JP3395761B2 - Throttling device, refrigeration cycle device. - Google Patents
Throttling device, refrigeration cycle device.Info
- Publication number
- JP3395761B2 JP3395761B2 JP2000127778A JP2000127778A JP3395761B2 JP 3395761 B2 JP3395761 B2 JP 3395761B2 JP 2000127778 A JP2000127778 A JP 2000127778A JP 2000127778 A JP2000127778 A JP 2000127778A JP 3395761 B2 JP3395761 B2 JP 3395761B2
- Authority
- JP
- Japan
- Prior art keywords
- permeable material
- porous permeable
- main body
- refrigerant
- throttle passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、構造が簡単で信頼
性の高い、流体の流動音を低減する低騒音な絞り装置お
よびこの絞り装置を使用した冷凍サイクル装置に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a throttle device having a simple structure, high reliability, and low noise for reducing fluid noise, and a refrigeration cycle device using the throttle device.
【0002】[0002]
【従来の技術】従来の空気調和装置では、空調負荷の変
動に対応するためにインバーターなどの容量可変型圧縮
機が用いられ、空調負荷の大小に応じて圧縮機の回転周
波数が制御されている。ところが冷房運転時に圧縮機回
転が小さくなると蒸発温度も上昇し、蒸発器での除湿能
力が低下したり、あるいは蒸発温度が室内の露点温度以
上に上昇し、除湿できなくなったりする問題点があっ
た。2. Description of the Related Art In a conventional air conditioner, a variable capacity compressor such as an inverter is used to cope with a change in air conditioning load, and the rotation frequency of the compressor is controlled according to the size of the air conditioning load. . However, when the rotation of the compressor is reduced during cooling operation, the evaporation temperature also rises and the dehumidifying capacity of the evaporator decreases, or the evaporation temperature rises above the dew point temperature in the room, making it impossible to dehumidify. .
【0003】この冷房低容量運転時の除湿能力を向上さ
せる手段としては次のような空気調和装置が考案されて
いる。図47は例えば特開平11−51514号公報に
示された従来の空気調和装置の冷媒回路図であり、図4
8は一般的な冷媒回路中に備えられた一般的な絞り装置
の断面図である。図において1は圧縮機、2は四方弁、
3は室外熱交換器、4は第1流量制御装置、5は第1室
内熱交換器、9は第2流量制御装置、8は第2室内熱交
換器であり、これらは配管で順次接続され冷凍サイクル
を構成している。26は第1流量制御装置4を構成する
ニ方弁、27は第1流量制御装置4を構成する絞り装置
である。The following air conditioner has been devised as a means for improving the dehumidifying ability during the cooling low capacity operation. FIG. 47 is a refrigerant circuit diagram of a conventional air conditioner disclosed in Japanese Patent Laid-Open No. 11-51514, for example.
8 is a cross-sectional view of a general expansion device provided in a general refrigerant circuit. In the figure, 1 is a compressor, 2 is a four-way valve,
3 is an outdoor heat exchanger, 4 is a first flow rate control device, 5 is a first indoor heat exchanger, 9 is a second flow rate control device, 8 is a second indoor heat exchanger, and these are sequentially connected by piping. It constitutes a refrigeration cycle. Reference numeral 26 is a two-way valve that constitutes the first flow rate control device 4, and 27 is a throttle device that constitutes the first flow rate control device 4.
【0004】次に従来の空気調和装置の動作について説
明する。冷房運転では、第1流量制御装置4の二方弁2
6は閉じられており、圧縮機1を出た冷媒は四方弁2を
通過して、室外熱交換器3で凝縮液化し、二方弁26を
通過できないので絞り装置27を通過して減圧され室内
熱交換器5において蒸発気化し再び四方弁2を介して圧
縮機1に戻る。また、暖房運転でも第1流量制御装置4
の二方弁26は閉じられているので、圧縮機1を出た冷
媒は四方弁2を通過して、室内熱交換器5で凝縮液化
し、二方弁26を通過できず絞り装置27を通過し減圧
されて室外熱交換器3において蒸発気化し再び四方弁2
を介して圧縮機1に戻る。Next, the operation of the conventional air conditioner will be described. In the cooling operation, the two-way valve 2 of the first flow control device 4
6 is closed, the refrigerant exiting the compressor 1 passes through the four-way valve 2, is condensed and liquefied in the outdoor heat exchanger 3, and cannot pass through the two-way valve 26. Therefore, the refrigerant passes through the expansion device 27 and is decompressed. It vaporizes in the indoor heat exchanger 5 and returns to the compressor 1 again via the four-way valve 2. Further, even in the heating operation, the first flow rate control device 4
Since the two-way valve 26 of No. 2 is closed, the refrigerant exiting the compressor 1 passes through the four-way valve 2, is condensed and liquefied in the indoor heat exchanger 5, and cannot pass through the two-way valve 26. After passing through and depressurized, it is evaporated and vaporized in the outdoor heat exchanger 3 and the four-way valve 2 is again used.
Return to compressor 1 via.
【0005】一方、除湿運転時には、第1流量制御装置
4の二方弁26が開けられ主絞り装置27の方が閉じら
れている。この場合、二方弁26を開けて第2流量制御
弁9で冷媒流量を制御することにより、第1室内熱交換
器5が凝縮器すなわち再熱器として、また、第2室内熱
交換器8が蒸発器として動作し、室内空気は第1室内熱
交換器5で加熱されるため、室温の低下が小さい除湿運
転が可能となっている。On the other hand, during the dehumidifying operation, the two-way valve 26 of the first flow rate control device 4 is opened and the main expansion device 27 is closed. In this case, by opening the two-way valve 26 and controlling the refrigerant flow rate by the second flow rate control valve 9, the first indoor heat exchanger 5 serves as a condenser, that is, a reheater, and the second indoor heat exchanger 8 Operates as an evaporator and the indoor air is heated by the first indoor heat exchanger 5, so that the dehumidifying operation with a small decrease in room temperature is possible.
【0006】[0006]
【発明が解決しようとする課題】上記のような従来の空
気調和装置では、室内ユニット内に設置する第2流量制
御弁として、通常、オリフィスを有する流量制御弁を用
いているため、このオリフィスを冷媒が通過する時に発
生する冷媒流動音が大きく、室内環境を悪化させる要因
となっていた。特に除湿運転時には第2流量制御弁の入
口が気液二相冷媒となり、冷媒流動音が大きくなるとい
う問題があった。In the conventional air conditioner as described above, since a flow rate control valve having an orifice is usually used as the second flow rate control valve installed in the indoor unit, this orifice is used. The refrigerant flow noise generated when the refrigerant passed through was a factor that deteriorated the indoor environment. In particular, during the dehumidifying operation, the inlet of the second flow rate control valve becomes a gas-liquid two-phase refrigerant, which causes a problem that the refrigerant flow noise becomes loud.
【0007】この除湿運転時の第2流量制御弁の冷媒流
動音低減策としては、特開平11−51514号公報等
が開示されている。図48は特開平11−51514号
公報に開示された従来の絞り装置の断面図である。図4
8において、13は冷媒配管、30は弁体29の移動量
を調整する電磁コイル、31は冷媒配管13の開放口、
28は開放口31に設けられた複数の切り込み溝、29
は弁体であり、この弁体29が移動することにより複数
の切り込み溝28がオリフィス状の絞り流路として作用
する。As a measure for reducing the refrigerant flow noise of the second flow rate control valve during the dehumidifying operation, Japanese Patent Laid-Open No. 11-51514 and the like are disclosed. FIG. 48 is a sectional view of a conventional diaphragm device disclosed in Japanese Patent Laid-Open No. 11-51514. Figure 4
In FIG. 8, 13 is a refrigerant pipe, 30 is an electromagnetic coil for adjusting the amount of movement of the valve element 29, 31 is an opening of the refrigerant pipe 13,
28 is a plurality of cut grooves provided in the opening 31;
Is a valve body, and the movement of the valve body 29 causes the plurality of cut grooves 28 to function as orifice-shaped throttle channels.
【0008】ところがこの冷媒流動音低減策では絞り部
が複数のオリフィス形状の流路で気液二相冷媒を連続的
に流すように工夫したものであるが、加工上配置し得る
流路数には限界(数本〜数十本程度)あるため効果的で
はなく冷媒流動音が大きくなるといった問題があった。
その結果、第2流量制御装置の周囲に遮音材や制振材を
設けるなどの追加の対策を必要とし、コスト増加や設置
性の悪化およびリサイクル性の悪化などの問題もあっ
た。However, in this refrigerant flow noise reduction measure, the throttle portion is devised so that the gas-liquid two-phase refrigerant continuously flows through a plurality of orifice-shaped passages. Has a limit (several to several tens), it is not effective and there is a problem that the refrigerant flow noise becomes loud.
As a result, additional measures such as providing a sound insulating material and a vibration damping material around the second flow rate control device are required, and there are problems such as an increase in cost, deterioration of installation property, and deterioration of recyclability.
【0009】これに対し、特開平7−146032号公
報に示された空気調和装置で用いられている流量制御装
置では、冷媒流動音を低減するために多孔質透過材を設
けている。図49は特開平7−146032号公報に開
示された絞り装置の断面図であり、絞りの上流および下
流側にフィルタとして多孔質透過材を設けた例が示され
ている。図において、31はオリフィス、32は多孔質
透過材、33、34は絞り部、30は電磁コイル部であ
る。図においては、オリフィス31の前後に多孔質透過
材32を設け、冷媒が多孔質透過材32を通過すること
によって、気相と液相を混ざり合わせて流動音を低下さ
せようとするものである。On the other hand, in the flow rate control device used in the air conditioner disclosed in Japanese Unexamined Patent Publication No. 7-146032, a porous permeable material is provided to reduce refrigerant flow noise. FIG. 49 is a sectional view of the diaphragm device disclosed in Japanese Patent Laid-Open No. 7-146032, and shows an example in which a porous permeable material is provided as a filter on the upstream side and the downstream side of the diaphragm. In the figure, 31 is an orifice, 32 is a porous permeable material, 33 and 34 are throttle parts, and 30 is an electromagnetic coil part. In the figure, a porous permeable material 32 is provided before and after the orifice 31, and the refrigerant passes through the porous permeable material 32 to mix the gas phase and the liquid phase to reduce the flow noise. .
【0010】しかしながら、絞り部(34、33)の間
にオリフィス31があり、多孔質透過材32を通過し気
相と液相が混ざり合い流動音が低下したものが、オリフ
ィス31の通過前後の流路が複雑なために、混ざり合っ
た状態を維持できずに再び気相と液相が分離する。この
ため気相と液相を混ざり合った状態で連続的に絞り部に
効果的に供給することはできず、冷媒流動音が大きくな
るといった問題があった。However, there is an orifice 31 between the narrowed portions (34, 33), and the gas that has passed through the porous permeable material 32 and the gas phase and the liquid phase are mixed to reduce the flow noise is before and after the passage of the orifice 31. Since the flow paths are complicated, the mixed state cannot be maintained and the gas phase and the liquid phase are separated again. For this reason, there is a problem in that the gas phase and the liquid phase cannot be continuously and effectively supplied to the throttle portion in a mixed state, and the refrigerant flow noise becomes loud.
【0011】また、特開平11−325655号公報に
示された空気調和機で用いられている絞り装置の断面図
を図50に示す。図において、31はオリフィス、41
はハニカムパイプ、33は絞り部、30は電磁コイル部
である。冷媒流動音を低減するために絞りの上流および
下流側に両端間を連通する穴42を複数個有するハニカ
ムパイプ41を消音手段として設けてある。図51はハ
ニカムパイプ41の断面図を示したものである。配管内
に設置された複数個の穴42は冷媒の通過できる面積が
小さく、冷凍サイクル内を流れる異物により閉塞されや
すく、冷媒流量の低下により性能が低下するといった問
題点があった。また配管内に設置された複数個の穴42
を有するハニカムパイプ41を設けると構造的に複雑に
なり、コストも高くなるという問題もあった。FIG. 50 is a sectional view of a throttle device used in the air conditioner disclosed in Japanese Patent Laid-Open No. 11-325655. In the figure, 31 is an orifice, 41
Is a honeycomb pipe, 33 is a throttle part, and 30 is an electromagnetic coil part. In order to reduce the refrigerant flow noise, a honeycomb pipe 41 having a plurality of holes 42 communicating between the upstream and downstream sides of the throttle is provided as a sound deadening means. FIG. 51 is a sectional view of the honeycomb pipe 41. The plurality of holes 42 installed in the pipe have a small area through which the refrigerant can pass, are easily blocked by foreign substances flowing in the refrigeration cycle, and there is a problem that the performance is deteriorated due to a decrease in the refrigerant flow rate. Also, a plurality of holes 42 installed in the pipe
When the honeycomb pipe 41 having the above is provided, the structure becomes complicated and the cost also increases.
【0012】本発明は上記のような課題を解決するため
になされたもので、低騒音の絞り装置を得ることを目的
とする。また、異物つまりなどの無い信頼性が高い絞り
装置を得ることを目的とする。また、構造的に簡単で低
コストな絞り装置を得ることを目的とする。また、取り
つけ方向を選ばない作業性の良い絞り装置を得ることを
目的とする。また、低騒音で信頼性の高い冷凍サイクル
装置を得ることを目的とする。The present invention has been made to solve the above problems, and an object thereof is to obtain a low-noise diaphragm device. Another object of the present invention is to obtain a highly reliable diaphragm device free from foreign matter. Another object is to obtain a diaphragm device which is structurally simple and low in cost. Another object of the present invention is to obtain a diaphragm device which has good workability regardless of mounting direction. Moreover, it aims at obtaining a refrigeration cycle device with low noise and high reliability.
【0013】[0013]
【課題を解決するための手段】本発明の請求項1に係る
発明は、内部に絞り通路を介して連通され、流体の流れ
方向に対して略直線上に配置された2つの空間を有する
本体と、本体の内部の2つの空間を本体の外部にそれぞ
れ連通させる2つの流路と、本体の内部の2つの空間に
対して略直線上に配置されるように本体内部に固着さ
れ、2つの空間のうち少なくとも1つの空間を絞り通路
側と流路側とに仕切るように設けられた多孔質透過材
と、を備えたものである。According to a first aspect of the present invention, there is provided a main body having two spaces which are communicated with each other through a throttle passage and which are arranged on a substantially straight line with respect to a fluid flow direction. And two flow paths that respectively connect two spaces inside the main body to the outside of the main body, and two flow paths that are fixed to the inside of the main body so as to be arranged substantially linearly with respect to the two spaces inside the main body. A porous permeable material provided so as to partition at least one of the spaces into a throttle passage side and a flow passage side.
【0014】また、本発明の請求項2に係る発明は、内
部に絞り通路を介して連通され、流体の流れ方向に対し
て略直線上に配置された2つの空間を有する本体と、2
つの空間のうち少なくとも1つの空間の流体の流れ方向
に対して流体が通過するように設けられ、少なくとも1
つの空間を絞り通路側空間と反対側空間とに仕切る多孔
質透過材と、多孔質透過材と絞り通路との間に設けら
れ、多孔質透過材の流体の流れ方向の位置決めを行う位
置決め突起と、反対側空間を外部と連通させるように設
けられた流路を有し、多孔質透過材を絞り通路の反対側
から押さえ込むように設けられた押さえ部品と、を備
え、多孔質透過材を位置決め突起に当接させて位置決め
するようにしたものである。According to a second aspect of the present invention, a main body having two spaces which are communicated with each other through a throttle passage and which are arranged on a substantially straight line with respect to a fluid flow direction, and
At least one of the two spaces is provided so that the fluid passes in the flow direction of the fluid, and at least 1
A porous permeable material that partitions the two spaces into a space on the side opposite to the throttle passage and a space on the opposite side; and a positioning protrusion provided between the porous permeable material and the throttle passage for positioning the porous permeable material in the fluid flow direction. Positioning the porous permeable material with a holding part provided with a flow path provided to communicate the space on the opposite side with the outside and holding the porous permeable material from the opposite side of the throttle passage. The projections are brought into contact with each other for positioning.
【0015】また、本発明の請求項3に係る発明は、絞
り通路と多孔質透過材との間にすきまを設けるようにし
たものである。The invention according to claim 3 of the present invention is such that a gap is provided between the throttle passage and the porous permeable material.
【0016】また、本発明の請求項4に係る発明は、絞
り部と多孔質透過材を一体に構成して絞り通路が本体の
内部を2つの空間に分けるように本体の内部に固着した
ものである。According to a fourth aspect of the present invention, the throttle portion and the porous permeable material are integrally formed, and the throttle passage is fixed to the inside of the main body so as to divide the inside of the main body into two spaces. Is.
【0017】また、本発明の請求項5に係る発明は、絞
り通路の流れ方向に対する軸線上の位置よりも外れた部
分の多孔質透過材の部位に絞り通路の直径よりも大きな
直径の貫通穴を設けたものである。Further, according to a fifth aspect of the present invention, a through hole having a diameter larger than the diameter of the throttle passage is formed in the portion of the porous permeable material at a portion deviated from the position on the axial line with respect to the flow direction of the throttle passage. Is provided.
【0018】また、本発明の請求項6に係る発明は、絞
り通路と多孔質透過材の間の部位、あるいは多孔質透過
材と流路との間の部位に多孔質透過材の通気孔の径より
も小さなメッシュを有するフィルタを設けたものであ
る。Further, according to a sixth aspect of the present invention, the ventilation hole of the porous permeable material is provided at a portion between the throttle passage and the porous permeable material or at a portion between the porous permeable material and the flow path. A filter having a mesh smaller than the diameter is provided.
【0019】また、本発明の請求項7に係る発明は、流
路を1つの空間に対して2つ以上設けたものである。In the invention according to claim 7 of the present invention, two or more flow paths are provided for one space.
【0020】また、本発明の請求項8に係る発明は、流
路の取り出し方向を1つの空間に対して本体内の流体の
流れ方向に対して略平行あるいは略直角な方向としたも
のである。Further, in the invention according to claim 8 of the present invention, the take-out direction of the flow path is substantially parallel to or perpendicular to the flow direction of the fluid in the main body with respect to one space. .
【0021】また、本発明の請求項9に係る発明は、内
部に絞り通路を介して連通され、冷媒の流れ方向に対し
て略直線上に配置された2つの空間を有する本体と、本
体の内部の2つの空間を本体の外部にそれぞれ連通させ
る2つの流路と、本体の内部の2つの空間に対して略直
線上に配置されるように本体内部に固着され、2つの空
間のうち少なくとも1つの空間を絞り通路側と流路側と
に仕切るように設けられた多孔質透過材と、を有する絞
り装置を冷凍サイクルを構成する熱交換器の内部あるい
は外部の冷媒回路中でかつ室内に配置したものである。[0021] According to a ninth aspect of the present invention, there is provided a main body having two spaces which are communicated with each other through a throttle passage and which are arranged substantially linearly with respect to a flow direction of the refrigerant, and a main body of the main body. Two flow paths that respectively connect the two internal spaces to the outside of the main body, and the inside of the main body are fixed so as to be arranged substantially linearly with respect to the two internal spaces of the main body. A throttling device having a porous permeable material provided so as to partition one space into a throttle passage side and a flow passage side is arranged in a refrigerant circuit inside or outside a heat exchanger constituting a refrigeration cycle and indoors. It was done.
【0022】また、本発明の請求項10に係る発明は、
内部に絞り通路を介して連通され、冷媒の流れ方向に対
して略直線上に配置された2つの空間を有する本体と、
2つの空間のうち少なくとも1つの空間の冷媒の流れ方
向に対して冷媒が通過するように設けられ、少なくとも
1つの空間を絞り通路側空間と反対側空間とに仕切る多
孔質透過材と、多孔質透過材と絞り通路との間に設けら
れ、多孔質透過材と絞り通路との間にすきまを形成する
位置決め突起と、反対側空間を外部と連通させるように
設けられた流路を有し、多孔質透過材を絞り通路の反対
側から位置決め突起に押さえつけるように設けられた押
さえ部品と、を備えた絞り装置を冷凍サイクルを構成す
る熱交換器の内部あるいは外部の冷媒回路中でかつ室内
に配置したものである。The invention according to claim 10 of the present invention is
A main body having two spaces that are communicated with each other through a throttle passage and that are arranged substantially linearly with respect to the flow direction of the refrigerant;
A porous permeable material that is provided so that the refrigerant passes in the direction of flow of the refrigerant in at least one of the two spaces and that partitions the at least one space into a throttle passage side space and an opposite side space; A positioning protrusion that is provided between the permeable material and the throttle passage and forms a gap between the porous permeable material and the throttle passage, and a flow passage that is provided so that the opposite space communicates with the outside, A throttling device provided with a pressing component provided to press the porous permeable material from the opposite side of the throttling passage to the positioning protrusion, in a refrigerant circuit inside or outside a heat exchanger that constitutes a refrigeration cycle, and indoors. It is arranged.
【0023】また、本発明の請求項11に係る発明は、
筐体内に配置され室内の空気を熱交換させる熱交換器
と、筐体内に配置され熱交換器の側方に設けられた制御
装置と、を有する室内機を備え、熱交換器と制御装置と
の間に絞り装置を配置したものである。The invention according to claim 11 of the present invention is
An indoor unit having a heat exchanger arranged in the housing for exchanging heat in the room, and a control device arranged in the housing on the side of the heat exchanger, the heat exchanger and the control device. A diaphragm device is arranged between them.
【0024】また、本発明の請求項12に係る発明は、
筐体内に配置され室内の空気を熱交換させる熱交換器を
有する室内機を備え、絞り装置を筐体と熱交換器との間
に配置したものである。The invention according to claim 12 of the present invention is
An indoor unit having a heat exchanger arranged in a housing for exchanging heat of indoor air is provided, and a diaphragm device is arranged between the housing and the heat exchanger.
【0025】[0025]
【発明の実施の形態】実施の形態1.図1はこの発明の
実施の形態1の一例を示す冷凍サイクル装置である空気
調和装置の冷媒回路図を表している。図において、1は
圧縮機、2は冷房運転および暖房運転の冷媒の流れを切
換えるたとえば四方弁などの流路切換え手段、3は室外
熱交換器、4は第1流量制御装置、5は第1室内熱交換
器、9は絞り装置6と二方弁7で構成された第2流量制
御装置、8は第2室内熱交換器であり、これらは配管に
よって順次接続され冷凍サイクルを構成している。この
冷凍サイクル内を循環する流体としては冷媒が使用さ
れ、この冷媒には、R32とR125の混合冷媒である
R410Aなどが用いられ、冷凍機油としてはアルキル
ベンゼン系油などが用いられている。BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. FIG. 1 is a refrigerant circuit diagram of an air conditioner that is a refrigeration cycle device showing an example of a first embodiment of the present invention. In the figure, 1 is a compressor, 2 is a flow path switching means such as a four-way valve for switching the flow of refrigerant in cooling operation and heating operation, 3 is an outdoor heat exchanger, 4 is a first flow rate control device, and 5 is a first An indoor heat exchanger, 9 is a second flow rate control device composed of a throttle device 6 and a two-way valve 7, 8 is a second indoor heat exchanger, and these are sequentially connected by piping to form a refrigeration cycle. . A refrigerant is used as the fluid that circulates in the refrigeration cycle, R410A, which is a mixed refrigerant of R32 and R125, and the like are used as the refrigerant, and alkylbenzene-based oil is used as the refrigerating machine oil.
【0026】図2は空気調和装置の第2流量制御装置9
の断面図であり、図において、7は二方弁、6は二方弁
7をバイパスするバイパス流路となる配管116に接続
された絞り装置である。また、図3は本実施の形態を表
す絞り装置の断面図であり、図において、10は多孔質
透過材、11はオリフィスとなる小径の貫通穴11aが
設けられた円筒状、多角形状や円盤状などの本体、12
は本体11に挿入され、内部の空間12aと外部を連通
する流路(例えば配管)を有する押さえ部品である。多
孔質透過材10は、通気孔(流体(冷媒)が透過できる
多孔質体表面及び内部の気孔)の平均直径が100〜5
00μmで、空隙率が92±6%の発砲金属である。FIG. 2 shows the second flow control device 9 of the air conditioner.
7 is a cross-sectional view of FIG. 7, in which 7 is a two-way valve, and 6 is a throttle device connected to a pipe 116 serving as a bypass flow path that bypasses the two-way valve 7. FIG. 3 is a cross-sectional view of a diaphragm device according to the present embodiment. In the figure, 10 is a porous permeable material, 11 is a cylindrical shape, a polygonal shape or a disk provided with a small diameter through hole 11a serving as an orifice. Body such as a shape, 12
Is a pressing component that is inserted into the main body 11 and has a flow path (for example, piping) that connects the internal space 12a and the outside. In the porous permeable material 10, the average diameter of the vent holes (the surface of the porous body through which the fluid (refrigerant) can pass and the pores inside) is 100 to 5.
It is a foam metal having a porosity of 92 ± 6% at 00 μm.
【0027】流路である配管13は本体11の冷媒の流
れ方向に対して直線上に配置されているので、多孔質透
過材10からオリフィス11aまでの間の通路に大きな
抵抗となるものはない。また、本体11には絞り通路で
あるオリフィス11aと多孔質透過材10との間に所定
の隙間11cが生じるように流れ方向のオリフィス11
aの前後にリング状の位置決め突起11bが設けられて
いる。この所定の隙間11cがあることにより、多孔質
透過材10を通過する流体(冷媒)の通過面積を大きく
有効に利用できるため、流体(冷媒)中に異物が混入し
た場合でも異物に対する詰まり耐力が向上する。また、
位置決め突起11bがあることにより、多孔質透過材1
0および押さえ部品12の位置決めが簡単で確実に行
え、組立性も向上する。Since the pipe 13, which is a flow path, is arranged linearly with respect to the flow direction of the refrigerant in the main body 11, there is no great resistance to the passage between the porous permeable material 10 and the orifice 11a. . Further, in the main body 11, the orifice 11 in the flow direction is formed so that a predetermined gap 11c is formed between the orifice 11a which is a throttle passage and the porous permeable material 10.
Ring-shaped positioning protrusions 11b are provided before and after a. The presence of this predetermined gap 11c makes it possible to effectively use the passage area of the fluid (refrigerant) passing through the porous permeable material 10 effectively. Therefore, even if foreign matter is mixed into the fluid (refrigerant), the blocking resistance against the foreign matter is improved. improves. Also,
Due to the presence of the positioning protrusion 11b, the porous permeable material 1
The positioning of 0 and the pressing component 12 can be performed easily and surely, and the assembling property is also improved.
【0028】リング状の位置決め突起11bの内径は1
0mm〜20mmに設定してある。また、オリフィス1
1aの内径は0.5mm〜2mmであり、オリフィス1
1aの長さは1mm〜4mmであり、流体(冷媒)の必
要絞り量によって以上の寸法範囲内で、寸法を決める。
また多孔質透過材10とオリフス11aの隙間11cは
5mm以下の範囲内になるように位置決め突起11bの
突出量を設定している。実験では、以上の範囲内に設定
した時に騒音低減効果が得られた。The inner diameter of the ring-shaped positioning protrusion 11b is 1
It is set to 0 mm to 20 mm. Also, the orifice 1
The inner diameter of 1a is 0.5 mm to 2 mm, and the orifice 1
The length of 1a is 1 mm to 4 mm, and the size is determined within the above size range depending on the required throttle amount of the fluid (refrigerant).
Further, the protrusion amount of the positioning protrusion 11b is set so that the gap 11c between the porous permeable material 10 and the orifice 11a is within a range of 5 mm or less. In the experiment, the noise reduction effect was obtained when set within the above range.
【0029】多孔質透過材10は、位置決め突起11b
に当接して流体(冷媒)の流れ方向の位置決めが行われ
ている。また、多孔質透過材10は、オリフィス11a
側の面と反対側の面より流路13を有する押さえ部品1
2によって、位置決め突起11b側にに押しつけられた
状態で固定されている。押さえ部品12は流路13の内
径以上の内径と所定の長さを持った空間12aを有して
おり、多孔質透過材10の固定を兼ねて本体11に挿入
し接合されている。多孔質透過材10は通気孔の平均径
が100μmから500μmで厚さを1ミリメートルか
ら10ミリメートル程度のNiまたはNi−Crまたは
ステンレスからなる発泡金属を使用している。また本体
11、押さえ部品12は銅、黄銅、アルミニウム、ステ
ンレスなどの金属を、切削や鍛造などによって作られて
いる。The porous permeable material 10 has positioning protrusions 11b.
Is contacted with and positioned in the flow direction of the fluid (refrigerant). Further, the porous permeable material 10 has an orifice 11a.
Holding part 1 having a flow path 13 from the surface opposite to the side surface
By 2 it is fixed in a state of being pressed to the side of the positioning protrusion 11b. The holding component 12 has a space 12a having an inner diameter equal to or larger than the inner diameter of the flow path 13 and a predetermined length, and is inserted and joined to the main body 11 also for fixing the porous permeable material 10. The porous permeable material 10 uses a foam metal made of Ni, Ni—Cr, or stainless steel having an average diameter of the ventilation holes of 100 μm to 500 μm and a thickness of about 1 mm to 10 mm. The main body 11 and the pressing component 12 are made of metal such as copper, brass, aluminum and stainless steel by cutting or forging.
【0030】図2において、冷房時の流体(冷媒)の流
れ方向を実線矢印で示し、暖房時の流体(冷媒)の流れ
方向を破線矢印で示している。二方弁7を開く〔(a)
の状態〕と、絞り装置6にはほとんど流体(冷媒)が流
れなくなり、第1室内熱交換器5と接続される配管16
と第2室内熱交換器8と接続されている配管17はほと
んど圧力損失がない状態で接続することができる。二方
弁7を閉じる〔(b)の状態〕と、第1室内熱交換器5
と接続されている配管16よりバイパス配管116を通
って流体(冷媒)は絞り装置6のみ通過し、第2室内熱
交換器8と接続される配管17を通って第2室内熱交換
器8に至る。In FIG. 2, the flow direction of the fluid (refrigerant) during cooling is indicated by a solid arrow, and the flow direction of the fluid (refrigerant) during heating is indicated by a broken arrow. Open the two-way valve 7 [(a)
State), almost no fluid (refrigerant) flows through the expansion device 6, and the pipe 16 connected to the first indoor heat exchanger 5
The pipe 17 connected to the second indoor heat exchanger 8 can be connected with almost no pressure loss. When the two-way valve 7 is closed [(b) state], the first indoor heat exchanger 5
A fluid (refrigerant) passes through the bypass pipe 116 from the pipe 16 connected to the second indoor heat exchanger 8 through the pipe 17 connected to the second indoor heat exchanger 8. Reach
【0031】次に本実施の形態による冷凍サイクル装置
の動作について説明する。冷房運転の場合は、起動時や
夏季時など部屋の空調顕熱負荷と潜熱負荷がともに大き
い通常冷房運転と中間期や梅雨時期のように空調顕熱負
荷は小さいが、潜熱負荷が大きな除湿運転に分けられ
る。通常冷房運転は、第2流量制御装置9のニ方弁7を
開き、第2流量制御装置と第1室内熱交換器5と接続さ
れる配管16と第2室内熱交換器8と接続される配管1
7をほとんど圧力損失がない状態で接続する。Next, the operation of the refrigeration cycle apparatus according to this embodiment will be described. In the case of cooling operation, the air conditioning sensible heat load and the latent heat load of the room are both large at startup and during the summer, and the dehumidification operation where the air conditioning sensible heat load is small but the latent heat load is large, such as in the middle period and rainy season. It is divided into In the normal cooling operation, the two-way valve 7 of the second flow rate control device 9 is opened, and the pipe 16 connected to the second flow rate control device and the first indoor heat exchanger 5 and the second indoor heat exchanger 8 are connected. Piping 1
Connect 7 with almost no pressure loss.
【0032】この時、空調負荷に応じた回転数で運転さ
れている圧縮機1を出た高温高圧の蒸気冷媒は四方弁2
を通過して、室外熱交換器3で凝縮液化し、第1流量制
御装置4で減圧され低圧二相冷媒となって第1室内熱交
換器5に流入し蒸発気化し、第2流量制御装置9を大き
な圧力損失なしに通過し再び第2室内熱交換器8で蒸発
気化し、低圧蒸気冷媒となって再び四方弁2を介して圧
縮機1に戻る。At this time, the high-temperature and high-pressure vapor refrigerant leaving the compressor 1 operating at the number of revolutions corresponding to the air conditioning load is the four-way valve 2.
Through the outdoor heat exchanger 3, condensed and liquefied in the outdoor heat exchanger 3, reduced in pressure by the first flow rate control device 4 to become a low-pressure two-phase refrigerant, flown into the first indoor heat exchanger 5 and evaporated and vaporized, and then the second flow rate control device After passing through 9 without a large pressure loss, it vaporizes again in the second indoor heat exchanger 8 to become a low-pressure vapor refrigerant and returns to the compressor 1 again via the four-way valve 2.
【0033】第2流量制御装置9はニ方弁7が開いてい
るため、この第2流量制御装置を通過する冷媒はほとん
ど圧力損失がなく、冷房能力や効率低下などは起こらな
い。また、第1流量制御装置は例えば圧縮機1の吸入部
分で冷媒の過熱度が10℃となるように制御されてい
る。このような冷凍サイクルでは室内熱交換器5、8で
冷媒が蒸発することにより室内から熱を奪い、室外熱交
換器3で冷媒が凝縮することによって室内で奪った熱を
室外で放出することによって室内を冷房する。Since the two-way valve 7 of the second flow rate control device 9 is opened, the refrigerant passing through the second flow rate control device has almost no pressure loss, and the cooling capacity and efficiency are not deteriorated. The first flow rate control device is controlled so that the degree of superheat of the refrigerant in the suction portion of the compressor 1 becomes 10 ° C, for example. In such a refrigeration cycle, the refrigerant is evaporated in the indoor heat exchangers 5 and 8 to take heat from the room, and the refrigerant is condensed in the outdoor heat exchanger 3 to release the heat taken indoors to the outside. Cool the room.
【0034】次に除湿運転時の動作について、図4を用
いて説明する。図4は圧力-エンタルピー線図であり、
横軸はエンタルピーを、縦軸は圧力をあらわしている。
図中のA〜Fの符号は冷凍サイクルの各位置での状態を
説明するために付したものである。なお、図4中で示し
たA〜Fは、図1に示したA〜Fと対応している。この
除湿運転時は、図示しない制御部によって第2流量制御
装置9のニ方弁7を閉じ、絞り装置6にだけ冷媒が流れ
るようにしている。Next, the operation during the dehumidifying operation will be described with reference to FIG. Figure 4 is a pressure-enthalpy diagram,
The horizontal axis represents enthalpy and the vertical axis represents pressure.
The symbols A to F in the figure are added to explain the state at each position of the refrigeration cycle. Note that A to F shown in FIG. 4 correspond to A to F shown in FIG. During the dehumidifying operation, the two-way valve 7 of the second flow rate control device 9 is closed by a control unit (not shown) so that the refrigerant flows only through the expansion device 6.
【0035】この時、空調負荷に応じた回転数で運転さ
れている圧縮機1を出た高温高圧の蒸気冷媒(A点)は
四方弁2を通過して、室外熱交換器3で外気と熱交換し
て凝縮し気液二相冷媒となる(B点)。この高圧二相冷
媒は第1流量制御装置4で若干減圧され、中間圧の気液
二相冷媒となって第1室内熱交換器5に流入する(C
点)。第1室内熱交換器に流入した中間圧の気液二相冷
媒は、室内空気と熱交換を行いさらに凝縮する(D
点)。第1室内熱交換器を流出した気液二相冷媒は第2
流量制御装置9に流入する。At this time, the high-temperature and high-pressure vapor refrigerant (point A) exiting the compressor 1 operating at the number of revolutions corresponding to the air conditioning load passes through the four-way valve 2 and is exchanged with the outside air by the outdoor heat exchanger 3. It heat-exchanges and condenses to become a gas-liquid two-phase refrigerant (point B). This high-pressure two-phase refrigerant is slightly decompressed by the first flow rate control device 4, becomes an intermediate-pressure gas-liquid two-phase refrigerant, and flows into the first indoor heat exchanger 5 (C
point). The intermediate-pressure gas-liquid two-phase refrigerant that has flowed into the first indoor heat exchanger exchanges heat with the indoor air and is further condensed (D
point). The gas-liquid two-phase refrigerant flowing out of the first indoor heat exchanger is the second
It flows into the flow control device 9.
【0036】第2流量制御装置9では絞り部6のオリフ
ィス11aを通過して冷媒は減圧され、低圧の気液二相
冷媒となって、第2室内熱交換器8に流入する(E
点)。第2室内熱交換器8に流入した冷媒は、室内空気
の顕熱および潜熱を奪って蒸発する。第2室内熱交換器
8を出た低圧蒸気冷媒は再び四方弁2を介して圧縮機1
に戻る。室内空気は、第1室内熱交換器5で加熱され、
第2室内熱交換器8で冷却除湿されるため、部屋の室温
低下を防ぎながら除湿を行うことができる。In the second flow rate control device 9, the refrigerant is decompressed by passing through the orifice 11a of the throttle portion 6 to become a low pressure gas-liquid two-phase refrigerant and flows into the second indoor heat exchanger 8 (E
point). The refrigerant flowing into the second indoor heat exchanger 8 takes away the sensible heat and latent heat of the indoor air and evaporates. The low-pressure vapor refrigerant leaving the second indoor heat exchanger 8 is again passed through the four-way valve 2 to the compressor 1
Return to. The indoor air is heated by the first indoor heat exchanger 5,
Since it is cooled and dehumidified in the second indoor heat exchanger 8, it is possible to perform dehumidification while preventing the room temperature of the room from decreasing.
【0037】なお、この除湿運転では、圧縮機1の回転
周波数や室外熱交換器3のファン回転数を調整して、室
外熱交換器3の熱交換量を制御し、第1室内熱交換器5
による室内空気の加熱量を制御して吹出し温度を広範囲
に制御できる。また、第1流量制御装置4の開度や室内
ファン回転数を制御して第1室内熱交換器5の凝縮温度
を制御し、第1室内熱交換器5による室内空気の加熱量
を制御することもできる。また、第2流量制御装置9は
例えば圧縮機吸入冷媒の過熱度が10℃となるように制
御される。In the dehumidifying operation, the rotation frequency of the compressor 1 and the fan rotation speed of the outdoor heat exchanger 3 are adjusted to control the heat exchange amount of the outdoor heat exchanger 3 to control the first indoor heat exchanger. 5
The blowout temperature can be controlled in a wide range by controlling the amount of heating of the indoor air by. Further, the opening degree of the first flow rate control device 4 and the indoor fan rotation speed are controlled to control the condensing temperature of the first indoor heat exchanger 5, and the heating amount of the indoor air by the first indoor heat exchanger 5 is controlled. You can also The second flow rate control device 9 is controlled so that the superheat degree of the refrigerant sucked into the compressor becomes 10 ° C, for example.
【0038】このとき、オリフィス11aに気液二相冷
媒が通過する際に騒音発生するが、オリフィス11aの
入り口と出口側に多孔質透過材10があるため、気液二
相冷媒が通過する際に発生する冷媒流動音を大幅に低減
できる。通常のオリフィスタイプの流量制御装置に気液
二相冷媒が通過する際には、大きな冷媒流動音が絞り部
前後で発生する。特に気液二相冷媒の流動様式がスラグ
流となる場合に大きな冷媒流動音が絞り部上流で発生す
る。At this time, noise is generated when the gas-liquid two-phase refrigerant passes through the orifice 11a, but when the gas-liquid two-phase refrigerant passes because of the porous permeable material 10 at the inlet and outlet sides of the orifice 11a. It is possible to significantly reduce the refrigerant flow noise generated at the time. When the gas-liquid two-phase refrigerant passes through the normal orifice type flow rate control device, a large refrigerant flow noise is generated before and after the throttle portion. In particular, when the gas-liquid two-phase refrigerant flow mode is a slag flow, a large refrigerant flow noise is generated upstream of the throttle portion.
【0039】この原因を図5を用いて説明する。図5は
絞り装置入口での冷媒の流動状態を説明した図である。
気液二相冷媒の流動状態がスラグ(大気泡)流の場合
は、図5に示すように流れ方向に対して蒸気冷媒が断続
的に流れ、絞り部流路より大きな蒸気スラグもしくは蒸
気気泡が絞り部流路を通過する際に絞り部流路上流の蒸
気スラグもしくは蒸気気泡が崩壊することにより、それ
らが振動することにより騒音が発生する。また、絞り部
を蒸気冷媒と液冷媒が交互に通過するが、冷媒の速度は
蒸気冷媒が通過する際は速く、液冷媒が通過する際は遅
くなるため、それに伴って絞り部上流の圧力も変動す
る。また、従来の第2流量制御装置9の出口においては
出口流路が1ヶ所〜4ヵ所であるため冷媒流速が速く、
出口部分では高速気液二相流となり、壁面に冷媒が衝突
するため、絞り部本体や出口流路が常に振動し騒音が発
生する。また、出口部分の高速気液二相噴流による乱れ
や渦の発生により、噴流騒音も大きくなっている。The cause will be described with reference to FIG. FIG. 5 is a diagram illustrating the flow state of the refrigerant at the inlet of the expansion device.
When the flow state of the gas-liquid two-phase refrigerant is a slag (large bubble) flow, the vapor refrigerant flows intermittently in the flow direction as shown in FIG. When the steam slag or steam bubbles upstream of the throttle passage are collapsed when passing through the throttle passage, they vibrate and generate noise. Further, although the vapor refrigerant and the liquid refrigerant alternately pass through the throttle portion, the speed of the refrigerant is high when the vapor refrigerant passes and slows when the liquid refrigerant passes, so that the pressure upstream of the throttle portion also increases accordingly. fluctuate. Further, at the outlet of the conventional second flow rate control device 9, the number of outlet flow paths is 1 to 4, so that the refrigerant flow velocity is high,
A high-speed gas-liquid two-phase flow is generated at the outlet portion, and the refrigerant collides with the wall surface, so that the throttle body and the outlet passage constantly vibrate and generate noise. In addition, jet noise is increased due to turbulence and eddies generated by the high-speed gas-liquid two-phase jet at the outlet.
【0040】図2および図3に示した第2流量制御装置
9の絞り部6に流れ込む気液二相冷媒や液冷媒は入口側
多孔質透過材10の微細で無数の通気孔を通過し流れが
整流される。そのため、気液が断続して流れるスラグ流
等の蒸気スラグ(大気泡)は小さな気泡になり冷媒の流
動状態が均質気液二相流(蒸気冷媒と液冷媒がよく混合
された状態)となるため、蒸気冷媒と液冷媒が同時にオ
リフィス11aを通過するため冷媒の速度変動が生じ
ず、圧力も変動しない。The gas-liquid two-phase refrigerant and the liquid refrigerant flowing into the throttle portion 6 of the second flow rate control device 9 shown in FIGS. 2 and 3 flow through the minute and innumerable ventilation holes of the inlet side porous permeable material 10. Is rectified. Therefore, vapor slag (large bubbles) such as slag flow in which gas and liquid flow intermittently becomes small bubbles, and the flow state of the refrigerant becomes a homogeneous gas-liquid two-phase flow (a state in which the vapor refrigerant and the liquid refrigerant are well mixed). Therefore, since the vapor refrigerant and the liquid refrigerant pass through the orifice 11a at the same time, the speed of the refrigerant does not change and the pressure does not change.
【0041】また、入口側多孔質透過材10は内部の流
路が複雑に構成され、この内部では圧力変動が繰り返さ
れ一部熱エネルギに変換しながら圧力変動を一定にする
効果があるため、オリフィス11aで圧力変動が発生し
てもこれを吸収する効果があり、それより上流にその影
響を伝えにくい。また、オリフィス11aの下流の高速
気液二相噴流は出口側多孔質透過材10により、その内
部で冷媒の流速が十分に減速され、速度分布も一様化さ
れるため、高速気液二相噴流が壁面に衝突することもな
く、流れに大きな渦が発生することもないので噴流騒音
も小さくなる。In addition, the inlet side porous permeable material 10 has a complicated internal flow passage, and the pressure fluctuation is repeated in this inside so that there is an effect of making the pressure fluctuation constant while partially converting it into heat energy. Even if a pressure fluctuation occurs in the orifice 11a, it has an effect of absorbing the pressure fluctuation, and it is difficult to convey the influence upstream. Further, the high-speed gas-liquid two-phase jet downstream of the orifice 11a is sufficiently decelerated by the outlet-side porous permeable material 10 in the flow velocity of the refrigerant therein and the velocity distribution is uniformized. Since the jet flow does not collide with the wall surface and no large vortex is generated in the flow, jet noise is reduced.
【0042】さらに、絞り部6の入口側には入口内部空
間12aが設けてあるので、入口側多孔質透過材10で
抑えることができない低い周波数の圧力変動を低減し消
音空間として作用させることが可能である。同様に絞り
部9の出口側にも出口内部空間12aが設けてあるの
で、出口側多孔質透過材10で抑えることができない低
い周波数の圧力変動を低減し消音空間として作用させる
ことが可能である。また、多孔質透過材10は本体11
内の冷媒流れ方向に対して略直線状に配置されている入
口内部空間12aおよび出口内部空間12aに対して略
直線上の位置に配置されている。したがって、多孔質透
過材10と絞り通路11aまでの流路は、略直線状にあ
り、しかも構造が簡単で抵抗が小さくなるように構成さ
れているので、多孔質透過材10を通過した冷媒の流動
状態は均質気液二相流(蒸気冷媒と液冷媒がよく混合さ
れた状態)となり、さらに冷媒はこの均質気液二相流
(蒸気冷媒と液冷媒がよく混合された状態)を維持した
状態で絞り通路(オリフィス)11aを通過できるため
冷媒の速度変動が生じず、圧力も変動せず、騒音も発生
しにくい。Furthermore, since the inlet internal space 12a is provided on the inlet side of the throttle portion 6, it is possible to reduce pressure fluctuations at a low frequency which cannot be suppressed by the inlet side porous permeable material 10 and to act as a sound deadening space. It is possible. Similarly, since the outlet internal space 12a is also provided on the outlet side of the throttle portion 9, it is possible to reduce pressure fluctuations at low frequencies that cannot be suppressed by the outlet-side porous permeable material 10 and to act as a sound deadening space. . In addition, the porous permeable material 10 is the main body 11
It is arranged at a position on a substantially straight line with respect to the inlet internal space 12a and the outlet internal space 12a, which are arranged substantially linearly with respect to the refrigerant flow direction therein. Therefore, the flow path to the porous permeable material 10 and the throttle passage 11a is substantially linear, and the structure is simple and the resistance is small. The flow state becomes a homogeneous gas-liquid two-phase flow (a state in which the vapor refrigerant and the liquid refrigerant are well mixed), and the refrigerant maintains this homogeneous gas-liquid two-phase flow (a state in which the vapor refrigerant and the liquid refrigerant are well mixed). Since it can pass through the throttle passage (orifice) 11a in this state, the speed of the refrigerant does not fluctuate, the pressure does not fluctuate, and noise hardly occurs.
【0043】このため、従来装置で必要であった、遮音
材や制振材を絞り装置6の周囲に巻きつけるなどの対策
も不要でコスト低減となり、さらに冷凍サイクル装置の
リサイクル性も向上する。なお、上述した気液二相冷媒
に起因する冷媒流動音の課題に関しては空気調和機に限
定されることなく、冷蔵庫などの冷凍サイクルを構成す
る装置についての課題であり、本実施の形態の絞り装置
はこのような冷凍サイクル装置一般に広く適用すること
で、同様の効果が得られる。Therefore, it is not necessary to take a measure such as winding a sound insulating material or a vibration damping material around the expansion device 6, which is required in the conventional device, and the cost is reduced, and the recyclability of the refrigeration cycle device is improved. Note that the problem of the refrigerant flow noise caused by the gas-liquid two-phase refrigerant described above is not limited to the air conditioner, but is a problem for a device that constitutes a refrigeration cycle such as a refrigerator, and the throttle of the present embodiment. The same effect can be obtained by widely applying the device to such a refrigeration cycle device in general.
【0044】ここで、多孔質透過材10の固定が不十分
だと、冷凍サイクル装置を作動中、多孔質透過材が定位
置から外れたりして、騒音低減の効果がなくなってしま
うが、本実施例では本体11位置決め突起11bと押さ
え部品12が多孔質透過材をはさみこむように固定接合
されるため、多孔質透過材10が定位置から外れたりず
れたりすることなく、安定した動作ができる絞り装置を
得ることができる。If the fixing of the porous permeable material 10 is insufficient, the porous permeable material may come out of position during operation of the refrigeration cycle apparatus, and the noise reduction effect may be lost. In the embodiment, since the positioning protrusion 11b of the main body 11 and the pressing member 12 are fixedly joined to each other so as to sandwich the porous permeable material, the porous permeable material 10 can be stably operated without being displaced or displaced from the fixed position. The device can be obtained.
【0045】また、多孔質透過材10を位置決め突起1
1aに当接させ、その後に押さえ部品12により多孔質
透過材10を位置決め突起11bとの間に挟み込むよう
に押さえつけるように組み立てる。この時、押さえ部品
12は本体11に圧入、焼きばめ、溶接などで固着され
る。したがって、組立時に多孔質透過材10の位置決め
が簡単に確実に行えるので、組立時間が短縮され信頼性
も向上する低コストな絞り装置が得られる。また、構造
が簡単なので、低コストな絞り装置を得ることが出来
る。また、従来装置で必要であった遮音材や制振材を絞
り装置の周囲に巻きつけるなどの対策も不要で低コスト
な冷凍サイクル装置を得ることができる。Further, the porous permeable material 10 is attached to the positioning protrusion 1
The porous permeable material 10 is assembled so that it is brought into contact with 1a, and then the porous permeable material 10 is pressed by the pressing component 12 so as to be sandwiched between it and the positioning protrusion 11b. At this time, the pressing component 12 is fixed to the main body 11 by press fitting, shrink fitting, welding or the like. Therefore, since the porous permeable material 10 can be easily and surely positioned at the time of assembling, it is possible to obtain a low-cost throttling device in which the assembling time is shortened and the reliability is improved. Moreover, since the structure is simple, a low-cost diaphragm device can be obtained. In addition, it is possible to obtain a low-cost refrigeration cycle apparatus, which does not require measures such as winding a sound insulating material or a vibration damping material around the diaphragm device, which is required in the conventional device.
【0046】また冷媒回路中の異物の問題も多孔質透過
材10の通気孔の径を一般的な冷媒回路で使用されるフ
ィルター(一般には通気孔の径は100μm程度)より
も大きい100μm〜500μmにすることにより、詰
まることがなく、安定した動作を行うことができるの
で、信頼性の高い絞り装置を得ることが出来る。The problem of foreign matter in the refrigerant circuit is also 100 μm to 500 μm, which is larger than that of a filter used in a general refrigerant circuit (generally, the diameter of the air holes is about 100 μm). By doing so, stable operation can be performed without clogging, so that a highly reliable diaphragm device can be obtained.
【0047】また図6、図7は冷凍サイクル装置たとえ
ば空調装置の室内機の前面カバーをはずした状態での正
面図であり、6は絞り装置、25は熱交換器、24は制
御装置、23はファンモーター、38は室内機の筐体で
あり、また図8、図9、図10は、空調装置の室内機の
断面図である。FIGS. 6 and 7 are front views of the refrigeration cycle apparatus, for example, an indoor unit of an air conditioner with the front cover removed, where 6 is a throttle device, 25 is a heat exchanger, 24 is a control device, and 23. Is a fan motor, 38 is a housing of the indoor unit, and FIGS. 8, 9, and 10 are cross-sectional views of the indoor unit of the air conditioner.
【0048】図において、6は絞り装置、25は熱交換
器、、39は送風ファン、38は室内機の筐体である。
実施の形態1で説明した絞り装置を室内機に設置する場
合は、筐体の正面位置では図6のように熱交換器25と
ファンモータ23、制御装置24の間の空間などに設置
することがき、また、筐体の断面上の位置では図8のよ
うに前面部、図9のように筐体の上部、図10のように
筐体の後方側など本実施の形態の絞り装置は低騒音であ
るため空間さえあれば遮音材などなくてもどこにでもに
設置できる。また図7のように熱交換機25と筐体の間
の空間に設置することが出来る。位置は上記と同じ位置
に設置できるIn the figure, 6 is a throttle device, 25 is a heat exchanger, 39 is a blower fan, and 38 is a housing of an indoor unit.
When the expansion device described in the first embodiment is installed in the indoor unit, it should be installed in the space between the heat exchanger 25, the fan motor 23, and the control device 24 at the front position of the housing as shown in FIG. At the position on the cross-section of the case, the front side as shown in FIG. 8, the upper part of the case as shown in FIG. 9, and the rear side of the case as shown in FIG. Because it is a noise, it can be installed anywhere without sound insulation as long as there is space. Further, as shown in FIG. 7, it can be installed in the space between the heat exchanger 25 and the housing. The position can be set at the same position as above
【0049】また本実施の形態1の絞り装は低騒音であ
るため吸音材が要らず、冷凍サイクル装置の室内機のそ
の他のあいている空間のどこにでも設置できる。また絞
り装置の設置方向は流体(冷媒)の流れに対して水平、
略直角、斜めなどどの設置方向でもよい。また略直角、
斜め設置の場合、流体(冷媒)は下から上、上から下の
どちらの方向から流してもよい。Further, since the diaphragm of the first embodiment has low noise, no sound absorbing material is required, and the diaphragm can be installed in any other open space of the indoor unit of the refrigeration cycle apparatus. In addition, the installation direction of the expansion device is horizontal to the flow of fluid (refrigerant),
Any installation direction such as a substantially right angle or an angle may be used. Also a right angle,
In the case of oblique installation, the fluid (refrigerant) may flow from either the bottom to the top or the top to the bottom.
【0050】また、図11に示した押さえ部品112を
使用しても良い。図11は本実施の形態1の別の実施例
を示す絞り装置の断面図である。図において、112は
押さえ部品であり、配管接続部がバーリング加工されて
おり、プレス成形や絞り加工によって造られている。押
さえ部品112の接続配管13の接続部をバーリング加
工することによって、押さえ部品112をプレス等で容
易に生産できるので低コストの絞り装置を得ることがで
きる。Alternatively, the holding component 112 shown in FIG. 11 may be used. FIG. 11 is a cross-sectional view of a diaphragm device showing another example of the first embodiment. In the figure, reference numeral 112 is a pressing component, and the pipe connecting portion is burring processed, and is manufactured by press molding or drawing. By burring the connecting portion of the connecting pipe 13 of the pressing component 112, the pressing component 112 can be easily produced by a press or the like, so that a low-cost expansion device can be obtained.
【0051】また、図12、図13に本実施の形態1の
別の実施例を示す絞り装置の断面図を表している。図1
2において、122は押さえ部品であり、流路である配
管13A,13B,13Cが本体11の流れ方向に略平
行に接続されている。また、図13においては、流路で
ある配管13A,13B,13C、13Dが本体11の
流れ方向に略平行に接続されている。前述の押さえ部品
12、112は、接続配管13が入口1箇所、出口1箇
所であるが、図12のように入口2箇所、出口1箇所
や、図13のように入口2箇所、出口2箇所でもよい。12 and 13 are cross-sectional views of a diaphragm device showing another example of the first embodiment. Figure 1
In FIG. 2, 122 is a pressing component, and the pipes 13A, 13B, and 13C that are flow paths are connected substantially parallel to the flow direction of the main body 11. Further, in FIG. 13, the pipes 13A, 13B, 13C and 13D, which are the flow paths, are connected substantially parallel to the flow direction of the main body 11. In the above-described pressing parts 12 and 112, the connection pipe 13 has one inlet and one outlet, but two inlets and one outlet as shown in FIG. 12, and two inlets and two outlets as shown in FIG. But it is okay.
【0052】配管13A乃至13Dは押さえ部品122
の内部の空間12aに本体11内の流体(冷媒)の流れ
方向に略平行に接続され、絞り通路11aと配管13A
乃至13Dは連通している。また、入口、出口とも2箇
所以上の複数箇所から接続配管が接続されていてもよ
い。また、多孔質透過材10は押さえ部品14と位置決
め突起11bの間に挟みこまれ、押さえ部品14によっ
て本体11に本体内の流体(冷媒)の流れ方向に押圧固
定されている。以上のように構成すると、熱交換器のの
入口、出口が複数本であっても、そのまま絞り装置6に
接続できるので、わざわざ1本にまとめなくても良く、
加工、組立時間が短縮できる。The pipes 13A to 13D are holding parts 122.
Is connected to the space 12a inside the main body 11 substantially parallel to the flow direction of the fluid (refrigerant), and the throttle passage 11a and the pipe 13A are connected.
13D are in communication with each other. Further, the connection pipes may be connected to the inlet and the outlet from a plurality of two or more locations. Further, the porous permeable material 10 is sandwiched between the pressing component 14 and the positioning protrusion 11b, and is pressed and fixed to the main body 11 by the pressing component 14 in the flow direction of the fluid (refrigerant) in the main body. With the above-mentioned configuration, even if the heat exchanger has a plurality of inlets and outlets, the heat exchanger can be directly connected to the expansion device 6, so it is not necessary to purposely combine them into one.
Processing and assembly time can be shortened.
【0053】なお多孔質透過材10は発砲金属だけでな
く、金属の粉末を焼結した焼結金属、またはセラミック
スの多孔質透過材、または金網、金網を数枚重ねたも
の、金網を数枚重ねて焼結した焼結金網、積層金網でも
同様の効果を得る。The porous permeable material 10 is not limited to a foam metal, but is also a porous permeable material made of sintered metal obtained by sintering a metal powder, or ceramics, wire mesh, several wire meshes, or several wire meshes. The same effect can be obtained with a sintered wire net and a laminated wire net that are stacked and sintered.
【0054】また多孔質透過材10は円盤状ではなく、
多角形状の形状でも同様の効果を得る。それに伴い、本
体11、押さえ部品12、112、122も円筒形でな
く多角形の筒状の形状でも同様な効果を得る。また、本
実施の形態では、オリフィス11aと多孔質透過材10
の間に所定の隙間11cを設けるようにしたが、この所
定隙間11cは無くても良い。図14は所定隙間11c
を設けない場合の絞り装置の一例を表す断面図である。
図14のようにオリフィス11aと多孔質透過材10の
間に所定の隙間(図3で説明した所定の隙間11c)が
ない場合は、位置決め突起11bを設ける必要がなくな
るので、低コストな絞り装置を得ることができる。ま
た、本実施の形態では、絞り装置6を第2流量制御装置
に適用した場合について説明したが、第1流量制御装置
に適用しても同等の効果が得られるのは言うまでもな
い。The porous permeable material 10 is not in the shape of a disc,
The same effect can be obtained with a polygonal shape. Along with that, the same effect can be obtained even if the main body 11 and the pressing parts 12, 112, 122 are not cylindrical but have a polygonal tubular shape. In addition, in the present embodiment, the orifice 11a and the porous permeable material 10 are
Although the predetermined gap 11c is provided between the two, the predetermined gap 11c may be omitted. FIG. 14 shows a predetermined gap 11c
It is a sectional view showing an example of a diaphragm device when not providing.
If there is no predetermined gap (predetermined gap 11c described with reference to FIG. 3) between the orifice 11a and the porous permeable material 10 as shown in FIG. 14, it is not necessary to provide the positioning protrusion 11b, so a low cost diaphragm device. Can be obtained. Further, although the case where the expansion device 6 is applied to the second flow rate control device has been described in the present embodiment, it is needless to say that the same effect can be obtained even when applied to the first flow rate control device.
【0055】実施の形態2.図15、図16、図17、
図18は実施の形態2を表す絞り装置の断面図であり、
実施の形態1と同じ部品は同じ符号を付して説明は省略
する。図15において、10は多孔質透過材、11はオ
リフィスである小径の貫通穴を有した例えば円盤状や円
柱状をした本体、14は本体11に本体11内の流体
(冷媒)の流れ方向側より挿入され、内部の空間14
a、14bを有し、内部の空間14bと外部を連通する
流路(例えば配管)13を有する押さえ部品である。流
路である配管13は押さえ部品14に本体11内の流体
(冷媒)の流れ方向と略直角方向から内部の空間14b
に接続されることによって、オリフィス11aは外部と
連通するように構成される。Embodiment 2. 15, FIG. 16, FIG.
FIG. 18 is a sectional view of a diaphragm device representing the second embodiment.
The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. In FIG. 15, 10 is a porous permeable material, 11 is a disk-shaped or columnar main body having a small-diameter through hole that is an orifice, and 14 is the main body 11 in the flow direction of the fluid (refrigerant) in the main body 11. More inserted, internal space 14
It is a pressing component having a and 14b and a flow path (for example, pipe) 13 that communicates the internal space 14b with the outside. The pipe 13 which is a flow path has a space 14b inside the pressing member 14 from a direction substantially perpendicular to the flow direction of the fluid (refrigerant) in the main body 11.
The orifice 11a is configured to communicate with the outside by being connected to.
【0056】そしてオリフィス11aは内径を0.5m
m〜2mm、長さを1mm〜4mmの範囲で、必要な絞
り量によってその寸法は決められている。本体11には
オリフィス11aと多孔質透過材10に所定の隙間11
cが生じるように本体11内の流体(冷媒)の流れ方向
に例えばリング状の位置決め突起11bが設けられてい
る。この所定の隙間11cがあることにより、多孔質透
過材10を通過する流体(冷媒)の通過面積を大きく有
効に利用できるため、流体(冷媒)中に異物が混入した
場合でも異物に対する詰まり耐力が向上する。また、位
置決め突起11bがあることにより、多孔質透過材10
および押さえ部品12の位置決めが簡単で確実に行え、
組立性も向上する。また、別途冷媒回路中にフィルター
を設ける必要が無く、低コストで信頼性の高い冷凍サイ
クル装置が得られる。The orifice 11a has an inner diameter of 0.5 m.
In the range of m to 2 mm and the length of 1 mm to 4 mm, the dimension is determined by the necessary drawing amount. The body 11 has an orifice 11a and the porous permeable material 10 has a predetermined gap 11
For example, a ring-shaped positioning protrusion 11b is provided in the flow direction of the fluid (refrigerant) in the main body 11 so as to generate c. The presence of this predetermined gap 11c makes it possible to effectively use the passage area of the fluid (refrigerant) passing through the porous permeable material 10 effectively. Therefore, even if foreign matter is mixed into the fluid (refrigerant), the blocking resistance against the foreign matter is improved. improves. Further, since the positioning protrusion 11b is provided, the porous permeable material 10
And the positioning of the pressing part 12 can be performed easily and securely,
Assembling is also improved. Further, it is not necessary to separately provide a filter in the refrigerant circuit, and a refrigeration cycle device having low cost and high reliability can be obtained.
【0057】リング状の位置決め突起11bの内径は1
0mm〜20mmに、また多孔質透過材10とオリフィ
ス11aの隙間11cは5mm以下になるように位置決
め突起11bの高さは設定されている。また、多孔質透
過材10は、本体11に流体(冷媒)の流れ方向から挿
入されている押さえ部品14によって、位置決め突起1
1bに挟み込まれた状態で押さえつけられ本体11に挿
入固定されている。多孔質透過材10は通気孔の径が1
00μmから500μmで厚さを1ミリメートルから1
0ミリメートルとしたNiまたはNi−Crまたはステ
ンレスからなる発泡金属を使用している。また本体1
1、押さえ部品14は銅、黄銅、アルミニウム、ステン
レスなどの金属を、切削、あるいは鍛造などによって作
られている。The inner diameter of the ring-shaped positioning protrusion 11b is 1
The height of the positioning protrusion 11b is set to 0 mm to 20 mm, and the gap 11c between the porous permeable material 10 and the orifice 11a is 5 mm or less. In addition, the porous permeable material 10 is positioned by the pressing component 14 inserted into the main body 11 in the flow direction of the fluid (refrigerant).
It is pressed down while being sandwiched by 1b and is inserted and fixed to the main body 11. Porous permeable material 10 has a vent hole diameter of 1
The thickness is from 00 μm to 500 μm and the thickness is from 1 mm to 1
A metal foam made of Ni, Ni-Cr, or stainless steel having a thickness of 0 mm is used. Also the main body 1
1. The pressing component 14 is made of metal such as copper, brass, aluminum, and stainless by cutting or forging.
【0058】また、図16に示したように内部の空間1
4bは無くても良い。図において、114は押さえ部品
で、流路である配管13が直接内部の空間14aに連通
するような構造になっており、図15のように内部の空
間14aを設けなくても良くなるので、加工時間を短縮
でき、低コストな絞り装置を得ることができる。また図
17のように流路をバーリング加工してもよい。図にお
いて、124は押さえ部品で、流路である配管13の接
続部をバーリング加工している。Further, as shown in FIG. 16, the internal space 1
4b may be omitted. In the figure, reference numeral 114 denotes a holding component, which has a structure in which the pipe 13 that is a flow path directly communicates with the internal space 14a, and it is not necessary to provide the internal space 14a as shown in FIG. It is possible to shorten the processing time and obtain a low-cost diaphragm device. Alternatively, the flow path may be burred as shown in FIG. In the figure, reference numeral 124 is a pressing component, and the connecting portion of the pipe 13 that is a flow path is burred.
【0059】したがって、押さえ部品124をプレス等
で容易に製造できるので低コストの絞り装置を得ること
ができる。また図18において、134は流路である配
管13が接続された押さえ部品であり、15はふたであ
る。図に示したように筒状のパイプ部品を押さえ部品1
34としてふた15を接合するような構造にしているの
で、市販のパイプが流用でき、低コストな絞り装置を得
ることができる。また、配管13をふた15に設けても
同様の効果が得られる。Therefore, since the pressing member 124 can be easily manufactured by a press or the like, a low-cost squeezing device can be obtained. Further, in FIG. 18, reference numeral 134 is a pressing component to which the pipe 13 which is a flow path is connected, and 15 is a lid. As shown in the figure, hold down the tubular pipe part 1
Since the lid 15 has a structure in which the lid 15 is joined, a commercially available pipe can be used and a low-cost expansion device can be obtained. Also, the same effect can be obtained by providing the pipe 13 on the lid 15.
【0060】また、本実施の形態では流路は入口、出口
がそれぞれ1つづつであるが、図19、図20のように
複数の流路を設けても良い。図19、図20は本実施の
形態2の別の実施例を表す絞り装置の断面図である。図
19において、13A、13B,13C,13Dは流路
である配管であり、14は配管13A乃至13Dが接続
された押さえ部品である。配管13A乃至13Dは押さ
え部品14の内部の空間14bに本体11内の流体(冷
媒)の流れ方向に略直角に接続され、絞り通路11aと
配管13A乃至13Dは連通している。Further, in this embodiment, each of the flow passages has one inlet and one outlet, but a plurality of flow passages may be provided as shown in FIGS. 19 and 20. 19 and 20 are cross-sectional views of a diaphragm device representing another example of the second embodiment. In FIG. 19, 13A, 13B, 13C, and 13D are pipes that are flow paths, and 14 is a pressing component to which the pipes 13A to 13D are connected. The pipes 13A to 13D are connected to the space 14b inside the holding component 14 at substantially right angles to the flow direction of the fluid (refrigerant) in the main body 11, and the throttle passage 11a and the pipes 13A to 13D communicate with each other.
【0061】また、多孔質透過材10は押さえ部品14
と位置決め突起11bの間に挟みこまれ、押さえ部品1
4によって本体11に本体内の流体(冷媒)の流れ方向
に押圧固定されている。また、図20は配管13が4つ
であったが、図19に示すように13A,13B、13
Dの3つであってもよい。以上のように構成すると、熱
交換器のの入口、出口が複数本であっても、そのまま絞
り装置6に接続できるので、わざわざ1本にまとめなく
ても良く、加工、組立時間が短縮できる。Further, the porous permeable material 10 is used as the pressing member 14
It is sandwiched between the positioning protrusion 11b and
It is pressed and fixed to the main body 11 by 4 in the flow direction of the fluid (refrigerant) in the main body. In addition, although the number of the pipes 13 is four in FIG. 20, as shown in FIG.
There may be three of D. With the above configuration, even if the heat exchanger has a plurality of inlets and outlets, they can be directly connected to the expansion device 6, so that it is not necessary to purposely combine them into one, and processing and assembly time can be shortened.
【0062】なお多孔質透過材10は発砲金属だけでな
く、金属の粉末を焼結した焼結金属、またはセラミック
スの多孔質透過材、または金網、金網を数枚重ねたも
の、金網を数枚重ねて焼結した焼結金網、積層金網でも
同様の効果を得る。The porous permeable material 10 is not limited to a foam metal, but is also a porous permeable material of sintered metal obtained by sintering metal powder, or ceramics, wire mesh, several wire meshes, or several wire meshes. The same effect can be obtained with a sintered wire net and a laminated wire net that are stacked and sintered.
【0063】また多孔質透過材10は円盤状でなくても
良く、多角形状の形状でも同様の効果を得る。また、押
さえ部品14も円筒形でなく多角形の筒状の形状でも同
様な効果を得る。Further, the porous permeable material 10 does not have to be disk-shaped, and the same effect can be obtained even if it has a polygonal shape. Further, the pressing member 14 may have a polygonal tubular shape instead of the cylindrical shape to obtain the same effect.
【0064】実施の形態3.図21、図22、図23、
図24は実施の形態3の絞り装置の断面図であり、実施
の形態1と同じ部品は同じ符号を付して説明を省略す
る。図21において、10は多孔質透過材、11はオリ
フィスである絞り通路11aを有する円盤状の板と一体
となった円筒形をした本体、12は本体11に挿入され
た押さえ部品であり、流路である配管13Eは押さえ部
品12に本体11内の流体(冷媒)の流れ方向と略平行
に、また、配管13Fは押さえ部品14に本体11内の
流体(冷媒)の流れ方向と略直角に接続されている。Third Embodiment 21, 22, 23,
FIG. 24 is a cross-sectional view of the diaphragm device according to the third embodiment, and the same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. In FIG. 21, 10 is a porous permeable material, 11 is a cylindrical main body integrated with a disk-shaped plate having a throttle passage 11a that is an orifice, and 12 is a pressing member inserted in the main body 11. The pipe 13E, which is a passage, is substantially parallel to the flow direction of the fluid (refrigerant) in the main body 11 to the holding component 12, and the pipe 13F is substantially perpendicular to the flow direction of the fluid (refrigerant) in the main body 11 to the holding component 14. It is connected.
【0065】本体11にはオリフィス11aと多孔質透
過材10との間に所定の隙間11cが生じるように流れ
方向のオリフィス11aの前後にリング状の位置決め突
起11bが設けられている。リング状の位置決め突起1
1bの内径は10mm〜20mmに設定してある。ま
た、オリフィス11aの内径は0.5mm〜2mmであ
り、オリフィス11aの長さは1mm〜4mmであり、
流体(冷媒)の必要絞り量によって以上の寸法範囲内
で、寸法を決める。また多孔質透過材10とオリフス1
1aの隙間11cは5mm以下の範囲内になるように位
置決め突起11bの突出量を設定している。実験では、
以上の範囲内に設定した時に騒音低減効果が得られた。The main body 11 is provided with ring-shaped positioning projections 11b before and after the orifice 11a in the flow direction so that a predetermined gap 11c is formed between the orifice 11a and the porous permeable material 10. Ring-shaped positioning protrusion 1
The inner diameter of 1b is set to 10 mm to 20 mm. Further, the inner diameter of the orifice 11a is 0.5 mm to 2 mm, the length of the orifice 11a is 1 mm to 4 mm,
The size is determined within the above size range depending on the required throttle amount of the fluid (refrigerant). In addition, the porous permeable material 10 and the ORIFUS 1
The protrusion amount of the positioning protrusion 11b is set so that the gap 11c of 1a is within a range of 5 mm or less. In the experiment,
When set within the above range, the noise reduction effect was obtained.
【0066】多孔質透過材10は、位置決め突起11b
に当接して流体(冷媒)の流れ方向の位置決めが行われ
ている。また、多孔質透過材10は、オリフィス11a
側の面と反対側の面より流路13を有する押さえ部品1
2、14によって、位置決め突起11b側にに押しつけ
られた状態で固定されている。押さえ部品12、14は
流路13の内径以上の内径と所定の長さを持った空間1
2aを有しており、多孔質透過材10の固定を兼ねて本
体11に挿入し接合されている。多孔質透過材10は通
気孔の平均径が100μmから500μmで厚さを1ミ
リメートルから10ミリメートル程度のNiまたはNi
−Crまたはステンレスからなる発泡金属を使用してい
る。また本体11、押さえ部品12は銅、黄銅、アルミ
ニウム、ステンレスなどの金属を、切削や鍛造などによ
って作られている。The porous permeable material 10 has positioning protrusions 11b.
Is contacted with and positioned in the flow direction of the fluid (refrigerant). Further, the porous permeable material 10 has an orifice 11a.
Holding part 1 having a flow path 13 from the surface opposite to the side surface
It is fixed in a state of being pressed to the side of the positioning protrusion 11b by the members 2 and 14. The holding parts 12 and 14 are the space 1 having an inner diameter larger than the inner diameter of the flow path 13 and a predetermined length.
2a, the porous permeable material 10 is also fixed and inserted into the main body 11 and joined. The porous permeable material 10 is made of Ni or Ni having an average diameter of air holes of 100 μm to 500 μm and a thickness of about 1 mm to 10 mm.
-A foam metal made of Cr or stainless steel is used. The main body 11 and the pressing component 12 are made of metal such as copper, brass, aluminum and stainless steel by cutting or forging.
【0067】また、図21に示したように内部の空間1
4bは図22のように無くても良い。図22において、
114は押さえ部品で、流路である配管13が直接内部
の空間14aに連通するような構造になっており、図2
1のように内部の空間14aを設けなくても良くなるの
で、加工時間を短縮でき、低コストな絞り装置を得るこ
とができる。また、図23に示した押さえ部品112や
124を使用しても良い。図において、112、124
は押さえ部品であり、配管接続部がバーリング加工され
ており、プレス成形や絞り加工によって造られている。
押さえ部品112、124の接続配管13の接続部をバ
ーリング加工することによって、押さえ部品112、1
24をプレス等で容易に生産できるので低コストの絞り
装置を得ることができる。Further, as shown in FIG. 21, the internal space 1
4b may be omitted as shown in FIG. In FIG. 22,
Reference numeral 114 denotes a pressing component, which has a structure in which the pipe 13 that is a flow path directly communicates with the internal space 14a.
Since it is not necessary to provide the internal space 14a as in No. 1, processing time can be shortened and a low-cost diaphragm device can be obtained. Further, the pressing parts 112 and 124 shown in FIG. 23 may be used. In the figure, 112, 124
Is a pressing part, and the pipe connection part is burring processed, and is manufactured by press molding or drawing.
By burring the connecting portions of the connecting pipes 13 of the pressing parts 112, 124, the pressing parts 112, 1
Since 24 can be easily produced by a press or the like, a low-cost squeezing device can be obtained.
【0068】また図24において、112は流路である
配管13が本体の流れ方向に略平行に接続された押さえ
部品、134は流路である配管13が本体の流れ方向に
略直角に接続された押さえ部品であり、15はふたであ
る。図に示したように筒状のパイプなどで成形された押
さえ部品134にふた15を接合するような構造にして
いるので、市販のパイプが流用でき、低コストな絞り装
置を得ることができる。また、配管13をふた15に設
けても同様の効果が得られる。Further, in FIG. 24, 112 is a pressing member in which the pipe 13 which is a flow path is connected substantially parallel to the flow direction of the main body, and 134 is the pipe part 13 which is a flow path is connected at a substantially right angle to the flow direction of the main body. It is a holding part, and 15 is a lid. As shown in the figure, since the lid 15 is joined to the pressing member 134 formed by a tubular pipe or the like, a commercially available pipe can be diverted and a low-cost expansion device can be obtained. Also, the same effect can be obtained by providing the pipe 13 on the lid 15.
【0069】また本実施例は絞り装置6への流体(冷
媒)の入口1箇所、出口1箇所であるが、図25、図2
6、図27のように入口、出口とも複数にしてもよい。
図25、図26、図27は本実施の形態3の別の実施例
を表す絞り装置の断面図であり、実施の形態1、実施の
形態2と同じ部品は同じ符号を付して説明は省略する。
図25において、13A、13B,13C,13Dは流
路である配管であり、12は配管13A、13bが接続
された押さえ部品、14は配管13C13Dが接続され
た押さえ部品である。配管13A、13Bは押さえ部品
12の内部の空間12aに本体11内の流体(冷媒)の
流れ方向に略平行に接続され、配管13C,13Dは押
さえ部品14の内部の空間14bに本体11内の流体
(冷媒)の流れ方向に略直角に接続され、絞り通路11
aと配管13A乃至13Dは連通している。In this embodiment, there are one inlet (1 point) and one outlet (1 point) for the fluid (refrigerant) to the expansion device 6.
6, there may be a plurality of inlets and outlets.
25, 26, and 27 are cross-sectional views of a diaphragm device representing another example of the third embodiment, and the same parts as those in the first and second embodiments are designated by the same reference numerals and their description will be omitted. Omit it.
In FIG. 25, 13A, 13B, 13C and 13D are pipes which are flow paths, 12 is a holding component to which the pipes 13A and 13b are connected, and 14 is a holding component to which the pipe 13C13D is connected. The pipes 13A and 13B are connected to the space 12a inside the holding component 12 substantially in parallel to the flow direction of the fluid (refrigerant) inside the body 11, and the pipes 13C and 13D are inside the space 11b inside the holding component 14 inside the body 11. The flow passage of the fluid (refrigerant) is connected at substantially right angles, and the throttle passage 11
a and the pipes 13A to 13D communicate with each other.
【0070】また、多孔質透過材10は押さえ部品1
2、14と位置決め突起11bの間に挟みこまれ、押さ
え部品12、14によって本体11に本体11内の流体
(冷媒)の流れ方向に押圧固定されている。また、図2
5は配管13が4つであったが、図26に示すように1
3A,13B、13Dの3つや図27に示すように13
A,13C、13Dの3つであってもよい。以上のよう
に構成すると、熱交換器の入口、出口が複数本であって
も、そのまま絞り装置6に接続できるので、わざわざ1
本にまとめなくても良く、加工、組立時間が短縮でき
る。Further, the porous permeable material 10 is the pressing component 1
It is sandwiched between 2 and 14 and the positioning protrusion 11b, and is pressed and fixed to the main body 11 in the flow direction of the fluid (refrigerant) in the main body 11 by the pressing parts 12 and 14. Also, FIG.
No. 5 had four pipes 13, but as shown in FIG.
3A, 13B, 13D and 13 as shown in FIG.
There may be three of A, 13C and 13D. With the above configuration, even if the heat exchanger has a plurality of inlets and outlets, the heat exchanger can be directly connected to the expansion device 6, so that it is not necessary.
It is not necessary to put them together in a book, and processing and assembly time can be shortened.
【0071】なお多孔質透過材10は発砲金属だけでな
く、金属の粉末を焼結した焼結金属、またはセラミック
スの多孔質透過材、または金網、金網を数枚重ねたも
の、金網を数枚重ねて焼結した焼結金網、積層金網でも
同様の効果を得る。The porous permeable material 10 is not limited to foam metal, but is also a porous permeable material of sintered metal or ceramics obtained by sintering metal powder, or wire mesh, several wire meshes, or several wire meshes. The same effect can be obtained with a sintered wire net and a laminated wire net that are stacked and sintered.
【0072】また多孔質透過材10は円盤状でなくても
よく、多角形状の形状などでも同様の効果を得る。ま
た、押さえ部品12、14、本体11も円筒形でなく多
角形の筒状の形状などでも同様な効果を得る。Further, the porous permeable material 10 does not have to be disk-shaped, and the same effect can be obtained even if it has a polygonal shape. Further, the pressing parts 12, 14 and the main body 11 may have a polygonal tubular shape instead of a cylindrical shape to obtain the same effect.
【0073】また、実施の形態1乃至実施の形態3で説
明したように、2つの空間12a、12aに連通する流
路13の取り出し方向は本体11内の流体(冷媒)の流
れ方向に対して略平行あるいは略直角などどの方向から
でも取り出すことが可能なので、冷凍サイクル装置など
のあらゆる装置に組み付ける場合に、組み付け配管を曲
げたりしなくても良く、容易に組み込むことができ、組
み付け時間が短縮できる。Further, as described in the first to third embodiments, the take-out direction of the flow path 13 communicating with the two spaces 12a, 12a is relative to the flow direction of the fluid (refrigerant) in the main body 11. Since it can be taken out from almost any direction such as approximately parallel or approximately right angle, when assembling to any device such as a refrigeration cycle device, it is not necessary to bend the assembly pipe, it can be easily assembled and the assembly time is shortened. it can.
【0074】実施の形態4.図28、図29は実施の形
態4を表す絞り装置の断面図であり、実施の形態1で説
明したのと同様の冷媒回路に接続されている。図におい
て、10は多孔質透過材、18はオリフィスとなる絞り
通路18aを有した例えば円筒形をしたオリフィス部品
であり、絞り通路18aの両側に多孔質透過材10が圧
入やかしめなどにより挿入固定されている。オリフィス
18aは内径を0.5mm〜2mm、長さを1mm〜4
mmの範囲で、必要な絞り量によってその寸法を決め
る。Fourth Embodiment 28 and 29 are cross-sectional views of the expansion device showing the fourth embodiment, and are connected to the same refrigerant circuit as described in the first embodiment. In the figure, 10 is a porous permeable material, and 18 is, for example, a cylindrical orifice component having a throttle passage 18a serving as an orifice. The porous permeable material 10 is inserted and fixed on both sides of the throttle passage 18a by press fitting or caulking. Has been done. The orifice 18a has an inner diameter of 0.5 mm to 2 mm and a length of 1 mm to 4
In the range of mm, the size is determined according to the required drawing amount.
【0075】なおオリフィス18aと多孔質透過材10
との間に所定の隙間18cが生じるようにオリフィス部
品18には流体(冷媒)の流れ方向にオリフィス18a
の前後に例えばリング状の位置決め突起18bが設けら
れている。位置決め突起18bの内径は10mm〜20
mmに、また多孔質透過材10とオリフス18aの隙間
18cが5mm以下になるような位置決め突起18bの
高さは設定されている。そして、多孔質透過材10が一
体に固定されたオリフィス部品18は例えばパイプ状を
した本体19に圧入や焼きばめなどにより固定され、内
部を2つの空間19a、19aに分けている。リング状
の位置決め突起18bはオリフィス部品18と一体でも
別体でもどちらでもよい。したがって、オリフィス18
aと多孔質透過材10を予め組み立てた状態で本体の組
み付けることができるので、組立性が向上するととも
に、信頼性の高い絞り装置を得ることができる。The orifice 18a and the porous permeable material 10
The orifice part 18 is provided in the orifice component 18 in the flow direction of the fluid (refrigerant) so that a predetermined gap 18c is formed between
For example, a ring-shaped positioning protrusion 18b is provided before and after. The positioning protrusion 18b has an inner diameter of 10 mm to 20
The height of the positioning protrusion 18b is set so that the gap 18c between the porous permeable material 10 and the orifice 18a is 5 mm or less. The orifice component 18 to which the porous permeable material 10 is integrally fixed is fixed to, for example, a pipe-shaped main body 19 by press fitting or shrink fitting, and divides the inside into two spaces 19a, 19a. The ring-shaped positioning protrusion 18b may be integrated with the orifice component 18 or may be a separate member. Therefore, the orifice 18
Since the main body can be assembled in a state where the a and the porous permeable material 10 are preassembled, the assembling property is improved and a highly reliable diaphragm device can be obtained.
【0076】また、本体19はオリフィス部品18が挿
入固定された後で、その両端を絞り加工して流路を形成
しこの流路に配管13を流体(冷媒)の流れ方向に略平
行に接続している。そのとき多孔質透過材10と配管1
3までの空間は所定の距離と所定の内径をもっている。
なお多孔質透過材10は通気孔の径を100μmから5
00μmで厚さを1ミリメートルから10ミリメートル
としたNiまたはNi−Crまたはステンレスからなる
発泡金属を使用している。また、オリフィス部品18は
銅、黄銅、アルミニウム、ステンレスを、切削、あるい
は鍛造などによって作られている。After the orifice component 18 is inserted and fixed in the main body 19, both ends thereof are drawn to form a flow path, and the pipe 13 is connected to the flow path substantially parallel to the flow direction of the fluid (refrigerant). is doing. At that time, the porous permeable material 10 and the pipe 1
The space up to 3 has a predetermined distance and a predetermined inner diameter.
The porous permeable material 10 has a vent hole diameter of 100 μm to 5 μm.
A foam metal made of Ni, Ni-Cr, or stainless having a thickness of 00 μm and a thickness of 1 mm to 10 mm is used. The orifice component 18 is made of copper, brass, aluminum or stainless steel by cutting or forging.
【0077】また、図29のように、オリフィス部品1
8を本体119に挿入した後で、本体119を絞り加工
してオリフィス部品18を固定してもよい。図におい
て、10は多孔質透過材、18は多孔質透過材10をオ
リフィス18aの前後に固定したオリフィス部品、11
9は本体であり、オリフィス部品18の外径よりも若干
大きく造られている。そして、オリフィス部品18を本
体19に挿入した後でオリフィス部品18の両端位置に
相当する本体119を絞り加工することによって、オリ
フィス部品18を本体119に固定する。Further, as shown in FIG. 29, the orifice component 1
After inserting 8 into the body 119, the body 119 may be drawn to fix the orifice component 18. In the figure, 10 is a porous permeable material, 18 is an orifice component in which the porous permeable material 10 is fixed before and after the orifice 18a, 11
Reference numeral 9 denotes a main body, which is made slightly larger than the outer diameter of the orifice component 18. Then, after inserting the orifice component 18 into the main body 19, the orifice component 18 is fixed to the main body 119 by drawing the main body 119 corresponding to both end positions of the orifice component 18.
【0078】したがって、圧入や焼きばめなしなくても
オリフィス部品18が本体119に簡単に挿入できるの
で組立性が向上するとともに絞り装置の製造時間が短縮
される。また、本実施の形態では流体(冷媒)の入口
1、出口1であるが、実施の形態1乃至実施の形態3で
も説明したように入口、出口とも1箇所以上有れば良
く、2個所以上の複数本でもよい。また、入口、出口の
流れ方向を逆に設置してもよい。Therefore, the orifice component 18 can be easily inserted into the main body 119 without press fitting or shrink fitting, so that the assembling property is improved and the manufacturing time of the expansion device is shortened. Further, in the present embodiment, the inlet (1) and the outlet (1) for the fluid (refrigerant) are provided, but as described in the first to third embodiments, it is sufficient that there are one or more inlets and outlets and two or more locations. It may be a plural number. Also, the flow directions of the inlet and the outlet may be installed in reverse.
【0079】なお多孔質透過材10は発砲金属だけでな
く、金属の粉末を焼結した焼結金属、またはセラミック
スの多孔質透過材、または金網、金網を数枚重ねたも
の、金網を数枚重ねて焼結した焼結金網、積層金網でも
同様の効果を得る。The porous permeable material 10 is not limited to a foam metal, but is also a porous permeable material of sintered metal obtained by sintering metal powder, or ceramics, or a wire mesh, several wire meshes, or several wire meshes. The same effect can be obtained with a sintered wire net and a laminated wire net that are stacked and sintered.
【0080】また多孔質透過材10は円盤状でなくても
良く、多角形状などの形状でも同様の効果を得る。ま
た、オリフィス部品18、本体19、119も円筒形で
なく多角形などの筒状の形状でも同様な効果を得る。Further, the porous permeable material 10 does not have to be disk-shaped, and the same effect can be obtained even if it has a polygonal shape or the like. Further, the orifice part 18, the main bodies 19 and 119 may have a cylindrical shape such as a polygonal shape instead of a cylindrical shape to obtain the same effect.
【0081】実施の形態5.図30、図31は実施の形
態5を表す絞り装置の断面図であり、実施の形態1で説
明したのと同様の冷媒回路に接続されている。図におい
て、10は多孔質透過材、18はオリフィスとなる絞り
通路18aを有した例えば円筒形をしたオリフィス部品
であり、絞り通路18aの両側に多孔質透過材10が圧
入やかしめなどにより挿入固定されている。オリフィス
18aは内径を0.5mm〜2mm、長さを1mm〜4
mmの範囲で、必要な絞り量によってその寸法を決め
る。Embodiment 5. 30 and 31 are cross-sectional views of a diaphragm device representing the fifth embodiment, and are connected to the same refrigerant circuit as described in the first embodiment. In the figure, 10 is a porous permeable material, and 18 is, for example, a cylindrical orifice component having a throttle passage 18a serving as an orifice. The porous permeable material 10 is inserted and fixed on both sides of the throttle passage 18a by press fitting or caulking. Has been done. The orifice 18a has an inner diameter of 0.5 mm to 2 mm and a length of 1 mm to 4
In the range of mm, the size is determined according to the required drawing amount.
【0082】なおオリフィス18aと多孔質透過材10
との間に所定の隙間18cが生じるようにオリフィス部
品18には流体(冷媒)の流れ方向にオリフィス18a
の前後に例えばリング状の位置決め突起18bが設けら
れている。位置決め突起18bの内径は10mm〜20
mmに、また多孔質透過材10とオリフス18aの隙間
18cが5mm以下になるような位置決め突起18bの
高さは設定されている。そして、多孔質透過材10が一
体に固定されたオリフィス部品18は例えばパイプ状を
した本体20に圧入や焼きばめなどにより固定されてい
る。リング状の位置決め突起18bはオリフィス部品1
8と一体でも別体でもどちらでもよい。The orifice 18a and the porous permeable material 10
The orifice part 18 is provided in the orifice component 18 in the flow direction of the fluid (refrigerant) so that a predetermined gap 18c is formed between
For example, a ring-shaped positioning protrusion 18b is provided before and after. The positioning protrusion 18b has an inner diameter of 10 mm to 20
The height of the positioning protrusion 18b is set so that the gap 18c between the porous permeable material 10 and the orifice 18a is 5 mm or less. The orifice component 18 to which the porous permeable material 10 is integrally fixed is fixed to, for example, a pipe-shaped main body 20 by press fitting or shrink fitting. The ring-shaped positioning protrusion 18b is the orifice component 1
It may be either integrated with 8 or separate.
【0083】また、本体20はオリフィス部品18が挿
入固定された後で、その両端にふた15を気密に接合し
ている。また、本体20には本体20内の流体(冷媒)
の流れ方向に略直角な方向にバーリング加工して流路を
形成しこの流路に配管13を流体(冷媒)の流れ方向に
略直角に接続している。このとき多孔質透過材10と配
管13までの空間は所定の距離と所定の内径をもってい
る。なお多孔質透過材10は通気孔の径を100μmか
ら500μmで厚さを1ミリメートルから10ミリメー
トルとしたNiまたはNi−Crまたはステンレスから
なる発泡金属を使用している。また、オリフィス部品1
8は銅、黄銅、アルミニウム、ステンレスを、切削、あ
るいは鍛造などによって作られている。In the main body 20, after the orifice component 18 is inserted and fixed, the lids 15 are hermetically joined to both ends thereof. Further, the body 20 has a fluid (refrigerant) in the body 20.
The flow path is formed by burring in a direction substantially perpendicular to the flow direction, and the pipe 13 is connected to this flow path at a right angle to the flow direction of the fluid (refrigerant). At this time, the space between the porous permeable material 10 and the pipe 13 has a predetermined distance and a predetermined inner diameter. As the porous permeable material 10, a foam metal made of Ni, Ni-Cr, or stainless steel having a diameter of a ventilation hole of 100 μm to 500 μm and a thickness of 1 mm to 10 mm is used. Also, the orifice part 1
8 is made of copper, brass, aluminum or stainless steel by cutting or forging.
【0084】また、図31のように、オリフィス部品1
8を本体20に挿入した後で、本体20を絞り加工して
オリフィス部品18を固定してもよい。図において、1
0は多孔質透過材、18は多孔質透過材10をオリフィ
ス18aの前後に固定したオリフィス部品、20は本体
であり、オリフィス部品18の外径よりも若干大きく造
られている。そして、オリフィス部品18を本体20に
挿入した後でオリフィス部品18の両端位置に相当する
本体20を絞り加工することによって、オリフィス部品
18を本体20に固定する。Further, as shown in FIG. 31, the orifice component 1
After inserting 8 into the body 20, the body 20 may be drawn to fix the orifice component 18. In the figure, 1
Reference numeral 0 is a porous permeable material, 18 is an orifice component in which the porous permeable material 10 is fixed in front of and behind the orifice 18a, and 20 is a main body, which is made slightly larger than the outer diameter of the orifice component 18. Then, after the orifice component 18 is inserted into the main body 20, the main body 20 corresponding to both end positions of the orifice component 18 is drawn, so that the orifice component 18 is fixed to the main body 20.
【0085】したがって、圧入や焼きばめなどしなくて
もオリフィス部品18が本体20に簡単に挿入できるの
で組立性が向上するとともに絞り装置の製造時間が短縮
される。また、本実施の形態では流体(冷媒)の入口
1、出口1であるが、実施の形態1乃至実施の形態3で
も説明したように入口、出口とも1箇所以上有れば良
く、2個所以上の複数本でもよい。また、入口、出口の
流れ方向を逆に設置してもよい。Therefore, since the orifice component 18 can be easily inserted into the main body 20 without press fitting or shrink fitting, the assembling property is improved and the manufacturing time of the expansion device is shortened. Further, in the present embodiment, the inlet (1) and the outlet (1) for the fluid (refrigerant) are provided, but as described in the first to third embodiments, it is sufficient that there are one or more inlets and outlets and two or more locations. It may be a plural number. Also, the flow directions of the inlet and the outlet may be installed in reverse.
【0086】なお多孔質透過材10は発砲金属だけでな
く、金属の粉末を焼結した焼結金属、またはセラミック
スの多孔質透過材、または金網、金網を数枚重ねたも
の、金網を数枚重ねて焼結した焼結金網、積層金網でも
同様の効果を得る。The porous permeable material 10 is not limited to the foamed metal, but is also a porous permeable material of sintered metal obtained by sintering metal powder, or ceramics, wire mesh, several wire meshes, or several wire meshes. The same effect can be obtained with a sintered wire net and a laminated wire net that are stacked and sintered.
【0087】また多孔質透過材10は円盤状でなくても
良く、多角形状などの形状でも同様の効果を得る。ま
た、オリフィス部品18、本体20も円筒形でなく多角
形などの筒状の形状でも同様な効果を得る。Further, the porous permeable material 10 does not have to be disk-shaped, and the same effect can be obtained even if it has a polygonal shape. Further, the orifice part 18 and the main body 20 may have a cylindrical shape such as a polygonal shape instead of the cylindrical shape to obtain the same effect.
【0088】実施の形態6.図32、図33、図34、
図35は実施の形態6を表す絞り装置の断面図であり、
実施の形態1で説明したのと同様の流体(冷媒)回路に
接続されている。図32において、10は多孔質透過
材、18はオリフィスとなる絞り通路18aを有した例
えば円筒形をしたオリフィス部品であり、絞り通路18
aの両側に多孔質透過材10が圧入やかしめなどにより
挿入固定されている。オリフィス18aは内径を0.5
mm〜2mm、長さを1mm〜4mmの範囲で、必要な
絞り量によってその寸法を決める。Sixth Embodiment 32, 33, 34,
FIG. 35 is a sectional view of a diaphragm device representing the sixth embodiment,
It is connected to the fluid (refrigerant) circuit similar to that described in the first embodiment. In FIG. 32, 10 is a porous permeable material, and 18 is, for example, a cylindrical orifice component having a throttle passage 18a serving as an orifice.
The porous permeable material 10 is inserted and fixed to both sides of a by press fitting or caulking. The orifice 18a has an inner diameter of 0.5
The size is determined depending on the necessary drawing amount within a range of mm to 2 mm and a length of 1 mm to 4 mm.
【0089】なおオリフィス18aと多孔質透過材10
との間に所定の隙間18cが生じるようにオリフィス部
品18には流体(冷媒)の流れ方向にオリフィス18a
の前後に例えばリング状の位置決め突起18bが設けら
れている。位置決め突起18bの内径は10mm〜20
mmに、また多孔質透過材10とオリフス18aの隙間
18cが5mm以下になるような位置決め突起18bの
高さは設定されている。そして、多孔質透過材10が一
体に固定されたオリフィス部品18は例えばパイプ状を
した本体21に圧入や焼きばめなどにより固定されてい
る。リング状の位置決め突起18bはオリフィス部品1
8と一体でも別体でもどちらでもよい。The orifice 18a and the porous permeable material 10
The orifice part 18 is provided in the orifice component 18 in the flow direction of the fluid (refrigerant) so that a predetermined gap 18c is formed between
For example, a ring-shaped positioning protrusion 18b is provided before and after. The positioning protrusion 18b has an inner diameter of 10 mm to 20
The height of the positioning protrusion 18b is set so that the gap 18c between the porous permeable material 10 and the orifice 18a is 5 mm or less. The orifice component 18 to which the porous permeable material 10 is integrally fixed is fixed to, for example, a pipe-shaped main body 21 by press fitting or shrink fitting. The ring-shaped positioning protrusion 18b is the orifice component 1
It may be either integrated with 8 or separate.
【0090】また、本体21はオリフィス部品18が図
中の左側に21aの符号を付した方向から挿入固定され
た後に本体内の流体(冷媒)の流れ方向に対して略平行
になるように絞り加工して流路となる配管13Aを接続
する。また、本体21の図中の右側21bは閉塞されて
おり、本体21内の流体(冷媒)の流れ方向と略直角方
向にバーリング加工により流路となる配管13Bが接続
されている。このとき多孔質透過材10と配管13まで
の空間は所定の距離と所定の内径をもっている。なお多
孔質透過材10は通気孔の径を100μmから500μ
mで厚さを1ミリメートルから10ミリメートルとした
NiまたはNi−Crまたはステンレスからなる発泡金
属を使用している。また、オリフィス部品18は銅、黄
銅、アルミニウム、ステンレスを、切削、あるいは鍛造
などによって作られている。Further, the main body 21 is throttled so that the orifice component 18 is inserted and fixed in the left side of the drawing from the direction indicated by the reference numeral 21a and then becomes substantially parallel to the flow direction of the fluid (refrigerant) in the main body. The pipe 13A that is processed into a flow path is connected. A right side 21b of the main body 21 in the drawing is closed, and a pipe 13B serving as a flow path is connected by a burring process in a direction substantially perpendicular to the flow direction of the fluid (refrigerant) in the main body 21. At this time, the space between the porous permeable material 10 and the pipe 13 has a predetermined distance and a predetermined inner diameter. The porous permeable material 10 has a vent hole diameter of 100 μm to 500 μm.
A metal foam made of Ni, Ni-Cr, or stainless steel having a thickness of 1 to 10 mm in m is used. The orifice component 18 is made of copper, brass, aluminum or stainless steel by cutting or forging.
【0091】また、図33のように、オリフィス部品1
8を本体21に挿入した後で、本体21のオリフィス部
品18の両端に相当する位置を絞り加工してオリフィス
部品18を固定してもよい。図において、10は多孔質
透過材、18は多孔質透過材10をオリフィス18aの
前後に固定したオリフィス部品、21は本体であり、オ
リフィス部品18の外径よりも若干大きく造られてい
る。そして、オリフィス部品18を本体21に挿入した
後でオリフィス部品18の両端位置に相当する本体21
を絞り加工することによって、オリフィス部品18を本
体21に固定する。Further, as shown in FIG. 33, the orifice component 1
After inserting 8 into the main body 21, the orifice part 18 may be fixed by drawing the positions corresponding to both ends of the orifice part 18 of the main body 21. In the figure, 10 is a porous permeable material, 18 is an orifice part in which the porous permeable material 10 is fixed before and after the orifice 18a, and 21 is a main body, which is made slightly larger than the outer diameter of the orifice part 18. After inserting the orifice part 18 into the body 21, the body 21 corresponding to both end positions of the orifice part 18 is inserted.
The orifice component 18 is fixed to the main body 21 by drawing.
【0092】したがって、圧入や焼きばめなしなくても
オリフィス部品18が本体21に簡単に挿入できるので
組立性が向上するとともに絞り装置の製造時間が短縮さ
れる。また、図34、図35のように本体21の一端に
ふた15を気密に接合しても同様の効果が得られる。ま
た、本実施の形態では流体(冷媒)の入口1、出口1で
あるが、実施の形態1乃至実施の形態3でも説明したよ
うに入口、出口とも1箇所以上有れば良く、2個所以上
の複数本でもよい。また、入口、出口の流れ方向を逆に
設置してもよい。Therefore, since the orifice component 18 can be easily inserted into the main body 21 without press fitting or shrink fitting, the assemblability is improved and the manufacturing time of the expansion device is shortened. The same effect can be obtained by airtightly joining the lid 15 to one end of the main body 21 as shown in FIGS. 34 and 35. Further, in the present embodiment, the inlet (1) and the outlet (1) for the fluid (refrigerant) are provided, but as described in the first to third embodiments, it is sufficient that there are one or more inlets and outlets and two or more locations. It may be a plural number. Also, the flow directions of the inlet and the outlet may be installed in reverse.
【0093】なお多孔質透過材10は発砲金属だけでな
く、金属の粉末を焼結した焼結金属、またはセラミック
スの多孔質透過材、または金網、金網を数枚重ねたも
の、金網を数枚重ねて焼結した焼結金網、積層金網でも
同様の効果を得る。The porous permeable material 10 is not limited to a foam metal, but is also a porous permeable material of sintered metal obtained by sintering metal powder, or ceramics, wire mesh, several wire meshes, or several wire meshes. The same effect can be obtained with a sintered wire net and a laminated wire net that are stacked and sintered.
【0094】また多孔質透過材10は円盤状でなくても
良く、多角形状などの形状でも同様の効果を得る。ま
た、オリフィス部品18、本体21も円筒形でなく多角
形などの筒状の形状でも同様な効果を得る。また、以上
説明したように実施の形態1乃至実施の形態6では、多
孔質透過材10とオリフィス11a、18aとの間に所
定のすきま11cを設けたが、実施の形態1の図14で
説明したように所定のすきま11cは設けなくても良
い。そうすれば、位置決め突起12bを設けなくても良
くなるので、低コストな絞り装置が得られる。Further, the porous permeable material 10 does not have to be disk-shaped, and the same effect can be obtained even if it has a polygonal shape or the like. Further, the orifice component 18 and the main body 21 may have a cylindrical shape such as a polygonal shape instead of the cylindrical shape to obtain the same effect. Further, as described above, in the first to sixth embodiments, the predetermined clearance 11c is provided between the porous permeable material 10 and the orifices 11a and 18a, but it will be described with reference to FIG. 14 of the first embodiment. As described above, the predetermined clearance 11c may not be provided. By doing so, it is not necessary to provide the positioning protrusion 12b, and thus a low-cost diaphragm device can be obtained.
【0095】実施の形態7.図36、図37、図38、
図39、図40は実施の形態7を表す絞り装置の断面図
であり、実施の形態1の絞り装置にフィルター22を設
けたものである。また、図41、図42、図43、図4
4は、フィルター22の斜視図である。また、実施の形
態1と同じ部品は同じ符号を付して説明は省略する。ま
た、実施の形態1で説明したのと同様の冷媒回路に接続
されている。22はフィルターであり、図41に示すよ
うにメッシュ22aがたとえばリング状の固定部品22
bに固定され、図36のように絞り装置6の押さえ部品
12の内壁に圧入などにより固定されている。フィルタ
ー22のメッシュ22aは金網などで構成され多孔質透
過材10の通気孔の径よりも小さいものを使用してい
る。Seventh Embodiment 36, 37, 38,
39 and 40 are cross-sectional views of the diaphragm device representing the seventh embodiment, in which the filter 22 is provided in the diaphragm device of the first embodiment. 41, 42, 43, and 4
4 is a perspective view of the filter 22. Further, the same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. Further, the same refrigerant circuit as that described in the first embodiment is connected. Reference numeral 22 is a filter, and as shown in FIG. 41, the mesh 22a has, for example, a ring-shaped fixed part 22.
36, and is fixed to the inner wall of the pressing component 12 of the expansion device 6 by press fitting or the like as shown in FIG. The mesh 22a of the filter 22 is made of wire mesh or the like and has a diameter smaller than that of the ventilation hole of the porous permeable material 10.
【0096】冷凍サイクルの回路構成は実施の形態1と
同等であるが、冷凍サイクルを流れる流体(冷媒)の中
に異物が発生した場合、フィルター22のメッシュ22
aの通気孔径よりも大きい異物の場合はフィルター22
に保持され、多孔質透過材10には達しない。一方フィ
ルター22のメッシュ22aの通気孔径よりも小さい異
物の場合はフィルター22を通過し、多孔質透過材10
に達してしまうが、多孔質透過材10の通気孔の径はフ
ィルター22のメッシュ22aの通気孔の径よりも大き
いので多孔質透過材10も通過してしまう。そのため多
孔質透過材10には異物が詰まることがなく、詰まり耐
力が向上する。また、多孔質透過材10の詰まりによる
圧損の増加による性能が低下してしまうのを防ぐことが
出来き、信頼性の高い絞り装置を得ることが出来る。ま
た、フィルタ22を多孔質透過材10と絞り通路11a
との間に設ければ、流れ方向を逆に使用した場合でも多
孔質透過材10には異物が詰まることがなく、詰まり耐
力が向上する。The circuit configuration of the refrigeration cycle is the same as that of the first embodiment, but when foreign matter is generated in the fluid (refrigerant) flowing through the refrigeration cycle, the mesh 22 of the filter 22 is used.
Filter 22 for foreign substances that are larger than the ventilation hole diameter of a.
, And does not reach the porous permeable material 10. On the other hand, in the case of a foreign substance smaller than the vent hole diameter of the mesh 22a of the filter 22, it passes through the filter 22 and the porous permeable material 10
However, since the diameter of the ventilation hole of the porous permeable material 10 is larger than the diameter of the ventilation hole of the mesh 22a of the filter 22, the porous permeable material 10 also passes through. Therefore, the porous permeable material 10 is not clogged with foreign matter, and the clogging resistance is improved. Further, it is possible to prevent the performance from being deteriorated due to an increase in pressure loss due to the clogging of the porous permeable material 10, and it is possible to obtain a highly reliable diaphragm device. Further, the filter 22 is connected to the porous permeable material 10 and the throttle passage 11a.
If it is provided between and, the porous permeable material 10 will not be clogged with foreign matters even when the flow direction is reversed, and clogging resistance will be improved.
【0097】また、図42のようにメッシュ22aの表
面積を増やしたフィルター22の固定部品22bを図3
7に示したようにのように押さえ部品12の内壁に圧入
などにより固定するようにすると、フィルター22で保
持できる異物の量を増やすことが出来るため、さらに詰
まりの耐性が向上する。またフィルター22を図43に
示したようにメッシュ22aを固定する固定部品22b
に固定延出部22cを設けて、図38のように押さえ部
品12と多孔質透過材10の間に固定延出部22cを挟
み込み、フィルター22を固定するような構造でも同様
の効果を得る。また、フィルター22を図44に示した
ように表面積を増やし、さらに固定部品22bに固定円
出部22cを設けた形状にして、図39のように押さえ
部品12と多孔質透過材10の間に固定延出部22cを
挟み込み、フィルター22を固定するような構造にして
も同様の効果を得る。Further, as shown in FIG. 42, the fixing part 22b of the filter 22 in which the surface area of the mesh 22a is increased is shown in FIG.
As shown in FIG. 7, if the inner wall of the pressing component 12 is fixed by press fitting or the like, the amount of foreign matter that can be held by the filter 22 can be increased, and the resistance to clogging is further improved. Further, as shown in FIG. 43, the filter 22 has a fixing part 22b for fixing the mesh 22a.
The same effect can be obtained by a structure in which the fixed extending portion 22c is provided on the above and the filter 22 is fixed by sandwiching the fixed extending portion 22c between the pressing component 12 and the porous permeable material 10 as shown in FIG. Further, the filter 22 has a surface area increased as shown in FIG. 44, and further has a fixed protrusion 22c provided on the fixed component 22b, and as shown in FIG. 39, between the pressing component 12 and the porous permeable material 10. The same effect can be obtained even if the filter 22 is fixed by sandwiching the fixed extension 22c.
【0098】また本実施の形態ではフィルター22は1
つであるが、複数個設置してもよい。また、本実施の形
態ではフィルター22を絞り通路11aの片側にのみ設
設けているが、図40のように絞り通路11aの両側に
設けてもよい。また本実施の形態のフィルター22は実
施の形態1乃至実施の形態6で説明した絞り装置のどれ
に使用しても良く、詰まり耐力が向上し信頼性の高い絞
り装置及び冷凍サイクル装置を得ることができる。In the present embodiment, the filter 22 is set to 1
However, more than one may be installed. Further, in the present embodiment, the filter 22 is provided only on one side of the throttle passage 11a, but it may be provided on both sides of the throttle passage 11a as shown in FIG. Further, the filter 22 of the present embodiment may be used in any of the expansion devices described in the first to sixth embodiments to obtain a expansion device and a refrigeration cycle device with improved clogging resistance and high reliability. You can
【0099】また本実施の形態はフィルター22の構成
部品に金網を使用しているが、発泡金属、金属の粉末を
焼結した焼結金属、またはセラミックスの多孔質透過
材、金網を数枚重ねたもの、金網を数枚重ねて焼結した
焼結金網、積層金網でも同様の効果を得る。In the present embodiment, a wire mesh is used as a component of the filter 22, but a porous metal, a sintered metal obtained by sintering metal powder, or a ceramic porous permeable material, and several wire meshes are stacked. The same effect can be obtained by using a metal wire net, a sintered wire net formed by stacking several wire nets, and a laminated wire net.
【0100】また、実施の形態1から形態7で説明した
多孔質透過材10に図45、図46のように貫通孔を設
けても良い。図45、図46は本実施の形態7を表す多
孔質透過材の斜視図である。図において、10は多孔質
透過材、37は絞り通路11aの位置からはずれた位置
に設けられた貫通孔である。多孔質透過材10の流れ方
向に対して絞り通路11aから外れた個所に1mm〜3
mm(オリフィスの内径以上)の貫通孔37を設けて
も、流動騒音の低下という機能を失わずに、詰まりの耐
性を上げ、信頼性が高いつまり装置を得ることが出来
る。Further, the porous permeable material 10 described in Embodiments 1 to 7 may be provided with through holes as shown in FIGS. 45 and 46. 45 and 46 are perspective views of the porous permeable material representing the seventh embodiment. In the figure, 10 is a porous permeable material, and 37 is a through hole provided at a position deviated from the position of the throttle passage 11a. 1 mm to 3 at a position deviated from the throttle passage 11a in the flow direction of the porous permeable material 10.
Even if the through hole 37 of mm (equal to or larger than the inner diameter of the orifice) is provided, the resistance to clogging can be increased and a highly reliable device can be obtained without losing the function of reducing flow noise.
【0101】貫通孔37が流体(冷媒)の流れ方向に対
して絞り通路11aよりずれており、絞り通路11aに
流入しやすい部分には多孔質透過材10が存在するた
め、流動騒音の低下という機能を失わずに、多孔質透過
材10の詰まりの耐性を上げることができる。また、多
孔質透過材の空隙率が大きいため、流体(冷媒)が貫通
孔37に集中することもなく、多孔質透過材10は上記
の機能を無くすることはない。また図39のように貫通
孔37を2箇所設けても、または3個以上設けけても同
様の効果を得る。Since the through hole 37 is displaced from the throttle passage 11a with respect to the flow direction of the fluid (refrigerant) and the porous permeable material 10 is present in the portion that easily flows into the throttle passage 11a, the flow noise is reduced. It is possible to increase the resistance of the porous permeable material 10 to clogging without losing its function. Further, since the porosity of the porous permeable material is large, the fluid (refrigerant) is not concentrated in the through holes 37, and the porous permeable material 10 does not lose the above function. Further, similar effects can be obtained even if two through holes 37 are provided as shown in FIG. 39 or three or more through holes 37 are provided.
【0102】また、実施の形態1乃至実施の形態7で
は、冷凍サイクル装置に使用する流体として冷媒を用
い、この冷媒としてR410Aを用いた場合について説
明した。このR410A冷媒はHFC系冷媒であり、オ
ゾン層を破壊しない地球環境保全に適した冷媒であると
ともに、従来冷媒として用いられてきたR22を使用し
た場合に比べて、冷媒圧力損失が小さいため、R22冷
媒を使用した場合よりも冷媒流動音を低減できる効果を
得るFurther, in the first to seventh embodiments, the case where the refrigerant is used as the fluid used in the refrigeration cycle apparatus and R410A is used as the refrigerant has been described. This R410A refrigerant is an HFC-based refrigerant, is a refrigerant suitable for global environment protection that does not destroy the ozone layer, and has a smaller refrigerant pressure loss than the case of using R22 which has been used as a conventional refrigerant. The effect of reducing the refrigerant flow noise is obtained compared to the case where a refrigerant is used.
【0103】さらに、この冷凍サイクル装置に使用する
冷媒としては、R410Aに限ることはなく、HFC系
冷媒であるR407CやR404A、R507Aであっ
ても良い。また、地球温暖化防止の観点から、地球温暖
化係数の小さなHFC系冷媒であるR32単独、R15
2a単独あるいはR32/R134aなどの混合冷媒で
あっても良い。また、プロパンやブタン、イソブタンな
どのHC系冷媒やアンモニア、二酸化炭素、エーテルな
どの自然系冷媒およびそれらの混合冷媒であっても良
い。また、本発明の絞り装置は、冷凍・空調装置だけで
なく、蒸発器と凝縮器が一体に構成され、内部を区分け
して使用する熱交換器を有する除湿機や冷凍サイクルが
室内のみで完結している冷蔵庫や窓用エアコンなどにも
適用できる。また、本発明の絞り装置は冷凍サイクル装
置のみに使用されるものではなく、絞りを必要とする装
置であれば何に使用してもよい。また、絞り装置に使用
する流体は何でもよい。Further, the refrigerant used in this refrigeration cycle apparatus is not limited to R410A, but may be HFC refrigerant R407C, R404A, or R507A. Further, from the viewpoint of preventing global warming, R32 alone, R15, which is an HFC refrigerant having a small global warming potential,
2a alone or a mixed refrigerant such as R32 / R134a may be used. Further, HC-based refrigerants such as propane, butane, and isobutane, natural refrigerants such as ammonia, carbon dioxide, ether, and mixed refrigerants thereof may be used. Further, in the expansion device of the present invention, not only the refrigeration / air-conditioning device but also the evaporator and the condenser are integrally configured, and the dehumidifier and the refrigeration cycle having the heat exchanger used by dividing the inside are completed only in the room. It can also be applied to existing refrigerators and window air conditioners. Further, the expansion device of the present invention is not used only for the refrigeration cycle device, but may be used for any device that requires expansion. Also, any fluid may be used for the throttle device.
【0104】[0104]
【発明の効果】以上のように、本発明の請求項1に係る
発明は、内部に絞り通路を介して連通され、流体の流れ
方向に対して略直線上に配置された2つの空間を有する
本体と、本体の内部の2つの空間を本体の外部にそれぞ
れ連通させる2つの流路と、本体の内部の2つの空間に
対して略直線上に配置されるように本体内部に固着さ
れ、2つの空間のうち少なくとも1つの空間を絞り通路
側と流路側とに仕切るように設けられた多孔質透過材
と、を備えたので、蒸気状の流体と液状の流体が均質気
液二相流となって同時に絞り通路を通過できるため流体
の速度変動が生じず、圧力も変動せず、騒音も発生しに
くい。As described above, the invention according to claim 1 of the present invention has two spaces which are communicated with each other through the throttle passage and which are arranged substantially linearly with respect to the fluid flow direction. The main body, two flow paths for communicating the two spaces inside the main body with the outside of the main body, and the inside of the main body fixed so as to be arranged substantially linearly with respect to the two spaces inside the main body. Since the porous permeable material is provided so as to partition at least one of the two spaces into a throttle passage side and a flow passage side, the vapor-like fluid and the liquid fluid form a homogeneous gas-liquid two-phase flow. Since it can pass through the throttle passage at the same time, the velocity of the fluid does not fluctuate, the pressure does not fluctuate, and noise hardly occurs.
【0105】また、本発明の請求項2に係る発明は、内
部に絞り通路を介して連通され、流体の流れ方向に対し
て略直線上に配置された2つの空間を有する本体と、2
つの空間のうち少なくとも1つの空間の流体の流れ方向
に対して流体が通過するように設けられ、少なくとも1
つの空間を絞り通路側空間と反対側空間とに仕切る多孔
質透過材と、多孔質透過材と絞り通路との間に設けら
れ、多孔質透過材の流体の流れ方向の位置決めを行う位
置決め突起と、反対側空間を外部と連通させるように設
けられた流路を有し、多孔質透過材を絞り通路の反対側
から押さえ込むように設けられた押さえ部品と、を備
え、多孔質透過材を位置決め突起に当接させて位置決め
するようにしたので、組立時に多孔質透過材の位置決め
が簡単に確実に行え、組立時間が短縮され低コストな絞
り装置が得られる。The invention according to claim 2 of the present invention comprises: a main body having two spaces which are communicated with each other through a throttle passage and which are arranged substantially linearly with respect to a fluid flow direction;
At least one of the two spaces is provided so that the fluid passes in the flow direction of the fluid, and at least 1
A porous permeable material that partitions the two spaces into a space on the side opposite to the throttle passage and a space on the opposite side; and a positioning protrusion provided between the porous permeable material and the throttle passage for positioning the porous permeable material in the fluid flow direction. Positioning the porous permeable material with a holding part provided with a flow path provided to communicate the space on the opposite side with the outside and holding the porous permeable material from the opposite side of the throttle passage. Since the positioning is performed by contacting the protrusions, the porous permeable material can be positioned easily and reliably during assembly, and the assembly time can be shortened and the cost reduction device can be obtained.
【0106】また、本発明の請求項3に係る発明は、絞
り通路と多孔質透過材との間にすきまを設けるようにし
たので、多孔質透過材を通過する流体の通過面積を大き
く有効に利用できるため、流体中に異物が混入した場合
でも異物に対する詰まり耐力が向上し、信頼性の高い絞
り装置を得ることができる。In the invention according to claim 3 of the present invention, since a gap is provided between the throttle passage and the porous permeable material, the passage area of the fluid passing through the porous permeable material can be made large and effective. Since it can be used, even when foreign matter is mixed in the fluid, the clogging resistance against foreign matter is improved and a highly reliable throttling device can be obtained.
【0107】また、本発明の請求項4に係る発明は、絞
り部と多孔質透過材を一体に構成して絞り通路が本体の
内部を2つの空間に分けるように本体の内部に固着した
ので、絞り通路と多孔質透過材を予め組み立てた状態で
本体に組み付けることができるので、組立性が向上する
とともに、信頼性の高い絞り装置を得ることができる。In the invention according to claim 4 of the present invention, the throttle portion and the porous permeable material are integrally formed, and the throttle passage is fixed to the inside of the main body so as to divide the inside of the main body into two spaces. Since the throttle passage and the porous permeable material can be assembled to the main body in a pre-assembled state, the assembling property is improved and a highly reliable throttle device can be obtained.
【0108】また、本発明の請求項5に係る発明は、絞
り通路の流れ方向の軸線上位置よりも外れた部分の多孔
質透過材の部位に絞り通路の直径よりも大きな直径の貫
通穴を設けたので、流動騒音の低下という機能を失わず
に、多孔質透過材の詰まりの耐性を上げることができ
る。Further, in the invention according to claim 5 of the present invention, a through hole having a diameter larger than the diameter of the throttle passage is formed in the portion of the porous permeable material at a portion deviated from the axial position in the flow direction of the throttle passage. Since it is provided, it is possible to improve the resistance to clogging of the porous permeable material without losing the function of reducing the flow noise.
【0109】また、本発明の請求項6に係る発明は、絞
り通路と多孔質透過材の間の部位、あるいは多孔質透過
材と流路との間の部位に多孔質透過材の通気孔の径より
も小さなメッシュを有するフィルタを設けたので、多孔
質透過材に異物が詰まることがなく、詰まり耐力が向上
し、詰まりによる圧損の増加による性能が低下してしま
うのを防ぐことが出来き、信頼性の高い絞り装置を得る
ことが出来る。Further, according to a sixth aspect of the present invention, the ventilation hole of the porous permeable material is provided at a portion between the throttle passage and the porous permeable material or at a portion between the porous permeable material and the flow path. Since a filter with a mesh smaller than the diameter is provided, foreign matter does not clog the porous permeable material, clogging proof strength improves, and it is possible to prevent performance from decreasing due to increased pressure loss due to clogging. Therefore, a highly reliable diaphragm device can be obtained.
【0110】また、本発明の請求項7に係る発明は、流
路を1つの空間に対して2つ以上設けたので、熱交換器
の入口、出口の配管が複数本であっても、そのまま絞り
装置に接続できるので、わざわざ1本にまとめなくても
良く、加工、組立時間が短縮できる絞り装置を得ること
が出来る。Further, in the invention according to claim 7 of the present invention, since two or more flow paths are provided for one space, even if there are a plurality of pipes at the inlet and the outlet of the heat exchanger, they can be used as they are. Since it can be connected to the diaphragm device, it is not necessary to purposely combine them into one, and it is possible to obtain a diaphragm device that can reduce the processing and assembly time.
【0111】また、本発明の請求項8に係る発明は、流
路の取り出し方向を1つの空間に対して本体内の流体の
流れ方向に対して略平行あるいは略直角な方向としたの
で、冷凍サイクル装置などのあらゆる装置に組み付ける
場合に、組み付け配管を曲げたりしなくても良く、容易
に組み込むことができ、組み付け時間が短縮できる絞り
装置を得ることができる。Further, in the invention according to claim 8 of the present invention, the take-out direction of the flow path is set in a direction substantially parallel or at a right angle to the flow direction of the fluid in the main body with respect to one space. When assembling to any device such as a cycle device, it is not necessary to bend the assembling pipe, the assembling can be easily performed, and the throttling device that can reduce the assembling time can be obtained.
【0112】また、本発明の請求項9に係る発明は、内
部に絞り通路を介して連通され、冷媒の流れ方向に対し
て略直線上に配置された2つの空間を有する本体と、本
体の内部の2つの空間を本体の外部にそれぞれ連通させ
る2つの流路と、本体の内部の2つの空間に対して略直
線上に配置されるように本体内部に固着され、2つの空
間のうち少なくとも1つの空間を絞り通路側と流路側と
に仕切るように設けられた多孔質透過材と、を有する絞
り装置を冷凍サイクルを構成する熱交換器の内部あるい
は外部の冷媒回路中でかつ室内に配置したので、従来装
置で必要であった遮音材や制振材を絞り装置の周囲に巻
きつけるなどの対策も不要で低コストで低騒音な冷凍サ
イクル装置を得ることができる。According to a ninth aspect of the present invention, there is provided a main body having two spaces which are communicated with each other through a throttle passage and which are arranged on a substantially straight line with respect to the flow direction of the refrigerant, and the main body. Two flow paths that respectively connect the two internal spaces to the outside of the main body, and the inside of the main body are fixed so as to be arranged substantially linearly with respect to the two internal spaces of the main body. A throttling device having a porous permeable material provided so as to partition one space into a throttle passage side and a flow passage side is arranged in a refrigerant circuit inside or outside a heat exchanger constituting a refrigeration cycle and indoors. Therefore, it is possible to obtain a low-cost and low-noise refrigeration cycle device without the need for measures such as winding a sound insulating material or a vibration damping material around the diaphragm device, which is required in the conventional device.
【0113】また、本発明の請求項10に係る発明は、
内部に絞り通路を介して連通され、冷媒の流れ方向に対
して略直線上に配置された2つの空間を有する本体と、
2つの空間のうち少なくとも1つの空間の冷媒の流れ方
向に対して冷媒が通過するように設けられ、少なくとも
1つの空間を絞り通路側空間と反対側空間とに仕切る多
孔質透過材と、多孔質透過材と絞り通路との間に設けら
れ、多孔質透過材と絞り通路との間にすきまを形成する
位置決め突起と、反対側空間を外部と連通させるように
設けられた流路を有し、多孔質透過材を絞り通路の反対
側から位置決め突起に押さえつけるように設けられた押
さえ部品と、を備えた絞り装置を冷凍サイクルを構成す
る熱交換器の内部あるいは外部の冷媒回路中でかつ室内
に配置したので、別途冷媒回路中にフィルターを設ける
必要が無く、低コスト・低騒音で信頼性の高い冷凍サイ
クル装置が得られる。The invention according to claim 10 of the present invention is
A main body having two spaces that are communicated with each other through a throttle passage and that are arranged substantially linearly with respect to the flow direction of the refrigerant;
A porous permeable material that is provided so that the refrigerant passes in the direction of flow of the refrigerant in at least one of the two spaces and that partitions the at least one space into a throttle passage side space and an opposite side space; A positioning protrusion that is provided between the permeable material and the throttle passage and forms a gap between the porous permeable material and the throttle passage, and a flow passage that is provided so that the opposite space communicates with the outside, A throttling device provided with a pressing component provided to press the porous permeable material from the opposite side of the throttling passage to the positioning protrusion, in a refrigerant circuit inside or outside a heat exchanger that constitutes a refrigeration cycle, and indoors. Since it is arranged, it is not necessary to separately provide a filter in the refrigerant circuit, and a refrigeration cycle device with low cost, low noise and high reliability can be obtained.
【0114】また、本発明の請求項11に係る発明は、
筐体内に配置され室内の空気を熱交換させる熱交換器
と、筐体内に配置され熱交換器の側方に設けられた制御
装置と、を有する室内機を備え、熱交換器と制御装置と
の間に絞り装置を配置したので、絞り装置が低騒音であ
るため遮音材などしなくても良く、どこにでもに設置で
き、絞り装置の設置の自由度の大きい低コストの冷凍サ
イクル装置が得られる。Further, the invention according to claim 11 of the present invention is
An indoor unit having a heat exchanger arranged in the housing for exchanging heat in the room, and a control device arranged in the housing on the side of the heat exchanger, the heat exchanger and the control device. Since the throttling device is placed between the two, the throttling device has low noise, so there is no need to use a sound insulating material, etc., and it can be installed anywhere, and a low-cost refrigeration cycle device with great freedom in installing the throttling device To be
【0115】また、本発明の請求項12に係る発明は、
筐体内に配置され室内の空気を熱交換させる熱交換器を
有する室内機を備え、絞り装置を筐体と熱交換器との間
に配置したので、絞り装置が低騒音であるため遮音材な
どしなくても良く、どこにでもに設置でき、絞り装置の
設置の自由度の大きい低コストの冷凍サイクル装置が得
られる。The invention according to claim 12 of the present invention is
Since the indoor unit having the heat exchanger arranged in the housing for exchanging heat in the room is provided, and the throttling device is arranged between the housing and the heat exchanger, the throttling device has low noise, so that a sound insulating material, etc. A low-cost refrigeration cycle device that does not need to be installed, can be installed anywhere, and has a high degree of freedom in installation of the expansion device can be obtained.
【図1】 実施の形態1に係る冷媒回路図である。FIG. 1 is a refrigerant circuit diagram according to a first embodiment.
【図2】 実施の形態1に係る流量制御装置の断面図で
ある。FIG. 2 is a cross-sectional view of the flow rate control device according to the first embodiment.
【図3】 実施の形態1に係る絞り装置の断面図であ
る。FIG. 3 is a cross-sectional view of the diaphragm device according to the first embodiment.
【図4】 実施の形態1に係わる空気調和装置の動作状
態を表す圧力―エンタルピ線図である。FIG. 4 is a pressure-enthalpy diagram showing an operating state of the air conditioner according to the first embodiment.
【図5】 実施の形態1に係わり絞り装置入口での冷媒
の流動状態を説明した図である。FIG. 5 is a diagram for explaining the flow state of the refrigerant at the inlet of the expansion device according to the first embodiment.
【図6】 実施の形態1に係る室内機の前面カバーをは
ずした状態での正面図である。FIG. 6 is a front view of the indoor unit according to the first embodiment with a front cover removed.
【図7】 実施の形態1に係る室内機の前面カバーをは
ずした状態での正面図である。FIG. 7 is a front view of the indoor unit according to the first embodiment with a front cover removed.
【図8】 実施の形態1に係る室内機の断面図である。FIG. 8 is a cross-sectional view of the indoor unit according to the first embodiment.
【図9】 実施の形態1に係る室内機の断面図である。FIG. 9 is a cross-sectional view of the indoor unit according to the first embodiment.
【図10】 実施の形態1に係る室内機の断面図であ
る。FIG. 10 is a cross-sectional view of the indoor unit according to the first embodiment.
【図11】 実施の形態1に係る絞り装置の断面図であ
る。FIG. 11 is a cross-sectional view of the diaphragm device according to the first embodiment.
【図12】 実施の形態1に係る絞り装置の断面図であ
る。FIG. 12 is a cross-sectional view of the diaphragm device according to the first embodiment.
【図13】 実施の形態1に係る絞り装置の断面図であ
る。FIG. 13 is a cross-sectional view of the diaphragm device according to the first embodiment.
【図14】 実施の形態1に係る所定隙間を設けない場
合の絞り装置の一例を表す断面図である。FIG. 14 is a cross-sectional view illustrating an example of a diaphragm device when a predetermined gap according to the first embodiment is not provided.
【図15】 実施の形態2に係る絞り装置の断面図であ
る。FIG. 15 is a cross-sectional view of a diaphragm device according to a second embodiment.
【図16】 実施の形態2に係る絞り装置の断面図であ
る。FIG. 16 is a sectional view of a diaphragm device according to a second embodiment.
【図17】 実施の形態2に係る絞り装置の断面図であ
る。FIG. 17 is a sectional view of a diaphragm device according to a second embodiment.
【図18】 実施の形態2に係る絞り装置の断面図であ
る。FIG. 18 is a sectional view of a diaphragm device according to a second embodiment.
【図19】 実施の形態2に係る絞り装置の断面図であ
る。FIG. 19 is a sectional view of a diaphragm device according to a second embodiment.
【図20】 実施の形態2に係る絞り装置の断面図であ
る。FIG. 20 is a cross-sectional view of a diaphragm device according to a second embodiment.
【図21】 実施の形態3に係る絞り装置の断面図であ
る。FIG. 21 is a sectional view of a diaphragm device according to a third embodiment.
【図22】 実施の形態3に係る絞り装置の断面図であ
る。FIG. 22 is a sectional view of a diaphragm device according to a third embodiment.
【図23】 実施の形態3に係る絞り装置の断面図であ
る。FIG. 23 is a cross-sectional view of a diaphragm device according to a third embodiment.
【図24】 実施の形態3に係る絞り装置の断面図であ
る。FIG. 24 is a sectional view of a diaphragm device according to a third embodiment.
【図25】 実施の形態3に係る絞り装置の断面図であ
る。FIG. 25 is a sectional view of a diaphragm device according to a third embodiment.
【図26】 実施の形態3に係る絞り装置の断面図であ
る。FIG. 26 is a sectional view of a diaphragm device according to a third embodiment.
【図27】 実施の形態3に係る絞り装置の断面図であ
る。FIG. 27 is a sectional view of a diaphragm device according to a third embodiment.
【図28】 実施の形態4に係る絞り装置の断面図であ
る。FIG. 28 is a cross-sectional view of a diaphragm device according to a fourth embodiment.
【図29】 実施の形態4に係る絞り装置の断面図であ
る。FIG. 29 is a cross-sectional view of a diaphragm device according to a fourth embodiment.
【図30】 実施の形態5に係る絞り装置の断面図であ
る。FIG. 30 is a sectional view of a diaphragm device according to a fifth embodiment.
【図31】 実施の形態5に係る絞り装置の断面図であ
る。FIG. 31 is a cross-sectional view of a diaphragm device according to a fifth embodiment.
【図32】 実施の形態6に係る絞り装置の断面図であ
る。FIG. 32 is a sectional view of a diaphragm device according to a sixth embodiment.
【図33】 実施の形態6に係る絞り装置の断面図であ
る。FIG. 33 is a sectional view of a diaphragm device according to a sixth embodiment.
【図34】 実施の形態6に係る絞り装置の断面図であ
る。FIG. 34 is a sectional view of a diaphragm device according to a sixth embodiment.
【図35】 実施の形態6に係る絞り装置の断面図であ
る。FIG. 35 is a sectional view of a diaphragm device according to a sixth embodiment.
【図36】 実施の形態7に係る絞り装置の断面図であ
る。FIG. 36 is a sectional view of a diaphragm device according to a seventh embodiment.
【図37】 実施の形態7に係る絞り装置の断面図であ
る。FIG. 37 is a sectional view of a diaphragm device according to a seventh embodiment.
【図38】 実施の形態7に係る絞り装置の断面図であ
る。FIG. 38 is a sectional view of a diaphragm device according to a seventh embodiment.
【図39】 実施の形態7に係る絞り装置の断面図であ
る。FIG. 39 is a sectional view of a diaphragm device according to a seventh embodiment.
【図40】 実施の形態7に係る絞り装置の断面図であ
る。FIG. 40 is a sectional view of a diaphragm device according to a seventh embodiment.
【図41】 実施の形態7に係るフィルターの斜視図で
ある。41 is a perspective view of the filter according to the seventh embodiment. FIG.
【図42】 実施の形態7に係るフィルターの斜視図で
ある。42 is a perspective view of the filter according to the seventh embodiment. FIG.
【図43】 実施の形態7に係るフィルターの斜視図で
ある。43 is a perspective view of the filter according to the seventh embodiment. FIG.
【図44】 実施の形態7に係るフィルターの斜視図で
ある。FIG. 44 is a perspective view of the filter according to the seventh embodiment.
【図45】 実施の形態7に係るその他の多孔質透過材
の斜視図である。FIG. 45 is a perspective view of another porous permeable material according to the seventh embodiment.
【図46】 実施の形態7に係るその他の多孔質透過材
の斜視図である。FIG. 46 is a perspective view of another porous permeable material according to the seventh embodiment.
【図47】 従来の空気調和装置の冷媒回路図である。FIG. 47 is a refrigerant circuit diagram of a conventional air conditioner.
【図48】 従来の絞り装置の断面図である。FIG. 48 is a cross-sectional view of a conventional diaphragm device.
【図49】 従来の絞り装置の断面図である。FIG. 49 is a sectional view of a conventional diaphragm device.
【図50】 従来の絞り装置の断面図である。FIG. 50 is a cross-sectional view of a conventional diaphragm device.
【図51】 従来の絞り装置に用いられているハニカム
パイプの断面図である。FIG. 51 is a cross-sectional view of a honeycomb pipe used in a conventional diaphragm device.
1圧縮機、2 流路切替手段、3 室外熱交換器、4
第1流量制御装置、5第1室内熱交換器、6 絞り装
置、7 二方弁、8 第2室内熱交換器、9第2流量制
御装置、10 多孔質透過材、11 本体、11a オ
リフィス、11b 位置決め突起、11c 所定隙間、
12 押さえ部品、12a 内部空間、13 流路、1
4 押さえ部品、14a、14b 内部の空間、15
ふた、16、17 配管、18 オリフィス部品、18
a 絞り通路、18b 位置決め突起、18c 所定の
隙間、19、20、21 本体、22 フィルター、2
2a メッシュ、22b フィルターの固定部品、22
c 延出部、23 ファンモータ、24 制御装置、2
5 熱交換器、38 筐体、39 送風ファン、112
押さえ部品、116 バイパス配管、122、12
4、134 押さえ部品。1 compressor, 2 flow path switching means, 3 outdoor heat exchanger, 4
1st flow control device, 5 1st indoor heat exchanger, 6 throttling device, 7 2 way valve, 8 2nd indoor heat exchanger, 9 2nd flow control device, 10 porous permeable material, 11 main body, 11a orifice, 11b positioning protrusion, 11c predetermined gap,
12 pressing parts, 12a internal space, 13 flow paths, 1
4 Holding parts, spaces inside 14a, 14b, 15
Lid, 16, 17 Piping, 18 Orifice part, 18
a throttle passage, 18b positioning protrusion, 18c predetermined gap, 19, 20, 21 body, 22 filter, 2
2a mesh, 22b filter fixing parts, 22
c extension part, 23 fan motor, 24 control device, 2
5 heat exchanger, 38 housing, 39 blower fan, 112
Holding parts, 116 bypass piping, 122, 12
4,134 Holding parts.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平國 悟 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (56)参考文献 特開 平11−325655(JP,A) 特開 平7−146032(JP,A) 特開 昭57−108568(JP,A) 特開 平7−229636(JP,A) 特開 平5−52447(JP,A) 実開 昭49−538(JP,U) 実開 昭55−147814(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 41/06 F25B 13/00 371 F25B 39/00 F25B 41/00 F25B 40/00 F25B 39/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoru Hirakuni 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (56) Reference JP-A-11-325655 (JP, A) JP-A 7-146032 (JP, A) JP-A-57-108568 (JP, A) JP-A-7-229636 (JP, A) JP-A-5-52447 (JP, A) Actual development Sho-49-538 (JP, A) U) Actual development Sho 55-147814 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 41/06 F25B 13/00 371 F25B 39/00 F25B 41/00 F25B 40/00 F25B 39/02
Claims (12)
の流れ方向に対して略直線上に配置された2つの空間を
有する本体と、前記本体の内部の2つの空間を前記本体
の外部にそれぞれ連通させる2つの流路と、前記本体の
内部の2つの空間に対して略直線上に配置されるように
前記本体内部に固着され、前記2つの空間のうち少なく
とも1つの空間を前記絞り通路側と前記流路側とに仕切
るように設けられた多孔質透過材と、を備えたことを特
徴とする絞り装置。1. A main body having two spaces which are communicated with each other through a throttle passage and are arranged on a substantially straight line with respect to a flow direction of a fluid, and two spaces inside the main body are provided outside the main body. And two flow paths communicating with each other, and fixed inside the main body so as to be arranged substantially linearly with respect to the two spaces inside the main body, and at least one space of the two spaces is throttled. A diaphragm device, comprising: a porous permeable material provided so as to be divided into a passage side and the flow passage side.
の流れ方向に対して略直線上に配置された2つの空間を
有する本体と、前記2つの空間のうち少なくとも1つの
空間の流体の流れ方向に対して前記流体が通過するよう
に設けられ、前記少なくとも1つの空間を前記絞り通路
側空間と反対側空間とに仕切る多孔質透過材と、前記多
孔質透過材と前記絞り通路との間に設けられ、前記多孔
質透過材の流体の流れ方向の位置決めを行う位置決め突
起と、前記反対側空間を外部と連通させるように設けら
れた流路を有し、前記多孔質透過材を前記絞り通路の反
対側から押さえ込むように設けられた押さえ部品と、を
備え、前記多孔質透過材を前記位置決め突起に当接させ
て位置決めするようにしたことを特徴とする絞り装置。2. A main body having two spaces which are communicated with each other through a throttle passage and which are arranged on a substantially straight line with respect to a fluid flow direction, and a fluid in at least one of the two spaces. A porous permeable material that is provided so that the fluid passes in the flow direction and that partitions the at least one space into a space on the throttle passage side and a space on the opposite side; and the porous permeable material and the throttle passage. The porous permeable material has a positioning protrusion that is provided between the positioning protrusions for positioning the porous permeable material in the fluid flow direction, and a flow path that is provided so as to communicate the opposite space with the outside. A pressing component provided so as to press down from the opposite side of the throttle passage, and the porous permeable material is brought into contact with the positioning protrusion to perform positioning.
を設けるようにしたことを特徴とする請求項1または請
求項2に記載の絞り装置。3. The throttle device according to claim 1, wherein a gap is provided between the throttle passage and the porous permeable material.
て前記絞り通路が本体の内部を2つの空間に分けるよう
に前記本体の内部に固着したことを特徴とする請求項1
乃至請求項3のうちの1項に記載の絞り装置。4. The throttle passage and the porous permeable material are integrally formed, and the throttle passage is fixed to the inside of the main body so as to divide the inside of the main body into two spaces.
Thru | or the diaphragm apparatus of Claim 1.
置よりも外れた部分の多孔質透過材の部位に前記絞り通
路の直径よりも大きな直径の貫通穴を設けたことを特徴
とする請求項1乃至請求項4のうちの1項に記載の絞り
装置。5. A through hole having a diameter larger than the diameter of the throttle passage is provided in a portion of the porous permeable material that is located off the axial position with respect to the flow direction of the throttle passage. The diaphragm device according to any one of claims 1 to 4.
るいは多孔質透過材と流路との間の部位に前記多孔質透
過材の通気孔の径よりも小さなメッシュを有するフィル
タを設けたことを特徴とする請求項1乃至請求項5のう
ちの1項に記載の絞り装置。6. A filter having a mesh smaller than the diameter of the vent hole of the porous permeable material is provided at a site between the throttle passage and the porous permeable material or at a site between the porous permeable material and the flow channel. The diaphragm device according to any one of claims 1 to 5.
たことを特徴とする請求項1乃至請求項6のうちの1項
に記載の絞り装置。7. The diaphragm device according to claim 1, wherein two or more flow paths are provided for one space.
て本体内の流体の流れ方向に対して略平行あるいは略直
角な方向としたことを特徴とする請求項1乃至請求項7
のうちの1項に記載の絞り装置。8. The method according to claim 1, wherein the flow path is taken out in a direction substantially parallel to or perpendicular to the flow direction of the fluid in the main body with respect to one space.
The diaphragm device according to item 1.
の流れ方向に対して略直線上に配置された2つの空間を
有する本体と、前記本体の内部の2つの空間を前記本体
の外部にそれぞれ連通させる2つの流路と、前記本体の
内部の2つの空間に対して略直線上に配置されるように
前記本体内部に固着され、前記2つの空間のうち少なく
とも1つの空間を前記絞り通路側と前記流路側とに仕切
るように設けられた多孔質透過材と、を有する絞り装置
を冷凍サイクルを構成する熱交換器の内部あるいは外部
の冷媒回路中でかつ室内に配置したことを特徴とする冷
凍サイクル装置。9. A main body having two spaces which are communicated with each other through a throttle passage and are arranged on a substantially straight line with respect to the flow direction of the refrigerant, and two spaces inside the main body are provided outside the main body. And two flow paths communicating with each other, and fixed inside the main body so as to be arranged substantially linearly with respect to the two spaces inside the main body, and at least one space of the two spaces is throttled. A squeezing device having a porous permeable material provided so as to be partitioned into a passage side and the flow passage side is arranged in a refrigerant circuit inside or outside a heat exchanger configuring a refrigeration cycle and indoors. Refrigeration cycle device.
媒の流れ方向に対して略直線上に配置された2つの空間
を有する本体と、前記2つの空間のうち少なくとも1つ
の空間の冷媒の流れ方向に対して前記冷媒が通過するよ
うに設けられ、前記少なくとも1つの空間を前記絞り通
路側空間と反対側空間とに仕切る多孔質透過材と、前記
多孔質透過材と前記絞り通路との間に設けられ、前記多
孔質透過材と前記絞り通路との間にすきまを形成する位
置決め突起と、前記反対側空間を外部と連通させるよう
に設けられた流路を有し、前記多孔質透過材を前記絞り
通路の反対側から前記位置決め突起に押さえつけるよう
に設けられた押さえ部品と、を備えた絞り装置を冷凍サ
イクルを構成する熱交換器の内部あるい外部の冷媒回路
中でかつ室内に配置したことを特徴とする冷凍サイクル
装置。10. A main body having two spaces which are communicated with each other through a throttle passage and are arranged on a substantially straight line with respect to a flow direction of the refrigerant, and a refrigerant in at least one of the two spaces. A porous permeable material that is provided so that the refrigerant passes in the flow direction and partitions the at least one space into a space on the throttle passage side and a space on the opposite side; and the porous permeable material and the throttle passage. The porous permeable material has a positioning protrusion that is provided between the porous permeable material and the throttle passage, and a flow path that is provided to communicate the opposite space with the outside. A pressing device provided so as to press the material from the opposite side of the throttle passage to the positioning projection, and a throttle device provided with the pressing device inside or outside the heat exchanger constituting the refrigeration cycle and inside the room. Placement A refrigeration cycle device characterized in that
させる熱交換器と、前記筐体内に配置され前記熱交換器
の側方に設けられた制御装置と、を有する室内機を備
え、前記熱交換器と前記制御装置との間に絞り装置を配
置したことを特徴とする請求項9または請求項10に記
載の冷凍サイクル装置。11. An indoor unit having a heat exchanger arranged in a housing for exchanging heat of indoor air, and a control device arranged in the housing on a side of the heat exchanger, The refrigeration cycle apparatus according to claim 9 or 10, wherein an expansion device is arranged between the heat exchanger and the control device.
させる熱交換器を有する室内機を備え、絞り装置を前記
筐体と前記熱交換器との間に配置したことを特徴とする
請求項9または請求項10に記載の冷凍サイクル装置。12. An indoor unit having a heat exchanger arranged in a housing for heat-exchanging indoor air, wherein a throttling device is arranged between the housing and the heat exchanger. The refrigeration cycle apparatus according to claim 9 or 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000127778A JP3395761B2 (en) | 2000-04-27 | 2000-04-27 | Throttling device, refrigeration cycle device. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000127778A JP3395761B2 (en) | 2000-04-27 | 2000-04-27 | Throttling device, refrigeration cycle device. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001311573A JP2001311573A (en) | 2001-11-09 |
JP3395761B2 true JP3395761B2 (en) | 2003-04-14 |
Family
ID=18637313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000127778A Expired - Lifetime JP3395761B2 (en) | 2000-04-27 | 2000-04-27 | Throttling device, refrigeration cycle device. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3395761B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003156269A (en) * | 2001-11-20 | 2003-05-30 | Fuji Koki Corp | Solenoid valve |
JP4731920B2 (en) * | 2005-01-20 | 2011-07-27 | 本田技研工業株式会社 | Rotor |
JP2006275452A (en) * | 2005-03-30 | 2006-10-12 | Mitsubishi Electric Corp | Expansion valve |
WO2013061365A1 (en) * | 2011-10-26 | 2013-05-02 | 三菱電機株式会社 | Air conditioning device |
JP5885753B2 (en) * | 2011-11-07 | 2016-03-15 | 三菱電機株式会社 | Air conditioner |
US9797610B2 (en) | 2011-11-07 | 2017-10-24 | Mitsubishi Electric Corporation | Air-conditioning apparatus with regulation of injection flow rate |
WO2013069043A1 (en) | 2011-11-07 | 2013-05-16 | 三菱電機株式会社 | Air-conditioning apparatus |
WO2014054154A1 (en) * | 2012-10-04 | 2014-04-10 | 三菱電機株式会社 | Air conditioning device |
EP3677856A4 (en) * | 2017-08-29 | 2021-05-19 | Toshiba Carrier Corporation | Multi-type air conditioning system and indoor unit |
WO2021153244A1 (en) * | 2020-01-28 | 2021-08-05 | 三菱電機株式会社 | Air conditioner sound muffler and air conditioner |
JP6976623B1 (en) * | 2021-05-10 | 2021-12-08 | 有限会社ブレイヴオート | Ultrasonic cleaner and throttle tube |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5111740Y2 (en) * | 1972-04-05 | 1976-03-30 | ||
JPS6039051Y2 (en) * | 1979-04-12 | 1985-11-22 | 株式会社東芝 | Strainer muffler |
JPS57108568A (en) * | 1980-12-26 | 1982-07-06 | Nihon Radiator Co | Air conditioning equipment |
JPH0552447A (en) * | 1991-08-23 | 1993-03-02 | Hideo Yoshikawa | Freezing device |
JPH07146032A (en) * | 1993-11-26 | 1995-06-06 | Matsushita Seiko Co Ltd | Expansion valve |
JPH07229636A (en) * | 1994-02-18 | 1995-08-29 | Fujitsu General Ltd | Air conditioner |
JPH11325655A (en) * | 1998-05-14 | 1999-11-26 | Matsushita Seiko Co Ltd | Silencer and air conditioner |
-
2000
- 2000-04-27 JP JP2000127778A patent/JP3395761B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001311573A (en) | 2001-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101518205B1 (en) | Multichannel heat exchanger with dissimilar multichannel tubes | |
US7290567B2 (en) | Refrigerating cycle device, air conditioner, choke, and flow rate controller | |
WO2013160957A1 (en) | Heat exchanger, indoor unit, and refrigeration cycle device | |
JP3395761B2 (en) | Throttling device, refrigeration cycle device. | |
JP2002089988A (en) | Air conditioner, and operating method of air conditioner | |
WO2012172599A1 (en) | Air conditioner | |
JP2007085730A (en) | Air conditioner and method of operating air conditioner | |
JP4103363B2 (en) | Flow control device, refrigeration cycle device, and air conditioner | |
JP3901103B2 (en) | Air conditioner | |
JP2001082761A (en) | Air conditioner | |
JP2002221353A (en) | Air conditioner | |
JP4221922B2 (en) | Flow control device, throttle device, and air conditioner | |
JP3817981B2 (en) | Refrigeration cycle apparatus and air conditioner | |
JP3870768B2 (en) | Air conditioner and method of operating air conditioner | |
JP2003050061A (en) | Air conditioner | |
JP3417351B2 (en) | Aperture device | |
JP2006097901A (en) | Flow control valve, refrigeration air conditioner, and method of manufacturing flow control valve | |
JP2008261626A (en) | Flow control device, restricting device and air conditioner | |
JP3435759B2 (en) | Air conditioner | |
JP2002228299A (en) | Composite heat exchanger | |
JP3712355B2 (en) | Refrigeration cycle equipment | |
JP4151236B2 (en) | Flow control device and air conditioner | |
KR100441058B1 (en) | Two-way direction expansion valve with accumulated thin plate | |
JP2003202167A (en) | Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve | |
JP4106867B2 (en) | Flow control device, air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
R151 | Written notification of patent or utility model registration |
Ref document number: 3395761 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090207 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100207 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100207 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110207 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120207 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130207 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130207 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140207 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |