[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3367149B2 - Method for producing conductive oxide powder - Google Patents

Method for producing conductive oxide powder

Info

Publication number
JP3367149B2
JP3367149B2 JP16219793A JP16219793A JP3367149B2 JP 3367149 B2 JP3367149 B2 JP 3367149B2 JP 16219793 A JP16219793 A JP 16219793A JP 16219793 A JP16219793 A JP 16219793A JP 3367149 B2 JP3367149 B2 JP 3367149B2
Authority
JP
Japan
Prior art keywords
powder
hydroxide
mixed
conductive oxide
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16219793A
Other languages
Japanese (ja)
Other versions
JPH0721831A (en
Inventor
明 西原
年治 林
昌宏 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP16219793A priority Critical patent/JP3367149B2/en
Publication of JPH0721831A publication Critical patent/JPH0721831A/en
Application granted granted Critical
Publication of JP3367149B2 publication Critical patent/JP3367149B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、錫ドープ酸化インジウ
ム (ITO) 、アンチモンドープ酸化錫 (ATO) など
を代表例とする、2種以上の混合遷移金属酸化物からな
る電子伝導性による導電性酸化物粉末 (n型酸化物半導
体粉末) の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is typified by tin-doped indium oxide (ITO) and antimony-doped tin oxide (ATO). The present invention relates to a method for producing oxide powder (n-type oxide semiconductor powder).

【0002】さらに詳しくは、本発明は、一次粒子径0.
2 μm以下、好ましくは0.1 μm以下で、しかも圧粉体
(50 kgf/cm2) の体積抵抗率が10Ω・cm以下という、透
明性と導電性に優れた導電性酸化物粉末を量産性に優れ
た方法で製造することができる方法に関する。特に本発
明の方法をITO粉末の製造に適用した場合には、一次
粒子径0.05μm以下、体積抵抗率が0.1 Ω・cm以下とい
う低抵抗・超微粉の導電性酸化物粉末を量産することが
できる。
More specifically, the present invention has a primary particle size of 0.
2 μm or less, preferably 0.1 μm or less, and compact
The present invention relates to a method capable of producing a conductive oxide powder having a volume resistivity of (50 kgf / cm 2 ) of 10 Ω · cm or less, which is excellent in transparency and conductivity, by a method excellent in mass productivity. In particular, when the method of the present invention is applied to the production of ITO powder, it is possible to mass-produce a low resistance ultrafine conductive oxide powder having a primary particle diameter of 0.05 μm or less and a volume resistivity of 0.1 Ω · cm or less. it can.

【0003】[0003]

【従来の技術】電子伝導性型の導電性酸化物粉末の一般
的な製造方法として、2種以上の原料遷移金属イオンを
含有する水溶液 (例、ITO粉末の場合にはSnとInを塩
化物または硝酸塩として溶解した水溶液) をアルカリ水
溶液と反応させて、原料金属の水酸化物を共沈させ、こ
の共沈水酸化物を出発原料として、これを大気中で加熱
処理して酸化物に変換させる方法がある。この方法は、
ITO粉末のみならず、ATO粉末や他のその他の電子
伝導型導電性酸化物粉末についても、安定で低抵抗のサ
ブミクロンの微粉末を製造できることが知られている。
2. Description of the Related Art As a general method for producing an electrically conductive type conductive oxide powder, an aqueous solution containing two or more kinds of raw material transition metal ions (eg, in the case of ITO powder, Sn and In are chlorides). (Or an aqueous solution dissolved as a nitrate) is reacted with an alkaline aqueous solution to coprecipitate a hydroxide of the raw material metal, and the coprecipitated hydroxide is used as a starting material to be heat-treated in the atmosphere to be converted into an oxide. There is a way. This method
It is known that not only the ITO powder but also the ATO powder and other electron-conducting conductive oxide powders can produce stable, low-resistance submicron fine powders.

【0004】このような方法で製造された導電性酸化物
粉末の利用分野としては、例えば平均一次粒子径を0.1
μm以下に制御した微粉末状の導電性酸化物粉末を溶媒
とバインダー樹脂からなる溶液中に分散させ、塗料化し
た導電性塗料 (皮膜形成材)がある。この塗料は、ガラ
ス、プラスチック等の基材に浸漬、塗布、印刷、スピン
コート或いは噴霧などの手段で塗工し、乾燥することに
よって、透明導電膜を基材上に形成することができる。
The field of application of the conductive oxide powder produced by such a method is, for example, an average primary particle size of 0.1
There is a conductive coating material (film forming material) which is made into a paint by dispersing a fine powdery conductive oxide powder controlled to be not more than μm in a solution consisting of a solvent and a binder resin. The transparent conductive film can be formed on the base material by applying this coating material to a base material such as glass or plastic by means such as dipping, coating, printing, spin coating or spraying, and drying.

【0005】この透明導電膜は、ガラス、プラスチック
等の帯電防止やほこりの付着防止に有効であり、例えば
TVブラウン管や計測器の窓ガラスの帯電防止やほこり
の付着防止用として利用されている。
This transparent conductive film is effective for preventing static electricity such as glass and plastics and for preventing dust from adhering, and is used, for example, for preventing electrostatic charge and preventing dust from adhering to window glass of TV Braun tubes and measuring instruments.

【0006】また、最近ではITO粉末をはじめとする
導電性酸化物の微粉末は、ICパッケージ回路形成、ク
リーンルーム内装材、各種ガラスやフィルム等の帯電防
止やほこりの付着防止、塗布型透明電極あるいは面発熱
体等の用途に利用もしくは検討が行われており、今後の
需要の伸びが期待されている。
In recent years, fine powders of conductive oxides such as ITO powders have been used in IC package circuit formation, clean room interior materials, various glass and films to prevent static electricity and dust from adhering, coating type transparent electrodes or It is being used or studied for applications such as surface heating elements, and future demand growth is expected.

【0007】このような利用の拡大に伴って、導電性酸
化物粉末に対する要求性能も高まってきており、特にI
TO粉末を塗布、印刷などの塗工手段により適用して透
明導電膜を形成する用途においては、一段と高い透明性
と導電性が求められている。このため、塗料化における
分散技術の検討が行われる一方で、導電性酸化物粉末自
体についてもさらなる微粒化と低抵抗化の手段が模索さ
れている。
With the expansion of such use, the required performance of the conductive oxide powder is also increasing, and especially I
In applications where TO powder is applied by a coating means such as coating or printing to form a transparent conductive film, higher transparency and conductivity are required. For this reason, while the dispersion technique for making a coating material is being investigated, a means for further atomizing and reducing the resistance of the conductive oxide powder itself is also being sought.

【0008】電子伝導性による導電性酸化物粉末 (n型
酸化物半導体) の導電機構は、例えばITOを例にとる
と、In2O3 結晶の3価のInサイトに4価のSnが置換配置
することによるn型ドナーの作用 (キャリア電子の発
生) に加えて、格子欠陥による酸素空孔のドナー効果に
よってバルク中のキャリア電子密度が高められることが
主な原因であることが知られている。ITOの製造にお
いては、ドープのSn含有量を1〜15 mol%の範囲内で調
整し、酸素欠陥に起因する導電性をより高めるために、
焼成雰囲気の酸素分圧を制御したり、あるいは還元性の
気流で焼成する等の工夫をして低抵抗化を図ることが知
られている。
The conductive mechanism of the conductive oxide powder (n-type oxide semiconductor) due to electronic conductivity is, for example, in the case of ITO, in which the trivalent In site of the In 2 O 3 crystal is replaced with tetravalent Sn. It is known that, in addition to the action of the n-type donor due to the arrangement (generation of carrier electrons), the carrier electron density in the bulk is increased by the donor effect of oxygen vacancies due to lattice defects. There is. In the production of ITO, the Sn content of the dope is adjusted within the range of 1 to 15 mol% to further enhance the conductivity due to oxygen defects,
It is known to reduce the resistance by controlling the oxygen partial pressure in the firing atmosphere or by firing with a reducing air flow.

【0009】しかし、このような方法では、焼成炉内に
仕込まれた原料の上部 (表面部分)と下部では酸素欠陥
の発生しやすさに差が生じて、導電性が不均一になる。
従って、超微粒且つ低抵抗化を同時に満足させるために
は、仕込原料をなるべく薄く敷いて、低温で焼成しなけ
ればならないが、そのような条件下での焼成は、特性の
ばらつきを生じると同時に量産性にも問題を生じる。こ
のため、特に最近要求されている一次粒子径0.05μm以
下、体積抵抗率が0.1 Ω・cm以下という低抵抗・超微粉
末のITOを工業的に量産することはこれまで困難であ
った。
However, in such a method, there is a difference in the susceptibility to oxygen defects between the upper part (surface part) and the lower part of the raw material charged in the firing furnace, and the conductivity becomes nonuniform.
Therefore, in order to satisfy the requirements of ultrafine particles and low resistance at the same time, it is necessary to spread the charging raw material as thin as possible and fire at a low temperature. However, firing under such a condition causes variations in characteristics and There is also a problem in mass productivity. For this reason, it has been difficult to industrially mass-produce ITO, which is a low resistance ultrafine powder having a primary particle diameter of 0.05 μm or less and a volume resistivity of 0.1 Ω · cm or less, which has been particularly demanded recently.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、一次
粒子径0.2 μm以下、好ましくは0.1 μm以下で、しか
も圧粉体 (50 kgf/cm2) の体積抵抗率が10Ω・cm以下で
ある、透明性と導電性に優れた導電性酸化物粉末を量産
可能な製造方法を提供することである。
The object of the present invention is to have a primary particle diameter of 0.2 μm or less, preferably 0.1 μm or less, and a powder compact (50 kgf / cm 2 ) having a volume resistivity of 10 Ω · cm or less. An object of the present invention is to provide a manufacturing method capable of mass-producing a conductive oxide powder having excellent transparency and conductivity.

【0011】本発明の別の目的は、一次粒子径0.05μm
以下、体積抵抗率が0.1 Ω・cm以下の低抵抗・超微粉末
状のITO粉末を量産することができる導電性酸化物粉
末の製造方法を提供することである。
Another object of the present invention is to have a primary particle size of 0.05 μm.
Hereinafter, it is an object of the present invention to provide a method for producing a conductive oxide powder, which enables mass production of low-resistance ultrafine powder ITO powder having a volume resistivity of 0.1 Ω · cm or less.

【0012】[0012]

【課題を解決するための手段】本発明者等は、導電性酸
化物粉末の原料 (2種以上の遷移金属の混合水酸化物お
よび/または酸化物) を不活性ガスの密閉加圧条件下で
熱処理することにより上記目的が達成できることを見出
し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have used a raw material for a conductive oxide powder (a mixed hydroxide and / or oxide of two or more transition metals) under an inert gas sealed and pressurized condition. The present invention has been completed by finding that the above object can be achieved by heat-treating.

【0013】ここに、本発明は、2種以上の遷移金属の
混合水酸化物および/または酸化物からなる出発原料
を、圧力2kgf/cm2 以上の密閉した加圧不活性ガス雰囲
気下に温度 350〜1000℃で加熱処理することを特徴とす
る、導電性酸化物粉末の製造方法を要旨とする。
In the present invention, a starting material composed of a mixed hydroxide and / or oxide of two or more transition metals is heated at a pressure of 2 kgf / cm 2 or more in a closed pressurized inert gas atmosphere. The gist is a method for producing a conductive oxide powder, which is characterized by performing heat treatment at 350 to 1000 ° C.

【0014】出発原料としては、(1) 2種以上の遷移金
属イオンを含む水溶液とアルカリ水溶液との反応による
共沈で得た含水混合水酸化物、(2) この含水混合水酸化
物の加熱脱水乾燥した混合水酸化物および/または加熱
脱水した混合酸化物、(3) 公知方法で得た導電性酸化物
粉末、または(4) 2種以上の遷移金属の含水水酸化物、
水酸化物および/または酸化物の混合粉末を使用するこ
とができる。
As the starting material, (1) a hydrous mixed hydroxide obtained by coprecipitation by the reaction of an aqueous solution containing two or more transition metal ions and an alkaline aqueous solution, (2) heating of this hydrous mixed hydroxide Dehydrated and dried mixed hydroxide and / or heat dehydrated mixed oxide, (3) conductive oxide powder obtained by a known method, or (4) hydrous hydroxide of two or more transition metals,
Mixed powders of hydroxides and / or oxides can be used.

【0015】本発明は、遷移金属がSnとInの組合わせで
あるITO粉末、SbとSnの組合わせであるATO粉末、
さらにはAl、Sn、In、Fe、Ga、Co、Si、Ge、SbまたはPb
とZnとの組合せである酸化亜鉛系の導電性酸化物粉末の
製造および処理に適用することができる。
The present invention provides an ITO powder in which the transition metal is a combination of Sn and In, an ATO powder in which the transition metal is a combination of Sb and Sn,
Furthermore, Al, Sn, In, Fe, Ga, Co, Si, Ge, Sb or Pb
It can be applied to the production and treatment of zinc oxide-based conductive oxide powder, which is a combination of Zn and Zn.

【0016】[出発原料]本発明の導電性酸化物粉末の製
造方法における出発原料は2種以上の遷移金属の混合水
酸化物および/または酸化物からなる。この出発原料と
しては、(1) 2種以上の遷移金属イオンを含む水溶液と
アルカリ水溶液との反応による共沈で得た含水混合水酸
化物、或いは(2) この含水混合水酸化物の加熱乾燥また
は加熱脱水により得た混合水酸化物および/または酸化
物を使用することが、超微粒化と低抵抗化への効果が高
いことから好ましい。
[Starting Raw Material] The starting raw material in the method for producing a conductive oxide powder of the present invention comprises a mixed hydroxide and / or oxide of two or more transition metals. As the starting material, (1) a hydrous mixed hydroxide obtained by coprecipitation by the reaction of an aqueous solution containing two or more kinds of transition metal ions and an alkaline aqueous solution, or (2) heating and drying of this hydrous mixed hydroxide Alternatively, it is preferable to use a mixed hydroxide and / or oxide obtained by heat dehydration, since the effect of ultrafine graining and low resistance is high.

【0017】しかし、(3) 公知方法で得た導電性酸化物
粉末、または(4) 2種以上の遷移金属の含水水酸化物、
水酸化物および/または酸化物の混合粉末を使用するこ
ともできる。
However, (3) conductive oxide powder obtained by a known method, or (4) hydrous hydroxide of two or more transition metals,
It is also possible to use mixed powders of hydroxides and / or oxides.

【0018】上記(1) の含水水酸化物を得るには、2種
以上の異なる遷移金属の水溶性の塩を水に溶解させて、
これら遷移金属のイオンを含有する水溶液を調製する。
水溶性塩の種類は限定されないが、例えば、塩酸塩、硝
酸塩、硫酸塩などの無機酸塩、さらには酢酸塩などの有
機酸塩が例示される。2種以上の塩の混合物を用いてて
もよい。一方、アルカリ水溶液としては、アルカリ金属
(例、ナトリウムまたはカリウム) またはアンモニウム
の水酸化物、炭酸塩、炭酸水素塩の水溶液が使用でき
る。遷移金属塩の水溶液とアルカリ水溶液の濃度も特に
制限されないが、通常は 200〜400 g/l の範囲内であろ
う。
To obtain the hydrous hydroxide of the above (1), a water-soluble salt of two or more different transition metals is dissolved in water,
An aqueous solution containing these transition metal ions is prepared.
The type of water-soluble salt is not limited, but examples thereof include inorganic acid salts such as hydrochlorides, nitrates and sulfates, and organic acid salts such as acetates. Mixtures of two or more salts may be used. On the other hand, as an alkaline aqueous solution,
Aqueous solutions of (eg, sodium or potassium) or ammonium hydroxides, carbonates, bicarbonates can be used. The concentrations of the transition metal salt aqueous solution and the alkaline aqueous solution are not particularly limited, but usually will be in the range of 200 to 400 g / l.

【0019】この2種類の水溶液を攪拌下に混合して反
応を行う。この反応により各遷移金属塩が加水分解し
て、2種以上の遷移金属水酸化物が共沈する。微細な沈
殿を得るために、一方の水溶液を他方の水溶液に攪拌下
に滴下して徐々に混合を行うことが好ましい。反応温度
は、遷移金属の種類、濃度、ドープ量等によって加水分
解の容易さが異なるため、実験により適宜決定すればよ
いが、通常は常温〜100℃の範囲内でよい。反応に用い
るアルカリ水溶液の量は、導電性粉末の種類によっても
異なるが、混合後の溶液のpHが4〜9となる量とする
ことが好ましい。必要であれば、混合後に攪拌をさらに
続けてもよい。
The two types of aqueous solutions are mixed with stirring to carry out the reaction. By this reaction, each transition metal salt is hydrolyzed and two or more kinds of transition metal hydroxides are coprecipitated. In order to obtain a fine precipitate, it is preferable to drop one aqueous solution into the other aqueous solution with stirring and gradually mix them. The reaction temperature may be appropriately determined by experiments because the ease of hydrolysis varies depending on the type, concentration, dope amount, etc. of the transition metal, but it may normally be in the range of room temperature to 100 ° C. The amount of the alkaline aqueous solution used in the reaction varies depending on the type of the conductive powder, but it is preferable that the mixed solution has a pH of 4 to 9. If desired, stirring may be continued after mixing.

【0020】沈殿を沈降、濾過などの適当な手段で回収
すると、2種以上の遷移金属の混合含水水酸化物が得ら
れる。必要に応じて、沈殿を回収前または回収後に水洗
してもよい。この共沈で得た含水水酸化物は、乾燥せず
にそのまま本発明の方法の出発原料(1) として使用でき
る。
When the precipitate is collected by a suitable means such as sedimentation or filtration, a mixed hydrous hydroxide of two or more transition metals can be obtained. If necessary, the precipitate may be washed with water before or after collection. The hydrous hydroxide obtained by this coprecipitation can be directly used as a starting material (1) for the method of the present invention without being dried.

【0021】この2種以上の遷移金属の含水混合水酸化
物を加熱乾燥すると混合水酸化物となり、さらに加熱を
続けて脱水すると混合酸化物となる。加熱条件によって
は、水酸化物と酸化物との混合物が得られる。このよう
にして得た混合水酸化物および/または酸化物は、本発
明において出発原料(2) として使用できる。これらの混
合水酸化物および/または酸化物は、一次粒子径が0.1
μm以下であることが好ましい。
When the water-containing mixed hydroxide of two or more transition metals is dried by heating, it becomes a mixed hydroxide, and if it is further heated and dehydrated, it becomes a mixed oxide. Depending on the heating conditions, a mixture of hydroxide and oxide can be obtained. The mixed hydroxide and / or oxide thus obtained can be used as the starting material (2) in the present invention. These mixed hydroxides and / or oxides have a primary particle size of 0.1
It is preferably μm or less.

【0022】加熱温度は、乾燥だけにとどめるのであれ
ば、一般に200 ℃以下、好ましくは150 ℃以下で十分で
ある。脱水して酸化物に転化させる場合には、加熱温度
は最高で900 ℃までとすることができるが、500 ℃以下
にとどめておくことが好ましい。この時の加熱温度が高
すぎると、加熱中に粒成長が起こり、最終的に得られる
導電性酸化物粉末が粗大化しやすい。加熱は大気中で行
えばよいが、雰囲気は特に制限されない。加熱時間は目
的とする乾燥または脱水が達成される限り、できるだけ
短時間とすることが好ましい。特に、酸化物まで脱水す
る場合には、粒成長を可及的に防止するように加熱条件
を設定することが望ましい。
If the heating temperature is limited to drying, 200 ° C. or lower, preferably 150 ° C. or lower is generally sufficient. In the case of dehydration and conversion into an oxide, the heating temperature can be up to 900 ° C, but it is preferably kept at 500 ° C or lower. If the heating temperature at this time is too high, grain growth occurs during heating and the finally obtained conductive oxide powder tends to become coarse. The heating may be performed in the air, but the atmosphere is not particularly limited. The heating time is preferably as short as possible so long as the desired drying or dehydration is achieved. In particular, when dehydrating oxides, it is desirable to set heating conditions so as to prevent grain growth as much as possible.

【0023】出発原料が混合酸化物である場合、この混
合酸化物は、上記のように共沈で得た含水混合水酸化物
を加熱脱水したものが好ましいが、前記出発原料(3) と
して述べたように、公知方法で水酸化物および/または
酸化物の焼成により得た導電性酸化物粉末自体を出発原
料とすることもできる。例えば、前記(1) または(2)の
出発原料を公知方法に従って還元性雰囲気中で焼成して
得た導電性酸化物粉末を、本発明の方法の出発原料とし
て使用できる。この場合には、この導電性酸化物粉末に
本発明方法を適用することによって、粉末の体積抵抗率
をさらに低下させることができる。
When the starting material is a mixed oxide, it is preferable that the mixed oxide is obtained by heating and dehydrating the hydrous mixed hydroxide obtained by the coprecipitation as described above. As described above, the conductive oxide powder itself obtained by calcining the hydroxide and / or the oxide by a known method can also be used as the starting material. For example, a conductive oxide powder obtained by firing the starting material (1) or (2) in a reducing atmosphere according to a known method can be used as the starting material for the method of the present invention. In this case, the volume resistivity of the powder can be further reduced by applying the method of the present invention to this conductive oxide powder.

【0024】このように公知方法で得た導電性酸化物粉
末を出発原料とする場合も、この酸化物粉末の平均一次
粒子径が0.1 μm以下であると、超微粒化と低抵抗化に
効果が高いことから好ましい。粒子径が 0.1〜0.2 μm
程度になると、本発明方法に従って不活性雰囲気下で加
圧下に加熱処理しても、不均一で、低抵抗化にあまり効
果がない。また、粒子径が0.2 μmを超えると、分散系
において優れた透明性を発現させることが難しい。
Even when the conductive oxide powder obtained by the known method is used as a starting material, if the average primary particle diameter of the oxide powder is 0.1 μm or less, it is effective for ultrafine graining and low resistance. Is preferable because it is high. Particle size is 0.1-0.2 μm
To a certain extent, even if heat treatment is performed under pressure in an inert atmosphere according to the method of the present invention, it is non-uniform and is not very effective in reducing resistance. Further, if the particle size exceeds 0.2 μm, it is difficult to exhibit excellent transparency in the dispersion system.

【0025】さらに、あまり好ましくはないが、出発原
料(4) として、共沈ではなく、個々に沈殿させて得た2
種以上の遷移金属の含水水酸化物、水酸化物および/ま
たは酸化物の混合粉末を使用することもできる。この場
合も、平均一次粒子径は上記と同様に0.1 μm以下であ
ることが好ましい。
Further, although not so preferable, as the starting material (4), 2 obtained by individual precipitation instead of coprecipitation
It is also possible to use mixed powders of hydrous hydroxides, hydroxides and / or oxides of one or more transition metals. Also in this case, the average primary particle diameter is preferably 0.1 μm or less, as in the above.

【0026】導電性酸化物粉末における遷移金属の組合
せは、周期表で互いに異なる族の組合せを選択する。即
ち、母体となる酸化物の遷移金属元素と、ドナーとなり
得る元素 (母体元素より周期表で右側にある遷移金属元
素) との組合わせを選択して、電子伝導性による導電体
(n型半導体) を構成するのが一般的である。このドナ
ーとなる遷移金属元素はドープ剤として母材遷移金属元
素に対して少量となるように使用する。
As the combination of transition metals in the conductive oxide powder, a combination of groups different from each other in the periodic table is selected. That is, a combination of a transition metal element of the oxide serving as a base and an element that can serve as a donor (a transition metal element on the right side of the periodic table with respect to the base element) is selected, and a conductor having electronic conductivity is selected.
(n-type semiconductor) is generally formed. The transition metal element serving as the donor is used as a dopant in a small amount relative to the base material transition metal element.

【0027】本発明方法を好適に適用できる導電性酸化
物粉末の例としては、In2O3 にSnをSn/(Sn+In)モル比=
0.01〜0.15となるようにドープしたITO粉末、SnO2
SbをSn/(Sb+Sn)モル比=0.01〜0.15となるようにドープ
したATO粉末、およびZnOにAlをAl/(Al+Zn)モル比=
0.01〜0.15となるようにドープしたAZO粉末 (アルミ
ニウムドープ酸化亜鉛) などが代表的である。これに限
らず、ドープ剤は導電性を高めるもの (ドナー) であれ
ばいかなるものであってもよく、2種以上の遷移金属元
素をドープすることもできる。例えば、ZnO に対して
は、Al以外に、Sn、In、Fe、Ga、Co、Si、Ti、Ge、Sbお
よびPbの1種もしくは2種以上をドープすることができ
る。また、母体となる酸化物も2種以上の金属元素から
なる複合酸化物であってもよく、例えばZnSnO3 (錫酸亜
鉛) におけるZnとSnの化学量論組成のずれから生ずる導
電性酸化物粉末、およびこれにAl、In、Fe、Ga、Co、S
i、Ti、Ge、SbまたはPb等のドープ剤を添加したもので
あってもよい。
As an example of the conductive oxide powder to which the method of the present invention can be preferably applied, Sn is added to In 2 O 3 Sn / (Sn + In) molar ratio =
ITO powder SnO 2 doped to 0.01 to 0.15
ATO powder doped with Sb so that Sn / (Sb + Sn) molar ratio = 0.01 to 0.15, and Al in ZnO with Al / (Al + Zn) molar ratio =
A typical example is AZO powder (aluminum-doped zinc oxide) that is doped to have a concentration of 0.01 to 0.15. The dopant is not limited to this, and any dopant may be used as long as it enhances conductivity (donor), and two or more transition metal elements can be doped. For example, ZnO can be doped with one or more of Sn, In, Fe, Ga, Co, Si, Ti, Ge, Sb and Pb in addition to Al. Further, the base oxide may be a composite oxide composed of two or more kinds of metal elements, and for example, a conductive oxide caused by a difference in stoichiometric composition between Zn and Sn in ZnSnO 3 (zinc stannate). Powder, and Al, In, Fe, Ga, Co, S
A doping agent such as i, Ti, Ge, Sb or Pb may be added.

【0028】[不活性ガスによる加圧加熱処理方法]上記
の出発原料を、圧力2kgf/cm2 以上の密閉した加圧不活
性ガス雰囲気下に温度 350〜1000℃で加熱処理する。不
活性ガスとしては、アルゴン、ヘリウムなどの希ガス、
窒素、或いはこれらの混合ガスを使用することができ
る。ここで、圧力とは、その加圧雰囲気の室温における
圧力 (全圧) を意味する。
[Pressure Heat Treatment Method with Inert Gas] The above starting materials are heat-treated at a temperature of 350 to 1000 ° C. in a closed pressurized inert gas atmosphere having a pressure of 2 kgf / cm 2 or more. As the inert gas, a rare gas such as argon or helium,
Nitrogen or a mixed gas of these can be used. Here, the pressure means the pressure (total pressure) at room temperature of the pressurized atmosphere.

【0029】加熱処理は、例えば、密閉容器 (例、密閉
チューブ) 内に出発原料を装入し、容器内の酸素をパー
ジするために、容器内の空気を雰囲気に用いる不活性ガ
スで置換するか、或いは真空脱気をした後、容器を不活
性ガスで圧力2kgf/cm2 以上に加圧して密閉し、 350〜
1000℃の範囲内の所定温度に昇温させ、この温度に保持
することにより実施できる。
In the heat treatment, for example, a starting material is charged in a closed container (eg, a closed tube), and air in the container is replaced with an inert gas used as an atmosphere in order to purge oxygen in the container. Alternatively, after degassing in vacuum, pressurize the container with inert gas to a pressure of 2 kgf / cm 2 or more and seal it.
It can be carried out by raising the temperature to a predetermined temperature within the range of 1000 ° C. and maintaining this temperature.

【0030】不活性ガス雰囲気中には、不活性ガス以外
に少量であれば他のガスが混入していてもよい。しか
し、雰囲気中の酸素分圧が0.2 kgf/cm2 (150 Torr)を超
えると、低抵抗化しないばかりか、粒成長も著しくなる
ので、酸素の混入は酸素分圧が0.2 kgf/cm2 より低くな
るように抑制する。低抵抗化と微粒化の効果を高めるに
は、酸素分圧を0.02 kgf/cm2 (15 Torr)以下とすること
が好ましい。
The inert gas atmosphere may contain a small amount of other gas in addition to the inert gas. However, if the oxygen partial pressure in the atmosphere exceeds 0.2 kgf / cm 2 (150 Torr), not only the resistance will not be lowered, but also grain growth will be remarkable, so mixing oxygen is more than the oxygen partial pressure of 0.2 kgf / cm 2 . Suppress it to be low. The oxygen partial pressure is preferably 0.02 kgf / cm 2 (15 Torr) or less in order to enhance the effects of low resistance and atomization.

【0031】加熱処理の加圧条件は、雰囲気の圧力が2
kgf/cm2 以上であればよい。不活性雰囲気中での焼成
は、大気中 (酸素含有雰囲気) での焼成と比較して、粉
末の粒成長が加速されることが知られているが、本発明
に従って雰囲気の圧力を2kgf/cm2 以上の加圧雰囲気と
すると、不活性ガス雰囲気であっても加熱処理中の粒成
長が抑えられことが判明した。しかも、加圧雰囲気とす
ることで、系内の雰囲気が均一化され、焼成炉中に仕込
まれた出発原料の上部 (表面部分) から下部にかけて比
較的均一に低抵抗化を達成することができる。そのた
め、従来のように、出発原料を薄く敷いて焼成する必要
がなく、大量の出発原料を処理することができる。
The pressurizing condition of the heat treatment is that the atmospheric pressure is 2
It should be at least kgf / cm 2 . It is known that firing in an inert atmosphere accelerates grain growth of the powder as compared with firing in an atmosphere (oxygen-containing atmosphere), but according to the present invention, the atmosphere pressure is set to 2 kgf / cm 2. It was found that when the pressure atmosphere was 2 or more, the grain growth during the heat treatment was suppressed even in the inert gas atmosphere. Moreover, the pressurized atmosphere makes the atmosphere in the system uniform, and the resistance can be relatively uniformly lowered from the upper portion (surface portion) of the starting material charged in the firing furnace to the lower portion. . Therefore, unlike the conventional case, it is not necessary to spread the starting material thinly and fire it, and a large amount of starting material can be processed.

【0032】圧力が2kgf/cm2 以下では微粒化が困難で
あるばかりか、原料の上部と下部では不均一な特性とな
り、また低抵抗化の効果もほとんどない。雰囲気の圧力
を5〜60 kgf/cm2の範囲内とすると、上記効果がさらに
高まるので好ましい。圧力が60 kgf/cm2を超えると、効
果の改善はほとんど認められなくなる上、加圧に要する
費用が増大するので、実用上はこれ以上圧力を加えても
無駄である。
When the pressure is 2 kgf / cm 2 or less, atomization is difficult, and the upper and lower parts of the raw material have non-uniform characteristics, and there is almost no effect of lowering the resistance. It is preferable that the pressure of the atmosphere is in the range of 5 to 60 kgf / cm 2 because the above effect is further enhanced. When the pressure exceeds 60 kgf / cm 2 , the improvement of the effect is hardly recognized, and the cost required for pressurization increases, so it is useless to add more pressure in practice.

【0033】加熱処理の温度は、 350〜1000℃の範囲内
であればよいが、好ましくは 400〜800 ℃の範囲内であ
る。処理温度が350 ℃より低いと、微粒化は達成されて
も、低抵抗化することはできない。一方、処理温度が10
00℃を超えると、加熱処理中に0.1 μm以上に粒成長し
てしまい、低抵抗化と微粒化を得ることが困難となる。
加熱処理時間については、原料の仕込充填量と温度との
関係によるが、原料の均一な加熱処理が達成されればよ
く、一般には1〜4時間の範囲内である。昇温、降温時
間については特に制限されない。
The temperature of the heat treatment may be in the range of 350 to 1000 ° C, but is preferably in the range of 400 to 800 ° C. If the treatment temperature is lower than 350 ° C, even if atomization is achieved, the resistance cannot be lowered. On the other hand, the processing temperature is 10
If it exceeds 00 ° C., grains grow to 0.1 μm or more during the heat treatment, which makes it difficult to obtain low resistance and atomization.
The heat treatment time depends on the relationship between the charged and charged amount of the raw material and the temperature, but it is sufficient if the uniform heat treatment of the raw material is achieved, and it is generally within the range of 1 to 4 hours. There is no particular limitation on the temperature raising and lowering times.

【0034】[0034]

【実施例】次に、本発明を実施例に基づいて説明する
が、本発明は実施例のみに限定されるものではない。
EXAMPLES Next, the present invention will be described based on examples, but the present invention is not limited to the examples.

【0035】[出発原料の調製]出発原料は、下記の
(A) 〜 (C) に記載の方法でそれぞれ共沈法により調
製した含水混合水酸化物を、表1に示すようにそのまま
未乾燥で、或いは加熱処理して乾燥ないしは脱水したも
のである。
[Preparation of Starting Material] Starting materials are as follows.
The water-containing mixed hydroxides prepared by the coprecipitation method according to the methods described in (A) to (C) are either undried as shown in Table 1 or dried or dehydrated by heat treatment.

【0036】(A) ITO粉末の原料 (含水水酸化物) InC13 水溶液 (In金属 600g含有) 1.8 LとSnC14 水溶
液 (Sn金属30g含有)0.2 Lとの混合水溶液を、NH4HCO
3 3000g/12 Lの水溶液中に、70℃の加温下で攪拌しな
がら滴下し、最終pH8にしてIn−Sn共沈水酸化物を析
出させた。次に、静置して沈殿を沈降させた後、上澄み
液を除去し、イオン交換水を加えて静置・沈降と上澄み
液除去の操作を6回 (水の添加量は1回につき10L) 繰
り返すことにより、沈殿を十分に水洗した後、吸引濾過
により沈殿を濾別して、含水水酸化物の沈殿を得た。
(A) A raw material of ITO powder (hydrous hydroxide) InC1 3 aqueous solution (containing 600 g of In metal) 1.8 L and a mixed aqueous solution of 0.2 L of SnC1 4 aqueous solution (containing 30 g of Sn metal) were mixed with NH 4 HCO
During 3 3000 g / 12 L solution of it was added dropwise with stirring under heating at 70 ° C., in the final pH8 to precipitate In-Sn coprecipitated hydroxide. Next, after allowing the precipitate to settle by allowing it to stand still, the supernatant liquid is removed, and ion-exchanged water is added to perform the operations of standing and settling and the removal of the supernatant liquid 6 times (the amount of water added is 10 L each time). By repeating the above procedure, the precipitate was sufficiently washed with water, and then the precipitate was filtered by suction filtration to obtain a precipitate of hydrous hydroxide.

【0037】(B) ATO粉末の原料 (含水水酸化物) SnC14 水溶液 (Sn金属 600g含有) 1.8LとSbC13 水溶
液 (Sb金属80g含有)0.2 Lとの混合水溶液を、NaOH 90
0g/12 Lの水溶液中に、90℃の加温下で攪拌しながら
滴下し、最終pH7にしてSn−Sb共沈水酸化物を析出さ
せた。その後、上記 (A) と同様に沈殿を洗浄および濾
別して、含水水酸化物の沈殿を得た。
(B) ATO powder raw material (hydrous hydroxide) SnC1 4 aqueous solution (containing 600 g of Sn metal) 1.8 L and a mixed aqueous solution of 0.2 L of SbC1 3 aqueous solution (containing 80 g of Sb metal) were mixed with NaOH 90
In a 0 g / 12 L aqueous solution, the mixture was added dropwise with stirring under heating at 90 ° C. to a final pH of 7 to precipitate Sn—Sb coprecipitated hydroxide. Then, the precipitate was washed and filtered in the same manner as in the above (A) to obtain a precipitate of hydrous hydroxide.

【0038】(C) AZO粉末の原料 (含水水酸化物) ZnC12 1360g (Zn金属 652.3g含有) と AlC13・6H2O 1
25g (Al金属14g含有) とを溶解した35℃の水溶液10L
中に、Na2CO3 1250 g/10 Lの水溶液を攪拌しながら滴
下し、最終pH7 にして、Al−Zn共沈水酸化物を析出さ
せた。その後、上記 (A) と同様に沈殿を洗浄および濾
別して、含水水酸化物の沈殿を得た。
[0038] (C) AZO powder material (the aqueous hydroxide) ZnC1 2 1360g (Zn metal 652.3g containing) and AlC1 3 · 6H 2 O 1
10 L of 35 ° C aqueous solution in which 25 g (containing 14 g of Al metal) was dissolved
An aqueous solution of Na 2 CO 3 1250 g / 10 L was added dropwise with stirring to the final pH of 7 to precipitate an Al—Zn coprecipitated hydroxide. Then, the precipitate was washed and filtered in the same manner as in the above (A) to obtain a precipitate of hydrous hydroxide.

【0039】[0039]

【表1】 [Table 1]

【0040】[加圧加熱処理]加圧加熱処理は、内径70 m
m 、長さ700 mmのインコロイ800 製チューブを使用した
密閉加圧管状炉に、原料250 gを長さ250 mmの半割石英
ボートに入れて装入し、使用した不活性ガスで系内の酸
素をパージした後、所定圧力に加圧し、次いで8℃/mi
n で所定温度に昇温させ、3時間温度保持することによ
り行った。処理条件 (雰囲気、圧力、温度) を表2に示
す。
[Pressure heat treatment] The pressure heat treatment has an inner diameter of 70 m.
In a closed pressure tube furnace using Incoloy 800 tube of m, 700 mm in length, 250 g of raw material was placed in a 250 mm long half-quartz quartz boat and charged with the inert gas used. After purging with oxygen, pressurize to the specified pressure, then 8 ℃ / mi
It was performed by raising the temperature to a predetermined temperature with n and maintaining the temperature for 3 hours. Table 2 shows the processing conditions (atmosphere, pressure, temperature).

【0041】加熱処理により得た導電性酸化物粉末の平
均一次粒子径を、比表面積 (BET)の測定値から、a (μ
m) =6/ (ρ×B) [a:平均粒子径、ρ:真比重、
B:比表面積(m2/g)] なる粒子径式に基づいて算出し
た。こうして比表面積から求めた粒子径は透過式電子顕
微鏡から直接観察した粒子径とほぼ一致する。BET 法に
よる比表面積は、マイクロトラック社製のベータソーブ
自動表面積計4200型を用いて測定した。
The average primary particle diameter of the conductive oxide powder obtained by the heat treatment was calculated as a (μ) from the measured value of the specific surface area (BET).
m) = 6 / (ρ × B) [a: average particle size, ρ: true specific gravity,
B: specific surface area (m 2 / g)] Thus, the particle size obtained from the specific surface area is almost the same as the particle size directly observed by the transmission electron microscope. The specific surface area by the BET method was measured using a Betasorb automatic surface area meter Model 4200 manufactured by Microtrac.

【0042】また、導電性酸化物粉末の体積抵抗率 (50
kgf/cm2圧粉体) を、三菱油化製のロレスタAP粉体抵抗
システムを使用して求めた。体積抵抗率の測定は、ボー
トの上部と下部から採取した試料について別個に行い、
その平均値を表示した。これらの試験結果も表2に併せ
て示す。
The volume resistivity of the conductive oxide powder (50
(kgf / cm 2 green compact) was determined using a Loresta AP powder resistance system manufactured by Mitsubishi Yuka. Measurement of volume resistivity is performed separately for samples taken from the top and bottom of the boat,
The average value is displayed. The results of these tests are also shown in Table 2.

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【発明の効果】表2に示す結果からわかるように、実施
例である本発明例1〜8は、いずれも極めて微細で低抵
抗の導電性酸化物粉末を形成した。また、上部と下部で
体積抵抗率は均一であった。一方、常圧の不活性雰囲気
下で加熱処理した比較例1〜3では、上部と下部では体
積抵抗率に1〜2桁の違いが生じ、不均一である上、体
積抵抗率自体も本発明例での結果に比べて高かった。ま
た、平均粒子径も本発明例より大きくなった。
As can be seen from the results shown in Table 2, all of Examples 1 to 8 of the present invention, which are Examples, formed conductive oxide powder having extremely fine and low resistance. Further, the volume resistivity was uniform in the upper part and the lower part. On the other hand, in Comparative Examples 1 to 3 which are heat-treated under an inert atmosphere at normal pressure, the volume resistivity differs between the upper portion and the lower portion by 1 to 2 digits, and the volume resistivity is not uniform, and the volume resistivity itself is also the It was higher than the result in the example. Further, the average particle size was also larger than that of the examples of the present invention.

【0045】本発明方法によれば、平均一次粒子径が0.
1 μm以下で、体積抵抗率が非常に低く、特性が均一で
ばらつきの少ない微粒・低抵抗導電性酸化物粉末を、量
産性良く製造することができる。特に本発明方法によっ
てITO粉末を製造する場合には、表2の結果からもわ
かるように、平均一次粒子径0.05μm以下で、かつ体積
抵抗率が0.1 Ω・cm以下の低抵抗超微粉末を、量産性良
く製造することが可能となる。その結果、この粉末を用
いた分散インクを基材に塗布することによるガラスやフ
ィルム等の帯電防止やほこりの付着防止をはじめ、透明
電極、あるいは面発熱体等にITO粉末の利用が拡大す
ることが期待され、本発明はITO粉末をはじめとする
各種導電性酸化物粉末の利用拡大に貢献するものであ
る。
According to the method of the present invention, the average primary particle size is 0.
When the particle size is 1 μm or less, it is possible to manufacture a fine-particle / low-resistance conductive oxide powder having a very low volume resistivity, uniform characteristics and little variation with good mass productivity. In particular, when the ITO powder is produced by the method of the present invention, as can be seen from the results in Table 2, low resistance ultrafine powder having an average primary particle diameter of 0.05 μm or less and a volume resistivity of 0.1 Ω · cm or less is used. Therefore, it becomes possible to mass-produce it. As a result, the use of ITO powder for transparent electrodes, surface heating elements, etc. can be expanded, including the prevention of electrification of glass and films and the prevention of dust adhesion by applying a dispersion ink using this powder to a substrate. Therefore, the present invention contributes to expanding the use of various conductive oxide powders such as ITO powder.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−46925(JP,A) 特開 昭61−86421(JP,A) 特開 平1−100023(JP,A) 特開 平2−120374(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 13/00 503 C01G 19/02 H01B 5/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-46925 (JP, A) JP-A 61-86421 (JP, A) JP-A 1-100023 (JP, A) JP-A 2- 120374 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01B 13/00 503 C01G 19/02 H01B 5/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (1) 2種以上の遷移金属イオンを含む水
溶液とアルカリ水溶液との反応による共沈で得た含水混
合水酸化物、(2) この含水混合水酸化物を加熱乾燥した
混合水酸化物および/または加熱脱水した混合酸化物、
(3) 公知方法で得た導電性酸化物粉末、および(4) 2種
以上の遷移金属の含水水酸化物、水酸化物および/また
は酸化物の混合粉末、よりなる群から選ばれた、2種以
上の遷移金属の混合水酸化物および/または酸化物から
なる出発原料 (但し、酸化物の原料は平均一次粒子径が
0.1 μm以下の粉末である) を、圧力2kgf/cm2 以上の
密閉した加圧不活性ガス雰囲気下に温度 350〜1000℃で
加熱処理することを特徴とする導電性酸化物粉末の製造
方法。
1. A hydrous mixed hydroxide obtained by coprecipitation by the reaction of an aqueous solution containing two or more transition metal ions and an alkaline aqueous solution, and (2) a mixture obtained by heating and drying the hydrous mixed hydroxide. Hydroxide and / or heat-dehydrated mixed oxide,
(3) selected from the group consisting of conductive oxide powder obtained by a known method, and (4) hydrous hydroxide of two or more transition metals, mixed powder of hydroxide and / or oxide, Starting materials composed of mixed hydroxides and / or oxides of two or more transition metals (provided that the starting materials for oxides have an average primary particle size of
A powder having a particle diameter of 0.1 μm or less) is heat-treated at a temperature of 350 to 1000 ° C. in a closed pressurized inert gas atmosphere having a pressure of 2 kgf / cm 2 or more.
【請求項2】 遷移金属がSnとInとの、SbとSnとの、ま
たはAl、Sn、In、Fe、Ga、Co、Si、Ge、SbもしくはPbと
Znとの組合せである、請求項1記載の導電性粉末の製造
方法。
2. The transition metal is Sn and In, Sb and Sn, or Al, Sn, In, Fe, Ga, Co, Si, Ge, Sb or Pb.
The method for producing a conductive powder according to claim 1, which is a combination with Zn.
JP16219793A 1993-06-30 1993-06-30 Method for producing conductive oxide powder Expired - Lifetime JP3367149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16219793A JP3367149B2 (en) 1993-06-30 1993-06-30 Method for producing conductive oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16219793A JP3367149B2 (en) 1993-06-30 1993-06-30 Method for producing conductive oxide powder

Publications (2)

Publication Number Publication Date
JPH0721831A JPH0721831A (en) 1995-01-24
JP3367149B2 true JP3367149B2 (en) 2003-01-14

Family

ID=15749840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16219793A Expired - Lifetime JP3367149B2 (en) 1993-06-30 1993-06-30 Method for producing conductive oxide powder

Country Status (1)

Country Link
JP (1) JP3367149B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186352A (en) * 2006-01-11 2007-07-26 Idemitsu Kosan Co Ltd Method of manufacturing oxide particle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3746824B2 (en) 1996-01-30 2006-02-15 株式会社クレハ Visible light absorber
JP4841029B2 (en) * 2000-08-30 2011-12-21 三井金属鉱業株式会社 Tin oxide-added indium oxide powder and method for producing the same
US7115219B2 (en) 2002-09-11 2006-10-03 Sumitomo Chemical Company, Limited Method of producing Indium Tin Oxide powder
AU2003292677A1 (en) * 2002-12-27 2004-07-29 Sumitomo Metal Mining Co., Ltd. FINE In4Sn3O12 COMPOSITE OXIDE PARTICLE FOR SOLAR RADIATION SHIELDING, PROCESS FOR PRODUCING THE SAME, COATING FLUID FOR FORMING SOLAR RADIATION SHIELDING FILM, SOLAR RADIATION SHIELDING FILM, AND SUBSTRATE FOR SOLAR RADIATION SHIELDING
JP2008285378A (en) * 2007-05-18 2008-11-27 Idemitsu Kosan Co Ltd Electroconductive metal oxide powder, its manufacturing method and sintered compact
JP5395345B2 (en) * 2007-10-03 2014-01-22 関西ペイント株式会社 Method for producing aluminum-doped zinc oxide transparent conductive film using aerosol
JP4889623B2 (en) * 2007-12-26 2012-03-07 三洋電機株式会社 Transparent conductive film and solar cell using transparent conductive film
JP5754580B2 (en) * 2010-10-26 2015-07-29 三菱マテリアル電子化成株式会社 Indium tin oxide powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186352A (en) * 2006-01-11 2007-07-26 Idemitsu Kosan Co Ltd Method of manufacturing oxide particle

Also Published As

Publication number Publication date
JPH0721831A (en) 1995-01-24

Similar Documents

Publication Publication Date Title
US5039452A (en) Metal oxide varistors, precursor powder compositions and methods for preparing same
EP1527017B1 (en) Doped zinc oxide powder, process for its preparation, and its use
JP3301755B2 (en) Sputtering target and manufacturing method thereof
WO1994013851A1 (en) Transparent conductive film, transparent conductive base material, and conductive material
TWI523813B (en) Tin oxide particles and the method for preparing the same
KR19980018046A (en) Silver sol, preparation method thereof, coating agent for transparent conductive film and transparent conductive film
US4681717A (en) Process for the chemical preparation of high-field ZnO varistors
JP4994068B2 (en) Oxide conductive material and manufacturing method thereof
JP3367149B2 (en) Method for producing conductive oxide powder
WO2007125814A1 (en) ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
EP0486182A1 (en) Zinc oxide sintered body, and production and application thereof
JP2013139589A (en) Silver fine particles, method for producing the same, and conductive paste, conductive film, and electronic device containing the silver fine particles
KR100444142B1 (en) ITO fine powder and method for producing the same
JPH07258836A (en) Aluminum doped zinc oxide sintered compact and its production as well as its application
JP4389368B2 (en) Conductive pigment powder and transparent conductive film made using the same
EP0289582B1 (en) Method for preparing a metal oxide varistor precursor powder
JP4253721B2 (en) Tin-doped indium oxide powder and method for producing the same
JP4841029B2 (en) Tin oxide-added indium oxide powder and method for producing the same
DE19840527B4 (en) Process for the preparation of suspensions and powders of indium tin oxide
KR101650611B1 (en) Ito powder and method of producing same
JP2012176859A (en) Indium tin oxide particle and method for producing the same
JP2994020B2 (en) Method for producing conductive titanium dioxide powder
WO2011152682A2 (en) Transparent conductive layer, target for transparent conductive layer and a process for producing the target for transparent conductive layer
JP2003054949A (en) Sn-CONTAINING In OXIDE AND MANUFACTURING METHOD THEREOF, COATING MATERIAL USING THE SAME AND CONDUCTIVE COATING FILM
JP2008115024A (en) Conductive oxide powder and method of manufacturing conductive oxide powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101108

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131108

Year of fee payment: 11

EXPY Cancellation because of completion of term