JP3369235B2 - Calibration method for measuring distortion in three-dimensional measurement - Google Patents
Calibration method for measuring distortion in three-dimensional measurementInfo
- Publication number
- JP3369235B2 JP3369235B2 JP00302093A JP302093A JP3369235B2 JP 3369235 B2 JP3369235 B2 JP 3369235B2 JP 00302093 A JP00302093 A JP 00302093A JP 302093 A JP302093 A JP 302093A JP 3369235 B2 JP3369235 B2 JP 3369235B2
- Authority
- JP
- Japan
- Prior art keywords
- dimensional
- measurement
- light emitting
- distortion
- emitting points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、複数の2次元の感光要
素、例えばCCDカメラを使用して三次元測定を行う場
合に於いて、CCDカメラ自体に存在する歪を校正し、
測定歪が発生するのを防止するようにした測定歪校正方
法に関するものである。
【0002】
【従来の技術】自動車のボディーなどの被測定物の三次
元測定の測定方法の1つとして、2台以上の2次元の感
光要素、例えばCCDカメラを用いて被測定物を撮像
し、この時の画像データを元に、三角測量法によって被
測定物の寸法を算出する測定方法がある。
【0003】この測定方法では、図4及び図5に示す如
く、各CCDカメラ(1)のレンズ(2)を通して受光面とな
る固体センサ(3)に、被測定物(A)上の所定位置に形成し
た光点(P)からの光線が入射した時、固体センサ(3)を構
成する多数の画素(4)の内、光線による出力がある画素
群よりの出力中心の、固体センサ(3)の中心からの位置
を検出し、この位置データから光点(P)の各CCDカメ
ラ(1)からの角度を算出する(尚、図5中(L)は、CCD
カメラ(1)の光軸である)。
【0004】そして、2台以上のCCDカメラ(1)から
得た各角度データを元に、光点(P)の位置を算出する。
【0005】このようにして、被測定物(A)上の多数の
光点(P)からのデータを順次演算して行くことにより、
被測定物(A)の三次元寸法を得るようにしている。
【0006】尚、被測定物(A)上に多数の光点(P)を形成
する手段としては、例えば、レーザスキャナ(図示せ
ず)を使用し、被測定物(A)上にレーザスポットを順次
照射すればよい。
【0007】上記CCDカメラ(1)により測定用光点(P)
の角度検出を行う場合に於いて、被測定物(A)の寸法測
定精度を0.1mm以下といった非常に高精度の物にしよう
とすると、各CCDカメラ(1)の固体センサ(3)には、ピ
クセル数が1024×1024と言った非常にピクセル
数が多いものを使用する必要が生じる。
【0008】また、角度検出時には、各ピクセル(4)か
らの輝度信号レベルの分布に対応した出力曲線を算出
し、この出力曲線の最大値の位置から、最大値を出力し
ているピクセル(4)の中の更にどの位置が高出力の中心
となっているかを検出し、この位置の角度を検出するこ
とにより、0.1mm以下の寸法測定精度を保証している。
【0009】
【発明が解決しようとする課題】2台以上のCCDカメ
ラ(1)を使用した三次元測定に於いて、0.1mm以下といっ
た精度を保証しようとすると、上記した如く、種々の手
段を用いる必要が生じるが、このようの手段を用いても
CCDカメラ(1)自体に存在する歪を校正しておかなけ
れば、0.1mm以下といった測定精度を得ることはできな
い。
【0010】即ち、CCDカメラ(1)は、レンズ(2)から
なる光学系に存在する歪と、固体センサ(3)の機械的な
寸法誤差とによって、撮像された像に歪みが生じる。
【0011】従って、上記歪みを画像処理を行うプログ
ラムによって校正しなければ、0.1mm以下といった測定
精度を得ることはできない。
【0012】しかし、従来の校正方法は、全て各CCD
カメラ(1)単独で行っているため、各CCDカメラ(1)で
捕らえた画像からの画像データを合成することに得られ
る三次元画像に生じる歪を完全に取ることはできないと
いった問題があった。
【0013】即ち、個々のCCDカメラ(1)単体の状態
で校正を行うと、個々のCCDカメラ(1)が捕らえた画
像は二次元の画像であるため、この画像からの画像デー
タに対して校正を行っても、この校正は、X(横)方向
及びY(縦)方向の2方向に対して行われるものであ
り、Z(奥行)方向に対しての校正を正確に行うことは
不可能であった。
【0014】このため、単体での校正を行ったCCDカ
メラ(1)を複数台使用し、三次元測定を行うと、各CC
Dカメラ(1)に残っている歪が測定精度に悪影響を与え
るといった問題があった。
【0015】
【課題を解決するための手段】本発明に係る三次元測定
に於ける測定歪校正方法は、複数の2次元の感光要素を
使用した三次元測定装置の測定エリア内に、三次元での
互いの位置関係が既知となっている所定数の発光点を配
置して発光点を撮像する第1ステップと、前記第1ステ
ップにおいて複数の2次元の感光要素で前記各発光点を
撮像した画像データを基に、各発光点の互いの位置関係
を、三次元測定する第2ステップと、予め既知となって
いる各発光点の互いの位置関係と、前記第2ステップに
おいて三次元測定した各発光点の互いの位置関係の測定
データとを比較して、三次元測定装置の測定エリア内に
存在する2次元感光要素に存在する固有の歪みに起因し
て生じる三次元測定の誤差を検出する第3ステップと、
前記第3ステップで検出した誤差に基づいて、三次元測
定時に得られた三次元の測定データを補正する処理を行
うことにより、各2次元感光要素に存在する固有の歪み
に起因して生じる三次元測定の測定誤差を取り除く第4
ステップとを備えていることを特徴としている。
【0016】
【作用】上記した如く、三次元測定装置の測定エリア内
で、三次元での互いの位置関係が既知となっている所定
数の発光点を実際に測定し、この時の測定結果を元に測
定誤差の校正を行うことにより、各2次元の感光要素に
存在する固有の歪によって生じる測定誤差の校正を正確
に行うものである。
【0017】
【実施例】本発明は、複数の2次元の感光要素、例えば
CCDカメラを使用して三次元の寸法測定を行う場合に
於いて、各CCDカメラ単体で、CCDカメラ自体に存
在する歪を校正するのではなく、複数のCCDカメラか
らの画像データを元に得られた三次元の測定データに対
して校正を行うことにより、三次元測定時、各CCDカ
メラ自体に存在する歪が測定精度に悪影響を与えないよ
うにしたものであり、以下本発明に係る測定歪校正方法
を図に従って説明する。
【0018】図2は、本発明の校正方法に使用する校正
用バー(10)を示すものである。
【0019】この図に示す校正用バー(10)は、長尺な棒
状をした基準バー部(11)と、基準バー部(11)を作業者が
手で持つための把持部(12)と、基準バー部(11)の表面に
取付けた複数の発光点(13)とによって構成してある。
【0020】また、この各発光点(13)の基準バー部(11)
上でのX方向、Y方向、Z方向の位置は正確に規定され
ており、各発光点(13)の基準バー部(11)上での位置は既
知となるようにしてある。
【0021】上記校正用バー(10)を使用して三次元測定
装置に使用する複数台のCCDカメラ(1)の三次元での
歪、即ち、実際の測定時、各CCDカメラ(1)に存在す
る歪によって生じる測定歪を校正するには、図1に示す
如く、先ず、校正用バー(10)の把持部(12)を作業者が手
で持ち、各CCDカメラ(1)によって三次元測定が行わ
れる測定エリア内に校正用バー(10)を持って行き、更
に、校正用バー(10)の基準バー部(11)に配置した発光点
(13)が各CCDカメラ(1)の視野内に入るように校正用
バー(10)の向きを決定する。
【0022】この状態で、校正用バー(10)の各発光点(1
3)が各CCDカメラ(1)の視野内から外れないようにし
ながら、校正用バー(10)を測定エリア内で上下左右方向
及び前後方向に移動させ、この移動中に任意のタイミン
グで各発光点(13)を同時に発光させ、その時の各発光点
(13)の位置を各CCDカメラ(1)で同時に撮像する。
【0023】そして、上記作業により、測定エリア内に
形成された多数の発光点(13)の三次元の位置を、各CC
Dカメラ(1)からの画像データを元に算出する。
【0024】するとこの時、校正用バー(10)上の各発光
点(13)を発光させ、各発光点(13)の位置を撮像した時点
の各発光点(13)の位置関係は、発光点(13)を校正用バー
(10)の基準バー部(11)に正確に位置規定して取付けてあ
るため、すでに既知となっている。
【0025】従って、各CCDカメラ(1)の画像データ
から算出された各発光点(13)の三次元の位置と、予め既
知となっている各発光点(13)の位置データとを比較し、
両者のズレを検出し、このズレを校正することにより、
複数のCCDカメラ(1)の画像データによって三次元の
寸法を算出する時、各CCDカメラ(1)に存在する固有
の歪によって生じる三次元状態での測定歪を確実に取除
くことができる。
【0026】尚、上記実施例は、各CCDカメラ(1)に
よって形成される測定エリア内に、それぞれの位置関係
が既知となった発光点を形成するための手段として、校
正用バー(10)を使用した例について説明したが、図3に
示すような立体格子(20)を作成し、この立体格子(20)の
各片(21)の任意の位置に、所定数の発光点(22)を互いの
位置関係を正確に規定した状態で配置し、この立体格子
(20)を三次元測定装置の測定エリア内に位置させ、この
状態で各発光点(22)を同時に発光させ、この時、各CC
Dカメラ(1)が捕えた画像データから算出した各発光点
(11)の三次元での位置と、実際の各発光点(22)の三次元
での位置関係から測定歪の校正を行うようにしてもよ
い。
【0027】
【発明の効果】本願発明に係る三次元測定に於ける測定
歪校正方法は、三次元測定装置の測定エリア内に存在す
る2次元感光要素に存在する固有の歪みに起因して生じ
る三次元測定の誤差を検出する第3ステップと、第3ス
テップで検出した誤差に基づいて、三次元測定時に得ら
れた三次元の測定データを補正する処理を行う第4ステ
ップを備えているので、各CCDカメラで捕らえた画像
データを解析することにより得られる三次元の測定デー
タに対して校正を行うことができる。この測定歪校正方
法によれば、実際の使用状況に非常に近い状態で校正を
行うことになるため、従来の個々の2次元の感光要素に
対して行っていた校正と比較し、非常に高精度な校正を
行うことが可能となり、0.1mm以下といった測定精
度を保証する場合に於いて、各2次元の感光要素に存在
する固有の歪みが測定精度に悪影響を及ぼすのを防止で
きる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a case where three-dimensional measurement is performed using a plurality of two-dimensional photosensitive elements, for example, a CCD camera. Calibrate the existing distortion,
The present invention relates to a measurement distortion calibration method for preventing occurrence of measurement distortion. 2. Description of the Related Art As one of the three-dimensional measurement methods for an object to be measured such as an automobile body, an image of the object to be measured is taken using two or more two-dimensional photosensitive elements, for example, a CCD camera. There is a measurement method for calculating the dimensions of the measured object by triangulation based on the image data at this time. In this measuring method, as shown in FIGS. 4 and 5, a solid-state sensor (3) serving as a light receiving surface passes through a lens (2) of each CCD camera (1) and a predetermined position on an object (A) to be measured. When a light beam from the light spot (P) formed on the solid state sensor (3) is incident on the solid state sensor (3) at the output center of a group of pixels having a light beam out of a large number of pixels (4) constituting the solid state sensor (3). ) Is detected from the center, and the angle of the light spot (P) from each CCD camera (1) is calculated from this position data ((L) in FIG.
This is the optical axis of the camera (1)). The position of the light spot (P) is calculated based on each angle data obtained from two or more CCD cameras (1). In this way, by sequentially calculating data from a number of light spots (P) on the object to be measured (A),
The three-dimensional dimensions of the device under test (A) are obtained. As means for forming a large number of light spots (P) on the object (A), for example, a laser scanner (not shown) is used, and a laser spot is formed on the object (A). May be sequentially irradiated. [0007] The light spot (P) for measurement by the CCD camera (1)
In the case of performing the angle detection, if the dimension measurement accuracy of the object to be measured (A) is to be extremely high, such as 0.1 mm or less, the solid-state sensor (3) of each CCD camera (1) needs It is necessary to use a pixel having a very large number of pixels such as 1024 × 1024. At the time of angle detection, an output curve corresponding to the luminance signal level distribution from each pixel (4) is calculated, and from the position of the maximum value of the output curve, the pixel (4) outputting the maximum value is output. ), Which position is the center of the high output, and by detecting the angle of this position, the dimension measurement accuracy of 0.1 mm or less is guaranteed. In order to guarantee an accuracy of 0.1 mm or less in three-dimensional measurement using two or more CCD cameras (1), as described above, various means are required. Although it is necessary to use such a means, even if such a means is used, a measurement accuracy of 0.1 mm or less cannot be obtained unless distortion existing in the CCD camera (1) itself is calibrated. That is, in the CCD camera (1), a distortion occurs in a captured image due to a distortion existing in the optical system including the lens (2) and a mechanical dimensional error of the solid-state sensor (3). Therefore, unless the distortion is calibrated by a program for performing image processing, a measurement accuracy of 0.1 mm or less cannot be obtained. However, the conventional calibration methods all use the CCD
Since the camera (1) is used alone, there is a problem that distortion generated in a three-dimensional image obtained by synthesizing image data from images captured by each CCD camera (1) cannot be completely removed. . That is, if calibration is performed in a state where each CCD camera (1) is alone, the image captured by each CCD camera (1) is a two-dimensional image. Even if the calibration is performed, the calibration is performed in two directions of the X (horizontal) direction and the Y (vertical) direction, and it is not possible to accurately perform the calibration in the Z (depth) direction. It was possible. For this reason, when three-dimensional measurement is performed using a plurality of CCD cameras (1) that have been calibrated by themselves,
There is a problem that the distortion remaining in the D camera (1) adversely affects the measurement accuracy. According to the present invention, there is provided a method for calibrating measurement distortion in three-dimensional measurement, comprising the steps of: providing a three-dimensional measuring device in a measuring area of a three-dimensional measuring device using a plurality of two-dimensional photosensitive elements; a first step of mutual positional relationship to image the light emitting point disposed a predetermined number of light emitting points has become known, the first stearate
A second step of three-dimensionally measuring the positional relationship between the light emitting points on the basis of image data obtained by capturing the light emitting points with a plurality of two-dimensional photosensitive elements in each step; The positional relationship between the light emitting points and the second step
By comparing the measurement data of the mutual positional relationship of the light emitting point measured Oite three dimensions, within the measurement area of the coordinate measuring instrument
Due to the inherent distortion in the existing two-dimensional photosensitive element
A third step of detecting a three-dimensional measurement error caused by the
Three-dimensional measurement based on the error detected in the third step
Performs processing to correct the three-dimensional measurement data obtained at regular times.
The inherent distortion present in each two-dimensional photosensitive element
4th to remove the measurement error of the three-dimensional measurement caused by the
And a step. As described above, within the measurement area of the three-dimensional measuring device, a predetermined number of light-emitting points whose positional relationship is known in three dimensions is actually measured, and the measurement result at this time is obtained. By calibrating the measurement error based on the above, the calibration of the measurement error caused by the inherent distortion existing in each two-dimensional photosensitive element is accurately performed. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is applied to a case where three-dimensional dimension measurement is performed using a plurality of two-dimensional photosensitive elements, for example, a CCD camera. Rather than calibrating the distortion, by performing calibration on the three-dimensional measurement data obtained based on the image data from multiple CCD cameras, the distortion existing in each CCD camera itself during three-dimensional measurement The measurement accuracy is not adversely affected, and the measurement distortion calibration method according to the present invention will be described below with reference to the drawings. FIG. 2 shows a calibration bar (10) used in the calibration method of the present invention. The calibration bar (10) shown in FIG. 1 has a long bar-shaped reference bar portion (11) and a grip portion (12) for an operator to hold the reference bar portion (11) by hand. , A plurality of light emitting points (13) attached to the surface of the reference bar (11). The reference bar portion (11) of each light emitting point (13)
The positions in the X, Y, and Z directions above are accurately defined, and the positions of the light emitting points (13) on the reference bar portion (11) are known. Using the calibration bar (10), the three-dimensional distortion of a plurality of CCD cameras (1) used in the three-dimensional measuring device, that is, each CCD camera (1) is subjected to an actual measurement. In order to calibrate the measurement distortion caused by the existing distortion, first, as shown in FIG. Bring the calibration bar (10) into the measurement area where the measurement is to be performed, and further place the light-emitting point on the reference bar (11) of the calibration bar (10).
The orientation of the calibration bar (10) is determined so that (13) is within the field of view of each CCD camera (1). In this state, each light emitting point (1) of the calibration bar (10) is
Move the calibration bar (10) up, down, left, right and back and forth in the measurement area while keeping the 3) from falling out of the field of view of each CCD camera (1). The point (13) emits light at the same time, and each emission point at that time
The position of (13) is imaged simultaneously by each CCD camera (1). By the above operation, the three-dimensional positions of a large number of light emitting points (13) formed in the measurement area are determined by each CC.
It is calculated based on the image data from the D camera (1). At this time, the light emitting points (13) on the calibration bar (10) are caused to emit light, and when the position of each light emitting point (13) is imaged, the positional relationship between the light emitting points (13) is Point (13) for calibration bar
It is already known because it is accurately positioned and attached to the reference bar portion (11) of (10). Therefore, the three-dimensional position of each light emitting point (13) calculated from the image data of each CCD camera (1) is compared with the position data of each light emitting point (13) which is known in advance. ,
By detecting the difference between the two and calibrating this difference,
When calculating three-dimensional dimensions based on image data of a plurality of CCD cameras (1), measurement distortion in a three-dimensional state caused by inherent distortion existing in each CCD camera (1) can be reliably removed. The above-described embodiment uses a calibration bar (10) as a means for forming a light-emitting point whose positional relationship is known within a measurement area formed by each CCD camera (1). Was described, but a three-dimensional lattice (20) as shown in FIG. 3 was created, and a predetermined number of light emitting points (22) were placed at arbitrary positions on each piece (21) of the three-dimensional lattice (20). Are placed in a state where the mutual positional relationship is precisely defined, and this three-dimensional lattice
(20) is positioned in the measurement area of the three-dimensional measuring device, and in this state, each light emitting point (22) is caused to emit light at the same time.
Each light emitting point calculated from image data captured by D camera (1)
The measurement distortion may be calibrated based on the three-dimensional position of (11) and the actual three-dimensional position of each light emitting point (22). The method for calibrating the distortion in the three-dimensional measurement according to the present invention exists in the measurement area of the three-dimensional measuring device.
Caused by the inherent distortion present in the two-dimensional photosensitive element
A third step of detecting a three-dimensional measurement error
Based on the error detected in the step,
Fourth step for correcting the acquired three-dimensional measurement data
Image captured by each CCD camera
3D measurement data obtained by analyzing the data
Calibration can be performed on the data. This measurement distortion calibration method
According to the method , the calibration is performed in a state very close to the actual use situation, so that a very high-precision calibration is performed compared to the calibration performed for each individual two-dimensional photosensitive element in the past. This makes it possible to prevent the inherent distortion of each two-dimensional photosensitive element from adversely affecting the measurement accuracy when the measurement accuracy of 0.1 mm or less is guaranteed.
【図面の簡単な説明】
【図1】本発明に係る校正方法を説明するための説明
図。
【図2】本発明に使用する校正用バーを示す斜視図。
【図3】本発明に使用する立体格子を示す斜視図。
【図4】三次元測定装置の一例を示す斜視図。
【図5】三次元測定時の固体センサへの測定用光点から
の光の入射状態を示す斜視図。
【符号の説明】
1 CCDカメラ
10 校正用バー
11 基準バー部
12 把持部
13 発光点
20 立体格子
22 発光点BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram for explaining a calibration method according to the present invention. FIG. 2 is a perspective view showing a calibration bar used in the present invention. FIG. 3 is a perspective view showing a three-dimensional lattice used in the present invention. FIG. 4 is a perspective view showing an example of a three-dimensional measuring device. FIG. 5 is a perspective view showing a state in which light from a measurement light spot enters a solid-state sensor during three-dimensional measurement. [Description of Signs] 1 CCD camera 10 Calibration bar 11 Reference bar portion 12 Gripping portion 13 Light emitting point 20 Solid grid 22 Light emitting point
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−147830(JP,A) 特開 昭62−81508(JP,A) 特開 平3−255910(JP,A) 特開 平3−158977(JP,A) 特開 昭62−56814(JP,A) 特開 平3−176041(JP,A) 特開 平2−223810(JP,A) 特開 平4−200196(JP,A) 特表 平3−503680(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 H04N 9/00 H04N 13/00 G06T 7/00 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-6-147830 (JP, A) JP-A-62-81508 (JP, A) JP-A-3-255910 (JP, A) JP-A-3-25510 158977 (JP, A) JP-A-62-56814 (JP, A) JP-A-3-17641 (JP, A) JP-A-2-223810 (JP, A) JP-A-4-200196 (JP, A) Special Table Hei3-503680 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/00-11/30 H04N 9/00 H04N 13/00 G06T 7/00
Claims (1)
元測定装置の測定エリア内に、三次元での互いの位置関
係が既知となっている所定数の発光点を配置して発光点
を撮像する第1ステップと、 前記第1ステップにおいて複数の2次元の感光要素で前
記各発光点を撮像した画像データを基に、各発光点の互
いの位置関係を、三次元測定する第2ステップと、 予め既知となっている各発光点の互いの位置関係と、前
記第2ステップにおいて三次元測定した各発光点の互い
の位置関係の測定データとを比較して、三次元測定装置
の測定エリア内に存在する2次元感光要素に存在する固
有の歪みに起因して生じる三次元測定の誤差を検出する
第3ステップと、 前記第3ステップで検出した誤差に基づいて、三次元測
定時に得られた三次元の測定データを補正する処理を行
うことにより、各2次元感光要素に存在する固有の歪み
に起因して生じる三次元測定の測定誤差を取り除く第4
ステップとを備えていることを特徴とする三次元測定に
於ける測定歪校正方法。(57) [Claim 1] In a measurement area of a three-dimensional measuring device using a plurality of two-dimensional photosensitive elements, a predetermined number of which the mutual positional relationship in three dimensions is known. Luminescent point
And a second step of three-dimensionally measuring the positional relationship between the light emitting points based on image data obtained by capturing the light emitting points with a plurality of two-dimensional photosensitive elements in the first step. Step, the positional relationship between the light emitting points that are known in advance, and
The three-dimensional measuring apparatus compares the three-dimensionally measured light-emitting points in the second step with measured data of the positional relationship between the light-emitting points.
In the two-dimensional photosensitive element in the measurement area of
To detect the error of three-dimensional measurement caused by the distortion of the chromatic
The third step and three-dimensional measurement based on the error detected in the third step.
Performs processing to correct the three-dimensional measurement data obtained at regular times.
The inherent distortion present in each two-dimensional photosensitive element
4th to remove the measurement error of the three-dimensional measurement caused by the
In measuring strain calibration method to a three-dimensional measurement, characterized in that it comprises a step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00302093A JP3369235B2 (en) | 1993-01-12 | 1993-01-12 | Calibration method for measuring distortion in three-dimensional measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00302093A JP3369235B2 (en) | 1993-01-12 | 1993-01-12 | Calibration method for measuring distortion in three-dimensional measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06207810A JPH06207810A (en) | 1994-07-26 |
JP3369235B2 true JP3369235B2 (en) | 2003-01-20 |
Family
ID=11545654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00302093A Expired - Fee Related JP3369235B2 (en) | 1993-01-12 | 1993-01-12 | Calibration method for measuring distortion in three-dimensional measurement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3369235B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10318500A1 (en) * | 2003-04-24 | 2004-11-25 | Robert Bosch Gmbh | Device and method for calibrating an image sensor |
JP6079072B2 (en) * | 2012-09-12 | 2017-02-15 | Jfeスチール株式会社 | Hot length measuring method and apparatus |
US10571869B2 (en) | 2014-10-29 | 2020-02-25 | Xiaomi Inc. | Systems for mode switching in an appliance |
-
1993
- 1993-01-12 JP JP00302093A patent/JP3369235B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06207810A (en) | 1994-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4901903B2 (en) | 3D inspection system | |
US7015951B1 (en) | Picture generating apparatus and picture generating method | |
JP4885584B2 (en) | Rangefinder calibration method and apparatus | |
JP3983573B2 (en) | Stereo image characteristic inspection system | |
US5909285A (en) | Three dimensional inspection system | |
US7342669B2 (en) | Three-dimensional shape measuring method and its device | |
EP1555507B1 (en) | Three-dimensional visual sensor | |
US5671056A (en) | Three-dimensional form measuring apparatus and method | |
JPWO2018168757A1 (en) | Image processing apparatus, system, image processing method, article manufacturing method, program | |
JP3696336B2 (en) | How to calibrate the camera | |
JPH0886613A (en) | Apparatus for calibrating stereo camera | |
JP3369235B2 (en) | Calibration method for measuring distortion in three-dimensional measurement | |
US8102516B2 (en) | Test method for compound-eye distance measuring apparatus, test apparatus, and chart used for the same | |
JP4077755B2 (en) | POSITION DETECTION METHOD, DEVICE THEREOF, PROGRAM THEREOF, AND CALIBRATION INFORMATION GENERATION METHOD | |
JP2567923B2 (en) | Distance measurement method | |
JP2002005622A (en) | Method for detecting arrangement parameter in optical shaping measuring apparatus provided with plural light- section sensors | |
JPS6256814A (en) | Calibration system for three-dimensional position measuring camera | |
JPH08292019A (en) | Calibration method for article detecting device | |
JPH11132735A (en) | Ic lead floating inspection device and inspection method | |
JP2795790B2 (en) | Sensor coordinate correction method for three-dimensional measuring device | |
JP3412139B2 (en) | Calibration method of three-dimensional distance measuring device | |
JPH0835828A (en) | Calibration method of three-dimensional measuring apparatus | |
JPS63222247A (en) | Correction of image distortion | |
JPH0658210B2 (en) | Three-dimensional coordinate measurement method | |
JP4003274B2 (en) | Distance measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020528 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021002 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |