[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3364724B2 - Method and apparatus for separating high purity argon - Google Patents

Method and apparatus for separating high purity argon

Info

Publication number
JP3364724B2
JP3364724B2 JP16176893A JP16176893A JP3364724B2 JP 3364724 B2 JP3364724 B2 JP 3364724B2 JP 16176893 A JP16176893 A JP 16176893A JP 16176893 A JP16176893 A JP 16176893A JP 3364724 B2 JP3364724 B2 JP 3364724B2
Authority
JP
Japan
Prior art keywords
argon
column
tower
nitrogen
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16176893A
Other languages
Japanese (ja)
Other versions
JPH0777385A (en
Inventor
篤 井上
修 宇多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP16176893A priority Critical patent/JP3364724B2/en
Publication of JPH0777385A publication Critical patent/JPH0777385A/en
Application granted granted Critical
Publication of JP3364724B2 publication Critical patent/JP3364724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高純度アルゴンの分離
方法及びその装置に関し、詳しくは、空気を原料として
酸素,窒素,アルゴン等の成分ガスを精留分離により分
離して採取する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating high-purity argon and an apparatus therefor, and more specifically, a method for separating and collecting component gases such as oxygen, nitrogen and argon from air as a raw material by rectification separation. Regarding the device.

【0002】[0002]

【従来の技術】図3は、従来の空気深冷分離法による高
純度アルゴン採取方法の一例を示すものである。複精留
塔1の低圧塔(上部塔)の中段から実質的に酸素を主成
分とし、アルゴン5〜15%、窒素微量の原料ガスが導
管2に抜き出され、粗アルゴン塔3下部に導入される。
該粗アルゴン塔3の上部には、凝縮器4が設けられてお
り、前記複精留塔1の中圧塔(下部塔)下部から抜き出
され、膨張弁5で低圧となった液体空気が導管6から寒
冷源として導入されている。この結果、粗アルゴン塔3
を上昇した原料ガスは、前記凝縮器4で液化して還流液
となり、塔内を上昇する前記原料ガスとで液化精留が行
われ、該塔頂部からアルゴン90%以上、酸素数%以
下、窒素数%以下の組成の粗アルゴンが導管7に抜き出
される。一方、粗アルゴン塔3の底部からは、液体酸素
が管8により上部塔へ戻され、凝縮器4で液体空気が気
化したガスは、管9により上部塔に導入される。
2. Description of the Related Art FIG. 3 shows an example of a conventional method for collecting high-purity argon by a cryogenic air separation method. From the middle stage of the low pressure column (upper column) of the double rectification column 1, substantially 5 to 15% of argon and a small amount of nitrogen as a raw material gas are extracted into a conduit 2 and introduced into the lower part of the crude argon column 3 substantially. To be done.
A condenser 4 is provided in the upper part of the crude argon column 3, and the liquid air extracted from the lower part of the intermediate pressure column (lower column) of the double rectification column 1 and having a low pressure in the expansion valve 5 is It is introduced from the conduit 6 as a cold source. As a result, the crude argon column 3
The raw material gas having risen to liquefies into a reflux liquid in the condenser 4, and liquefaction rectification is performed with the raw material gas rising in the column, and 90% or more of argon and several percent of oxygen or less from the top of the column, Crude argon having a composition of several% or less of nitrogen is extracted into the conduit 7. On the other hand, from the bottom of the crude argon column 3, liquid oxygen is returned to the upper column through the pipe 8, and the gas obtained by vaporizing liquid air in the condenser 4 is introduced into the upper column through the pipe 9.

【0003】管7に導出した前記粗アルゴンは、熱交換
器10を通り、戻りガスを冷却して略大気温度となり、
管11から貯槽及び緩衝を兼ねるガスホルダー12を経
て圧縮機13に送られる。圧縮機13で後の工程に必要
な圧力に圧縮された粗アルゴンガスは、管14に吐出さ
れ、水素供給設備15から管16を介して粗アルゴン中
の酸素分を酸素・水素反応によって除去するのに十分な
水素が添加された後、触媒筒17に導入される。該触媒
筒17には、酸素・水素反応を促進する触媒が充填され
ており、この結果、粗アルゴン中の酸素は、添加された
水素と速かに反応して水が生成される。生成した水を含
む粗アルゴンガスは、冷却された後に管18により水分
離器19に送られ、さらに管20を介して切換式乾燥器
21に導入される。この乾燥工程で、前記生成した水分
を除去した粗アルゴンガスは、管22で熱交換器10に
導かれ、冷却されて管23から高純アルゴン塔24の中
段に導入される。
The crude argon discharged to the pipe 7 passes through the heat exchanger 10 and cools the return gas to a substantially atmospheric temperature.
It is sent from a pipe 11 to a compressor 13 via a gas holder 12 which also serves as a storage tank and a buffer. The crude argon gas compressed by the compressor 13 to a pressure necessary for the subsequent process is discharged into the pipe 14, and the oxygen content in the crude argon is removed by the oxygen / hydrogen reaction from the hydrogen supply facility 15 through the pipe 16. After sufficient hydrogen has been added, the hydrogen is introduced into the catalyst cylinder 17. The catalyst cylinder 17 is filled with a catalyst that promotes the oxygen-hydrogen reaction, and as a result, oxygen in the crude argon reacts quickly with the added hydrogen to produce water. The crude argon gas containing the produced water is sent to the water separator 19 through the pipe 18 after being cooled, and is further introduced into the switching dryer 21 through the pipe 20. In this drying step, the generated crude argon gas from which water has been removed is introduced into the heat exchanger 10 through the pipe 22, cooled, and introduced into the middle stage of the high purity argon column 24 through the pipe 23.

【0004】上記高純アルゴン塔24の下部には、前記
複精留塔1の下部塔から管25を介して供給される中圧
窒素を加熱源としたリボイラー26が設けられ、上部に
は凝縮器31が設けられている。この凝縮器31には、
前記リボイラー26で凝縮液化した後、弁27で膨張し
て管28から供給される液体窒素と複精留塔1の下部塔
から管29,弁30を介して供給される液体窒素とが供
給されている。この高純アルゴン塔24は、前記管23
から導入された粗アルゴンを精留し、塔頂部に窒素・水
素の混合ガスを分離して管32から排出するとともに、
塔底部に高純度液体アルゴンを分離するもので、該高純
度液体アルゴンは、管33を介して採取される。
A reboiler 26 using a medium-pressure nitrogen supplied from the lower column of the double rectification column 1 through a pipe 25 as a heating source is provided in the lower part of the high-purity argon column 24, and is condensed in the upper part. A container 31 is provided. In this condenser 31,
After being condensed and liquefied by the reboiler 26, the liquid nitrogen expanded by the valve 27 and supplied from the pipe 28 and the liquid nitrogen supplied from the lower column of the double rectification column 1 through the pipe 29 and the valve 30 are supplied. ing. This high-purity argon tower 24 is the same as the tube 23
The crude argon introduced from is rectified, the mixed gas of nitrogen and hydrogen is separated at the top of the column, and the mixed gas is discharged from the pipe 32.
High-purity liquid argon is separated at the bottom of the column, and the high-purity liquid argon is collected through a pipe 33.

【0005】なお、管34は、凝縮器31で寒冷を与え
た結果気化した窒素ガスの排出管であり、複精留塔1の
上部塔頂部から導出される窒素ガスの管35と合流す
る。
The pipe 34 is a discharge pipe for the nitrogen gas that is vaporized as a result of the cooling provided by the condenser 31, and joins with the pipe 35 for the nitrogen gas that is discharged from the top of the upper part of the double rectification column 1.

【0006】以上の説明から明らかなように、従来の高
純度アルゴン採取方法は、脱酸素工程で危険な水素を使
用すること、また、それに付随する乾燥工程等によって
設備,配管等が複雑となり、かつ操作が繁雑であること
などの欠点があった。さらに近年の装置の大型化に伴な
い、前記欠点は益々増大することは明らかであり、その
解決が望まれていた。
As is clear from the above description, the conventional high-purity argon sampling method uses dangerous hydrogen in the deoxidation step, and the drying step accompanying it complicates the equipment, piping, etc. Moreover, there are drawbacks such as complicated operation. Further, with the recent increase in size of the apparatus, it is clear that the above-mentioned drawbacks will increase more and more, and the solution thereof has been desired.

【0007】一方、粗アルゴン中の酸素を、水素を用い
ずに除去してアルゴンを精製する方法が、特公昭52−
41235号公報に開示されている。図4は、該公報に
記載された方法を実施する工程を示すものであって、粗
アルゴン塔3から管101に抜き出したアルゴン90%
以上,酸素,窒素それぞれ数%の粗アルゴンは、含有す
る酸素を除去するため、脱酸素塔102に導入される。
この脱酸素塔102には、精留作用を働かせるため、底
部にリボイラー103,頂部に凝縮器104がそれぞれ
設けられており、その間の精留部は、沸点差が小さく精
留分離が困難な酸素とアルゴンとを精留分離するため、
数十段に及ぶ多段として精留作用が十分行なわれるよう
に形成されるとともに、それによって生ずる圧力抵抗に
対するための加圧手段105を該脱酸素塔102の前段
に配置している。
On the other hand, a method of purifying argon by removing oxygen in crude argon without using hydrogen is disclosed in Japanese Examined Patent Publication No.
It is disclosed in Japanese Patent No. 41235. FIG. 4 shows steps for carrying out the method described in the publication, in which 90% of the argon extracted from the crude argon column 3 into the tube 101 was used.
As described above, crude argon containing several% of each of oxygen and nitrogen is introduced into the deoxygenation tower 102 in order to remove contained oxygen.
This deoxygenation tower 102 is provided with a reboiler 103 at the bottom and a condenser 104 at the top in order to exert a rectification action, and the rectification section between them has a small boiling point difference and is difficult to rectify and separate. To rectify and separate argon and
The rectification action is formed as a multistage of several tens of stages, and the pressurizing means 105 for the pressure resistance generated thereby is arranged in front of the deoxygenation column 102.

【0008】前記リボイラー103は、複精留塔1の下
部塔からの中圧窒素ガスを管107で供給して形成され
ており、また頂部の凝縮器104には、リボイラー10
3で液化した中圧窒素を、脱酸素塔102内でアルゴン
が固化しないように温度を維持するため、弁108で膨
張させて適正圧力に調整後、管109を介して供給して
いる。さらに、この凝縮器104には、複精留塔1の下
部塔から液体窒素を弁110で上記同様に適正な圧力に
調整した後、管111を介して供給している。この結
果、前記脱酸素塔102の上部から酸素含有量が数pp
m以下で、窒素数%を含むアルゴン95%程度の精製ア
ルゴンが管112に抜き出され、高純アルゴン塔24に
送られる。
The reboiler 103 is formed by supplying medium pressure nitrogen gas from the lower column of the double rectification column 1 through a pipe 107, and the condenser 104 at the top is provided with the reboiler 10.
The medium-pressure nitrogen liquefied in 3 is supplied through the pipe 109 after being expanded by the valve 108 and adjusted to an appropriate pressure in order to maintain the temperature so that argon does not solidify in the deoxygenation tower 102. Further, liquid nitrogen is supplied to the condenser 104 from the lower column of the double rectification column 1 through a pipe 111 after adjusting to a proper pressure by the valve 110 in the same manner as above. As a result, the oxygen content from the upper part of the deoxygenation tower 102 is several pp.
Purified argon having an argon content of several percent and a nitrogen content of about 95% is extracted into the tube 112 and sent to the high purity argon column 24.

【0009】上記高純アルゴン塔24は、図3のものと
同様であり、その底部に、複精留塔1の下部塔から抜き
出された中圧窒素が管25で供給されてリボイラー26
を形成し、上部には該リボイラー26で凝縮液化した液
体窒素が管28,弁27を経て供給されるとともに、前
記脱酸素塔102の凝縮器104に送られている複精留
塔1の下部塔からの液体窒素の一部が分岐管29を経て
弁30で調圧されて送られ、凝縮器31が形成されてい
る。
The high-purity argon column 24 is the same as that shown in FIG. 3, and the medium pressure nitrogen extracted from the lower column of the double rectification column 1 is supplied to the bottom of the column by a pipe 25 to reboiler 26.
Liquid nitrogen condensed and liquefied by the reboiler 26 is supplied to the upper part through a pipe 28 and a valve 27, and the lower part of the double rectification column 1 is sent to the condenser 104 of the deoxygenation column 102. A part of the liquid nitrogen from the tower is pressure-adjusted by a valve 30 and sent through a branch pipe 29 to form a condenser 31.

【0010】高純アルゴン塔24で精留の結果、該塔頂
部よりアルゴンを少量含む窒素ガスが管32から排出さ
れ、底部からは高純度液体アルゴンが管33を介して採
取される。一方、凝縮器31で気化した窒素ガスは、管
34により排出され、前記脱酸素塔102の凝縮器10
4で気化して排出管114に排出された窒素ガスと共に
複精留塔1の上部塔頂部から導出される窒素ガスの管3
5と合流し、採取される。
As a result of rectification in the high-purity argon column 24, nitrogen gas containing a small amount of argon is discharged from the column top through a pipe 32, and high-purity liquid argon is collected from the bottom through a pipe 33. On the other hand, the nitrogen gas vaporized in the condenser 31 is discharged through the pipe 34, and the condenser 10 of the deoxygenation tower 102 is discharged.
The nitrogen gas pipe 3 discharged from the top of the upper part of the double rectification column 1 together with the nitrogen gas vaporized in 4 and discharged to the discharge pipe 114.
It merges with 5 and is collected.

【0011】[0011]

【発明が解決しようとする課題】上記脱酸素塔を用いた
方法によれば、酸素含有量が数ppm程度のアルゴンを
採取することが可能であるが、近年の各種ガスの高純度
化の要望は、アルゴンガスにおいても酸素含有量1pp
m以下の値が望まれており、半導体産業向けのアルゴン
では、酸素含有量をppbのオーダーに近づけようとし
ている。加えて、原料空気中のアルゴンに対する収率
は、80〜90%台が要求されており、高純度化,高効
率化の要望が一層強くなってきている。
According to the method using the above deoxidizing tower, it is possible to collect argon having an oxygen content of about several ppm, but in recent years there has been a demand for high purity of various gases. Has an oxygen content of 1 pp even in argon gas
A value of m or less is desired, and in the case of argon for the semiconductor industry, the oxygen content is approaching the order of ppb. In addition, the yield of argon in the raw material air is required to be in the range of 80 to 90%, and the demand for high purification and high efficiency is becoming stronger.

【0012】収率を下げずに高純度アルゴン中の酸素含
有量を減らすため、精留段数を増加することは極めて通
常的な方法であるが、このためには、精留段の増加によ
る圧力損失に対処する必要がある。また、還流比を増加
させて同様の効果を得るためには、脱酸素塔のリボイラ
ーと凝縮器の容量の増加が必要になるが、脱酸素塔のリ
ボイル源と凝縮器の冷却源には、通常、下部塔からのガ
ス窒素と液体窒素を利用しているため、これらガス窒素
及び液体窒素の使用量が増加すると、下部塔から上部塔
へ供給される還流液量が減少して上部塔の精留分離効果
を悪化させることになり、空気分離装置全体としての分
離効果を悪化させることになる。
It is a very common method to increase the number of rectification stages in order to reduce the oxygen content in high-purity argon without lowering the yield. You need to deal with the loss. Also, in order to increase the reflux ratio and obtain the same effect, it is necessary to increase the capacity of the reboiler and condenser of the deoxygenation tower, but the reboil source of the deoxygenation tower and the cooling source of the condenser are Normally, gas nitrogen and liquid nitrogen from the lower tower are used, so if the usage of these gas nitrogen and liquid nitrogen increases, the amount of reflux liquid supplied from the lower tower to the upper tower will decrease, The rectification separation effect is deteriorated, and the separation effect of the air separation device as a whole is deteriorated.

【0013】また、上記従来の方法では、アルゴンを濃
縮する粗アルゴン塔3,加圧手段105,酸素を分離す
る脱酸素塔102,高純アルゴン塔(窒素を分離する脱
窒素塔)24の順に配設されているので、最終の高純ア
ルゴン塔における適切な操作圧力を得るためには、前段
の脱酸素塔の圧力を、それに見合う圧力、すなわち、圧
力損失分を補う高さを持った圧力に設定する必要があ
り、沸点差が小さな酸素とアルゴンとを精留分離する脱
酸素塔には不利な条件となっていた。
In the above conventional method, the crude argon column 3 for concentrating argon, the pressurizing means 105, the deoxygenating column 102 for separating oxygen, and the high-purity argon column (denitrifying column for separating nitrogen) 24 are arranged in this order. Since it is installed, in order to obtain an appropriate operating pressure in the final high-purity argon column, the pressure of the deoxygenating column in the previous stage should be adjusted to a pressure corresponding to it, that is, a pressure with a height to compensate for the pressure loss. Therefore, it is a disadvantageous condition for a deoxygenation tower for rectifying and separating oxygen and argon having a small boiling point difference.

【0014】そこで本発明は、空気を原料として液化精
留分離により高純度アルゴンを分離採取する際の装置構
成の簡略化とともに、高純度化と収率の向上とが図れ、
特に脱酸素塔の所用理論段数や還流比の点で従来よりも
効率の良い運転を行うことができる高純度アルゴンの分
離方法及びその装置を提供することを目的としている。
Therefore, the present invention simplifies the structure of the apparatus for separating and collecting high-purity argon by liquefaction rectification using air as a raw material, and at the same time, makes it possible to improve the purity and yield.
In particular, it is an object of the present invention to provide a method for separating high-purity argon and an apparatus therefor capable of operating more efficiently than before in terms of the number of theoretical plates required for the deoxygenation tower and the reflux ratio.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するた
め、本発明の高純度アルゴンの分離方法は、空気を圧
縮,精製,冷却し、複精留塔で液化精留して酸素,窒素
を採取するとともに、高純度アルゴンを採取する空気液
化分離による高純度アルゴンの分離方法において、前記
複精留塔から導出したアルゴン含有ガスを粗アルゴン塔
に導入して精留を行い、少量の窒素及び酸素を含む粗ア
ルゴンとし、次いで該粗アルゴンを脱窒素塔に導入して
精留し、塔頂部から窒素を分離導出した後、該脱窒素塔
底部から導出した脱窒素粗アルゴンを脱酸素塔に導入し
て精留し、塔底部から酸素を分離導出するとともに、塔
頂部から高純度アルゴンを採取することを特徴としてい
る。
In order to achieve the above object, the method for separating high-purity argon of the present invention comprises compressing, purifying and cooling air, and liquefying and rectifying oxygen and nitrogen in a double rectification column. Along with collecting, in the method of separating high-purity argon by air liquefaction separation to collect high-purity argon, the argon-containing gas derived from the double rectification column is introduced into the crude argon column for rectification, and a small amount of nitrogen and Crude argon containing oxygen, and then the crude argon was introduced into a denitrification tower for rectification, and nitrogen was separated and led out from the top of the tower, and then the denitrogenated crude argon drawn from the bottom of the denitrification tower was introduced into the deoxygenation tower. It is characterized in that it is introduced and rectified, oxygen is separated from the bottom of the column, and high-purity argon is collected from the top of the column.

【0016】また、本発明の高純度アルゴンの分離装置
は、圧縮,精製,冷却した空気を液化精留して酸素,窒
素に分離する複精留塔と、該複精留塔上部塔中部から導
出されるアルゴン含有ガスを精留して少量の窒素及び酸
素を含む粗アルゴンを得る粗アルゴン塔と、該粗アルゴ
ン塔頂部から導出された粗アルゴンを精留して塔頂部か
ら窒素を分離導出する脱窒素塔と、該脱窒素塔の塔底部
から導出された脱窒素粗アルゴンを精留して塔底部から
酸素を分離導出するとともに、塔頂部から高純度アルゴ
ンを採取する脱酸素塔とを備えたことを特徴としてい
る。
The apparatus for separating high-purity argon of the present invention comprises a double rectification column for liquefying and rectifying compressed, purified and cooled air into oxygen and nitrogen, and a middle part of the upper column of the double rectification column. A crude argon column for rectifying the derived argon-containing gas to obtain crude argon containing a small amount of nitrogen and oxygen, and rectifying the crude argon derived from the top of the crude argon column to separate and separate nitrogen from the top of the column. And a deoxygenation tower for rectifying the denitrification crude argon derived from the tower bottom of the denitrification tower to separate and derive oxygen from the tower bottom, and to collect high-purity argon from the top of the tower. It is characterized by having.

【0017】[0017]

【作 用】上記のように、粗アルゴン中に含まれる窒素
及び酸素を分離して高純度アルゴンを採取するに際し
て、酸素を分離する脱酸素塔の上流側に窒素を分離する
脱窒素塔を設け、先に窒素を分離するように構成するこ
とにより、脱酸素塔の操作圧力を低くすることができ、
酸素の分離を効率よく行うことができる。また、窒素
は、アルゴン及び酸素との沸点差が大きく、圧力が多少
高くても十分に除去することができるので、後段の脱酸
素塔の圧力に応じて任意の圧力に設定することができ
る。
[Operation] As described above, when separating high-purity argon by separating nitrogen and oxygen contained in the crude argon, a denitrification tower for separating nitrogen is provided upstream of the deoxygenation tower for separating oxygen. By configuring to separate nitrogen first, the operating pressure of the deoxygenation tower can be lowered,
Oxygen can be efficiently separated. Further, nitrogen has a large boiling point difference with argon and oxygen and can be sufficiently removed even if the pressure is somewhat high, so that it can be set to an arbitrary pressure according to the pressure of the deoxidizing column in the subsequent stage.

【0018】[0018]

【実施例】本発明の一実施例を図1に基づいて説明す
る。なお、前記従来例と同一要素のものには同一符号を
付して、その詳細な説明は省略する。粗アルゴン塔3の
頂部から圧力約1.1ataで管51に抜き出された液
体粗アルゴンは、加圧手段である加圧筒(液柱加圧器)
52で自身の液ヘッドにより、1.7〜2.0ataに
昇圧した後、管53,弁54を介して脱窒素塔55の中
段に導入される。この脱窒素塔55の底部には、複精留
塔1の下部塔から抜き出された中圧窒素が管56を介し
て供給されるリボイラー57が設けられ、頂部には該リ
ボイラー57で液化した液化窒素が管58,弁59を介
して導入される凝縮器60が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described with reference to FIG. The same elements as those in the conventional example are designated by the same reference numerals, and detailed description thereof will be omitted. The liquid crude argon extracted from the top of the crude argon column 3 into the pipe 51 at a pressure of about 1.1 ata is a pressure cylinder (liquid column pressurizer) as a pressurizing means.
At 52, the pressure is raised to 1.7 to 2.0 at a liquid head of its own, and then introduced into the middle stage of the denitrification tower 55 through a pipe 53 and a valve 54. At the bottom of the denitrification tower 55, there is provided a reboiler 57 to which the medium pressure nitrogen extracted from the lower tower of the double rectification tower 1 is supplied via a pipe 56, and at the top thereof is liquefied by the reboiler 57. A condenser 60 is provided in which liquefied nitrogen is introduced via a pipe 58 and a valve 59.

【0019】上記脱窒素塔55は、前記管53から供給
される粗アルゴンを精留し、塔頂部に窒素を分離して管
61から導出するとともに、塔底部の管62に脱窒素液
体粗アルゴンを導出する。
In the denitrification tower 55, the crude argon supplied from the pipe 53 is rectified, nitrogen is separated at the top of the tower to be led out from the pipe 61, and denitrogenated liquid crude argon is fed to the pipe 62 at the bottom of the tower. Derive.

【0020】上記脱窒素液体粗アルゴンは、管62から
弁63を経て脱酸素塔64の中段に導入される。この脱
酸素塔64の頂部には、複精留塔1の下部塔から管65
に抜き出された中圧液体窒素及び前記脱窒素塔55のリ
ボイラーで液化して管66に分岐した液化窒素が供給さ
れる凝縮器67が設けられ、塔底部には、該凝縮器67
で気化し、熱交換器68で昇温した後、循環圧縮機69
で昇圧し、アフタークーラー70及び前記熱交換器68
で降温した窒素ガスが供給されるリボイラー71が設け
られている。このリボイラー71で液化した液化窒素
は、弁72で降圧して前記管65の中圧液体窒素に合流
する。また、前記脱窒素塔55の凝縮器60及び上記脱
酸素塔64の凝縮器67で気化した窒素ガスは、管7
3,弁74あるいは管75,弁76を介して複精留塔1
の上部塔頂部から導出される窒素ガスの管35と合流す
る。
The denitrogenated liquid crude argon is introduced from the pipe 62 through the valve 63 into the middle stage of the deoxygenation tower 64. At the top of this deoxygenation tower 64, a pipe 65 is installed from the lower tower of the double rectification tower 1.
A condenser 67 is provided which is supplied with the medium pressure liquid nitrogen extracted in the above and the liquefied nitrogen which is liquefied by the reboiler of the denitrification tower 55 and branched into a pipe 66, and the condenser 67 is provided at the bottom of the tower.
After being vaporized by the heat exchanger and heated by the heat exchanger 68, the circulating compressor 69 is used.
After pressurizing with, after cooler 70 and the heat exchanger 68
A reboiler 71 to which the nitrogen gas whose temperature has been lowered is supplied is provided. The liquefied nitrogen liquefied by the reboiler 71 is reduced in pressure by the valve 72 and merges with the medium pressure liquid nitrogen of the pipe 65. In addition, the nitrogen gas vaporized in the condenser 60 of the denitrification tower 55 and the condenser 67 of the deoxygenation tower 64 is stored in the pipe 7
3, double rectification column 1 via valve 74 or pipe 75, valve 76
It joins the pipe 35 for nitrogen gas discharged from the top of the upper column.

【0021】そして、上記脱酸素塔64での精留によ
り、塔底部に酸素が分離して管77から導出され、塔頂
部に分離した高純度アルゴンは、管78から採取され
る。この管77に導出された酸素は、前記複精留塔1に
戻すようにしても良い。
By the rectification in the deoxygenation tower 64, oxygen is separated at the bottom of the tower and is led out from the pipe 77, and the high-purity argon separated at the top of the tower is taken from the pipe 78. The oxygen led to this pipe 77 may be returned to the double rectification column 1.

【0022】このように粗アルゴン中の窒素を最初に分
離して除去し、次に酸素を分離するように構成すること
により、脱酸素塔64の操作圧力をアルゴンと酸素とを
精留分離するのに適した圧力にすることができる。すな
わち、従来は、脱酸素塔の次に脱窒素塔(高純アルゴン
塔)を配置していたので、脱酸素塔の操作圧力は、次の
脱窒素塔の操作圧力によりその最低圧力が制限されてい
たが、本発明では、先に窒素を分離しているので、この
ような制限がなくなり、低圧、例えば、1.1ata程
度に脱酸素塔64の操作圧力を設定することができる。
したがって、沸点差が小さいアルゴンと酸素とを最適な
条件で精留分離することができ、酸素含有量1ppm以
下の高純度アルゴンを得られるだけでなく、所要理論段
数や還流比の点でも有利になり、装置の小型化や動力削
減も図れる。
As described above, the nitrogen in the crude argon is first separated and removed, and then the oxygen is separated, so that the operating pressure of the deoxygenation tower 64 is rectified and separated into argon and oxygen. The pressure can be adjusted to suit. That is, conventionally, the denitrification column (high-purity argon column) was placed next to the deoxygenation column, so the operating pressure of the deoxygenation column is limited by the operating pressure of the next denitrification column. However, in the present invention, since nitrogen is separated first, such a limitation is eliminated, and the operating pressure of the deoxidizing column 64 can be set to a low pressure, for example, about 1.1 ata.
Therefore, it is possible to rectify and separate argon and oxygen having a small boiling point difference under the optimum conditions, and not only to obtain high-purity argon having an oxygen content of 1 ppm or less, but also to advantage in terms of the required theoretical plate number and reflux ratio. Therefore, the device can be downsized and the power can be reduced.

【0023】さらに、脱酸素塔64を、その精留部に規
則あるいは不規則充填材を充填した充填塔とすることに
より、精留操作時の圧力損失を低減でき、例えば、酸素
量を1ppm以下まで除去するには、粗アルゴン塔3と
合わせて理論段数が150段以上必要となることから、
このような圧力損失が小さい充填塔を用いることによ
り、操作圧力を更に低くすることができ、経済的な運転
を行うことができる。
Further, the deoxygenation tower 64 is a packed tower in which the rectification section is filled with a regular or irregular packing material, whereby the pressure loss during the rectification operation can be reduced. For example, the oxygen content is 1 ppm or less. In order to remove up to 150, the number of theoretical plates together with the crude argon column 3 is required to be 150 or more,
By using such a packed column with a small pressure loss, the operating pressure can be further lowered, and economical operation can be performed.

【0024】一方、脱窒素塔55における精留は、沸点
差が大きい窒素とアルゴン及び酸素を分離するものであ
るから、脱酸素塔64に対して十分に高い圧力で運転し
ても窒素を容易に分離することができる。さらに、本実
施例に示すように、粗アルゴン塔3と脱窒素塔55との
位置関係を考慮するとともに、加圧手段として液柱加圧
器52を使用することにより、加圧のための動力を必要
としない利点も生じる。
On the other hand, since the rectification in the denitrification tower 55 separates nitrogen, argon and oxygen, which have a large difference in boiling points, the nitrogen is easily removed even if the deoxygenation tower 64 is operated at a sufficiently high pressure. Can be separated into Further, as shown in the present embodiment, the positional relationship between the crude argon column 3 and the denitrification column 55 is taken into consideration, and the liquid column pressurizer 52 is used as the pressurizing means, so that the power for pressurization is increased. There are advantages that are not needed.

【0025】なお、各凝縮器及びリボイラーの冷却源,
加熱源は任意であり、冷却源としては、下部塔下部から
導出した液体空気を用いることも可能であり、装置外か
ら液体窒素等の寒冷源を導入するようにしてもよい。ま
た、加熱源としても、下部塔下部から導出した空気ある
いは空気類似組成ガス、さらには下部塔導入前の原料空
気の一部等を使用することが可能である。これらの冷却
源及び加熱源に用いる液やガスは、この空気液化分離装
置に設定される製品の種類や形態,量等に応じて適宜に
選定することができ、複精留塔の下部塔,上部塔の精留
操作条件等に応じて適宜最適な種類の液やガスを用いる
ことにより、あるいは、当該装置以外の装置からこれら
を導入することにより、高純度アルゴン,酸素,窒素等
の収率を損なうことなく効率のよい運転を行うことがで
きる。例えば、液製品を採取する空気分離装置で寒冷発
生のための循環系統を備えている場合は、その系統に冷
却源,加熱源を組み込むことも可能である。
A cooling source for each condenser and reboiler,
The heating source is arbitrary, and liquid air drawn from the lower part of the lower tower can also be used as the cooling source, and a cold source such as liquid nitrogen may be introduced from outside the device. Also, as the heating source, it is possible to use air or an air-like composition gas derived from the lower part of the lower column, or a part of the raw material air before introduction into the lower column. The liquid or gas used for these cooling source and heating source can be appropriately selected according to the type, form, amount, etc. of the product set in this air liquefaction separation device. Yields of high-purity argon, oxygen, nitrogen, etc. can be obtained by using an optimal type of liquid or gas depending on the rectification operating conditions of the upper tower, or by introducing these from a device other than the device concerned. It is possible to perform efficient operation without damaging the. For example, when an air separation device for collecting liquid products is provided with a circulation system for generating cold, it is possible to incorporate a cooling source and a heating source in the system.

【0026】いずれの液やガスを冷却源あるいは加熱源
に用いるとしても、凝縮器に導入する冷却源の温度,流
量及びリボイラーに導入する加熱源の温度,流量を調節
することにより、脱酸素塔における還流比を最適な状態
に設定することができ、これにより、脱酸素塔から採取
するアルゴン中の酸素含有量を1ppm以下にすること
が可能である。
Regardless of which liquid or gas is used as the cooling source or the heating source, by adjusting the temperature and flow rate of the cooling source introduced into the condenser and the temperature and flow rate of the heating source introduced into the reboiler, the deoxidation tower The reflux ratio in 1 can be set to an optimum state, whereby the oxygen content in the argon sampled from the deoxygenation tower can be reduced to 1 ppm or less.

【0027】上記のように、本実施例においては、脱酸
素塔から採取する高純度アルゴン中の酸素量を1ppm
以下にすることが可能であるが、更にppbオーダーま
で酸素量を低減する必要がある場合には、脱酸素塔の後
段に酸素を吸着する吸着剤を充填した吸着筒を配設した
り、ゲッターを充填した反応筒を配設し、脱酸素塔から
導出した高純度アルゴンをこれらの吸着筒あるいは反応
筒で処理することにより、酸素量を更に低減することが
できる。なお、この場合、脱酸素塔から導出する高純度
アルゴン中の酸素量は、1ppm以下にすることなく数
ppmでもよい。これは、この程度の酸素含有量であれ
ば、水素を連続的に添加しての触媒反応による脱酸方法
ではなく、吸着剤あるいはゲッターで十分に脱酸するこ
とが可能であるからである。
As described above, in this embodiment, the amount of oxygen in the high-purity argon sampled from the deoxygenation tower was 1 ppm.
However, if it is necessary to further reduce the amount of oxygen to the order of ppb, an adsorption column filled with an adsorbent for adsorbing oxygen may be provided in the subsequent stage of the deoxygenation tower, or a getter may be used. It is possible to further reduce the amount of oxygen by disposing a reaction tube filled with OH and treating the high-purity argon derived from the deoxygenation column with these adsorption tubes or reaction tubes. In this case, the amount of oxygen in the high-purity argon discharged from the deoxygenation tower may be several ppm instead of 1 ppm or less. This is because if the oxygen content is in this range, it is possible to sufficiently deoxidize with an adsorbent or a getter, not with a deoxidizing method by a catalytic reaction by continuously adding hydrogen.

【0028】例えば、図2は、上記のようにして得た高
純度アルゴンをさらに精製する装置 の一例を示す系統図
であって、前記脱酸素塔64から管78に導出した高純
度液化アルゴンを反応筒81に導入し、該高純度アルゴ
ン中に微量に残存する酸素を除去し、さらにアルゴンの
高純度化しようとするものである。
For example, FIG. 2 shows the height obtained as described above.
System diagram showing an example of an apparatus for further purifying pure argon
In addition, the high-purity material derived from the deoxidation tower 64 to the pipe 78
Liquefied argon is introduced into the reaction tube 81,
Oxygen in the trace amount is removed, and
It is intended to be highly purified.

【0029】脱酸素塔64から管78に導出した高純度
液化アルゴンは、加圧筒82で自身の液ヘッドにより、
約1.6ataに加圧されて気化器83に導入され、管
84から導入される窒素ガス等の温流体と熱交換して気
化する。気化器83で気化した高純度アルゴンガスは、
熱交換器85で反応筒81を導出した超高純度アルゴン
ガスと熱交換を行って昇温し、さらに加熱器86で反応
筒81の処理温度、例えば150〜350℃に加熱され
た後、反応筒81に導入される。
High purity led to the pipe 78 from the deoxygenation tower 64
Liquefied argon is supplied to the pressurizing cylinder 82 by its own liquid head.
It is pressurized to about 1.6 ata and introduced into the vaporizer 83,
84 heat exchange with a warm fluid such as nitrogen gas introduced from 84
Turn into. The high-purity argon gas vaporized by the vaporizer 83 is
Ultra-high-purity argon discharged from the reaction tube 81 in the heat exchanger 85
Heat exchange with the gas to raise the temperature, and then react with the heater 86
It is heated to the processing temperature of the cylinder 81, for example, 150 to 350 ° C.
After that, it is introduced into the reaction tube 81.

【0030】反応筒81には、銅やニッケル系のゲッタ
ーが充填されており、該反応筒81に導入された高純度
アルゴンガス中の微量酸素が、例えば1〜10ppm程
度から0.2ppm程度、あるいは条件次第ではppb
オーダーまで除去される。なお、反応筒81に代えて、
モレキュラシーブスMS4A,MS5A又はカーボンモ
レキュラシーブス等の吸着剤を充填した吸着筒を設置
し、酸素を吸着により除去することも可能である。
The reaction tube 81 includes a getter made of copper or nickel.
With high purity introduced into the reaction tube 81.
Trace oxygen in argon gas is, for example, about 1 to 10 ppm
Degree to 0.2 ppm, or ppb depending on conditions
The order is removed. Instead of the reaction tube 81,
Molecular Sieves MS4A, MS5A or Carbon
Adsorption cylinder filled with adsorbent such as recurring sieves
However, it is also possible to remove oxygen by adsorption.

【0031】反応筒81で酸素成分が除去された超高純
度アルゴンガスは、管87を通って前記熱交換器85で
前記高純度アルゴンガスと熱交換して降温した後、液化
窒素等を寒冷源として用いた液化器88に導入され、液
化して超高純度液化アルゴンとなり、管89から採取さ
れる。
Ultra high purity with oxygen components removed in the reaction tube 81
The argon gas is passed through the pipe 87 to the heat exchanger 85.
After heat exchange with the high-purity argon gas to lower the temperature, liquefaction
The liquid is introduced into the liquefier 88 that uses nitrogen or the like as a cold source.
Turned into ultra-high-purity liquefied argon and collected from tube 89.
Be done.

【0032】また、本実施例では、気化器83でアルゴ
ンを気化させる温流体及び液化器88でアルゴンを液化
させる冷流体として窒素を用いている。すなわち、気化
器83には、管84を介して循環窒素系等から導出され
た中圧の窒素ガスが導入されており、該気化器83で液
化アルゴンを気化させることにより液化した液化窒素
は、弁91で膨張した後、複精留塔の下部塔から管92
に導出され、弁93で膨張した液化窒素と合流して液化
器88に導入される。この気化器88でアルゴン を液化
することにより気化した窒素ガスは、管94に導出さ
れ、その一部は管95を経て循環窒素系に戻され、一部
は管96から弁97を介して上部塔を導出した窒素ガス
に合流する。
In this embodiment, the vaporizer 83 is used to
Liquefy argon with a liquefier 88 and a warm fluid that vaporizes argon
Nitrogen is used as the cold fluid. That is, vaporization
It is led to the vessel 83 from a circulating nitrogen system or the like via a pipe 84.
In addition, medium-pressure nitrogen gas has been introduced, and the liquid is vaporized in the vaporizer 83.
Liquefied nitrogen that is liquefied by vaporizing argon chloride
Is expanded from the lower column of the double rectification column after expansion with the valve 91.
Liquefied by merging with the liquefied nitrogen that was led to
Is introduced into the container 88. Liquefaction of argon with this vaporizer 88
The nitrogen gas vaporized by
And part of it is returned to the circulating nitrogen system via pipe 95,
Is the nitrogen gas discharged from the pipe 96 through the valve 97 to the upper tower.
To join.

【0033】なお、脱酸素塔64から導出する高純度ア
ルゴンがガスの場合には、上記気化器83や液化器88
を設ける必要はなく、反応筒81等を通過させるのに十
分な圧力に昇圧し、必要な温度に昇温するだけでよい。
また、吸着筒を用いる場合には、この昇温操作も省略す
ることができ、昇圧操作には、ポンプやブロワー等も使
用することができる。
It should be noted that the high-purity exhaust derived from the deoxidation tower 64 is
When the rugong is a gas, the vaporizer 83 and the liquefier 88 are used.
It is not necessary to provide a tube, and it is sufficient to pass the reaction tube 81 and the like.
It is sufficient to raise the pressure to a sufficient pressure and raise it to the required temperature.
Also, when using an adsorption cylinder, this temperature raising operation is also omitted.
It is possible to use a pump or blower for boosting operation.
Can be used.

【0034】[0034]

【発明の効果】以上説明したように、本発明の高純度ア
ルゴンの分離方法及びその装置によれば、前段で窒素を
分離し、後段で酸素を分離するようにしたので、酸素を
分離する脱酸素塔の操作圧力を、アルゴンと酸素とを精
留操作で分離するのに適した低圧にすることができ、精
留操作のみでアルゴン中の酸素量を効率よく分離除去す
ることができ、採取する高純度アルゴン中の酸素量を1
ppm以下にすることができる。また、水素ガスを用い
ないので安全性が向上するだけでなく、設備の簡略化も
図ることができ、設備コストの低減と運転コストの低減
が図れる。特に脱酸素塔を充填塔で形成することによ
り、圧力損失を小さくできるので、酸素をより効率よく
分離除去することが可能になる。
As described above, according to the method and apparatus for separating high-purity argon of the present invention, nitrogen is separated in the first stage and oxygen is separated in the second stage. The operating pressure of the oxygen tower can be set to a low pressure suitable for separating argon and oxygen in the rectification operation, and the amount of oxygen in argon can be efficiently separated and removed only by the rectification operation. The amount of oxygen in high-purity argon is 1
It can be kept below ppm. Further, since hydrogen gas is not used, not only the safety is improved, but also the equipment can be simplified, and the equipment cost and the operation cost can be reduced. In particular, since the pressure loss can be reduced by forming the deoxygenation column as a packed column, it becomes possible to separate and remove oxygen more efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す高純度アルゴンの分
離装置の系統図である。
FIG. 1 is a system diagram of a high-purity argon separator according to an embodiment of the present invention.

【図2】 高純度アルゴンをさらに精製する装置の一例
を示す系統図である。
FIG. 2 An example of an apparatus for further refining high-purity argon
FIG.

【図3】 従来の高純度アルゴン採取装置の一例を示す
系統図である。
FIG. 3 shows an example of a conventional high-purity argon sampling device.
It is a system diagram.

【図4】 同じく従来の高純度アルゴン採取装置を示す
系統図である。
FIG. 4 also shows a conventional high-purity argon sampling device.
It is a system diagram.

【符号の説明】[Explanation of symbols]

1…複精留塔、3…粗アルゴン塔、4,60,67…凝
縮器、52…液柱加圧器、55…脱窒素塔、57,71
…リボイラー、64…脱酸素塔,81…反応筒
1 ... Double rectification column, 3 ... Crude argon column, 4, 60, 67 ... Condenser, 52 ... Liquid column pressurizer, 55 ... Denitrification column, 57, 71
… Reboiler, 64… Deoxidizer, 81… Reactor

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 空気を圧縮,精製,冷却し、複精留塔で
液化精留して酸素,窒素を採取するとともに、高純度ア
ルゴンを採取する空気液化分離による高純度アルゴンの
分離方法において、前記複精留塔から導出したアルゴン
含有ガスを粗アルゴン塔に導入して精留を行い、少量の
窒素及び酸素を含む粗アルゴンとし、次いで該粗アルゴ
ンを脱窒素塔に導入して精留し、塔頂部から窒素を分離
導出した後、該脱窒素塔底部から導出した脱窒素粗アル
ゴンを脱酸素塔に導入して精留し、塔底部から酸素を分
離導出するとともに、塔頂部から高純度アルゴンを採取
することを特徴とする高純度アルゴンの分離方法。
1. A method for separating high-purity argon by air liquefaction separation for compressing, purifying and cooling air, liquefying and rectifying in a double rectification column to collect oxygen and nitrogen, and collecting high-purity argon. Argon-containing gas derived from the double rectification column is introduced into a crude argon column for rectification to obtain crude argon containing a small amount of nitrogen and oxygen, and then the crude argon is introduced into a denitrification column for rectification. , After nitrogen is separated from the top of the tower, the denitrification crude argon derived from the bottom of the denitrification tower is introduced into the deoxygenation column for rectification, and oxygen is separated and extracted from the bottom of the tower, and high purity is obtained from the top of the tower. A method for separating high-purity argon, which comprises collecting argon.
【請求項2】 圧縮,精製,冷却した空気を液化精留し
て酸素,窒素に分離する複精留塔と、該複精留塔上部塔
中部から導出されるアルゴン含有ガスを精留して少量の
窒素及び酸素を含む粗アルゴンを得る粗アルゴン塔と、
該粗アルゴン塔頂部から導出された粗アルゴンを精留し
て塔頂部から窒素を分離導出する脱窒素塔と、該脱窒素
塔の塔底部から導出された脱窒素粗アルゴンを精留して
塔底部から酸素を分離導出するとともに、塔頂部から高
純度アルゴンを採取する脱酸素塔とを備えたことを特徴
とする高純度アルゴンの分離装置。
2. A double rectification column for liquefying and rectifying compressed, purified and cooled air into oxygen and nitrogen, and rectifying an argon-containing gas derived from the middle part of the upper column of the double rectification column. A crude argon column to obtain crude argon containing small amounts of nitrogen and oxygen;
A denitrification tower for rectifying the crude argon derived from the top of the crude argon tower to separate and derive nitrogen from the tower top, and a tower for rectifying the denitrification crude argon derived from the bottom of the denitrification tower. An apparatus for separating high-purity argon, comprising: a deoxygenation tower for separating and discharging oxygen from the bottom and collecting high-purity argon from the tower top.
JP16176893A 1993-06-30 1993-06-30 Method and apparatus for separating high purity argon Expired - Fee Related JP3364724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16176893A JP3364724B2 (en) 1993-06-30 1993-06-30 Method and apparatus for separating high purity argon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16176893A JP3364724B2 (en) 1993-06-30 1993-06-30 Method and apparatus for separating high purity argon

Publications (2)

Publication Number Publication Date
JPH0777385A JPH0777385A (en) 1995-03-20
JP3364724B2 true JP3364724B2 (en) 2003-01-08

Family

ID=15741536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16176893A Expired - Fee Related JP3364724B2 (en) 1993-06-30 1993-06-30 Method and apparatus for separating high purity argon

Country Status (1)

Country Link
JP (1) JP3364724B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1760415A1 (en) * 2005-08-31 2007-03-07 SIAD MACCHINE IMPIANTI S.p.a. Process and device for the production of argon by cryogenic separation of air
JP6091847B2 (en) * 2012-11-06 2017-03-08 エア・ウォーター株式会社 Gas supply equipment and gas supply method using the same
JP6084437B2 (en) * 2012-11-06 2017-02-22 エア・ウォーター株式会社 Argon production method and argon production equipment used therefor
CN104501530B (en) * 2014-12-25 2017-05-17 杭州杭氧股份有限公司 Device and method for extracting high-purity liquid argon from crude argon prepared by multiple sets of air separators
JP7355978B2 (en) * 2019-04-08 2023-10-04 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Cryogenic air separation equipment
CN114646188B (en) * 2022-05-18 2022-08-16 河南心连心深冷能源股份有限公司 Crude argon purifying and liquefying device and purifying method used by separation from air separation system

Also Published As

Publication number Publication date
JPH0777385A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
US4566886A (en) Process and apparatus for obtaining pure CO
KR900007207B1 (en) Process to produce ultrahigh purity oxygen
KR930001207B1 (en) Production of high purity argon
JP4450886B2 (en) High purity oxygen production method and apparatus
EP0194795B1 (en) Purification of carbon dioxide for use in brewing
JP3256214B2 (en) Method and apparatus for purifying nitrogen
JP2000088455A (en) Method and apparatus for recovering and refining argon
JPH0972656A (en) Argon refining method and device
JPH04295587A (en) Production system of rough neon
JP2594604B2 (en) Argon recovery method
JP3364724B2 (en) Method and apparatus for separating high purity argon
JP3306517B2 (en) Air liquefaction separation apparatus and method
JP2636949B2 (en) Improved nitrogen generator
JPH11228116A (en) Recovering and purifying method of argon and device therefor
JP3424101B2 (en) High purity argon separation equipment
JPH07133982A (en) Method and apparatus for preparing high purity argon
JPH07127971A (en) Argon separator
JP3297935B2 (en) Method and apparatus for separating high purity argon
JP3256811B2 (en) Method for purifying krypton and xenon
JPH1137642A (en) Method and facility for separating air
JP3082092B2 (en) Oxygen purification method and apparatus
JP4242507B2 (en) Method and apparatus for producing ultra high purity gas
JP2980756B2 (en) Ultra high purity nitrogen production method and apparatus
JP4072841B2 (en) Method and apparatus for producing ultra high purity gas
JPH1137643A (en) Method and facility for separating air

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees