JP3362774B2 - 磁気抵抗センサ - Google Patents
磁気抵抗センサInfo
- Publication number
- JP3362774B2 JP3362774B2 JP35163898A JP35163898A JP3362774B2 JP 3362774 B2 JP3362774 B2 JP 3362774B2 JP 35163898 A JP35163898 A JP 35163898A JP 35163898 A JP35163898 A JP 35163898A JP 3362774 B2 JP3362774 B2 JP 3362774B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive member
- sensor according
- magnetic field
- semiconductor material
- current path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005291 magnetic effect Effects 0.000 claims description 130
- 239000000463 material Substances 0.000 claims description 104
- 239000004065 semiconductor Substances 0.000 claims description 70
- 239000010409 thin film Substances 0.000 claims description 38
- 229910000673 Indium arsenide Inorganic materials 0.000 claims description 17
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 17
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 6
- 229910001020 Au alloy Inorganic materials 0.000 claims description 2
- 230000037230 mobility Effects 0.000 description 37
- 239000004020 conductor Substances 0.000 description 17
- 239000000758 substrate Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 7
- 239000010408 film Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- MCMSPRNYOJJPIZ-UHFFFAOYSA-N cadmium;mercury;tellurium Chemical compound [Cd]=[Te]=[Hg] MCMSPRNYOJJPIZ-UHFFFAOYSA-N 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 230000002547 anomalous effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000282461 Canis lupus Species 0.000 description 1
- 241000252203 Clupea harengus Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002772 conduction electron Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000019514 herring Nutrition 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3993—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures in semi-conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/3213—Exchange coupling of magnetic semiconductor multilayers, e.g. MnSe/ZnSe superlattices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B2005/3996—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/90—Magnetic feature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/11—Magnetic recording head
- Y10T428/115—Magnetic layer composition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12465—All metal or with adjacent metals having magnetic properties, or preformed fiber orientation coordinate with shape
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Heads (AREA)
- Hall/Mr Elements (AREA)
Description
に巨大磁気抵抗(GMR)センサに関する。
ープ、ドラム、フロッピーディスクなどの磁性媒体に記
録された情報信号の読み出し装置に広く実用化されてお
り、種々のタイプのものが知られている。このようなセ
ンサは、大きな磁気抵抗を示す強磁性合金で作製された
ブロックからなることが多い。センサのごく近傍を通過
する記録媒体が、読み出しヘッドにおける磁界の変化を
引き起こし、それにより、磁気抵抗センサの電気抵抗が
変化することになる。
気抵抗とよばれる磁気抵抗形態を示す磁気抵抗センサが
提案された。このセンサでの抵抗変化は、センサの磁性
層間で起こるスピン依存性の伝導電子伝達と、それに付
随して起こる層の界面でのスピン依存性の散乱に起因し
て生じるが、このようなセンサでは、磁気抵抗は層の磁
化方向の間の角度の余弦(cosine)に比例するこ
とが観測され、また、センサを通る電流の変動にも依存
している。材料の組み合わせの選択によっては、このよ
うなセンサは、異方性磁気抵抗(AMR)が示す磁気抵
抗より大きい磁気抵抗を示すが、このセンサも、常温で
は、比較的小さな値しか取りえないという課題を有して
いる。
号の読み出し/書き込み用磁気抵抗センサが、以下の特
許出願および米国特許において提案されている。すなわ
ち1995年3月2日出願の出願番号08/396,8
19号の特許出願、1997年7月8日の米国特許5,
646,051号、1997年12月9日発行の米国特
許5,696,655号、1997年1月6日出願の出
願番号08/781,994号、1997年8月22日
出願の出願番号08/917,058号の特許出願にお
いて上記提案がなされている。
などの不均質半導体磁気抵抗材料の薄膜から構成された
非磁性巨大磁気抵抗センサもまた開示されている。
って生ずる付随衝突により、キャリア移動度の減少をも
たらすと考えられることが多い。しかし、シー・ヘリン
グ(C.Herring)の、「電気的および電流磁気
測定におけるランダム不均質体の効果」と題し、ジャー
ナル・オブ・アプライド・フィジックス、第31巻、第
11号、1939−1953頁、1960年(Jour
nal of Applied Physics, V
ol.31,No.11, pps.1939−195
3, 1960)に報告された、初期の基礎的研究に続
いて、シー・エム・ウォルフら(C.M.Wolfe
et al.)は、ソリッド・ステート・サイエンス・
アンド・テクノロジー、第119巻、第2号、250−
255頁、1972年(Solid State Sc
ience and Technology, Vo
l.119, No.2, pps.250−255,
1972)の「不均質半導体の見かけの高移動度」と
題する論文で、半導体内の伝導不均質性が、実際、「見
かけ」のホール移動度を実キャリア移動度の103倍に
も及ぶほどに、飛躍的に増加させることができることを
示した。本発明は、ホール移動度の増大をもたらしたと
同じ物理的効果が、見かけの巨大磁気抵抗(Giant Magn
etoResistance:以下、適宜「GMR」と称す)の増大
をもたらし、このGMRの増大が磁気センサ技術、特
に、高密度磁気記録の高移動度半導体読み出しヘッドに
重要な影響を与えることを示す。
1-xCdxTeで0<x<1の合金組成を有するテルル化
水銀カドミウム(MCT)がある。x〜0.22の組成
でのこの合金は、10μmスペクトル領域で動作する光
デバイスの発光エミッタや検出器を構成する化合物とし
て広く用いられている。しかし、最近、ソリンら(So
lin et al.)が、アプライド・フィジックス
・レターズ、第69巻、第26号、4105−4107
頁、1996年(Applied Physics L
etters, Vol.69. No.26, pp
s.4105−4107, 1996)記載の「自己バ
イアス非磁性巨大磁気抵抗センサ」と題する論文で、
(ほぼ)ゼロ・バンドギャップ状態に相当するx〜0.
1の組成の、薄膜MCTが(コルビノ・ディスク形を使
用しての測定で)GMRを示し、さらにこのGMRはビ
ー・ディーニーら(B.Dieny et al.)が
ジャーナル・アプライド・フィジックス、第69巻、第
8号、4774−4776頁、1991年(Journ
al of Applied Physics, Vo
l.69, No.8, pps.4774−477
6, 1991)に記載の「軟磁性スピンバルブ構造の
磁気輸送性」と題する論文や、ビー・ディーニーら
(B.Dieny et al.)がフィジカル・レビ
ュー・ビー、第43巻、第1号、1927−1300
頁、1991年(Physical Review
B,Vol.43, No.1, pps.1297−
1300、 1991)に記載の「軟強磁性多層構造の
巨大磁気抵抗」と題する論文で説明した、スピンバルブ
のような従来の金属GMR検出器と比べて、勝るとも劣
らぬことを示した。この優れた特性は、一つには、ソリ
ンら(Solin et al.)が注目したように、
低磁界GMR(μH<1、μはキャリア移動度)では、
高磁界GMRから予想される値の30倍以上の増強が起
こることに依る。実際、この低磁界増強は、かなり以
前、コロルら(Korol’ et al)によるソビ
エト・フィジックス・セミコンダクターズ、第11巻、
第3号、288−289頁、1977年(Soviet
Physics.Semiconductors.V
ol.11, No.3, pps.288−289.
1977)に記載の「準ゼロギャップ状態のCdHg
Teの磁気抵抗」と題する論文やコロルら(Koro
l’ et al.)によるソビエト・フィジックス・
セミコンダクターズ、第12巻、第3号、275−27
7頁、1978年(Soviet Physics.
Semiconductors, Vol.12, N
o.3,pps.275−277, 1978)に記載
の「温度領域4.2−300°KにおけるCdxHg1-x
Tc磁気抵抗器の研究」と題する論文に、バルク材料を
用いての観測が報告されているが、当時、これに関して
は、適切な評価も説明もなされなかった。上記ソリンら
(Solin et al.)は、増強されたGMRの
技術的重要性を認識し、現象論理的モデルを用いてこれ
を説明したが、この増強の基礎となる物理的理解は充分
に得られていないとしている。
抵抗の理論について種々の検討がなされてきたが、簡易
な製造工程により得られ、充分に大きい磁気抵抗を示す
磁気抵抗センサは、必ずしも実現されていないのが現状
である。本発明の課題は、このような磁気抵抗センサを
提供することにある。
Te(x〜0.1)のような高キャリア移動度を有する
半導体材料中に、この半導体材料よりも導電性の高い不
均質体が存在すると、低磁界GMRの増強や促進が観測
されることを示すものである。
ら(Solin et al.)によって、磁気輸送測
定実験の詳細と共に、詳しく述べられている。この情報
を要約すると、次の通りである。すなわち、熱処理を受
けていないアンドープ試料は、約4μmのアンドープC
dTeバッファ層、続いて厚さd=4.6μmのHg
1-xCdxTe層を用いて、通常の分子線エピタキシー
(MBE)法で、単結晶Si基板上に形成された。両層
は、走査電子顕微鏡測定により評価すると、300〜2
200Åの範囲の大きさの微視的不均質を含む。
ル・バー形が用いられた。4Kまでオーミック接触であ
る電気的接続は、図1の挿入図の6プローブ・ホール・
バー形で示されるように、リソグラフィーによって限定
された部分に、純粋なInを蒸着させることによって形
成される。銅線は、導電性塗料を用い、Inパッドに付
着された。接続やリードの抵抗の影響を完全に排除する
ために、抵抗測定は全て、4プローブ配列で行なわれ
た。磁界は膜に垂直に印加された。
が提供され、またさらに、その増強効果を利用して改良
したGMRセンサも提供される。
度を有する半導体材料からなる基材と、該基材に結合し
て設けられ該基材中に電流経路を与える複数の電極と、
前記基材に配設された導電部材とを備え、前記導電部材
は、外部磁界印加時に前記電極間を流れる電流を制限す
ることにより磁気抵抗を増大せしめる機能を有すること
を特徴とする磁気抵抗センサが提供される。
有する半導体材料からなる基材と、該基材に埋設された
内電極と、該内電極に対し同心円状に配置され前記基材
に埋設された前記基材中に電流経路を与える外電極と、
前記内電極と前記外電極の間に同心状に配置され、切り
欠き部の設けられた円環形状を有する導電部材とを備
え、該導電部材は、外部磁界印加時に前記内電極と前記
外電極との間を流れる電流を制限することにより磁気抵
抗を増大せしめる機能を有することを特徴とするコルビ
ノ・ディスク・センサが提供される。
有する半導体材料からなる棒状部材と、該棒状部材の両
端に配置され、該棒状部材中に電流経路を与える電極
と、前記棒状部材に埋設された導電部材とを備え、前記
導電部材は、外部磁界印加時に前記電極間を流れる電流
を制限することにより磁気抵抗を増大せしめる機能を有
することを特徴とするバー型磁気抵抗センサが提供され
る。
有する半導体材料からなる薄膜と、該薄膜に結合して設
けられ該薄膜中に電流経路を与える複数の電極と、前記
薄膜に配設された導電部材とを備え、前記導電部材は、
外部磁界印加時に前記電極間を流れる電流を制限するこ
とにより磁気抵抗を増大せしめる機能を有することを特
徴とする薄膜センサが提供される。
移動度を有する半導体材料からなる基材等に、導電部材
が配設された構造を有している。このため半導体材料中
の電流経路の途中に導電部材が介在する構造を有してい
る。この導電部材は均質体中に存在する不均質体として
の役割を果たし、外部磁界印加時に電流は導電部材を迂
回するように流れる。すなわち、外部磁界印加時におい
て、電流の流れに対し障壁として機能とする。この結
果、従来技術に比し著しく大きい巨大磁気抵抗が実現さ
れる。
た不均質体を有する半導体の低磁界磁気抵抗(MR)
は、その均質材料の磁気抵抗に比べて著しく増強され
る。この磁気抵抗の増強は、磁界誘起の幾何学的形態効
果に起因するものである。すなわち、電流が不均質体を
迂回するように流れるような幾何学的形態となっている
ことにより、磁気抵抗の増強が起こるのである。
コルビノ・ディスク・センサの内電極と、同心円状の外
電極の間に、導電部材の閉じていない環が、内電極に関
して同心円上に配置される。この環に、小さな間隙、あ
るいは、切り欠き部を残すことにより、センサの磁気抵
抗を種々の値に変えることができる。センサの磁気抵抗
は、上記切り欠き部のサイズや、その環の形態に応じて
種々の値をとるからである。これにより検出特性が増強
されたコルビノ・ディスク・センサが得られる。
に設置したり、あるいは中に埋設することにより、ホー
ル・バーの磁気抵抗と同様の増強効果をもたらす。
装置の磁気記録媒体に記録された磁気パターンを磁気抵
抗効果を利用して検知するセンサとして用いられる。
半導体材料としては、たとえば、Hg1-xCdxTe(0
<x<1)、InSb、InAsおよびInAs1-yS
by(0<y<1)からなる群より選ばれるいずれかの
材料が好ましく用いられる。このうち、InAs1-yS
by(0.5<y<0.7)が好ましく用いられる。こ
の場合、yが約0.6であればさらに好ましい。また、
Hg1-xCdxTe(0<x<1)も好ましく用いられ
る。この場合、xが0.01以上0.2以下、特に約
0.1であればさらに好ましい。このような材料を選択
することにより、充分に大きな磁気抵抗を示すセンサが
得られる。
ることが望ましい。これにより、より一層大きな磁気抵
抗を実現することが可能となる。
たとえばInまたはCr−Au合金を挙げることができ
る。
磁界の一成分が、薄膜表面の平面上内にある構成とする
ことが好ましい。また、半導体材料の表面上に、上記導
電部材が配置されていることが好ましい。このようにす
ることによって、磁気抵抗を充分に増強することができ
る。
る。
ブ配列6プローブ・ホール・バーを用い測定された、H
g1-xCdxTe、x〜0.1の、室温における抵抗差の
グラフが示されている。実線が実測値からの結果であ
る。破線はμeμhH2を示し、破点線は30(μeμ
hH2)から計算されたものである。ただし、μeは電子
移動度、μhは正孔移動度、Hは磁界を表わす。点線は
α=0.4、s(0)=1.3として、下記の式(6)
と式(7)を用い実験データに適合するよう、最小自乗
法で求めたものである。抵抗差、Δρxx(H)=ρ
xx(H)−ρxx(0)、は低磁界および高磁界で、磁界
に対し二次の依存性をもつが、曲率d2ρ/dH2は、高
磁界でより、低磁界で大きい値をとる。その遷移は、約
H=0.4テスラで起こる。
定されたホール係数の室温磁界依存性を示す。ホール係
数は磁界が大きくなるに伴い、著しい増加をみせ、高磁
界領域では飽和状態となる。この抵抗差も、ホール・デ
ータも、均質半導体の場合と比べると変則的である。均
質半導体では、抵抗差は磁界に対し2次で増加するが、
曲率は全磁界にわたり一定で、またホール係数は磁界に
対し単調減少する。以下の説明では、この変則性を、上
記ウォルフら(Wolfe et al.)が以前発展
させたモデルに修正を加えながら、検討する。ウォルフ
らは、上記へリング(Herring)によって初めて
提唱された概念から出発し、磁界が大きくなるに従い、
電流は半導体内の伝導不均質体を迂回することを示して
いる。
ャリアの薄膜材料をxy平面にとり、印加磁界がこの平
面に直交する(z方向で)とすると、磁気伝導率テンソ
ル成分は σxx(β)=σyy(β)=σ0/[1+β2]、 σzz(β)=σ0、 σxy(β)=−σ0β/[1+β2]=−σyx(β) となる。ここでβ=μHで、その他の成分は全て0であ
る。電界は、この膜の、著しく伝導性の高い不均質体の
等ポテンシャル表面に、直交する傾向がある。表面の任
意の一点での電界を
傾向を示す。この電流の迂回する量(逸脱)は、低磁界
ではH2に従って変化する。一方、十分に高い磁界で
は、基材材料を通ってのみ電流が流れ、すべての電流が
逸脱することとなる。このため、ホール係数は、高磁界
の極限では、1/neに飽和する。ここで、nはキャリ
ア密度、eはキャリア電荷である。磁界依存の電流の逸
脱もまた磁気抵抗測定値に影響を与える。この逸脱は、
電流が流れる断面積の減少をもたらすため、抵抗率自体
が磁界に依存しなくとも、その材料の抵抗の増加をもた
らすこととなる。この幾何学的形態効果は、不均質体の
存在しないところで、測定GMRを予想を上回るところ
まで促進する。
l.)は図3に示されるように、伝導率σ、移動度μの
均質半導体基材の中央に、伝導率σ0、移動度μ0の導
体による円形の巨視的不均質体が配置されているファン
・デル・パオ(van derpaw)・ディスクにつ
いて検討した。この配置において、半導体材料の抵抗率
は磁界に依存しないと仮定すると、純粋に幾何学的形態
効果であり磁界依存性を有する電流の逸脱が、磁界依存
性を有する見かけの抵抗を生じさせる。
aは均質半導体基材の半径であり、また
[1+β2]、s=σ0/σ、m=μ0/μ、β=μH0で
ある。
l.)のモデルでは、ρapp磁界依存性は式(1)のG
(γ、α)項に含まれ、不均質体、基材の両方におい
て、伝導率と移動度が磁界に依存しないと仮定したの
で、G(γ、α)項の磁界依存性の起因は全て幾何学的
形態上のものとなっている。(ほぼ)ゼロ・バンドギャ
ップ状態のMCTでは、実際、室温ぐらいの温度では、
移動度はほとんど磁界に依存しない。しかしながら、伝
導率は磁界に依存し、真性半導体特有の標準式で表され
る。すなわち、
基材(不均質体)での電子移動度と正孔移動度である。
故に、伝導率比sも磁界に依存し
材中での濃度と等しいと仮定すると、s(0)=m
(0)=μ0e/μe0さらにここで、モデルにデータを合
わせるにあたり、遥かに高い磁界でs(H)→1となる
事実を説明するため、各磁界でm(H)=s(H)と置
く。これらの仮定と式(3)〜(5)を式(1)と式
(2)に代入すると、結果は、
(0)を調節パラメータとして、式(5)が用いられ
た。結果は、図1の点線で示され、低磁界と高磁界の遷
移領域を除けば実験データと十分合致している。次に遷
移領域での逸脱を論じる。遷移はβ=1のとき起こる。
遷移磁界0.4Tに対応する移動度は2.2×104cm
2/Vsで、上のデータ適合から得た値2.8×104c
m2/Vsと良く合致する。このデータ適合はαやs
(0)の正確な値には比較的影響されにくい。ここでα
は0.2−0.5、s(0)は2.7−1.7の範囲に
あり、αの低い値がs(0)の高い値に相関する。図1
と式(1)−(5)から明らかなように、抵抗差に対す
る幾何学的形態状態の寄与は低磁界ではHに関して二
次、高磁界では飽和する。従って、純粋に均質材料の場
合は低磁界でも高磁界でもμeμbH2で与えられるGM
Rは、図1の破線が示すように、低磁界抵抗差と共に、
著しく増大する。
の元来のモデルは、図3に示すような巨視的な円形の不
均質体のために形成されたものであるが、このモデル
は、微視的な導体不均質体を有する半導体の、変則的に
増強された移動度の説明に、以前も用いられたことがあ
る。例えばシー・エム・ウォルフら(C.M.Wolf
eet al.)がアプライド・フィジックス・レター
ズ、第18巻、第5号、205−208頁、1971年
(Applied Physics Letters,
Vol.18, No.5, pps.205−20
8, 1971)記載の「半導体の変則的高移動度」と
題する論文がそれである。このようなモデルを正当化す
る根拠は、微視的な不均質体は円形ディスクの組み合わ
せで十分モデル化できること、基材材料内のそのような
ディスクの空間的配置は、抵抗差やGMRでの重ね合わ
せのスケール因子として自ずと明らかになることなどで
ある。しかし、低磁界では、各微視的ディスクの寄与は
磁界に関して二次なので、抵抗差の非二次磁界依存性の
影響を受けるのは、遷移領域に限られる。図1に示され
るような抵抗差における計算値と実測値の違いは、配置
が誘起した磁界依存性の変更によるものと考えられる。
説明する。ウォルフら(Wolfeet al.)の研
究の要点は、半導体材料での変則的に大きい測定移動度
を説明することにあった。彼らは、不均質体の存在を示
す幾つかの輸送データの兆候を認定したが、最も決定的
なのは、ホール係数の磁界移動度測定である。特に、そ
のような不均質体の移動度測定に対する影響が大きいと
き、規格化したホール係数RH/[μ/σ]は、低磁界
では磁界が大きくなるにつれ、単調増加し、遂には高磁
界で1に飽和する。これに対し、均質材料のホール係数
の磁界依存性は、ホール因数が大多数の材料で1より大
きいため、磁界が増加すると単調減少を示し、その後、
高磁界で1に飽和する。この「正常」な振舞いは、ホー
ル因数の磁界依存性を単に反映しているものである。図
2に示されたHg1-xCdxTe、x〜0.1のホール・
データは、ウォルフ・モデル(Wolfe mode
l)によれば、伝導性の不均質体の存在を示唆する変則
的な振舞いを見せている。高磁界で、ホール係数が少し
減少するが、これはソリンらによって説明されているよ
うに、Hg1-xCdxTe、 0<x<1のRHに対する
正孔の寄与が始まる結果である。以上より、Hg1-xC
dxTe、0<x<1で自己バイアス・ゼロ磁界オフセ
ットの原因である不均質体と同じ不均質体が、図1のG
MR促進や図2の変則的ホール効果を引き起こしている
ことが明らかとなった。
説明する。
る。さらに、例えば、成膜時にInSbにInを過剰に
ドーピングするなど、高移動度半導体の中に微視的導体
領域を故意に導入することにより、GMRを格段と増強
することができる。しかしながら、所望の結果を達成す
るように微視的不均質体を設計、制御することは困難で
ある。むしろ、適当なサイズ、形状の導体領域を薄膜半
導体の電流経路に埋設するなど、伝導経路の中に巨視的
不均質体を組み入れる方法の方が、アプローチとして魅
力的である。本発明はこのような考え方に基づいてなさ
れたものである。
場合、電流が磁界に誘起され不均質体と基材間の垂直界
面の周りを迂回し(印加磁界Hの方向に直交する、基材
材料と不均質体間の界面に、さらに直交する方向に)基
材材料の真性GMRを増強するが、この増強は膜厚には
依らない。一方、適切なパターニングを施した金属上被
層膜にポスト拡散を用いて得られる、部分的に埋設した
導電部材の場合、増強効果は、膜厚が薄くなるにつれ拡
大し、また印加磁界が傾き不均質体と基材間の水平界面
部分に平行な成分を磁界がもつとき、さらに拡大する。
導入すれば、簡便かつ低コストで、高密度磁気記録に用
いられる半導体読み出しヘッドなどの磁気抵抗フィール
ド・センサの感度を上昇させることができる。このよう
な例を図4(a)および図4(b)に示す。図4(a)
は、コルビノ・ディスク磁気抵抗センサの平面図であ
り、半径bの内伝導電極1と半径aの外電極42が、高
キャリア移動度をもつ均質半導体材料43、望ましくは
Hg1-xCdxTe、x〜0.1の層に埋設されている。
テルル化水銀カドミウムは低伝導率材料ではないが、一
般には、低伝導率を有する半導体材料が好ましい。本発
明の教示によって、巨視的不均質体が、角度幅Δθの切
り欠き部45を有する、半径r、厚さtの導体分離間の
形態で、コルビノ・ディスクに含まれている。この切り
欠き部を有する環を含むことによって、磁気抵抗は大幅
に増強される。
環44は、内電極41、外電極42とともに半導体材料
43に埋設されている。電極間に電圧が印加され、セン
サ平面に直交する外部磁界の下、電流が内電極41から
外部電極42へ流れるとき、環44は、外部磁界ゼロの
ときには電流を増強させるが、有限磁界においては、切
り欠き部45を除いて、電流に対する障壁となる。つま
り、内電極41から外電極42への経路は、環44の切
り欠き部45を通過するもののみに収れんし、センサの
磁気抵抗は増強する。その結果、高感度化したGMRセ
ンサが得られるのである。半導体材料43は、Hg1-x
CdxTe、InSb、InAs、InAs1-ySby、
y〜0.6などを含む材料の群より選ばれる。図4
(a)のセンサの磁気抵抗は、相対的寸法t/(a−
b)と切り欠き部に依存する。tやa、bの実寸は、数
百オングストロームからミリメータの広い範囲の値とす
ることができるが、環の切り欠き部に対する中心角は通
常1°から10°の間である。
率を有する半導体材料による幅wの棒状部材50の平面
図で、電極51、52は棒状部材50の両端に配置され
ている。図5(b)が示すように、棒状部材内の適当な
場所に、半径r、その他は適切な寸法に形成された導体
ディスク53を埋設することで、増強されたGMRが作
製される。図に示した導体ディスク53は、棒状部材5
0とほぼ同じ幅を有しており、厚さtの半導体材料の中
に埋設され、その深さはzとなっている。磁界が印加さ
れているとき、一つの電極から他の電極に流れる電流
は、導体ディスク53を迂回するこため、電流経路の抵
抗にあう。電流は、導体ディスク53の外周面と棒状部
材50の外側面の間の狭い領域に制限される。磁気抵抗
は相対的寸法r/wとz/tに依存するが、この寸法
は、数百オングストロームからミリメータの広い範囲の
値が可能である。
周りを、磁界の誘起によって、電流が迂回することは、
その材料の真性GMRの増強に繋がる。この増強は、ま
た、図6の側面図が示すように、膜上に導体を被せ、図
示されるように印加磁界を角度Ω傾けることによって
も、与えられる。本実施形態では、印加磁界Hの成分が
すべて薄膜61の表面と直交する方向にあるのではな
く、その一成分が上表面に沿って存在する。前者の場
合、増強は膜の厚さに依存し、膜が薄いほど、大きくな
る。図6は、高キャリア移動度と、望ましくは低伝導率
を有する薄膜61の側面図で、電子経路を制限し薄膜材
料内の電子の流れを制御するために、導体62が薄膜上
に配置されている。膜が巨大磁気抵抗センサの一部であ
るとき、この方法は特に有用である。斜めに磁界が印加
される場合には、電流密度は、表面の導体62から排除
されやすく、それにより薄膜61を通しての電子の流れ
が制限される。上被層に使うことのできる幾何学的配置
は数多く、その横方向の寸法には数百オングストローム
からミリメータまで、広範囲の値が可能である。上被層
の厚さに関しては、層が多孔質ではなく、数百オングス
トローム以上の厚みがあれば、磁気抵抗増強はこれに依
存しない。このような金属のパターニングは、高密度磁
気記録に用いられる半導体読み出しヘッドなどの磁気抵
抗フィールド・センサの感度を上昇させる簡単で、コス
ト面で効果的な方法である。
移動度半導体材料より高い伝導率を有する材料であれば
良い。導電部材の例には、伝導率を増すために組成やド
ーピング材料、あるいは、ドーピング・エージェントの
濃度など、その材料パラメータを幾分修正した半導体材
料自体も含む。もしくは、半導体材料を成長させる際形
成された、より金属的な沈殿物でも良いし、金属でも良
い。金属性の導体の場合、半導体材料と良好な(オーミ
ック)電気接続をなす金属、例えば、業界では標準的に
使われているが、HgCdTeに対しては、インディウ
ムやCr−Auなどが好ましい。最後の例が好ましい実
施例である。
伝導性不均質体は、Hg1-xCdxTe、0<x<1のよ
うな高移動度半導体のGMRを著しく増強する。この性
質は、MRセンサ、特に高密度磁気記録の読み出しヘッ
ドとして使われるGMRセンサに応用することができ
る。センサの実例としては、コルビノ・ディスク・セン
サ、バー型センサ、薄膜センサを含む。
高キャリア移動度を有する半導体材料からなる基材等
に、導電部材が配設された構造を有している。このた
め、従来技術に比し、著しく大きい巨大磁気抵抗を示
す。
バーで測定したHg1-xCdxTe、x〜0.1の室温に
おける抵抗差のグラフである。
係数RH/[μ/σ]の室温における磁界依存性を示す
グラフである。
れ、伝導率σ0、移動度μ0を有する円柱状の不均質体の
略図である。
気抵抗センサの平面図であり、図4(b)は、図4
(a)のコルビノ・ディスク型磁気抵抗センサの断面側
面図である。
の平面図であり、図5(b)は、図5(a)のバー型磁
気抵抗センサの断面側面図である。
Claims (31)
- 【請求項1】 高キャリア移動度を有する半導体材料か
らなる基材と、該基材に結合して設けられ該基材中に電
流経路を与える複数の電極と、前記基材に配設された導
電部材とを備え、 前記導電部材には、外部より直接電位の印加がなされて
いなく、 該導電部材は、少なくとも外部磁界を印加しない状態で
は、前記基材中の電流経路と部分的に交差する位置に配
設され、該導電部材内を経る電流経路を有し、 外部磁界を印加しない状態における該基材中の電流経路
と平行な前記基材の表面に対して、前記表面に垂直方向
の成分を有する外部磁界を印加する際、前記導電部材
は、該外部磁界印加時に該導電部材内を経る電流経路に
由来する電流量を減少させ、前記電極間を流れる電流を
制限することにより磁気抵抗を増大せしめる機能を有す
ることを特徴とする磁気抵抗センサ。 - 【請求項2】 前記半導体材料が、Hg1-xCdxTe
(0<x<1)、InSb、InAsおよびInAs
1-ySby(0<y<1)からなる群より選ばれるいずれ
かの材料である請求項1に記載の磁気抵抗センサ。 - 【請求項3】 前記半導体材料が、InAs1-ySb
y(0.5<y<0.7)である請求項1に記載の磁気
抵抗センサ。 - 【請求項4】 前記半導体材料が、Hg1-xCdxTe
(0<x<1)である請求項1に記載の磁気抵抗セン
サ。 - 【請求項5】 xが0.01以上0.2以下である請求
項4に記載の磁気抵抗センサ。 - 【請求項6】 前記導電部材がInまたはCr−Au合
金からなる請求項1乃至5のいずれか一項に記載の磁気
抵抗センサ。 - 【請求項7】 前記半導体材料が低伝導率材料である請
求項1乃至6のいずれか一項に記載の磁気抵抗センサ。 - 【請求項8】 前記基材中に電流経路を与える複数の電
極として、円形状の内電極と、該内電極に対し同心円状
に配置された円環形状の外電極とを備え、 前記導電部材は、切り欠き部の設けられた円環形状を有
し、かつ、前記内電極と前記外電極の間に、該内電極に
対し同心円状に配置されていることを特徴とする請求項
1乃至7のいずれか一項に記載の磁気抵抗センサ。 - 【請求項9】 高キャリア移動度を有する半導体材料か
らなる基材と、該基材に埋設された内電極と、該内電極
に対し同心円状に配置され前記基材に埋設された前記基
材中に電流経路を与える外電極と、前記内電極と前記外
電極の間に同心状に配置され、切り欠き部の設けられた
円環形状を有する導電部材とを備え、前記導電部材に
は、外部より直接電位の印加がなされていなく、 該導電部材は、少なくとも外部磁界を印加しない状態で
は、前記基材中の電流経路と部分的に交差する位置に配
置され、該導電部材内を経る電流経路を有し、 外部磁界を印加しない状態における該基材中の電流経路
と平行な前記基材の表面に対して、前記表面に垂直方向
の成分を有する外部磁界を印加する際、 該導電部材は、該外部磁界印加時に該導電部材内を経る
電流経路に由来する電流量を減少させ、前記内電極と前
記外電極との間を流れる電流を制限することにより磁気
抵抗を増大せしめる機能を有することを特徴とするコル
ビノ・ディスク・センサ。 - 【請求項10】 前記半導体材料が、Hg1-xCdxTe
(0<x<1)、InSb、InAsおよびInAs
1-ySby(0<y<1)からなる群より選ばれるいずれ
かの材料である請求項9に記載のコルビノ・ディスク・
センサ。 - 【請求項11】 前記半導体材料が、InAs1-ySby
(0.5<y<0.7)である請求項9に記載のコルビ
ノ・ディスク・センサ。 - 【請求項12】 前記半導体材料が、Hg1-xCdxTe
(0<x<1)である請求項9に記載のコルビノ・ディ
スク・センサ。 - 【請求項13】 xが0.01以上0.2以下である請
求項12に記載のコルビノ・ディスク・センサ。 - 【請求項14】 前記導電部材がInまたはCr−Au
合金からなる請求項9乃至13のいずれか一項に記載の
コルビノ・ディスク・センサ。 - 【請求項15】 前記半導体材料が低伝導率材料である
請求項9乃至14のいずれか一項に記載のコルビノ・デ
ィスク・センサ。 - 【請求項16】 高キャリア移動度を有する半導体材料
からなる棒状部材と、該棒状部材の両端に配置され、該
棒状部材中に電流経路を与える電極と、前記棒状部材に
埋設された導電部材とを備え、 前記導電部材には、外部より直接電位の印加がなされて
いなく、 該導電部材は、少なくとも外部磁界を印加しない状態で
は、前記棒状部材中の電流経路と部分的に交差する位置
に埋設され、該導電部材内を経る電流経路を有し、 外部磁界を印加しない状態における該棒状部材中の電流
経路と平行な前記棒状部材の表面に対して、前記表面に
垂直方向の成分を有する外部磁界を印加する際、前記導
電部材は、該外部磁界印加時に該導電部材内を経る電流
経路に由来する電流量を減少させ、前記電極間を流れる
電流を制限することにより磁気抵抗を増大せしめる機能
を有することを特徴とするバー型磁気抵抗センサ。 - 【請求項17】 前記半導体材料が、Hg1-xCdxTe
(0<x<1)、InSb、InAsおよびInAs
1-ySby(0<y<1)からなる群より選ばれるいずれ
かの材料である請求項16に記載のバー型磁気抵抗セン
サ。 - 【請求項18】 前記半導体材料が、InAs1-ySby
(0.5<y<0.7)である請求項16に記載のバー
型磁気抵抗センサ。 - 【請求項19】 前記半導体材料が、Hg1-xCdxTe
(0<x<1)である請求項16に記載のバー型磁気抵
抗センサ。 - 【請求項20】 xが0.01以上0.2以下である請
求項19に記載のバー型磁気抵抗センサ。 - 【請求項21】 前記導電部材がInまたはCr−Au
合金からなる請求項16乃至20のいずれか一項に記載
のバー型磁気抵抗センサ。 - 【請求項22】 前記半導体材料が低伝導率材料である
請求項16乃至21のいずれか一項に記載のバー型磁気
抵抗センサ。 - 【請求項23】 高キャリア移動度を有する半導体材料
からなる薄膜と、該薄膜に結合して設けられ該薄膜中に
電流経路を与える複数の電極と、前記薄膜に配設された
導電部材とを備え、 前記導電部材には、外部より直接電位の印加がなされて
いなく、 該導電部材は、少なくとも外部磁界を印加しない状態で
は、前記薄膜中の電流経路と部分的に交差する位置に配
置され、該導電部材内を経る電流経路を有し、 外部磁界を印加しない状態における該薄膜中の電流経路
と平行な前記薄膜の表面に対して、前記表面に垂直方向
の成分を有する外部磁界を印加する際、 前記導電部材は、該外部磁界印加時に該導電部材内を経
る電流経路に由来する電流量を減少させ、前記電極間を
流れる電流を制限することにより磁気抵抗を増大せしめ
る機能を有することを特徴とする薄膜センサ。 - 【請求項24】 前記半導体材料が、Hg1-xCdxTe
(0<x<1)、InSb、InAsおよびInAs
1-ySby(0<y<1)からなる群より選ばれるいずれ
かの材料である請求項23に記載の薄膜センサ。 - 【請求項25】 前記半導体材料が、InAs1-ySby
(0.5<y<0.7)である請求項23に記載の薄膜
センサ。 - 【請求項26】 前記半導体材料が、Hg1-xCdxTe
(0<x<1)である請求項23に記載の薄膜センサ。 - 【請求項27】 xが0.01以上0.2以下である請
求項26に記載の薄膜センサ。 - 【請求項28】 前記導電部材がInまたはCr−Au
合金からなる請求項23乃至27のいずれか一項に記載
の薄膜センサ。 - 【請求項29】 外部印加磁界の一成分が、前記薄膜表
面の平面内にある請求項23乃至28のいずれか一項に
記載の薄膜センサ。 - 【請求項30】 前記導電部材が前記薄膜の表面に配置
された請求項23乃至29のいずれか一項に記載の薄膜
センサ。 - 【請求項31】 前記半導体材料が低伝導率材料である
請求項23乃至30のいずれか一項に記載の薄膜セン
サ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/997264 | 1997-12-23 | ||
US08/997,264 US5965283A (en) | 1997-12-23 | 1997-12-23 | GMR enhancement in inhomogeneous semiconductors for use in magnetoresistance sensors |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11250422A JPH11250422A (ja) | 1999-09-17 |
JP3362774B2 true JP3362774B2 (ja) | 2003-01-07 |
Family
ID=25543811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35163898A Expired - Fee Related JP3362774B2 (ja) | 1997-12-23 | 1998-12-10 | 磁気抵抗センサ |
Country Status (2)
Country | Link |
---|---|
US (1) | US5965283A (ja) |
JP (1) | JP3362774B2 (ja) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6707122B1 (en) * | 1999-11-30 | 2004-03-16 | Nec Laboratories America, Inc. | Extraordinary magnetoresistance at room temperature in inhomogeneous narrow-gap semiconductors |
US6353317B1 (en) * | 2000-01-19 | 2002-03-05 | Imperial College Of Science, Technology And Medicine | Mesoscopic non-magnetic semiconductor magnetoresistive sensors fabricated with island lithography |
US6937967B2 (en) * | 2001-02-28 | 2005-08-30 | Tdk Corporation | Method and system for finite element modeling and simulation of enhanced magnetoresistance in thin film semiconductors with metallic inclusions |
US6714374B1 (en) * | 2000-08-31 | 2004-03-30 | Nec Corporation | Magnetoresistive sensor, magnetoresistive head, and magnetic recording/reproducing apparatus |
US20020171962A1 (en) * | 2001-05-15 | 2002-11-21 | Seagate Technology Llc | Semiconductor/metal read sensor for magnetic recording |
US6930862B2 (en) * | 2002-01-07 | 2005-08-16 | Hitachi Global Storage Technologies Netherlands B.V. | Shielded extraordinary magnetoresistance head |
US20040218309A1 (en) * | 2003-04-29 | 2004-11-04 | Seagate Technology Llc | Magnetic read head sensors having geometrical magnetoresistance and disc drives including the sensors |
US7027321B2 (en) * | 2004-01-10 | 2006-04-11 | Honeywell International Inc. | Tunneling anisotropic magnetoresistive device and method of operation |
US20050190507A1 (en) * | 2004-03-01 | 2005-09-01 | Peter Littlewood | Magnetic field sensor |
US7120048B2 (en) * | 2004-06-21 | 2006-10-10 | Honeywell International Inc. | Nonvolatile memory vertical ring bit and write-read structure |
US7167346B2 (en) * | 2004-06-30 | 2007-01-23 | Hitachi Global Storage Technologies Netherlands B.V. | Extraordinary magnetoresistance sensor with perpendicular magnetic biasing by an antiferromagnetic/ferromagnetic exchange-coupled structure |
US7203036B2 (en) * | 2004-07-30 | 2007-04-10 | Hitachi Global Storage Technologies Netherlands B.V. | Planar extraordinary magnetoresistance sensor |
US7170722B2 (en) * | 2004-07-30 | 2007-01-30 | Hitachi Global Storage Technologies Netherlands B.V. | Extraordinary magnetoresistance sensor with perpendicular magnetic biasing by a ferromagnetic multilayer |
DE602005012724D1 (de) * | 2004-12-01 | 2009-03-26 | Nxp Bv | Schnittstelle und verfahren zur übertragung von bits an einen zweidraht-bus, der ein lin-protokoll anwendet |
US7738217B2 (en) * | 2006-02-13 | 2010-06-15 | Hitachi Global Storage Technologies Netherlands B.V. | EMR magnetic head having a magnetic flux guide and a body formed at a tail end of a slider |
JP4837410B2 (ja) * | 2006-03-22 | 2011-12-14 | 富士フイルム株式会社 | 標的化合物の検出方法 |
US7466521B2 (en) * | 2006-04-25 | 2008-12-16 | Hitachi Global Storage Technologies Netherlands B.V. | EMR structure with bias control and enhanced linearity of signal |
CA2659674A1 (en) | 2006-08-01 | 2008-09-25 | Washington University | Multifunctional nanoscopy for imaging cells |
US8059373B2 (en) * | 2006-10-16 | 2011-11-15 | Hitachi Global Storage Technologies Netherlands, B.V. | EMR sensor and transistor formed on the same substrate |
KR20120125485A (ko) * | 2010-01-08 | 2012-11-15 | 워싱톤 유니버시티 | 이상 광도전성(eoc) 효과에 기반한 고해상도 광자 검출 방법 및 장치 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2798122B2 (ja) * | 1995-03-02 | 1998-09-17 | 日本電気株式会社 | コルビーノ構造を用いた非磁性磁気抵抗効果型再生ヘッド |
US5622874A (en) * | 1995-12-14 | 1997-04-22 | Nec Research Institute, Inc. | Process for forming a magnetoresistive sensor for a read/write head |
US5696655A (en) * | 1996-07-30 | 1997-12-09 | Nec Research Institute, Inc. | Self-biasing non-magnetic giant magnetoresistance |
-
1997
- 1997-12-23 US US08/997,264 patent/US5965283A/en not_active Expired - Lifetime
-
1998
- 1998-12-10 JP JP35163898A patent/JP3362774B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US5965283A (en) | 1999-10-12 |
JPH11250422A (ja) | 1999-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3362774B2 (ja) | 磁気抵抗センサ | |
US6760201B2 (en) | Magnetic tunnel element and its manufacturing method, thin-film magnetic head, magnetic memory and magnetic sensor | |
US6381171B1 (en) | Magnetic element, magnetic read head, magnetic storage device, magnetic memory device | |
US6560077B2 (en) | CPP spin-valve device | |
US7453672B2 (en) | Spin valve magnetoresistive device with conductive-magnetic material bridges in a dielectric or semiconducting layer alternatively of magnetic material | |
JP3694233B2 (ja) | 不均一ナローギャップ半導体の室温における極超巨大磁気抵抗 | |
KR100295288B1 (ko) | 실드된자기터널접합부자기저항판독헤드 | |
US7355822B2 (en) | Superparamagnetic field sensing device | |
US8295006B2 (en) | Magnetic sensor, magnetic head, and magnetic memory by using spin Hall devices | |
JP3368224B2 (ja) | 不完全オーバラップ磁気ramセル | |
US6480365B1 (en) | Spin valve transistor using a magnetic tunnel junction | |
US6462541B1 (en) | Uniform sense condition magnetic field sensor using differential magnetoresistance | |
US20090097170A1 (en) | Ferromagnetic tunnel junction element, magnetic recording device and magnetic memory device | |
JPH07210832A (ja) | 多層磁気抵抗センサ | |
KR19990072763A (ko) | 회전의존전도장치 | |
JP2002150517A (ja) | スピン・バルブ(sv)磁気抵抗センサ、磁気読取り/書込みヘッドおよびディスク・ドライブ・システム | |
US6861718B2 (en) | Spin valve transistor, magnetic reproducing head and magnetic information storage system | |
JP3307593B2 (ja) | 自己バイアス非磁性巨大磁気抵抗センサ | |
JP2004220692A (ja) | 3端子型磁気ヘッドとそれを搭載した磁気記録装置 | |
JPH11238924A (ja) | スピン依存伝導素子とそれを用いた電子部品および磁気部品 | |
KR100388832B1 (ko) | 자기저항 효과 헤드 및 그의 제조 방법 | |
US5696655A (en) | Self-biasing non-magnetic giant magnetoresistance | |
CN100367352C (zh) | 磁阻磁头以及磁记录-复制装置 | |
JP7207671B2 (ja) | 異常ホール効果を利用する磁気センサ、ホールセンサおよびホールセンサの製造方法 | |
US8154282B2 (en) | Magnetic field-sensitive component comprising a diluted magnetic semiconductor, devices incorporating same and use method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071025 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |