンホ
ーファー回折は微粒子の半径が光の波長より大きいとき
に生じる現象であり、微粒子の半径が光の波長以下のと
きは、回折角が大きくなって平行ビームでは干渉を起こ
し得なくなるので散乱として扱われる。
Generally, a parallel beam exhibits Fraunhofer diffraction due to the presence of fine particles in the beam. Here, "diffraction" is defined as "a general term for various phenomena that cannot be explained by the straightness of light", and is described by the Huygens-Fresnel principle in which light is a wave. However, Fraunhofer diffraction is a phenomenon that occurs when the radius of the fine particles is larger than the wavelength of light. When the radius of the fine particles is smaller than the wavelength of light, the diffraction angle increases and interference cannot occur with a parallel beam, so scattering occurs. Is treated as

【0007】即ち、平行光によるフラウンホーファー回
折理論では、遮光体が微粒子のときの回折による広がり
角Δθは、微粒子の直径D=2rに対してΔθ=1.22λ
/Dで表される。従って、遮光する微粒子の直径が小さ
くなる程広がり角Δθが大きくなり、D=0.78λのとき
に広がり角Δθが90度になる。この広がり角が回折によ
る微粒子検出の限界と考えられ、実際、実験的にも入射
波長λ=0.67μmに対して粒径0.52μm以下の微粒子の
回折像は容易には得られない。
That is, according to the Fraunhofer diffraction theory based on parallel light, the spread angle Δθ due to diffraction when the light shield is a fine particle is Δθ = 1.22λ with respect to the fine particle diameter D = 2r.
/ D. Therefore, as the diameter of the light-shielding fine particles becomes smaller, the spread angle Δθ becomes larger, and when D = 0.78λ, the spread angle Δθ becomes 90 degrees. This divergence angle is considered to be the limit of the detection of fine particles by diffraction, and actually, a diffraction image of fine particles having a particle size of 0.52 μm or less with respect to the incident wavelength λ = 0.67 μm cannot be easily obtained experimentally.

【0008】これに対して、前記特願平4-56418号で提
案した方式は、集光レンズで集束した集束光ビームの焦
点近くに微粒子が存在する場合は、粒径が光の波長より
小さい微粒子に対しても回折角が小さくなり、観測可能
な回折像が生じる現象を利用している。この方法では、
従来は困難であった粒径 0.1μmの粒子の回折像が得ら
れることが確認された。また、この方法が、粒径 0.1μ
m以上の微粒子に対しても有効であることは言うまでも
ない。更に、この方法は、廉価な半導体レーザとフォト
ダイオードとの組合せで実施することができ、高感度か
つ高精度にサブミクロン粒子を検出できるという工業上
極めて重要な利点がある。
On the other hand, in the method proposed in Japanese Patent Application No. 4-56418, when fine particles are present near the focal point of a focused light beam focused by a focusing lens, the particle size is smaller than the wavelength of light. It utilizes the phenomenon that the diffraction angle becomes small even for fine particles and an observable diffraction image is generated. in this way,
It was confirmed that a diffraction image of particles having a particle size of 0.1 μm, which was conventionally difficult, was obtained. Also, this method has a particle size of 0.1μ
Needless to say, it is effective for fine particles of m or more. Further, this method has an extremely important industrial advantage that it can be implemented by a combination of an inexpensive semiconductor laser and a photodiode, and can detect submicron particles with high sensitivity and high accuracy.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、上記
の新しい原理を応用して、単なる微粒子の検出に止まら
ず、検出した微粒子の粒径を計測することができる新規
な方法とそれを実施するための装置を提供することをそ
の目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to apply the above-mentioned new principle to not only detection of fine particles but also to a novel method capable of measuring the particle size of the detected fine particles, and a novel method thereof. It is intended to provide a device for performing.

【0010】[0010]

【課題を解決するための手段】本発明に従うと、被検流
体に含まれる微粒子の粒径を計測する方法であって、所
定の流速で流れる被検流体に対して、コヒーレント光源
からの光ビームを所定の焦点に集光させた直後に該被検
流体に照射し、該光ビームの光軸に対して直角な面の上
で該光ビームの光路内に所定の間隔で配置された1対の
光電変換素子により該光ビームを受け、該光電変換素子
の少なくとも一方の出力から該被検流体に含まれる微粒
子の粒径に相関した第1測定値を検出し、該1対の光電
変換素子による検出の時間差により該微粒子の通過位置
と相関する第2測定値を検出し、該第1測定値を該第2
測定値により補正して該微粒子の粒径を抽出する処理を
含むことを特徴とする被検流体中の微粒子の粒径計測方
法が提供される。
According to the present invention, there is provided a method for measuring the particle size of fine particles contained in a test fluid, wherein a light beam from a coherent light source is applied to a test fluid flowing at a predetermined flow rate. Immediately after the light is condensed at a predetermined focal point, the test fluid is irradiated to the test fluid, and a pair of a pair of laser light beams are arranged at a predetermined interval in an optical path of the light beam on a plane perpendicular to the optical axis of the light beam. Receiving the light beam by the photoelectric conversion element, detecting a first measurement value correlated with the particle diameter of the fine particles contained in the test fluid from at least one output of the photoelectric conversion element, Detecting a second measurement value correlated with the passing position of the fine particle based on a time difference of detection by
There is provided a method for measuring the particle size of fine particles in a test fluid, the method including a process of extracting the particle size of the fine particles by correcting with a measured value.

【0011】また、上記本発明に係る方法を実施する装
置として、本発明により、コヒーレントな光ビームを発
生する光源と、該光ビームを所定の焦点に収束させる光
学系と、該焦点の直後で、所定の流速で流れる被検流体
に該光ビームを照射させるための実質的に透明な液体流
路と、該光ビームの光軸に対して直角な面の上で、該光
ビームの光路内に所定の間隔で配置され、該被検流体に
含まれる微粒子の存在により生じる光ビームの変化を各
々電気信号に変換する1対の光電変換素子と、該光電変
換素子の少なくとも一方の出力から該微粒子の粒径に相
関した信号値を抽出する第1検出手段と、該1対の光電
変換素子の出力の変化の時間差を抽出する第2検出手段
と、該第1検出手段の検出値を、該第2検出手段の検出
値により補正する補正手段とを備えることを特徴とする
被検流体中の微粒子の粒径計測装置が提供される。
According to the present invention, there is provided a light source for generating a coherent light beam, an optical system for converging the light beam to a predetermined focal point, and an apparatus immediately after the focal point. A substantially transparent liquid flow path for irradiating the test fluid flowing at a predetermined flow rate with the light beam, and in a light path of the light beam on a plane perpendicular to the optical axis of the light beam. A pair of photoelectric conversion elements, each of which converts a change in a light beam caused by the presence of fine particles contained in the test fluid into an electric signal, and outputs a pair of photoelectric conversion elements from at least one output of the photoelectric conversion elements. First detection means for extracting a signal value correlated with the particle diameter of the fine particles, second detection means for extracting a time difference between changes in outputs of the pair of photoelectric conversion elements, and detection values of the first detection means. Correction is made by the detection value of the second detection means Particle diameter measuring apparatus of the fine particles in the test fluid is provided, characterized in that it comprises a positive means.

【0012】[0012]

【作用】本発明に係る粒径計測方法では、被検流体中の
微粒子の存在により収束ビームに生じた光学的な変化を
光電変換素子により検出して微粒子の粒径に相関した信
号値を抽出する一方、1対の光電変換素子を用いること
によりその微粒子の通過位置情報を得てこの信号値を補
正して微粒子の大きさを特定する。
In the particle diameter measuring method according to the present invention, an optical change generated in the convergent beam due to the presence of the fine particles in the test fluid is detected by the photoelectric conversion element, and a signal value correlated with the fine particle diameter is extracted. On the other hand, by using a pair of photoelectric conversion elements, passage position information of the fine particles is obtained, and the signal value is corrected to specify the size of the fine particles.

【0013】即ち、具体的に後述するように、被検流体
中に含まれる微粒子が収束光ビームを横切るために生じ
る光学的現象は、その微粒子の大きさと相関して変化を
生じる。そこで、本発明に係る方法では、収束光ビーム
の光学的な変化を光電変換素子で検出することにより微
粒子の粒径を抽出する。
That is, as described later in detail, an optical phenomenon that occurs when fine particles contained in the test fluid crosses the convergent light beam changes in correlation with the size of the fine particles. Therefore, in the method according to the present invention, the particle size of the fine particles is extracted by detecting the optical change of the convergent light beam by the photoelectric conversion element.

【0014】但し、実際には、被検流体は、ある太さを
有する流路内を通過するので、流路の内部で光源に近い
位置を通過するかあるいは光源から遠い位置を通過する
かによって光電変換素子側の検出結果が変化する。そこ
で、本発明に係る方法では、被検流体に照射されている
光ビームが収束ビームであることを利用し、1対の光電
変換素子を用いて、微粒子が収束光ビームを横切るため
に要した時間を計測することにより微粒子の通過位置を
検出している。
However, since the test fluid actually passes through a flow path having a certain thickness, it depends on whether the test fluid passes through a position close to the light source or a position far from the light source inside the flow path. The detection result on the photoelectric conversion element side changes. Therefore, the method according to the present invention utilizes the fact that the light beam irradiated on the fluid under test is a convergent beam, and requires a pair of photoelectric conversion elements to allow the fine particles to cross the convergent light beam. The passage position of the fine particles is detected by measuring the time.

【0015】以上のような本発明に係る方法は、廉価な
半導体レーザとフォトダイオードとを使用した簡素な装
置で実施することができる一方、サブミクロンレベルの
微粒子の粒径を迅速且つ容易に計測することができる。
The method according to the present invention as described above can be carried out by a simple apparatus using an inexpensive semiconductor laser and a photodiode, while quickly and easily measuring the particle size of submicron-level fine particles. can do.

【0016】以下、実施例を参照して本発明をより具体
的に説明するが、以下の開示は本発明の技術的範囲を何
ら限定するものではない。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the following disclosure does not limit the technical scope of the present invention in any way.

【0017】[0017]

【実施例】図1は本発明の原理を用いた微粒子計測装置
の概念図である。
FIG. 1 is a conceptual diagram of a particle measuring apparatus using the principle of the present invention.

【0018】同図に示すように、この装置は、コヒーレ
ント光源としての半導体レーザ1と、半導体レーザ1の
発生した光ビームBを収束させる光学系2と、光学系2
の焦点の直後に配置された光学セル3と、光ビームBを
受ける1対の光電変換素子4a、4bとを備えている。
ここで、光学セル3は、光ビームBの光軸と直角に被検
流体を流通させることができるように構成されており、
光電変換素子4a、4bは、被検流体の流通方向と平行
な配列方向に沿って所定の間隔をおいて配置されてい
る。また、光電変換素子4a、4bの出力は、信号処理
回路5a、5bを介して時間差検出回路6に入力されて
いる。いっぽう、光電変換素子4aの出力は回折像検出
回路7にも入力されている。
As shown in FIG. 1, the apparatus comprises a semiconductor laser 1 as a coherent light source, an optical system 2 for converging a light beam B generated by the semiconductor laser 1, and an optical system 2
And a pair of photoelectric conversion elements 4a and 4b that receive the light beam B.
Here, the optical cell 3 is configured to allow the test fluid to flow at right angles to the optical axis of the light beam B,
The photoelectric conversion elements 4a and 4b are arranged at predetermined intervals along an array direction parallel to the flow direction of the test fluid. The outputs of the photoelectric conversion elements 4a and 4b are input to the time difference detection circuit 6 via the signal processing circuits 5a and 5b. On the other hand, the output of the photoelectric conversion element 4a is also input to the diffraction image detection circuit 7.

【0019】図2は、図1に示した装置の立体的なレイ
アウトを、その主要部材によって示す図である。
FIG. 2 is a diagram showing a three-dimensional layout of the apparatus shown in FIG. 1 by its main members.

【0020】同図に示すように、光電変換素子4a、4
bの各々は、実際には、水平に配列された複数の光電変
換素子から形成された光電変換素子アレイであり、微粒
子により光ビームBに発生した回折像を受光パワーの変
化として検出することができる。この受光パワーの変化
のピーク値は微粒子の粒径に対応して変化するので、光
電変換素子の出力信号値から微粒子の粒径を計測するこ
とが可能になる。尚、各光電変換素子4a、4bの機能
は、透過光に生じる回折像を検出することにあるので、
特に高感度であったり高分解能を有していたりする必要
はない。また、光電変換素子としては、原理的には単一
のフォトダイオードを用いることもできるが、フォトダ
イオードアレイと後述する信号処理回路とを用いること
により、S/N比が高く、より処理し易い検出信号を発
生させることができる。
As shown in FIG. 1, the photoelectric conversion elements 4a, 4a
Each of b is actually a photoelectric conversion element array formed from a plurality of photoelectric conversion elements arranged horizontally, and can detect a diffraction image generated in the light beam B by the fine particles as a change in the received light power. it can. Since the peak value of the change in the received light power changes in accordance with the particle diameter of the fine particles, the particle diameter of the fine particles can be measured from the output signal value of the photoelectric conversion element. Since the function of each of the photoelectric conversion elements 4a and 4b is to detect a diffraction image generated in transmitted light,
In particular, there is no need to have high sensitivity or high resolution. In addition, a single photodiode can be used in principle as the photoelectric conversion element. However, by using a photodiode array and a signal processing circuit described later, the S / N ratio is high and processing is easier. A detection signal can be generated.

【0021】図3は、光電変換素子4a、4bの動作
と、図1に示す信号処理回路5a、5bの構成例とを示
す図である。
FIG. 3 is a diagram showing the operation of the photoelectric conversion elements 4a and 4b and a configuration example of the signal processing circuits 5a and 5b shown in FIG.

【0022】即ち、図3(a) に示すように、微粒子の存
在により、光ビームBには回折が生じ、これに対応して
光電変換素子の受光面には回折像による光強度分布が生
じる。ここで、フォトダイオードアレイは、各素子に光
が一様に当たっている状態で出力信号が初期状態(例え
ば "零" )となるように調整されている。これに対し
て、例えば、4素子のフォトダイオードアレイに対応さ
せた場合、図3(b) に示すような、複数の差動増幅器か
らなる回路を信号処理回路として用いる。ここで各差動
増幅器の各入力a〜dには各フォトダイオード素子の出
力が結合されており、4つの素子から全く同じ出力信号
が出ている状態、即ち各光電変換素子が受光している光
パワーが全て等しいときに出力信号eが標準状態(例え
ば "零" )となるように各抵抗素子の値が設定されてい
る。
That is, as shown in FIG. 3 (a), due to the presence of the fine particles, the light beam B is diffracted, and correspondingly, the light intensity distribution by the diffraction image is generated on the light receiving surface of the photoelectric conversion element. . Here, the photodiode array is adjusted so that an output signal is in an initial state (for example, “zero”) in a state where light is uniformly applied to each element. On the other hand, for example, when a photodiode array of four elements is used, a circuit including a plurality of differential amplifiers as shown in FIG. 3B is used as a signal processing circuit. Here, the outputs of the respective photodiode elements are coupled to the respective inputs a to d of the respective differential amplifiers, and a state in which exactly the same output signal is output from the four elements, that is, the respective photoelectric conversion elements receive light. The values of the respective resistance elements are set so that the output signal e becomes a standard state (for example, "zero") when the optical powers are all equal.

【0023】以上のように構成された信号処理回路は、
差動増幅器の各々の1対の入力の間に生じた差分が累積
されて出力されるので、結果的に受光素子アレイ出力の
信号成分を強調して、検出信号のS/N比を向上させる
機能を果たす。
The signal processing circuit configured as described above
Since the difference generated between each pair of inputs of the differential amplifier is accumulated and output, the signal component of the output of the light receiving element array is emphasized as a result, and the S / N ratio of the detection signal is improved. Perform the function.

【0024】図4(a) は、上述のような信号処理回路を
経て出力される検出信号値と微粒子の粒径との相関関係
を示すグラフである。ただし、ここで検出される検出信
号値は、以下に説明するように、微粒子の通過位置によ
って変化する相対値に過ぎない。
FIG. 4A is a graph showing the correlation between the detection signal value output through the above-described signal processing circuit and the particle diameter of the fine particles. However, the detection signal value detected here is only a relative value that changes depending on the passing position of the fine particles, as described below.

【0025】前述のように、本発明に係る粒径測定装置
は互いに間隔をおいて配置された1対の光電変換素子ア
レイを備えている。従って、図4(b) に示すように、微
粒子が光ビームBを横切ったときに各光電変換素子アレ
イ4a、4bからの信号出力には時間差Tが生じる。こ
の時間差Tは被検流体中の微粒子が光ビームを横切るた
めに要した時間に対応している。即ち、図1に示すよう
に、微粒子が光源に近い側の通過位置Xを通過した場合
と、光源から遠い側の通過位置Yを通過した場合とで
は、一定の流速で流れる被検流体に搬送される微粒子が
光ビームを横切るために要する時間が異なる。従って、
光電変換素子アレイ4aと4bとの各出力信号の対応す
るピーク値、例えば最大ピーク値の時間差Tから微粒子
の通過位置を知ることができる。
As described above, the particle size measuring apparatus according to the present invention has a pair of photoelectric conversion element arrays spaced from each other. Therefore, as shown in FIG. 4B, when the fine particles cross the light beam B, a time difference T occurs between the signal outputs from the photoelectric conversion element arrays 4a and 4b. The time difference T corresponds to the time required for the fine particles in the test fluid to cross the light beam. That is, as shown in FIG. 1, when the fine particles pass through the passing position X on the side closer to the light source and when they pass through the passing position Y on the far side from the light source, the fine particles are transported to the test fluid flowing at a constant flow velocity. The time required for the fine particles to traverse the light beam varies. Therefore,
The passing position of the fine particles can be known from the corresponding peak value of each output signal of the photoelectric conversion element arrays 4a and 4b, for example, the time difference T between the maximum peak values.

【0026】このようにして検出された通過位置情報を
用いて、前述した粒径と相関を有する検出信号値を補正
し、微粒子の粒径の絶対値に対応した信号出力を得るこ
とができる。
Using the passing position information thus detected, the detection signal value having a correlation with the above-mentioned particle diameter is corrected, and a signal output corresponding to the absolute value of the particle diameter of the fine particles can be obtained.

【0027】尚、コヒーレント光源1としては半導体レ
ーザを使用することができ、発振波長が短ければ短いほ
ど検出感度は向上する。また、この計測装置は光源が比
較的低出力でも動作し、本発明者達が行った実験では出
力が1mW以下、具体的には0.2mWの半導体レーザー
でも有効な検出が可能であった。
A semiconductor laser can be used as the coherent light source 1. The shorter the oscillation wavelength, the higher the detection sensitivity. In addition, this measuring device operates even when the light source has a relatively low output. In experiments conducted by the present inventors, effective detection was possible even with a semiconductor laser having an output of 1 mW or less, specifically, 0.2 mW.

【0028】また、光学セル3は、少なくとも集束光の
受光面および透過面は、光ビームBの波長に対しては透
明な材料で作製される。また、微粒子を含んだ被検流体
の流れに乱流が発生しないように、例えば層流板を設け
ることも好ましい。更に、光学系2としてコリメータレ
ンズと収束レンズとを組み合わせたものを使用すること
により、図中に示すような収束光ビームが得られる。
In the optical cell 3, at least the light receiving surface and the transmitting surface of the focused light are made of a material transparent to the wavelength of the light beam B. It is also preferable to provide, for example, a laminar flow plate so that turbulence does not occur in the flow of the test fluid containing the fine particles. Further, by using a combination of a collimator lens and a convergent lens as the optical system 2, a convergent light beam as shown in the figure can be obtained.

【0029】〔実験例〕図1に示した構成で、下記表1
に示す条件で微粒子の粒径計測を行った。
[Experimental Example] With the configuration shown in FIG.
The particle size of the fine particles was measured under the following conditions.

【0030】[0030]

【表1】 [Table 1]

【0031】上記条件で被検流体に対して計測を行った
ところ、出力信号の値は1:3:5(相対値)となり、
この粒径測定法が有効であることが確認された。従っ
て、予め粒径の判っている微粒子により装置を較正して
おけば、粒径の絶対値を容易に知ることができる。
When measurement was performed on the test fluid under the above conditions, the value of the output signal was 1: 3: 5 (relative value).
This particle size measurement method was confirmed to be effective. Therefore, the absolute value of the particle size can be easily known by calibrating the apparatus with fine particles having a known particle size.

【0032】[0032]

【発明の効果】以上詳細に説明したように、本発明に係
る方法は、サブミクロンレベルの微粒子の粒径を迅速且
つ容易に計測することができる全く新規な方法である。
As described in detail above, the method according to the present invention is a completely novel method capable of quickly and easily measuring the particle size of submicron-level fine particles.

【0033】また、この方法は、廉価な半導体レーザと
フォトダイオードとを使用した簡素な装置で実施するこ
とができ、広範な用途に好ましく使用することができ
る。
Further, this method can be carried out by a simple apparatus using an inexpensive semiconductor laser and a photodiode, and can be preferably used for a wide range of applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る計測装置の基本的な構成を模式的
に示す図である。
FIG. 1 is a diagram schematically showing a basic configuration of a measuring device according to the present invention.

【図2】本発明に係る計測装置の具体的な構成例を、そ
の主要な構成要素により示す図である。
FIG. 2 is a diagram showing a specific configuration example of a measuring device according to the present invention, using its main components.

【図3】図3は、光電変換素子の動作と、図1に示す信
号処理回路の構成例とを示す図である。
FIG. 3 is a diagram illustrating an operation of the photoelectric conversion element and a configuration example of the signal processing circuit illustrated in FIG. 1;

【図4】図1に示した装置の動作を説明するための図で
ある。
FIG. 4 is a diagram for explaining the operation of the device shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1・・・半導体レーザ、 2・・・光学系、 3・・・光学セル、 4a、4b・・・光電変換素子、 5a、5b・・・信号処理回路、 6・・・時間差検出回路、 7・・・回折像検出回路 DESCRIPTION OF SYMBOLS 1 ... Semiconductor laser, 2 ... Optical system, 3 ... Optical cell, 4a, 4b ... Photoelectric conversion element, 5a, 5b ... Signal processing circuit, 6 ... Time difference detection circuit, 7 ... Diffraction image detection circuit

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被検流体に含まれる微粒子の粒径を計測す
る方法であって、 所定の流速で流れる被検流体に対して、コヒーレント光
源からの光ビームを所定の焦点に集光させた直後に該被
検流体に照射し、該光ビームの光軸に対して直角な面の
上で該光ビームの光路内に所定の間隔で配置された1対
の光電変換素子により該光ビームを受け、該光電変換素
子の少なくとも一方の出力から該被検流体に含まれる微
粒子の粒径に相関した第1測定値を検出し、該1対の光
電変換素子による検出の時間差により該微粒子の通過位
置と相関する第2測定値を検出し、該第1測定値を該第
2測定値により補正して該微粒子の粒径を抽出する処理
を含むことを特徴とする被検流体中の微粒子の粒径計測
方法。
1. A method for measuring the particle size of fine particles contained in a test fluid, wherein a light beam from a coherent light source is focused on a predetermined focus on the test fluid flowing at a predetermined flow rate. Immediately thereafter, the test fluid is irradiated to the test fluid, and the light beam is irradiated by a pair of photoelectric conversion elements arranged at a predetermined interval in the optical path of the light beam on a plane perpendicular to the optical axis of the light beam. Receiving a first measurement value correlated with the particle size of the fine particles contained in the test fluid from at least one output of the photoelectric conversion element, and detecting the passage of the fine particles based on a time difference between detections by the pair of photoelectric conversion elements. Detecting a second measurement value correlated with the position, and correcting the first measurement value with the second measurement value to extract a particle diameter of the fine particle; Particle size measurement method.
【請求項2】請求項1に記載された方法において、前記
1対の光電変換素子の各々が、互いに平行な配列方向で
直線状に配列された複数の光電変換素子を含む光電変換
素子アレイであり、該1対の光電変換素子アレイの各々
が前記微粒子により前記光ビームに生じる散乱または回
折を検出することを特徴とする被検流体中の微粒子の粒
径計測方法。
2. The method according to claim 1, wherein each of said pair of photoelectric conversion elements is a photoelectric conversion element array including a plurality of photoelectric conversion elements linearly arranged in an arrangement direction parallel to each other. A method for measuring the particle size of fine particles in a test fluid, wherein each of the pair of photoelectric conversion element arrays detects scattering or diffraction generated in the light beam by the fine particles.
【請求項3】請求項1または請求項2に記載された方法
を実施するための装置であって、 コヒーレントな光ビームを発生する光源と、 該光ビームを所定の焦点に収束させる光学系と、 該焦点の直後で、所定の流速で流れる被検流体に該光ビ
ームを照射させるための実質的に透明な液体流路と、 該光ビームの光軸に対して直角な面の上で、該光ビーム
の光路内に所定の間隔で配置され、該被検流体に含まれ
る微粒子の存在により生じる光ビームの変化を各々電気
信号に変換する1対の光電変換素子と、 該光電変換素子の少なくとも一方の出力から該微粒子の
粒径に相関した信号値を抽出する第1検出手段と、 該1対の光電変換素子の出力の変化の時間差を抽出する
第2検出手段と、 該第1検出手段の検出値を、該第2検出手段の検出値に
より補正する補正手段とを備えることを特徴とする被検
流体中の微粒子の粒径計測装置。
3. An apparatus for implementing the method according to claim 1 or 2, comprising a light source for generating a coherent light beam, and an optical system for converging the light beam to a predetermined focal point. Right after the focal point, a substantially transparent liquid flow path for irradiating the test fluid flowing at a predetermined flow rate with the light beam, and on a plane perpendicular to the optical axis of the light beam, A pair of photoelectric conversion elements arranged at predetermined intervals in an optical path of the light beam, each converting a change in the light beam caused by the presence of fine particles contained in the test fluid into an electric signal; First detection means for extracting a signal value correlated with the particle diameter of the fine particles from at least one output; second detection means for extracting a time difference between changes in the outputs of the pair of photoelectric conversion elements; The detection value of the second detection means A particle diameter measuring device for fine particles in a test fluid, comprising: a correcting means for correcting the particle diameter.
【請求項4】請求項3に記載された装置において、前記
1対の光電変換素子の各々が、互いに平行な配列方向で
直線状に配列された複数の光電変換素子を含む光電変換
素子アレイであり、該1対の光電変換素子アレイの各々
が前記微粒子により前記光ビームに生じる散乱または回
折を検出することを特徴とする被検流体中の微粒子の粒
径計測装置。
4. The device according to claim 3, wherein each of said pair of photoelectric conversion elements is a photoelectric conversion element array including a plurality of photoelectric conversion elements linearly arranged in an arrangement direction parallel to each other. An apparatus for measuring the particle size of fine particles in a test fluid, wherein each of the pair of photoelectric conversion element arrays detects scattering or diffraction generated in the light beam by the fine particles.
【請求項5】請求項4に記載された装置において、前記
第1および第2の検出手段が、前記光電変化素子の各々
の出力の相互の差分を抽出する差動増幅器を含む信号処
理回路を介して前記光電変換素子アレイの出力を受ける
ように構成されていることを特徴とする粒径測定装置。
5. The signal processing circuit according to claim 4, wherein said first and second detecting means include a differential amplifier for extracting a mutual difference between outputs of said photoelectric conversion elements. A particle size measuring device configured to receive an output of the photoelectric conversion element array via the photoelectric conversion element array.
【請求項6】請求項3から請求項5までの何れかに記載
された装置において、前記光源が半導体レーザであり、
前記光電変換素子がフォトダイオードまたはフォトダイ
オードアレイであることを特徴とする粒径測定装置。
6. An apparatus according to claim 3, wherein said light source is a semiconductor laser,
A particle size measuring device, wherein the photoelectric conversion element is a photodiode or a photodiode array.
JP21231593A 1993-08-04 1993-08-04 Method and apparatus for measuring particle size of fine particles in fluid Expired - Fee Related JP3301658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21231593A JP3301658B2 (en) 1993-08-04 1993-08-04 Method and apparatus for measuring particle size of fine particles in fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21231593A JP3301658B2 (en) 1993-08-04 1993-08-04 Method and apparatus for measuring particle size of fine particles in fluid

Publications (2)

Publication Number Publication Date
JPH0749302A JPH0749302A (en) 1995-02-21
JP3301658B2 true JP3301658B2 (en) 2002-07-15

Family

ID=16620518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21231593A Expired - Fee Related JP3301658B2 (en) 1993-08-04 1993-08-04 Method and apparatus for measuring particle size of fine particles in fluid

Country Status (1)

Country Link
JP (1) JP3301658B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008602A (en) * 2007-06-29 2009-01-15 Hokuto Denshi Kogyo Kk Detecting method and device for size of particle in liquid
CN101498646A (en) * 2008-02-03 2009-08-05 深圳迈瑞生物医疗电子股份有限公司 Forward-scattering signal inspection device and method, cell or particle analyzer
WO2010046946A1 (en) * 2008-10-21 2010-04-29 北斗電子工業株式会社 Method and device for detecting size of particle in liquid
JP2012181124A (en) * 2011-03-02 2012-09-20 New Industry Research Organization Method and device of detecting size of particle in liquid

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5366726B2 (en) * 2009-09-14 2013-12-11 北斗電子工業株式会社 Method and apparatus for detecting the size of particles in a liquid
JP5366728B2 (en) * 2009-09-14 2013-12-11 北斗電子工業株式会社 Method and apparatus for detecting the size of particles in a liquid
JP5366727B2 (en) * 2009-09-14 2013-12-11 北斗電子工業株式会社 Method and apparatus for detecting particle size in liquid and optical apparatus
EP3279636B1 (en) 2015-03-30 2022-05-18 National Institute of Advanced Industrial Science and Technology Particle size measuring method and device
CN113702269B (en) 2016-01-21 2024-04-09 东京毅力科创株式会社 Chemical liquid supply device and coating and developing system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008602A (en) * 2007-06-29 2009-01-15 Hokuto Denshi Kogyo Kk Detecting method and device for size of particle in liquid
CN101498646A (en) * 2008-02-03 2009-08-05 深圳迈瑞生物医疗电子股份有限公司 Forward-scattering signal inspection device and method, cell or particle analyzer
CN101498646B (en) * 2008-02-03 2014-06-11 深圳迈瑞生物医疗电子股份有限公司 Forward-scattering signal inspection device and method, cell or particle analyzer
WO2010046946A1 (en) * 2008-10-21 2010-04-29 北斗電子工業株式会社 Method and device for detecting size of particle in liquid
US7929135B2 (en) 2008-10-21 2011-04-19 Hokuto Electronics Incorporated Method and apparatus for detecting size of particles in liquid
CN101802589B (en) * 2008-10-21 2013-01-23 北斗电子工业株式会社 Method and device for detecting size of particle in liquid
TWI427282B (en) * 2008-10-21 2014-02-21 Hokuto Electronics Inc Method and apparatus for detecting size of particles in liquid
JP2012181124A (en) * 2011-03-02 2012-09-20 New Industry Research Organization Method and device of detecting size of particle in liquid

Also Published As

Publication number Publication date
JPH0749302A (en) 1995-02-21

Similar Documents

Publication Publication Date Title
JP4602975B2 (en) Photodetector for particle classification system
JP3412606B2 (en) Laser diffraction / scattering particle size distribution analyzer
EP0500293A2 (en) Particle detection method and apparatus
JP2641927B2 (en) Particle measurement device
JP2020514762A5 (en)
KR20230021732A (en) Particle detection via scattered light combined with incident light
US5534999A (en) Monitoring sub-micron particles
RU2249813C2 (en) Device for taking elementary analysis by means of spectrometry of optical emission on laser-generated plasma
JP3301658B2 (en) Method and apparatus for measuring particle size of fine particles in fluid
KR20180000015A (en) High accuracy real-time particle counter
US20220350125A1 (en) Optical trap calibration apparatus and method based on variation of electric field by optical imaging of nanoparticle
JP2863874B2 (en) Particle size distribution analyzer
US5229839A (en) Method and apparatus for measuring the size of a single fine particle and the size distribution of fine particles
JP2910596B2 (en) Particle size distribution analyzer
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JP3258889B2 (en) Optical axis adjustment method in scattering particle size distribution analyzer
US6522405B2 (en) Method and apparatus for monitoring sub-micron particles
JPH05172732A (en) Method and apparatus for detecting particle in liquid
JPH09126984A (en) Particle size distribution measuring device
JP2003130784A (en) Apparatus for detecting particulate in fluid
JPS61288139A (en) Fine particle detecting device
JPH02193041A (en) Particle size distribution apparatus
JP4105888B2 (en) Particle size distribution measuring device
JPH05340866A (en) Dust particle detector
JPH07117484B2 (en) Correction method of particle size distribution in fine particle measurement

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020409

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees