[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3361012B2 - Polarized light source device and liquid crystal display device - Google Patents

Polarized light source device and liquid crystal display device

Info

Publication number
JP3361012B2
JP3361012B2 JP13422596A JP13422596A JP3361012B2 JP 3361012 B2 JP3361012 B2 JP 3361012B2 JP 13422596 A JP13422596 A JP 13422596A JP 13422596 A JP13422596 A JP 13422596A JP 3361012 B2 JP3361012 B2 JP 3361012B2
Authority
JP
Japan
Prior art keywords
light
polarized light
layer
incident
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13422596A
Other languages
Japanese (ja)
Other versions
JPH09297222A (en
Inventor
清司 梅本
裕之 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP13422596A priority Critical patent/JP3361012B2/en
Publication of JPH09297222A publication Critical patent/JPH09297222A/en
Application granted granted Critical
Publication of JP3361012B2 publication Critical patent/JP3361012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、明暗ムラを示す導光板と
液晶セル間でのモアレの発生を防止した光利用効率に優
れる偏光光源装置、及びそれを利用した明るさに優れて
良視認性の液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarized light source device which is excellent in light utilization efficiency and which prevents generation of moire between a light guide plate showing uneven brightness and a liquid crystal cell, and good visibility which is excellent in brightness utilizing the same. Liquid crystal display device.

【0002】[0002]

【背景技術】従来、側面より光を入射させて上面より出
射させるようにしたサイドライト型の導光板の下面に反
射層を密着付設し、出射面にコレステリック液晶相から
なる円偏光分離層を設けて、その円偏光分離層を介し入
射光を左右の円偏光からなる透過光と反射光に分離し、
その反射光を下面の反射層を介し反射させて出射面より
再出射させるようにした照明システムが提案されていた
(特開平3−45906号公報、特開平6−32433
3号公報、特開平7−36032号公報)。
[Background Art] Conventionally, a reflective layer is closely attached to the lower surface of a sidelight type light guide plate that allows light to enter from the side surface and to exit from the upper surface, and a circularly polarized light separating layer made of a cholesteric liquid crystal phase is provided on the exit surface. Through the circularly polarized light separation layer, the incident light is separated into left and right circularly polarized transmitted light and reflected light,
There has been proposed an illumination system in which the reflected light is reflected through a reflection layer on the lower surface and re-emitted from the emission surface (Japanese Patent Laid-Open No. 3-45906 and Japanese Patent Laid-Open No. 32-3243).
3 and JP-A-7-36032).

【0003】前記の照明システムは、非偏光の通例光で
は偏光板を透過する際に導光板出射光の55%程度が吸
収されて有効利用できる光に乏しいことから、光を偏光
として偏光板に供給できるようして偏光板による吸収を
防止し、それにより光利用効率の向上をはかって液晶表
示装置等の明るさを向上させることを目的としたもので
ある。しかしながら、かかる照明システムのいずれも5
0%を超える光利用効率を示すはずのものが期待値ほど
の数値を示さないことが判明した。
In the above-mentioned illumination system, about 55% of the light emitted from the light guide plate is absorbed by the non-polarized ordinary light when it passes through the polarizing plate, and the light that can be effectively used is poor. The purpose of this is to prevent the absorption by the polarizing plate so that the light can be supplied, thereby improving the light utilization efficiency and improving the brightness of the liquid crystal display device and the like. However, none of these lighting systems
It was found that those that should have a light use efficiency of more than 0% do not show the expected value.

【0004】すなわち特開平6−324333号公報や
特開平7−36032号公報では、下面を拡散式や散乱
式の反射層とすることから出射方向のランダム性や偏光
状態の解消化などにより再出射光量が低下する。一方、
特開平3−45906号公報が教示する金属反射層で
は、円偏光分離層を介して再入射した円偏光が反射層で
反射されて光源側に向うなどして再入射光の利用効率が
低下する。
That is, in JP-A-6-324333 and JP-A-7-36032, since the lower surface is a diffusion type or scattering type reflection layer, re-emission is performed by eliminating the randomness of the emission direction or the polarization state. The amount of light decreases. on the other hand,
In the metal reflective layer taught by Japanese Patent Application Laid-Open No. 3-45906, the circularly polarized light that is re-incident through the circularly polarized light separating layer is reflected by the reflective layer and travels toward the light source side, thereby lowering the utilization efficiency of the re-incident light. .

【0005】[0005]

【発明の技術的課題】前記に鑑みて本発明者らが属する
グループは、側面からの入射光を出射面より効率よく出
射し、円偏光分離層を介した再入射光も効率よく出射し
て光利用効率に優れる導光板を得るために鋭意研究を重
ねた結果、微細なプリズム状凹凸を介して出射するよう
にした導光板とすることによりそれに成功し、先に提案
した(特願平7−321036号)。
In view of the above, the group to which the present inventors belong is that the incident light from the side surface is efficiently emitted from the emission surface and the re-incident light via the circularly polarized light separating layer is also efficiently emitted. As a result of intensive research to obtain a light guide plate with excellent light utilization efficiency, the light guide plate that emits light through fine prismatic irregularities succeeded in that, and was previously proposed (Patent application 7 No. 321036).

【0006】しかしながら、かかる導光板にはその微細
なプリズム状凹凸を介した出射のために輝線状の明暗ム
ラが現れ、それが液晶セルの画素との間でモアレを生じ
て液晶表示装置の視認性を低下させることが判明した。
プリズム状凹凸のピッチを画素間隔の1/5程度とする
ことでモアレを防止しうるが、その場合にはプリズム状
凹凸のピッチを数μm程度とする必要があり、そのよう
な導光板の作製が困難であると共に、微小ピッチによる
干渉や回折による分散で表示品位が大きく低下する問題
を惹起する。
However, bright and dark unevenness in the form of bright lines appears on the light guide plate due to the emission through the fine prismatic irregularities, and this causes moire with the pixels of the liquid crystal cell to visually confirm the liquid crystal display device. It has been found to reduce the sex.
Moire can be prevented by setting the pitch of the prismatic irregularities to about ⅕ of the pixel interval, but in that case, the pitch of the prismatic irregularities needs to be about several μm. In addition, it causes a problem that the display quality is greatly deteriorated due to the interference due to the fine pitch and the dispersion due to the diffraction.

【0007】そのため本発明者らは、前記の明暗ムラを
拡散層で平準化することを試みた。しかし従来の拡散シ
ートでは、偏光状態が解消して光利用効率を低下させ、
微細なプリズム状凹凸を介した光の再利用効率の飛躍的
向上を阻害する問題点のあることが判明した。従って本
発明は、側面からの入射光を出射面より効率よく出射
し、円偏光分離層を介した再入射光も効率よく出射して
光利用効率に優れる導光板による出射光の明暗ムラを防
止して明るさに優れ、モアレを生じない液晶表示装置を
達成できる偏光光源装置の開発を課題とする
Therefore, the present inventors have tried to level the above-mentioned bright and dark unevenness with a diffusion layer. However, with the conventional diffusion sheet, the polarization state is eliminated and the light utilization efficiency is reduced,
It was found that there is a problem that hinders a dramatic improvement in light reuse efficiency through fine prismatic irregularities. Therefore, according to the present invention, the incident light from the side surface is efficiently emitted from the emission surface, and the re-incident light via the circularly polarized light separating layer is also efficiently emitted to prevent uneven brightness of the emitted light by the light guide plate which is excellent in light utilization efficiency. To develop a polarized light source device capable of achieving a liquid crystal display device which is excellent in brightness and does not cause moire.

【0008】[0008]

【課題の解決手段】 本発明は、上下面の少なくとも一
方に微細なプリズム状凹凸を有して側面からの入射光を
上下面の一方より明暗ムラのある状態で出射する導光板
の出射面側に円偏光分離層と拡散層を有し、その拡散層
が円偏光分離層による反射光又は透過光に基づく偏光の
通過する位置に配置されていると共に、その拡散層の位
相差が波長633nmの垂直入射光に基づいて30nm以下
であることを特徴とする偏光光源装置を提供するもので
ある。
Means for Solving the Problems According to the present invention, at least one of upper and lower surfaces has fine prismatic irregularities, and the incident light from a side surface is emitted from one of the upper and lower surfaces in a state with uneven brightness and darkness. Has a circularly polarized light separation layer and a diffusion layer, and the diffusion layer
Is the polarized light based on the light reflected or transmitted by the circularly polarized light separation layer.
Provided is a polarized light source device, which is arranged at a position where the light passes through, and whose diffusion layer has a phase difference of 30 nm or less based on vertically incident light having a wavelength of 633 nm.

【0009】[0009]

【発明の効果】本発明によれば、円偏光分離層を介し反
射して導光板に再入射した円偏光が下面部の金属反射層
等を介し反射して偏光状態を反転し円偏光分離層を透過
しうる光として効率よく出射し、その明暗ムラを有する
出射光が拡散層を介して位相差や拡散による偏光状態の
変化や解消を殆ど受けずに平準化され、モアレを生じる
ことなく液晶表示装置等の表示の明るさを向上させうる
偏光光源装置を得ることができる。前記において、拡散
層に大きな位相差があると円偏光分離層を介した出射又
は再入射の円偏光が楕円偏光に変換され、楕円偏光は直
線偏光成分と円偏光成分の合成物でその直線偏光成分は
円偏光分離層を透過しないため光の利用効率を低下させ
る。
According to the present invention, the circularly polarized light which is reflected through the circularly polarized light separating layer and re-enters the light guide plate is reflected through the metal reflection layer or the like on the lower surface portion to invert the polarization state so that the circularly polarized light separating layer is obtained. Is efficiently emitted as light that can be transmitted through the liquid crystal, and the emitted light having uneven brightness is leveled through the diffusion layer with almost no change or cancellation of the polarization state due to phase difference or diffusion. It is possible to obtain a polarized light source device capable of improving the display brightness of a display device or the like. In the above, if there is a large phase difference in the diffusion layer, the circularly polarized light emitted or re-incident through the circularly polarized light separating layer is converted into elliptically polarized light, and the elliptically polarized light is a composite of the linearly polarized light component and the circularly polarized light component. Since the component does not pass through the circularly polarized light separating layer, the light utilization efficiency is reduced.

【0010】また、拡散層が1/4波長板やその奇数倍
に相当する波長板として機能する波長範囲では、円偏光
が直線偏光化されるため円偏光分離層を介した再入射光
が再度円偏光分離層を透過できず光利用効率は増加しな
い。さらに、拡散層における光学軸の方向の不規則性
や、光の入射・透過角度による影響位相差の変化、波長
毎に位相差の影響が異なることなどが、円偏光分離層を
介して再入射した円偏光の偏光変換効率や楕円偏光の長
軸方向等を大きくばらつかせて、全体としての偏光変換
効率を大きく低下させ再入射光の利用効率を低下させ
る。
Further, in the wavelength range in which the diffusion layer functions as a quarter wave plate or a wave plate corresponding to an odd multiple thereof, circularly polarized light is linearly polarized, so that re-incident light through the circularly polarized light separating layer is re-incident. Since it cannot pass through the circularly polarized light separating layer, the light utilization efficiency does not increase. Furthermore, the irregularity of the direction of the optical axis in the diffusion layer, the change of the influence phase difference due to the incident and transmission angles of light, and the influence of the phase difference depending on the wavelength, etc. The polarization conversion efficiency of the circularly polarized light, the major axis direction of the elliptically polarized light, and the like are greatly varied, so that the overall polarization conversion efficiency is significantly reduced and the utilization efficiency of the re-incident light is reduced.

【0011】[0011]

【発明の実施形態】 本発明の偏光光源装置は、上下面
の少なくとも一方に微細なプリズム状凹凸を有して側面
からの入射光を上下面の一方より明暗ムラのある状態で
出射する導光板の出射面側に円偏光分離層と拡散層を有
し、その拡散層が円偏光分離層による反射光又は透過光
に基づく偏光の通過する位置に配置されていると共に、
その拡散層の位相差が波長633nmの垂直入射光に基づ
いて30nm以下であるものである。その例を図1、図
2、図3に示した。1が導光板、3が拡散層、4が円偏
光分離層であり、2は反射層、5は直線偏光変換手段と
して機能する位相差層である。
The polarized light source device of the present invention has a light guide plate that has fine prismatic irregularities on at least one of the upper and lower surfaces and emits incident light from the side surface from one of the upper and lower surfaces in a state with uneven brightness. of having a circularly polarized light separation layer and a diffusion layer on the emitting surface side and the reflected diffusion layer according to the circularly polarized light separation layer or transmitted light
Is arranged at a position where polarized light based on
The phase difference of the diffusion layer is 30 nm or less based on vertically incident light having a wavelength of 633 nm. Examples thereof are shown in FIGS. 1, 2 and 3. Reference numeral 1 is a light guide plate, 3 is a diffusion layer, 4 is a circularly polarized light separating layer, 2 is a reflecting layer, and 5 is a retardation layer functioning as a linearly polarized light converting means.

【0012】図例の偏光光源装置は、導光板1の出射面
(上面)11の上方に拡散層3と円偏光分離層4と必要
に応じての位相差層5を配置したものからなる。拡散層
は、図例の如く導光板1と円偏光分離層4の間や円偏光
分離層4と位相差層5の間、あるいは位相差層5の光出
射側などの、導光板の光出射側の適宜な位置に配置する
ことができる。
The polarized light source device shown in the figure comprises a diffusion layer 3, a circularly polarized light separation layer 4 and, if necessary, a retardation layer 5 arranged above an emission surface (upper surface) 11 of the light guide plate 1. The diffusion layer is, as shown in the figure, between the light guide plate 1 and the circularly polarized light separation layer 4, between the circularly polarized light separation layer 4 and the phase difference layer 5, or the light emission side of the phase difference layer 5 such as the light emission side of the light guide plate. It can be arranged at an appropriate position on the side.

【0013】前記において導光板は、側面からの入射光
を上下面の一方より出射し、円偏光分離層を介した再入
射光をその円偏光分離層より再出射させることを目的と
する。円偏光分離層は、偏光特性を示さない入射光を透
過光又は反射光として左右の円偏光に分離することによ
り偏光に変換して取出すことを目的とする。拡散層は、
導光板より出射される光の明暗ムラを平準化して出射光
の明るさを面全体で可及的に均一化することを目的とす
る。位相差層は、円偏光分離層を介し出射された円偏光
を直線偏光化して偏光板を透過しやすい光とすることを
目的とする。
In the above, the light guide plate is intended to emit incident light from the side surface from one of the upper and lower surfaces and to re-emit the re-incident light that has passed through the circularly polarized light separating layer from the circularly polarized light separating layer. The circularly polarized light separating layer is intended to convert incident light having no polarization property into left and right circularly polarized light as transmitted light or reflected light to convert it into polarized light and take it out. The diffusion layer is
An object of the present invention is to equalize the brightness unevenness of the light emitted from the light guide plate and to make the brightness of the emitted light as uniform as possible over the entire surface. The retardation layer is intended to linearly polarize circularly polarized light emitted through the circularly polarized light separating layer into light that easily passes through the polarizing plate.

【0014】本発明において導光板としては、上下面の
少なくとも一方に微細なプリズム状凹凸を有して側面か
らの入射光を上下面の一方より明暗ムラのある状態で出
射するものが用いられる。かかる導光板の例を図4〜図
7に示した。図例の如く導光板は通例、いずれか一方が
出射面となる上下面、及び上下面間の少なくとも一側端
面からなる入射面を有する板状物からなる。図例では上
面が出射面となるものを示しており、11が出射面、1
2,16,17,18が下面、13が入射面である。な
お14は側面、15は入射面13に対向する側端部であ
る。
In the present invention, as the light guide plate, one having fine prismatic irregularities on at least one of the upper and lower surfaces to emit incident light from the side surface from one of the upper and lower surfaces with uneven brightness is used. Examples of such a light guide plate are shown in FIGS. As shown in the drawing, the light guide plate is usually formed of a plate-like object having upper and lower surfaces, one of which is an emitting surface, and an incident surface having at least one side end surface between the upper and lower surfaces. In the example shown in the figure, the top surface serves as the exit surface, and 11 is the exit surface, 1
2, 16, 17, and 18 are lower surfaces, and 13 is an incident surface. Reference numeral 14 is a side surface, and 15 is a side end portion facing the incident surface 13.

【0015】導光板は、円偏光分離層を介して再入射し
た円偏光を位相差の影響なくその円偏光状態を良好に維
持したまま下面に導き、また下面で反射した帰路光をそ
の円偏光状態を維持したまま出射させる点などより、厚
さ方向における複屈折による位相差が拡散層と同様に小
さいほど好ましく、就中30nm以下、特に0〜20nmが
好ましい。
The light guide plate guides the circularly polarized light re-incident through the circularly polarized light separating layer to the lower surface while maintaining its circularly polarized state in good condition without the influence of the phase difference, and returns the return light reflected by the lower surface to the circularly polarized light. From the viewpoint of emitting light while maintaining the state, it is preferable that the retardation due to birefringence in the thickness direction is as small as that of the diffusion layer, and is preferably 30 nm or less, particularly 0 to 20 nm.

【0016】導光板の形態は、出射面よりの出射効率に
優れその出射光が出射面に対する垂直性に優れて有効利
用しやすく、また円偏光分離層を介した再入射光の出射
効率にも優れてその出射方向の初期出射方向との近似性
などの点より、限定するものではないが図例の如く、微
細なプリズム状凹凸として長辺面と短辺面からなる凸部
又は凹部を周期的に有する構造が好ましい。さらに入射
面に対向する側端部の厚さが入射面のそれよりも薄いも
の、就中50%以下の厚さであるものが好ましい。
The shape of the light guide plate is excellent in the emission efficiency from the emission surface, the emitted light is excellent in the perpendicularity to the emission surface, and is easily used effectively, and also the emission efficiency of the re-incident light through the circularly polarized light separating layer is improved. Although not particularly limited in terms of the closeness of the outgoing direction to the initial outgoing direction, as shown in the figure, fine prismatic irregularities are used to form convex or concave parts consisting of long and short sides. The structure having a specific structure is preferable. Further, it is preferable that the thickness of the side end portion facing the incident surface is thinner than that of the incident surface, and preferably 50% or less.

【0017】前記の入射面に対する対向側端部の薄型化
は、図8、図9に例示の太矢印の如く入射面より入射し
た光が伝送端としての当該対向側端部に至るまでに、プ
リズム状凹凸面の短辺面に効率よく入射し、その反射を
介し出射面より出射して入射光を目的面に効率よく供給
できる点で有利である。またかかる薄型化構造とするこ
とで導光板を軽量化でき、例えばプリズム状凹凸面が図
5の如き直線状の場合、均一厚の導光板の約75%の重
量とすることができる。
The reduction of the thickness of the end portion on the opposite side to the incident surface is as follows: The light incident from the incident surface reaches the end portion on the opposite side as the transmission end, as shown by the thick arrows in FIGS. 8 and 9. This is advantageous in that the light can be efficiently incident on the short side surface of the prismatic concave-convex surface, emitted from the emission surface via the reflection, and the incident light can be efficiently supplied to the target surface. Further, by adopting such a thin structure, the light guide plate can be made lighter, and for example, when the prismatic uneven surface is linear as shown in FIG. 5, the weight can be about 75% of that of the light guide plate having a uniform thickness.

【0018】前記したプリズム状凹凸を形成する凸部又
は凹部は通例、入射面に沿う方向の長辺面と短辺面から
なる斜面にて形成される。ちなみに当該凸部又は凹部の
例を図8(a)〜(d)、図9(a)〜(d)に示し
た。図8、図9において、21,22,23及び24が
凸部、25,26,27及び28が凹部であり、31,
33,35,37,42,44,46及び48が長辺面
を形成する斜面、32,34,36,38,41,4
3,45及び47が短辺面を形成する斜面である。
The convex portion or concave portion forming the prism-shaped irregularities is usually formed by an inclined surface composed of a long side surface and a short side surface in the direction along the incident surface. By the way, examples of the convex portion or the concave portion are shown in FIGS. 8A to 8D and FIGS. 9A to 9D. In FIG. 8 and FIG. 9, 21, 22, 23 and 24 are convex portions, 25, 26, 27 and 28 are concave portions, and 31,
Slopes 33, 35, 37, 42, 44, 46 and 48 forming long side surfaces, 32, 34, 36, 38, 41, 4
3, 45 and 47 are slopes forming the short side surface.

【0019】前記の凸部又は凹部は、周期的に形成され
る。すなわち例えば図4及び図8(a)又は図9(a)
に基づく場合、図4に示した矢印の如く入射面13に沿
う方向の斜面31,32又は41,42からなる凸部2
1又は凹部25を周期的に有する構造とされる。
The protrusions or recesses are formed periodically. That is, for example, FIG. 4 and FIG. 8A or FIG. 9A
4 based on the above, the convex portion 2 composed of the slopes 31, 32 or 41, 42 in the direction along the incident surface 13 as shown by the arrow in FIG.
1 or concave portions 25 are periodically provided.

【0020】なお前記の凸部又は凹部は、その凸部又は
凹部を形成する斜面の基準面との交点を結ぶ直線に基づ
き、斜面の交点(頂点)が当該直線よりも突出している
か(凸)、窪んでいるか(凹)による。すなわち図8、
図9に例示のものに基づく場合、凸部(21,22,2
3,24)又は凹部(25,26,27,28)を形成
する斜面(31と32、33と34、35と36、37
と38、41と42、43と44、45と46、47と
48)の基準面との交点を結ぶ仮想線で示した直線20
に基づき、斜面の交点(頂点)が当該直線20よりも突
出しているか(凸)、窪んでいるか(凹)による。
It should be noted that the above-mentioned convex portion or concave portion is based on a straight line connecting the intersection points of the slope forming the convex portion or the concave portion with the reference plane, and whether the intersection point (vertex) of the slope surface protrudes from the straight line (convex). , Depending on whether it is recessed (concave). That is, in FIG.
Based on the example illustrated in FIG. 9, the convex portions (21, 22, 2
3, 24) or bevels (31 and 32, 33 and 34, 35 and 36, 37) forming recesses (25, 26, 27, 28).
And 38, 41 and 42, 43 and 44, 45 and 46, 47 and 48), the straight line 20 shown by the imaginary line connecting the intersections with the reference plane.
On the basis of the above, it depends on whether the intersection (vertex) of the slope surface is projected (convex) or recessed (concave) from the straight line 20.

【0021】また前記の凸部又は凹部を形成する斜面の
長辺面と短辺面は、基準面との交点と頂点を結ぶ直線に
基づいて判断されるが、光の利用効率を向上させる点な
どよりその長辺面の出射面に対する投影面積が短辺面の
それの3倍以上、就中5倍以上とすることが好ましい。
さらにその長辺面を凸部の場合には入射面側に、凹部の
場合には入射面に対向する側端側に位置するように配置
すること、従って入射面側に凸部の場合には長辺面が、
凹部の場合には短辺面が位置するように配置することが
好ましい。
Further, the long side surface and the short side surface of the slope forming the convex portion or the concave portion are judged based on the straight line connecting the intersection and the apex with the reference surface, but the point that the utilization efficiency of light is improved. Therefore, it is preferable that the projected area of the long side surface with respect to the exit surface is 3 times or more, and especially 5 times or more that of the short side surface.
Furthermore, in the case of a convex portion, the long side surface is arranged on the incident surface side, and in the case of a concave portion, it is arranged so as to be located on the side end side facing the incident surface. The long side is
In the case of a concave portion, it is preferable to arrange so that the short side surface is located.

【0022】すなわち前記斜面、例えば図4及び図8
(a)又は図9(a)に基づく場合、凸部21又は凹部
25を形成する斜面31と32、又は41と42は、基
準面(仮想線20に相当)との交点と頂点を結ぶ直線
(図8及び図9のb,c,dの場合には仮想線に相当)
に基づいて長辺面31,42と短辺面32,41からな
るものとし、その長辺面31,42を、出射面11に対
する投影面積が短辺面32,41のそれの3倍以上とな
るように形成すると共に、凸部21の場合には長辺面3
1が入射面13の側に、凹部25の場合には長辺面42
が入射面に対向する側端側15に位置するように配置す
ることが好ましい。
That is, the slope, for example, FIGS. 4 and 8
In the case of FIG. 9A or FIG. 9A, the slopes 31 and 32 or 41 and 42 forming the convex portion 21 or the concave portion 25 are straight lines connecting the intersections with the reference plane (corresponding to the virtual line 20) and the vertices. (Corresponding to a virtual line in the case of b, c and d in FIGS. 8 and 9)
It is assumed that the long side surfaces 31, 42 and the short side surfaces 32, 41 are formed on the basis of the above, and the projection area of the long side surfaces 31, 42 is three times or more of that of the short side surfaces 32, 41. And the long side surface 3 in the case of the convex portion 21.
1 is on the incident surface 13 side, and in the case of the concave portion 25, the long side surface 42
Is preferably arranged so as to be located on the side end side 15 facing the incident surface.

【0023】前記により、短辺面に直接入射する伝送光
に加えて、長辺面に入射してその反射を介し短辺面に入
射する伝送光もその短辺面を介した反射にて出射面に供
給(出射)することができ、光利用効率の向上をはかり
うる。また長辺面は、偏光光源装置とした場合に円偏光
分離層で反射された再入射光を再出射させるために機能
する部分であり、かかる点より長辺面の出射面に対する
好ましい投影面積は、短辺面のそれの5倍以上、特に1
0〜100倍である。なお導光板よりの出射光の明暗ム
ラは、かかる短・長辺面の面積差に基づくところが大き
く、短辺面を介した出射光が輝線となりやすい。
As described above, in addition to the transmitted light that is directly incident on the short side surface, the transmitted light that is incident on the long side surface and is reflected by the short side surface is also emitted by reflection through the short side surface. The light can be supplied (emitted) to the surface, and the light utilization efficiency can be improved. Further, the long side surface is a portion that functions to re-emit the re-incident light reflected by the circularly polarized light separation layer in the case of a polarized light source device, and from this point, a preferable projection area for the emission surface of the long side surface is , More than 5 times that of the short side, especially 1
It is 0 to 100 times. The uneven brightness of the light emitted from the light guide plate is largely due to the area difference between the short and long side surfaces, and the light emitted through the short side surface is likely to be a bright line.

【0024】導光板におけるプリズム状凹凸を設ける上
下面の一方又は双方の形状は、適宜に決定してよい。好
ましくは上記したように傾斜面として、入射面よりもそ
の対向側端部を薄型化したものである。その場合、傾斜
面の形状は任意に決定してよく、図5に例示の如き直線
面や、図6、図7に例示の如き曲面などのように適宜な
面形状とすることができる。直線面でない場合、出射面
よりの出射光の出射方向を均一化する点などよりは、プ
リズム状凹凸を設ける面の全位置で平均傾斜角度より5
度以内の範囲にあることが好ましい。
The shape of one or both of the upper and lower surfaces of the light guide plate on which the prismatic irregularities are provided may be appropriately determined. Preferably, as described above, as the inclined surface, the end portion on the opposite side of the incident surface is made thinner. In that case, the shape of the inclined surface may be arbitrarily determined, and may be an appropriate surface shape such as a linear surface illustrated in FIG. 5 or a curved surface illustrated in FIGS. 6 and 7. If it is not a straight surface, it is more than 5 from the average tilt angle at all positions of the surface where the prismatic unevenness is provided, rather than the point of making the outgoing direction of outgoing light from the outgoing surface uniform.
It is preferably within the range.

【0025】設けるプリズム状凹凸の形状も、図8
(a)〜(d)や図9(a)〜(d)に例示した如く直
線状の斜面で形成されている必要はなく、屈折面や湾曲
面等を含む斜面にて形成されていてもよい。また凸部又
は凹部は、プリズム状凹凸面の全体で凸凹やその形状等
が同じである必要はなく、垂直性に優れる出射光を得る
点よりは入射側から徐々にその形状や角度が変化する構
造が好ましい。
The shape of the prismatic irregularities provided is also shown in FIG.
As illustrated in FIGS. 9A to 9D, it does not need to be formed by a linear slope, and may be formed by a slope including a refraction surface and a curved surface. Good. In addition, the projections or recesses do not need to have the same projections and recesses or the same shape on the entire prism-shaped concavo-convex surface, and the shape and angle gradually change from the incident side rather than the point of obtaining emitted light with excellent verticality. The structure is preferred.

【0026】プリズム状凹凸面における凸部又は凹部の
ピッチは、出射光がその凸部又は凹部を介し通例ストラ
イプ状に放出されるため明暗ムラの抑制や液晶セルとの
モアレの防止などの点より小さいほど好ましい。製造精
度等を考慮した好ましい凸部又は凹部の周期は、500
μm以下、就中300μm以下、特に20〜250μmで
ある。なお周期が20μm未満では製造精度等の点より
生産効率に乏しくなり、数μm以下では干渉や回折によ
る分散が増大して液晶表示装置用のバックライトに不向
きとなる。
The pitch of the convex portions or concave portions on the prismatic concave and convex surface is such that the emitted light is emitted in stripes through the convex portions or concave portions, so that uneven brightness is suppressed and moire with the liquid crystal cell is prevented. The smaller the better. The preferable cycle of the convex portion or the concave portion in consideration of manufacturing accuracy is 500
It is less than or equal to μm, preferably less than or equal to 300 μm, and particularly 20 to 250 μm. If the period is less than 20 μm, the production efficiency is poor in terms of manufacturing accuracy, and if it is less than several μm, dispersion due to interference or diffraction increases and it becomes unsuitable for a backlight for a liquid crystal display device.

【0027】また凸部又は凹部を形成する斜面における
上記した長辺面は、図8、図9に例示の如くその出射面
11に対する傾斜角θ1が0〜10度、就中5度以下、
特に2度以下であることが好ましい。かかる傾斜角の範
囲とすることにより、図8(a)、図9(a)に折線矢
印で例示した如く、当該傾斜角より大きい角度で伝送さ
れる光が長辺面31,42に入射して反射され、その場
合に当該長辺面の傾斜角に基づいて出射面11に、より
平行な角度で反射されて短辺面32,41に入射し、反
射されて出射面11より出射する。
The long side surface of the inclined surface forming the convex portion or the concave portion has an inclination angle θ 1 with respect to the emission surface 11 of 0 to 10 degrees, preferably 5 degrees or less, as shown in FIGS. 8 and 9.
Particularly, it is preferably twice or less. By setting such an inclination angle range, light transmitted at an angle larger than the inclination angle is incident on the long side surfaces 31, 42 as illustrated by the broken line arrows in FIGS. 8A and 9A. In that case, the light is reflected by the emission surface 11 based on the inclination angle of the long side surface, reflected at a more parallel angle, enters the short side surfaces 32, 41, and is reflected and emitted from the emission surface 11.

【0028】前記の結果、短辺面に入射する光の入射角
を一定化でき、反射角のバラツキを抑制できて出射光の
平行光化をはかることができる。従って、凸部又は凹部
を形成する斜面における長辺面と短辺面の当該傾斜角を
調節することにより、出射光に指向性をもたせることが
でき、それにより出射面に対して垂直方向ないしそれに
近い角度で光を出射させることが可能になる。
As a result, the incident angle of the light incident on the short side surface can be made constant, the variation in the reflection angle can be suppressed, and the emitted light can be made parallel. Therefore, by adjusting the inclination angle of the long side surface and the short side surface of the slope forming the convex portion or the concave portion, it is possible to give the emitted light directivity, and thereby, the direction perpendicular to the emission surface or It becomes possible to emit light at a close angle.

【0029】ちなみにアクリル樹脂からなる導光板で
は、その屈折率(約1.5)に基づいて端面入射光の伝
送される光の最大角は41.8度であり、導光板の屈折
率が増大するに伴い伝送される光の最大角は小さくな
る。そのため前記長辺面の傾斜角が10度を超えると、
長辺面の出射面に対する投影面積の割合が減少して長辺
面を介し出射方向を制御しうる伝送光の割合が低下し、
また長辺面を経由して短辺面に入射した伝送光と、短辺
面に直接入射した伝送光との反射角のバラツキが大きく
なり、出射光を平行光化する制御性が低下して出射光の
指向性に乏しくなる。なお当該長辺面の傾斜角が0度で
は、出射光の平行化に不利となるが、本発明においては
許容される。
Incidentally, in the light guide plate made of acrylic resin, the maximum angle of the transmitted light of the end face incident light is 41.8 degrees based on the refractive index (about 1.5), and the refractive index of the light guide plate increases. As a result, the maximum angle of the transmitted light becomes smaller. Therefore, if the inclination angle of the long side surface exceeds 10 degrees,
The ratio of the projected area of the long side surface to the emission surface is reduced, and the ratio of transmitted light whose emission direction can be controlled via the long side surface is reduced.
In addition, the variation in the reflection angle between the transmitted light that has entered the short side surface via the long side surface and the transmitted light that has directly entered the short side surface becomes large, and the controllability of making the emitted light parallel light decreases. The directivity of emitted light becomes poor. When the inclination angle of the long side surface is 0 degree, it is disadvantageous in collimating the emitted light, but it is allowed in the present invention.

【0030】一方、凸部又は凹部を形成する斜面におけ
る上記した短辺面は、図8、図9に例示の如くその出射
面11に対する傾斜角θ2が25〜50度、就中30度
以上であることが好ましい。かかる傾斜角の範囲とする
ことにより、図8(a)、図9(a)に折線矢印で例示
した如く、直接又は長辺面を介して入射する伝送光をそ
の短辺面32,41を介し出射面11に対して垂直又は
それに近い角度に反射して、液晶表示装置等の視認性の
向上に有効に作用する方向の光を効率よく出射させるこ
とができる。短辺面の傾斜角が前記範囲外では垂直方向
とのずれが大きくなり、出射光に垂直性の指向性をもた
せることが困難で、伝送光の出射効率(利用効率)も低
下する。
On the other hand, the above-mentioned short side surface of the inclined surface forming the convex portion or the concave portion has an inclination angle θ 2 with respect to the emission surface 11 of 25 to 50 degrees, preferably 30 degrees or more, as illustrated in FIGS. 8 and 9. Is preferred. By setting the range of such an inclination angle, as shown by broken line arrows in FIGS. 8A and 9A, the transmitted light incident directly or through the long side surfaces can be transmitted through the short side surfaces 32 and 41. It is possible to efficiently emit light in a direction in which the light is reflected perpendicularly to the emission surface 11 or at an angle close thereto and effectively acts to improve the visibility of the liquid crystal display device or the like. If the inclination angle of the short side surface is outside the above range, the deviation from the vertical direction becomes large, it is difficult to give the emitted light vertical directivity, and the emission efficiency (utilization efficiency) of the transmitted light also decreases.

【0031】導光板における入射面の形状については、
特に限定はなく、適宜に決定してよい。一般には、出射
面に対して垂直な面とされるが、例えば湾曲凹形などの
光源の外周等に応じた形状として、入射光率の向上をは
ることもできる。また、光源との間に介在する導入部を
有する入射面構造などとすることもできる。その導入部
は、光源などに応じて適宜な形状とすることができる。
なお出射面の形状は、フラット面などが一般的である
が、必要に応じて上記した如く微細なプリズム状凹凸を
設けることもできるし、拡散層を設けることもできる。
Regarding the shape of the incident surface of the light guide plate,
There is no particular limitation and it may be appropriately determined. Generally, it is a surface perpendicular to the emission surface, but it is also possible to improve the incident light rate by forming a shape such as a curved concave shape according to the outer circumference of the light source or the like. Further, it is also possible to adopt an incident surface structure having an introduction portion interposed between the light source and the light source. The introduction part may have an appropriate shape depending on the light source and the like.
The shape of the emission surface is generally a flat surface, but if necessary, fine prismatic irregularities as described above can be provided, or a diffusion layer can be provided.

【0032】導光板は、光源の波長領域に応じそれに透
明性を示す適宜な材料にて形成しうる。ちなみに可視光
域では、例えばポリメチルメタクリレートの如きアクリ
ル系樹脂、ポリカーボネートやポリカーボネート・ポリ
スチレン共重合体の如きポリカーボネート系樹脂、エポ
キシ系樹脂等で代表される透明樹脂やガラスなどの如く
約400〜700nmの波長範囲で透明性を示すものがあ
げられる。
The light guide plate can be formed of an appropriate material that is transparent according to the wavelength range of the light source. By the way, in the visible light region, for example, an acrylic resin such as polymethylmethacrylate, a polycarbonate resin such as polycarbonate or a polycarbonate / polystyrene copolymer, a transparent resin typified by an epoxy resin, or a glass of about 400 to 700 nm is used. Those that exhibit transparency in the wavelength range are mentioned.

【0033】導光板は、適宜な製造方法で形成しうる。
量産性等の点より好ましい製造方法としては、例えば熱
や紫外線ないし放射線等で重合処理しうる液状樹脂を、
所定のプリズム状凹凸を形成しうる型に充填ないし流延
して重合処理する方法や、熱可塑性樹脂を所定のプリズ
ム状凹凸を形成しうる金型に加熱下に押付て形状を転写
する方法、加熱溶融させた熱可塑性樹脂あるいは熱や溶
媒を介して流動化させた樹脂を所定の形状に成形しうる
金型に充填する方法などがあげられる。
The light guide plate can be formed by an appropriate manufacturing method.
As a preferable manufacturing method from the viewpoint of mass productivity and the like, for example, a liquid resin that can be polymerized by heat, ultraviolet rays or radiation,
A method of polymerizing by filling or casting into a mold capable of forming a predetermined prismatic unevenness, or a method of transferring a shape by pressing a thermoplastic resin under heating to a mold capable of forming a predetermined prismatic unevenness, Examples include a method of filling a heat-melted thermoplastic resin or a resin fluidized through heat or a solvent into a mold that can be molded into a predetermined shape.

【0034】導光板は、例えば光の伝送を担う導光部に
プリズム状凹凸面形成用のシートを接着したものの如
く、異種材料の積層体などとして形成されていてもよ
く、1種の材料による一体的単層物として形成されてい
る必要はない。なお前記した導光板の薄膜化は、軽量化
や必要材料の減量化などの点よりも有利であるが、入射
面の減少で入射光量が低減することから必要な入射光量
の確保の点などより限界がある。
The light guide plate may be formed as a laminated body of different materials, such as a sheet in which a prism-shaped uneven surface forming sheet is adhered to a light guide portion for transmitting light, and may be formed of one kind of material. It need not be formed as an integral monolayer. The thinning of the light guide plate described above is more advantageous in terms of weight saving and reduction of required materials, but from the point of securing the necessary incident light amount because the incident light amount is reduced by reducing the incident surface. There is a limit.

【0035】上記した導光板においては、短辺面と長辺
面の面積比や傾斜角、プリズム状凹凸面の形状や曲率等
の制御に基づいて出射光の角度分布や面内分布等の特性
を調節することができる。ちなみに屈折率が1.5でプ
リズム状凹凸面が曲率を有しない傾斜面であり、初期出
射光が垂直に出射する導光板の場合、長辺面の出射面に
対する傾斜角を6.6度以下とすることで、円偏光分離
層を介した再入射光を10度以内の角度変化で再出射さ
せることができる。またその場合、プリズム状凹凸面が
曲率を有するときには当該傾斜角が6.6度以下となる
部分を上記した所定面積以上の割合で有することによ
り、当該再入射光を10度以内の角度変化で再出射させ
ることができる。
In the above-mentioned light guide plate, the characteristics such as the angular distribution and the in-plane distribution of the outgoing light are controlled based on the control of the area ratio and the inclination angle of the short side surface and the long side surface, the shape and the curvature of the prismatic uneven surface. Can be adjusted. By the way, in the case of a light guide plate in which the refractive index is 1.5 and the prismatic concave-convex surface has no curvature, and the initial emission light is emitted vertically, the inclination angle of the long side surface with respect to the emission surface is 6.6 degrees or less. Thus, the re-incident light that has passed through the circularly polarized light separating layer can be re-emitted with an angle change within 10 degrees. Further, in that case, when the prismatic concave-convex surface has a curvature, the re-incident light can be changed within an angle of 10 degrees by having a portion in which the inclination angle is 6.6 degrees or less in a ratio of the predetermined area or more. It can be re-emitted.

【0036】導光板の厚さは、使用目的による導光板の
サイズや光源の大きさなどにより適宜に決定することが
できる。液晶表示装置等に用いる場合の導光板の一般的
な厚さは、その入射面に基づき20mm以下、就中0.1
〜10mm、特に0.5〜8mmである。また入射面と出射
面の一般的な面積比は、前者/後者に基づき1/5〜1
/100、就中1/10〜1/80、特に1/15〜1
/50である。ちなみに入射面より平行光を入射させた
場合、入射面の厚さに相当する積算厚さの短辺面とする
ことで入射光の全部を短辺面に入射させることができ、
その場合、短辺面の傾斜角を45度、長辺面の傾斜角を
0度とすると入射面/出射面の面積比は1/30程度と
なる。
The thickness of the light guide plate can be appropriately determined depending on the size of the light guide plate and the size of the light source depending on the purpose of use. When used in a liquid crystal display device, the light guide plate generally has a thickness of 20 mm or less, preferably 0.1
-10 mm, especially 0.5-8 mm. In addition, the general area ratio of the entrance surface and the exit surface is 1/5 to 1 based on the former / the latter.
/ 100, especially 1/10 to 1/80, especially 1/15 to 1
/ 50. By the way, when parallel light is incident from the incident surface, it is possible to make all of the incident light incident on the short side surface by making the short side surface of the integrated thickness corresponding to the thickness of the incident surface,
In that case, assuming that the inclination angle of the short side surface is 45 degrees and the inclination angle of the long side surface is 0 degrees, the area ratio of the incident surface / the emission surface is about 1/30.

【0037】また前記において導光板の屈折率を1.5
とすると、入射伝送光は上記したように41.8度以内
であり、その角度が小さい光ほど強度が大きいことか
ら、出射面の投影面積に基づいて短辺面/長辺面の面積
比が1/15程度にても殆どの入射光を長辺面を介する
ことなく短辺面に直接入射させることができ、高い出射
効率を得ることができる。
In the above, the light guide plate has a refractive index of 1.5.
Then, the incident transmitted light is within 41.8 degrees as described above, and the smaller the angle, the greater the intensity. Therefore, the area ratio of the short side surface / the long side surface is based on the projected area of the emission surface. Even if it is about 1/15, most incident light can be directly incident on the short side face without passing through the long side face, and high emission efficiency can be obtained.

【0038】なお前記の場合、傾斜角45度の短辺面を
介して出射面の法線方向に出射するが、その円偏光分離
層を介した再入射光は、その殆どが長辺面に入射する。
その結果、出射面の投影面積に基づいて短辺面/長辺面
の面積比を1/5としても、理想的には円偏光分離層を
介した再入射光の83%が長辺面に入射し、かつ反射さ
れてそのまま再出射光として利用することができる。
In the above case, the light is emitted in the direction of the normal to the emission surface through the short side surface having an inclination angle of 45 degrees, but most of the re-incident light that has passed through the circularly polarized light separating layer is on the long side surface. Incident.
As a result, even if the area ratio of the short side surface / the long side surface is set to 1/5 based on the projected area of the exit surface, ideally 83% of the re-incident light that has passed through the circularly polarized light separation layer is the long side surface. It can be used as re-emitted light as it is after being incident and reflected.

【0039】導光板の出射面の対向面には、図1、図2
に例示の如く必要に応じて反射層2、好ましくは金属反
射層を配置することができる。かかる反射層は、当該対
向面からの漏れ光の発生を防止して出射効率の向上に有
効であり、偏光光源装置の偏光変換手段として機能す
る。反射層は、当該対向面に一体化されていてもよい
し、反射シート等として重ね合されていてもよく、本発
明にては適宜な配置形態を採ることができる。
1 and 2 are provided on the opposite surface of the light emitting surface of the light guide plate.
If desired, a reflective layer 2, preferably a metal reflective layer, may be arranged as illustrated in FIG. The reflective layer is effective in preventing the generation of leaked light from the facing surface and improving the emission efficiency, and functions as a polarization conversion unit of the polarized light source device. The reflection layer may be integrated with the facing surface, or may be laminated as a reflection sheet or the like, and in the present invention, an appropriate arrangement form can be adopted.

【0040】前記において金属からなる反射層によれ
ば、反射時に偏光特性を効率的に反転させることがで
き、その偏光変換効率が屈折率相違の界面を介した全反
射や拡散反射による場合よりも優れている。ちなみに金
属面に概ね垂直に円偏光が入射すると、円偏光の左右の
変換効率は100%近い値となり、入射角30度位まで
は90%以上の変換効率を示す。
In the above case, the reflection layer made of metal can efficiently invert the polarization characteristic at the time of reflection, and the polarization conversion efficiency thereof is higher than that of the case of total reflection or diffuse reflection through an interface having a different refractive index. Are better. By the way, when circularly polarized light is incident substantially perpendicularly to the metal surface, the conversion efficiency of the left and right of the circularly polarized light is close to 100%, and the conversion efficiency of 90% or more is shown up to an incident angle of about 30 degrees.

【0041】偏光変換効率の点より好ましい金属反射層
は、アルミニウム、銀、金、銅又はクロムなどからなる
高反射率の金属の少なくとも1種を含有する金属面を有
するものである。導光板の出射面の対向面との密着性に
優れる金属反射層は、バインダ樹脂による金属粉末の混
入塗工層や、蒸着方式等による金属薄膜の付設層などと
して形成することができる。金属反射層は、多層干渉薄
膜などとして形成されていてもよく、その片面又は両面
には、必要に応じ反射率の向上や酸化防止等を目的とし
た適宜なコート層を設けることもできる。
A metal reflecting layer which is preferable from the viewpoint of polarization conversion efficiency has a metal surface containing at least one metal having a high reflectance, such as aluminum, silver, gold, copper or chromium. The metal reflection layer, which has excellent adhesion to the facing surface of the light exit surface of the light guide plate, can be formed as a coating layer in which metal powder is mixed with a binder resin, an additional layer of a metal thin film by a vapor deposition method, or the like. The metal reflection layer may be formed as a multi-layer interference thin film or the like, and one or both surfaces thereof may be provided with an appropriate coat layer for the purpose of improving reflectance or preventing oxidation, if necessary.

【0042】なお反射層については、前記の反射層2に
代えて、あるいはその反射層と共に、図3に例示の如く
導光板の出射面の対向面に沿って反射板6を設けること
もできる。導光板の当該対向面に反射板を設ける方式
は、長辺面の傾斜角が同一の場合、円偏光分離層を介し
た再入射光の再出射角を小さくできる利点がある。その
反射板については、前記の反射層に準じることができ、
金属反射面を有する反射板が好ましく用いうる。従って
反射板としては、金属薄膜を付設した樹脂シートや金属
箔、金属板などの適宜なものを用いることができる。反
射板の表面は、鏡面であることを必須とせず、小さい角
度の複数面や連続曲面などとして全体的には均一に形成
されていてもよい。
As for the reflective layer, instead of the reflective layer 2 or together with the reflective layer, a reflective plate 6 may be provided along the facing surface of the emission surface of the light guide plate as illustrated in FIG. The method of providing the reflection plate on the facing surface of the light guide plate has an advantage that the re-emission angle of the re-incident light through the circularly polarized light separation layer can be reduced when the inclination angles of the long side surfaces are the same. For the reflector, it can be based on the above-mentioned reflective layer,
A reflector having a metal reflecting surface can be preferably used. Therefore, as the reflection plate, a resin sheet provided with a metal thin film, a metal foil, a metal plate, or the like can be used. The surface of the reflection plate does not necessarily need to be a mirror surface, and may be formed uniformly as a plurality of surfaces with a small angle or a continuous curved surface.

【0043】また反射板としては、再出射光の広がりを
抑制する点などより、平行光を入射させた場合の反射光
の反射角の広がりの半値幅の半角が10度以内、就中5
度以内のものが好ましい。従って反射板としては、反射
率が高く、反射角の広がりが小さくて、拡散反射を生じ
ない適宜なものを用いうる。凹凸や圧延ロール等による
粗表面を有して反射光の反射角が若干広がるようにした
ものであってもよい。
As the reflection plate, the half angle of the half-value width of the spread of the reflection angle of the reflected light when parallel light is incident is within 10 degrees, especially 5 because of the fact that the spread of the re-emitted light is suppressed.
Those within the degree are preferable. Therefore, as the reflection plate, an appropriate one having a high reflectance and a small spread of the reflection angle and which does not cause diffuse reflection can be used. It may have irregularities or a rough surface such as a rolling roll so that the reflection angle of the reflected light is slightly widened.

【0044】上記した導光板によれば、それを用いて高
精度に平行化された光を視認に有利な垂直性に優れる方
向に出射し、光源からの光を効率よく利用して明るさに
優れる偏光光源装置を得ることができ、ひいては明るく
て見やすく低消費電力性に優れる液晶表示装置などの種
々の装置を形成することができる。
According to the above-mentioned light guide plate, it is used to emit highly collimated light in a direction having excellent verticality, which is advantageous for visual recognition, and makes efficient use of the light from the light source to increase the brightness. An excellent polarized light source device can be obtained, and various devices such as a liquid crystal display device which is bright and easy to see and excellent in low power consumption can be formed.

【0045】サイドライト型バックライトは、図例の如
く通例、導光板の入射面に光源7を配置することにより
形成される。その光源としては適宜なものを用いうる
が、例えば(冷,熱)陰極管等の線状光源や発光ダイオ
ード等の点光源、あるいはその線状又は面状等のアレイ
体などが好ましく用いうる。低消費電力性や耐久性等の
点よりは冷陰極管が特に好ましい。当該バックライトの
形成に際しては、必要に応じて図例の如く、線状光源か
らの発散光を導光板の側面に導くために光源を包囲する
光源ホルダ71や、光の出射方向制御用のプリズムシー
トなどの適宜な補助手段を配置した組合せ体とすること
もできる。
The sidelight type backlight is usually formed by disposing the light source 7 on the incident surface of the light guide plate as shown in the figure. Any appropriate light source can be used as the light source, but for example, a linear light source such as a (cold or heat) cathode tube, a point light source such as a light emitting diode, or an array body having a linear or planar shape thereof can be preferably used. A cold cathode tube is particularly preferable in terms of low power consumption and durability. When forming the backlight, a light source holder 71 that surrounds the light source for guiding the divergent light from the linear light source to the side surface of the light guide plate, and a prism for controlling the emission direction of the light, as necessary, as shown in the figure. It is also possible to make a combination body in which an appropriate auxiliary means such as a sheet is arranged.

【0046】なお光源ホルダとしては、高反射率金属薄
膜を付設した樹脂シートや金属箔などが一般に用いられ
る。光源ホルダを導光板の端部に接着剤等を介して接着
する場合には、その接着部分についてはプリズム状凹凸
の形成を省略することもできる。また、光源ホルダを導
光板の所定面に延設して反射板を兼ねさせることもでき
る。
As the light source holder, a resin sheet or a metal foil provided with a high reflectance metal thin film is generally used. When the light source holder is adhered to the end portion of the light guide plate via an adhesive or the like, the prismatic unevenness can be omitted in the adhered portion. Further, the light source holder may be extended to a predetermined surface of the light guide plate so that it also serves as a reflection plate.

【0047】偏光光源装置の形成に好ましく用いうる導
光板は、側面よりの入射光を高い効率で出射面より出射
させ、その出射光が高い指向性、就中、出射面に対する
垂直性に優れる指向性を示すと共に、円偏光分離層を介
した再入射光の再出射効率に優れ、その再出射光の指向
性と出射角度が初期出射光の指向性と出射角度に可及的
に一致し、かつ円偏光分離層を介した再入射光を少ない
反射繰返し数で、就中、反射の繰返しなく出射するよう
にしたものである。
The light guide plate which can be preferably used for forming the polarized light source device allows the incident light from the side surface to be emitted from the emitting surface with high efficiency, and the emitted light has a high directivity, and in particular, a directivity excellent in the perpendicularity to the emitting surface. And exhibit excellent re-emission efficiency of the re-incident light through the circularly polarized light separating layer, and the directivity and the emission angle of the re-emitted light match the directivity and the emission angle of the initial emission light as much as possible, In addition, the re-incident light that has passed through the circularly polarized light separating layer is emitted with a small number of reflection repetitions and, in particular, without repeated reflections.

【0048】すなわち高精度に平行化された垂直性に優
れる光を出射して、円偏光分離層を介した再入射光の多
くが長辺面に入射し、その緩やかな傾斜角に基づいて角
度を大きく変えることなく反射し、その角度変化の少な
い反射で初期の出射光と近似した方向に、従って垂直性
よく再出射する導光板が好ましい。かかる導光板によれ
ば、初期出射光と再出射光の方向の一致性に優れて、初
回の再入射光を反射の繰返しなく効率的に出射して偏光
特性に優れる光をロスの少ない利用効率に優れる状態で
得ることができる。
That is, most of the light re-incident through the circularly polarized light separating layer is emitted to the long side surface by emitting highly parallelized light excellent in verticality, and the angle is determined based on the gentle inclination angle. It is preferable to use a light guide plate that reflects light without significantly changing the angle, and re-emits light in a direction close to the initial outgoing light by reflection with little change in angle, and thus with good verticality. According to such a light guide plate, the initial emission light and the re-emission light have excellent coincidence in direction, and the first re-incident light is efficiently emitted without repeated reflection, and light having excellent polarization characteristics is utilized with less loss. It can be obtained in excellent condition.

【0049】導光板が金属反射層を有する場合には、再
入射光がそれによる反射反転により高効率に所定の円偏
光に変換され、従って光を効率よく取出すことができ
る。また垂直性に優れる出射光であることより、屈折率
が相違する界面での屈折による光の進行方向の変化が小
さい利点なども有している。
When the light guide plate has the metal reflection layer, the re-incident light is highly efficiently converted into the predetermined circularly polarized light by the reflection inversion by the light, so that the light can be efficiently extracted. Further, since the emitted light is excellent in verticality, it has an advantage that a change in the traveling direction of light due to refraction at an interface having a different refractive index is small.

【0050】前記において、再出射光と初期出射光の出
射角度の一致性に乏しく、出射方向が大きく異なるとそ
れらの輝度を加成できず、液晶表示装置等の視認性の向
上に有効利用できないし、むしろ角度の異なる方向に2
つのピーク輝度を示して視認性を低下させる。
In the above, the coincidence of the emission angles of the re-emitted light and the initial emitted light is poor, and if the emission directions are largely different, their brightness cannot be added, and they cannot be effectively used for improving the visibility of a liquid crystal display device or the like. But rather 2 in different directions
It shows two peak luminances and reduces visibility.

【0051】上記において散乱反射式ないし拡散反射式
の導光板では、円偏光分離層を介した再入射光が導光板
の下面を介した散乱反射ないし拡散反射(ドット)を介
して円偏光分離層に再入射することとなり、その場合に
は、出射光が指向性に乏しく、また散乱光として再入射
するため円偏光分離層を介した変換効率は50%を超え
得ず、光の利用効率を高める効果に乏しい。さらに出射
光の出射角度も垂直性に乏しく、液晶表示等の視認性を
低下させる表示に不都合な、垂直方向と角度が大きくず
れた例えば垂直方向に対して45度以上の方向の出射光
成分を多く含ものとなる。
In the scattering reflection type or diffuse reflection type light guide plate described above, the re-incident light that has passed through the circularly polarized light separation layer passes through the scattering reflection or diffuse reflection (dots) that has passed through the lower surface of the light guide plate, and the circularly polarized light separation layer. In this case, since the emitted light has poor directivity and is re-incident as scattered light, the conversion efficiency through the circularly polarized light separation layer cannot exceed 50%, and the light utilization efficiency is reduced. Poor in enhancing effect. In addition, the emission angle of the emitted light is also poor in verticality, which is inconvenient for a display such as a liquid crystal display that deteriorates visibility. Many are included.

【0052】導光板の出射面にプリズムシートを配置し
て垂直性を高める補正をしたとしても、導光板下面の反
射面に対しては垂直方向から大きくずれた角度で入射す
るため光の再利用効率を高める効果に乏しい。従って本
発明における如く、導光板を介し高精度に平行化された
垂直性に優れる出射光を形成して、それを円偏光分離層
を介し初期出射光と再入射光に分離し、その再入射光を
初期出射光と出射方向の整合性よく再出射させることは
困難である。
Even if a prism sheet is arranged on the exit surface of the light guide plate to correct the verticality, the light is reused because it is incident on the reflection surface on the lower surface of the light guide plate at an angle largely deviated from the vertical direction. Poor effect of increasing efficiency. Therefore, as in the present invention, the outgoing light that is highly accurately parallelized through the light guide plate and has excellent verticality is formed, and is separated into the initial outgoing light and the re-injected light through the circularly polarized light separating layer, and the re-incident light is re-injected. It is difficult to re-emit the light with good matching in the emission direction with the initial emission light.

【0053】拡散層は、導光板よりの出射光の明暗ムラ
を平準化する点より、光の広がり角が大きいほど好まし
い。すなわち導光板よりの出射光を拡散してその広がり
により液晶セルの多くの画素に入射するほど画素との干
渉に基づくモアレによるギラギラした視認が抑制され
る。一方、上記したように導光板の反射層を介した再入
射光の偏光変換効率の点よりは、光の広がり角が小さい
ほど好ましい。
It is preferable that the diffusion layer has a larger divergence angle of the light in order to level the uneven brightness of the light emitted from the light guide plate. That is, as the light emitted from the light guide plate is diffused and spread, the more the light is incident on many pixels of the liquid crystal cell, the more the glare due to the moire due to the interference with the pixels is suppressed. On the other hand, as described above, the smaller the divergence angle of the light is, the more preferable from the viewpoint of the polarization conversion efficiency of the re-incident light that has passed through the reflection layer of the light guide plate.

【0054】従って前記の平準化と偏光変換効率の点よ
り光の半値幅に基づく広がり角は、平行光を入射させた
場合の広がり角(半値幅、以下同じ)に基づいて、30
度以下でかつ2個以上の画素に入射しうる角度が好まし
い。その2個以上の画素に入射しうる角度は、画素の大
きさやピッチ、拡散層と液晶セルの画素までの距離など
により決定される。
Therefore, the spread angle based on the full width at half maximum of light is 30 based on the spread angle when the parallel light is incident (half width at half maximum, the same hereinafter) from the viewpoint of the above-mentioned leveling and polarization conversion efficiency.
An angle that is less than or equal to a degree and can enter two or more pixels is preferable. The angles that can enter the two or more pixels are determined by the size and pitch of the pixels, the distance between the diffusion layer and the pixels of the liquid crystal cell, and the like.

【0055】ちなみに画素ピッチを330μm、液晶セ
ルの基板厚を700μmとして、拡散層を液晶セル基板
の直前に配置した場合、拡散による広がり角を13度以
上とすることで複数の画素に入射させることができ、2
5度では常に3画素以上に入射させることができる。従
って拡散層と液晶セル基板の間に位相差層等を介在させ
た場合や画素ピッチが小さい場合にはより狭い広がり角
で複数の画素に入射させることができる。
By the way, when the pixel pitch is 330 μm, the substrate thickness of the liquid crystal cell is 700 μm, and the diffusion layer is arranged immediately in front of the liquid crystal cell substrate, the divergence angle by diffusion is set to 13 ° or more so that the light is incident on a plurality of pixels. Can be 2
At 5 degrees, the light can always be incident on 3 pixels or more. Therefore, when a retardation layer or the like is interposed between the diffusion layer and the liquid crystal cell substrate or when the pixel pitch is small, the light can be made incident on a plurality of pixels with a narrower spread angle.

【0056】一方、導光板よりの出射光の明暗ムラの平
準化は、複数の明光(短辺面)、好ましくは隣接の明光
を混合することにても行いうる。ちなみに楔形の導光板
におけるプリズム状凹凸のピッチを200μm、屈折率
を1.5とした場合、厚さ1mmの部分では隣接の短辺面
よりの出射光を混合しうる広がり角は17度である。短
辺面の幅を考慮するとその角度がより小さくても隣接の
明光の混合は可能である。また導光板の厚さが1mmより
も厚い場合も同様である。
On the other hand, the leveling of the uneven brightness of the light emitted from the light guide plate can also be performed by mixing a plurality of bright lights (short side surfaces), preferably adjacent bright lights. By the way, when the pitch of the prismatic irregularities in the wedge-shaped light guide plate is 200 μm and the refractive index is 1.5, the divergence angle at which the light emitted from the adjacent short side faces can be mixed is 17 degrees in the portion with a thickness of 1 mm. . Considering the width of the short side surface, adjacent bright lights can be mixed even if the angle is smaller. The same applies when the thickness of the light guide plate is thicker than 1 mm.

【0057】なお前記した拡散層による広がり角が30
度を超えると、偏光光源装置より出射する光の角度が広
くなり、不要な方向への出射光量が増加し、また大きい
角度で再入射する光は迷光となるため光の有効利用を低
下させる。図10(a)、(b)に拡散層の有無による
明暗ムラの相違状態を示した。(a)が拡散層のないも
の81、(b)が拡散層のあるもの8である。
The divergence angle due to the diffusion layer is 30.
When the angle exceeds the angle, the angle of the light emitted from the polarized light source device becomes wider, the amount of light emitted in an unnecessary direction increases, and the light re-incident at a large angle becomes stray light, which reduces the effective use of light. FIGS. 10A and 10B show the difference in brightness unevenness depending on the presence or absence of the diffusion layer. (A) is the one without the diffusion layer 81, and (b) is the one 8 with the diffusion layer.

【0058】また本発明における拡散層としては、位相
差が波長633nmの垂直入射光に基づいて30nm以下、
好ましくは0〜20nmのものが用いられる。入射角30
度以内で入射した波長633nmの光に基づいく位相差が
30nm以下、就中0〜20nmのものはより好ましい。
The diffusion layer in the present invention has a phase difference of 30 nm or less based on vertically incident light having a wavelength of 633 nm,
It is preferably 0 to 20 nm. Angle of incidence 30
It is more preferable that the phase difference is 30 nm or less based on the light having a wavelength of 633 nm which is incident within the range of 0 to 20 nm.

【0059】上記したように拡散層に大きな位相差があ
ると、円偏光分離層を介した円偏光が楕円偏光に変換さ
れ、その楕円偏光の直線偏光成分が円偏光分離層を透過
できなっくなって光の利用効率を低下させる。また導光
板が1/4波長板やその奇数倍の位相差板として機能す
る波長範囲では、円偏光分離層を介した円偏光が直線偏
光に変換されて円偏光分離層を透過できない光となり光
の利用効率が増加しないばかりか、他の光学素子による
反射損や吸収損でより暗くなることが考えられる。
As described above, if the diffusion layer has a large phase difference, the circularly polarized light passing through the circularly polarized light separating layer is converted into elliptically polarized light, and the linearly polarized light component of the elliptically polarized light cannot be transmitted through the circularly polarized light separating layer. It reduces the efficiency of light utilization. Further, in the wavelength range in which the light guide plate functions as a quarter-wave plate or a phase difference plate of an odd multiple thereof, circularly polarized light passing through the circularly polarized light separating layer is converted into linearly polarized light and becomes light that cannot be transmitted through the circularly polarized light separating layer. It is conceivable that not only the utilization efficiency of the light will not increase, but also it will become darker due to reflection loss and absorption loss due to other optical elements.

【0060】従って拡散層は、上記の導光板で例示した
如き複屈折を示さないか、複屈折が小さい材料で形成さ
れていることが好ましい。また位相差は、複屈折の屈折
率差と厚さの積であるので可級的に薄いことが好まし
い。
Therefore, it is preferable that the diffusion layer does not exhibit the birefringence as exemplified in the above-mentioned light guide plate or is made of a material having a small birefringence. Further, the retardation is a product of the refractive index difference of the birefringence and the thickness, and therefore it is preferable that the retardation be as thin as possible.

【0061】さらに拡散層は、偏光状態の保存性等の点
より、一方の面より入射した任意偏光面の直線偏光の他
面よりの透過光の回転検光子法による測定に基づく光の
三刺激値の内のYで示した長軸強度が、短軸強度の5倍
以上、就中8倍以上のものであることが好ましい。その
強度比が5倍以上であることにより、拡散層の位相差に
よる光損失を20%以下に抑制できて明るさの向上に有
利である。
Further, the diffusion layer is a tristimulus of light based on the measurement of the transmitted light from the other surface of the linearly polarized light of an arbitrary polarization plane incident from one surface by the rotation analyzer method in view of the conservation of polarization state. It is preferable that the major axis strength indicated by Y in the values is 5 times or more, and especially 8 times or more the minor axis strength. When the intensity ratio is 5 times or more, the light loss due to the phase difference of the diffusion layer can be suppressed to 20% or less, which is advantageous for improving the brightness.

【0062】拡散層は、例えば粒子分散樹脂層の形成方
式、サンドブラストや化学エッチング等の表面凹凸化処
理による方式、機械的ストレスや溶剤処理等によるクレ
イズ発生方式、所定の拡散構造を設けた金型による転写
形成方式などの適宜な方式で、導光板や円偏光分離層や
位相差層等への塗布層や拡散シートなどとして適宜に形
成することができる。拡散シートは、ガラスやプラスチ
ック等からなる透明基材に前記に準じ拡散構造を付与す
る方式などにより形成することができる。そのプラスチ
ックとしては、上記の如く導光板で例示のものなどが用
いうる。
The diffusion layer is, for example, a method of forming a particle-dispersed resin layer, a method of surface roughening treatment such as sandblasting or chemical etching, a method of craze generation by mechanical stress or solvent treatment, a mold provided with a predetermined diffusion structure. Can be appropriately formed as a coating layer for a light guide plate, a circularly polarized light separating layer, a retardation layer, a diffusion sheet, or the like by an appropriate method such as a transfer forming method. The diffusion sheet can be formed by a method in which a transparent substrate made of glass, plastic or the like is provided with a diffusion structure according to the above. As the plastic, those exemplified as the light guide plate as described above can be used.

【0063】好まく用いうる拡散シートは、トリアセチ
ルセルロース基材の如き位相差の小さいプラスチック基
材に、シリカ微粒子の如き微粉末を含有させた樹脂層を
設けたものである。その場合、拡散効果等の点より微粉
末とそれを分散含有する樹脂層の屈折率が可及的に一致
することが好ましく、気泡等の混入のない樹脂層とする
ことが好ましい。
A diffusion sheet that can be preferably used is one in which a resin layer containing a fine powder such as silica fine particles is provided on a plastic substrate having a small retardation such as a triacetyl cellulose substrate. In that case, it is preferable that the fine powder and the resin layer in which the fine powder is dispersed and contained have the same refractive index as possible from the viewpoint of the diffusion effect, and it is preferable that the resin layer is free from bubbles and the like.

【0064】また樹脂層表面の凹凸が、谷部を基準とし
た平均高さで7μm以下、就中0.01〜5μm、特に
0.5〜4μmであることが、拡散効果やモアレの防止
などの点より好ましい。なお上記したように拡散層は、
導光板と円偏光分離層の間、円偏光分離層と位相差層の
間、位相差層の出射光側のいずれかに配置でき、それら
の位置に2層以上を配置することもできる。
The unevenness on the surface of the resin layer is 7 μm or less in average height based on the valley portion, preferably 0.01 to 5 μm, especially 0.5 to 4 μm, so that diffusion effect and moire can be prevented. Is more preferable. As described above, the diffusion layer is
It can be arranged between the light guide plate and the circularly polarized light separating layer, between the circularly polarized light separating layer and the retardation layer, or on the outgoing light side of the retardation layer, and two or more layers can be arranged at those positions.

【0065】円偏光分離層としては、透過光及び反射光
として左右の円偏光に分離する適宜なものを用いうる。
好ましく用いうる円偏光分離層としては、コレステリッ
ク液晶相を有する層、就中コレステリック相を呈する液
晶ポリマーからなる層を有するシートや当該層をガラス
板等の上に展開したシート、あるいはコレステリック相
を呈する液晶ポリマーからなるフィルムなどがあげられ
る。
As the circularly polarized light separating layer, an appropriate layer for separating left and right circularly polarized light as transmitted light and reflected light can be used.
The circularly polarized light separating layer which can be preferably used is a layer having a cholesteric liquid crystal phase, a sheet having a layer made of a liquid crystal polymer exhibiting a cholesteric phase, a sheet obtained by developing the layer on a glass plate or the like, or exhibiting a cholesteric phase. Examples include films made of liquid crystal polymers.

【0066】コレステリック液晶相によれば左右の円偏
光を透過・反射によりいずれか一方に選択的に分離で
き、コレステリック液晶を含む均一配向の液晶相は散乱
のない反射光を提供する。またコレステリック液晶相
は、視角変化に対する光学特性の変化が小さくて視野角
の広さに優れ、特に斜め方向からも直接観察される直視
型液晶表示装置等の形成に適している。
According to the cholesteric liquid crystal phase, the left and right circularly polarized light can be selectively separated into either one by transmission or reflection, and the uniformly aligned liquid crystal phase containing the cholesteric liquid crystal provides reflected light without scattering. The cholesteric liquid crystal phase has a small change in optical characteristics with respect to a change in viewing angle and has a wide viewing angle, and is particularly suitable for forming a direct-viewing type liquid crystal display device or the like which is directly observed even in an oblique direction.

【0067】円偏光分離層は、単層物又は2層以上の重
畳物として形成することができる。重畳化は、分離機能
の広波長域化や斜め入射光の波長シフトに対処する点等
より有利であり、その場合には所定外の円偏光として反
射する光の中心波長が異なる組合せで重畳することが好
ましい。
The circularly polarized light separating layer can be formed as a single layer or a laminate of two or more layers. The superposition is advantageous in that the separation function has a wider wavelength range and the wavelength shift of obliquely incident light is dealt with, and in that case, superimposition is performed with a combination of different central wavelengths of light reflected as circularly polarized light outside the predetermined range. It is preferable.

【0068】すなわち、単層のコレステリック液晶層で
は通例、選択反射性(円偏光二色性)を示す波長域に限
界があり、その限界は約100nmの波長域に及ぶ広い範
囲の場合もあるが、その波長範囲でも液晶表示装置等に
適用する場合に望まれる可視光の全域には及ばないか
ら、そのような場合に選択反射性の異なるコレステリッ
ク液晶層を重畳させて円偏光二色性を示す波長域を拡大
させることができる。
That is, a single-layer cholesteric liquid crystal layer usually has a limit in the wavelength range exhibiting selective reflection (circular dichroism), and the limit may be a wide range extending to a wavelength range of about 100 nm. , Even in that wavelength range does not reach the whole range of visible light desired when applied to a liquid crystal display device or the like, and in such a case, a cholesteric liquid crystal layer having different selective reflectivity is superimposed to exhibit circular dichroism. The wavelength range can be expanded.

【0069】ちなみにコレステリック液晶層の場合、そ
の液晶相に基づく選択反射の中心波長が300〜900
nmのものを同じ偏光方向の円偏光を反射する組合せで、
かつ選択反射の中心波長が異なる、就中それぞれ50nm
以上異なる組合せで用いて、その2〜6種類を重畳する
ことで可視光域等の広い波長域をカバーできる円偏光分
離層を効率的に形成することができる。
By the way, in the case of the cholesteric liquid crystal layer, the central wavelength of selective reflection based on the liquid crystal phase is 300 to 900.
A combination that reflects circularly polarized light of the same polarization direction with the nm one,
And the central wavelength of selective reflection is different, especially 50nm each.
The circularly polarized light separating layer capable of covering a wide wavelength range such as a visible light range can be efficiently formed by using the above different combinations and superposing 2 to 6 kinds thereof.

【0070】前記した同じ偏光方向の円偏光を反射する
もの同士の組合せで重畳物とする点は、各層で反射され
る円偏光の位相状態を揃えて各波長域で異なる偏光状態
となることを防止し、利用できる状態の偏光の増量を目
的とする。従って円偏光分離層としては、それが所定外
の円偏光として反射しうる光の波長域が導光板に基づく
出射光の波長域と可及的に一致したものが好ましく用い
うる。
The point that the circularly polarized light of the same polarization direction is reflected in each layer and is made into a superimposition is that the circularly polarized light reflected by each layer has the same phase state and has different polarized states in each wavelength range. The purpose is to prevent and increase the amount of polarized light in a usable state. Therefore, as the circularly polarized light separating layer, a layer in which the wavelength range of the light that can be reflected as the circularly polarized light outside the predetermined range matches the wavelength range of the outgoing light based on the light guide plate as much as possible can be preferably used.

【0071】当該出射光に輝線スペクトル等の主波長が
ある場合には、その1種又は2種以上の主波長に対して
コレステリック液晶相等に基づく反射光の波長を一致さ
せることが偏光分離の効率性等の点より次善策となり、
必要重畳数の減少化等による円偏光分離層の薄層化にも
有利である。その場合、反射光の波長の一致の程度は、
導光板の1種又は2種以上の主波長光に対してそれぞれ
20nm以内の範囲とすることが好ましい。
When the emitted light has a dominant wavelength such as an emission line spectrum, it is necessary to match the wavelength of the reflected light based on the cholesteric liquid crystal phase with one or more dominant wavelengths of the polarized light separation efficiency. It becomes the next best measure from the viewpoint of sex,
It is also advantageous for thinning the circularly polarized light separation layer by reducing the required number of superpositions. In that case, the degree of matching of the wavelengths of the reflected light is
It is preferable to set the range within 20 nm for each of one or more main wavelengths of the light guide plate.

【0072】なおコレステリック液晶としては、適宜な
ものを用いてよく、特に限定はない。位相差の大きいコ
レステリック液晶分子ほど選択反射の波長域が広くな
り、層数の軽減や大視野角時の波長シフトに対する余裕
などの点より好ましく用いうる。また重さや自立性等の
点よりは液晶ポリマーが好ましく用いうる。
As the cholesteric liquid crystal, an appropriate one may be used without any particular limitation. A cholesteric liquid crystal molecule having a larger phase difference has a wider selective reflection wavelength range, and can be preferably used from the viewpoints of a reduction in the number of layers and a margin for wavelength shift at a large viewing angle. A liquid crystal polymer can be preferably used in terms of weight and self-supporting property.

【0073】ちなみに、コレステリック液晶系の液晶ポ
リマーとしては、例えばポリエステル等の主鎖型液晶ポ
リマー、アクリル主鎖やメタクリル主鎖、シロキサン主
鎖等からなる側鎖型液晶ポリマー、低分子カイラル剤含
有のネマチック系液晶ポリマー、キラル成分導入の液晶
ポリマー、ネマチック系とコレステリック系の混合液晶
ポリマーなどがあげられる。取扱い性の点より、ガラス
転移温度が30〜150℃の液晶ポリマーが好ましく用
いうる。
Incidentally, as the cholesteric liquid crystal type liquid crystal polymer, for example, a main chain type liquid crystal polymer such as polyester, a side chain type liquid crystal polymer having an acrylic main chain, a methacrylic main chain, a siloxane main chain or the like, and a low molecular weight chiral agent are contained. Examples thereof include nematic liquid crystal polymers, chiral component-introduced liquid crystal polymers, and mixed nematic and cholesteric liquid crystal polymers. From the viewpoint of handleability, a liquid crystal polymer having a glass transition temperature of 30 to 150 ° C. can be preferably used.

【0074】液晶ポリマーによるコレステリック液晶層
の形成は、従来の配向処理に準じた方法で行いうる。ち
なみにその例としては、基板上にポリイミドやポリビニ
ルアルコール等の膜を形成してレーヨン布等でラビング
処理したものやSiOの斜方蒸着層等からなる適宜な配
向膜の上に液晶ポリマーを展開してガラス転移温度以
上、等方相転移温度未満に加熱し、液晶ポリマー分子が
グランジャン配向した状態でガラス転移温度未満に冷却
してガラス状態とし、当該配向が固定化された固化層を
形成する方法などがあげられる。
The formation of the cholesteric liquid crystal layer from the liquid crystal polymer can be carried out by a method according to the conventional alignment treatment. By the way, as an example, a liquid crystal polymer is spread on an appropriate alignment film formed by forming a film of polyimide, polyvinyl alcohol or the like on a substrate and rubbing it with rayon cloth, or an oblique vapor deposition layer of SiO. To a glass state by heating to a glass transition temperature or higher and lower than the isotropic phase transition temperature, and cooling to below the glass transition temperature in a state in which the liquid crystal polymer molecules are Grandjean aligned to form a solidified layer in which the orientation is fixed. The method etc. are given.

【0075】前記の基板としては、例えばトリアセチル
セルロースやポリビニルアルコール、ポリイミドやポリ
アリレート、ポリエステルやポリカーボネート、ポリス
ルホンやポリエーテルスルホン、エポキシ系樹脂の如き
プラスチックからなるフイルム、あるいはガラス板など
の適宜なものを用いうる。
As the above-mentioned substrate, for example, triacetyl cellulose, polyvinyl alcohol, polyimide, polyarylate, polyester, polycarbonate, polysulfone, polyether sulfone, a film made of a plastic such as an epoxy resin, or a suitable glass plate, etc. Can be used.

【0076】基板上に形成した液晶ポリマーの固化層
は、基板との一体物としてそのまま円偏光分離層に用い
うるし、基板より剥離してフィルム等からなる円偏光分
離層として用いることもできる。フィルムからなる基板
との一体物として形成する場合には、偏光の状態変化の
防止性などの点より、位相差が可及的に小さいフィルム
を用いることが好ましい。なお円偏光分離層は、導光板
の出射面に直接設けることもできる。
The solidified layer of the liquid crystal polymer formed on the substrate can be used as it is for the circularly polarized light separating layer as an integral part of the substrate, or can be peeled from the substrate and used as the circularly polarized light separating layer made of a film or the like. When it is formed as an integral body with a substrate made of a film, it is preferable to use a film having a phase difference as small as possible from the viewpoint of prevention of change in polarization state. The circularly polarized light separating layer may be directly provided on the exit surface of the light guide plate.

【0077】液晶ポリマーの展開は、加熱溶融方式によ
ってもよいし、溶剤による溶液として展開することもで
きる。その溶剤としては、例えば塩化メチレンやシクロ
ヘキサノン、トリクロロエチレンやテトラクロロエタ
ン、N−メチルピロリドンやテトラヒドロフランなどの
適宜なものを用いうる。展開は、バーコーターやスピナ
ー、ロールコーター、グラビア印刷方式などの適宜な塗
工機にて行うことができる。展開に際しては、必要に応
じ配向膜を介したコレステリック液晶層の重畳方式など
も採ることができる。
The liquid crystal polymer may be spread by a heating and melting method or as a solution with a solvent. As the solvent, for example, methylene chloride, cyclohexanone, trichloroethylene, tetrachloroethane, N-methylpyrrolidone, tetrahydrofuran or the like can be appropriately used. The development can be performed by an appropriate coating machine such as a bar coater, a spinner, a roll coater, or a gravure printing method. Upon development, a method of superposing a cholesteric liquid crystal layer with an alignment film interposed may be adopted if necessary.

【0078】コレステリック液晶層の厚さは、配向の乱
れや透過率低下の防止、選択反射性(円偏光二色性を示
す波長範囲)などの点より、0.5〜100μm、就中
1〜70μm、特に1〜50μmが好ましい。コレステリ
ック液晶層、ないし円偏光分離層の形成に際しては、安
定剤や可塑剤、あるいは金属類などからなる種々の添加
剤を必要に応じて配合することができる。
The thickness of the cholesteric liquid crystal layer is 0.5 to 100 μm, preferably 1 to 100 μm, from the viewpoints of preventing alignment disorder and transmittance reduction, and selective reflectivity (wavelength range showing circular dichroism). 70 μm, particularly preferably 1 to 50 μm. When forming the cholesteric liquid crystal layer or the circularly polarized light separating layer, various additives such as stabilizers, plasticizers, and metals can be blended as necessary.

【0079】本発明において用いる円偏光分離層は、例
えば低分子量体からなるコレステリック液晶層をガラス
やフィルム等の透明基材で挾持したセル形態、液晶ポリ
マーからなるコレステリック液晶層を透明基材で支持し
た形態、コレステリック液晶層の液晶ポリマーのフィル
ムからなる形態、それらの形態物を適宜な組合せで重畳
した形態などの適宜な形態とすることができる。
The circularly polarized light separating layer used in the present invention is, for example, a cell form in which a cholesteric liquid crystal layer made of a low molecular weight material is sandwiched between transparent substrates such as glass and film, and a cholesteric liquid crystal layer made of a liquid crystal polymer is supported by a transparent substrate. It is possible to adopt an appropriate form such as the above-mentioned form, a form made of a film of a liquid crystal polymer of the cholesteric liquid crystal layer, or a form in which those forms are superposed in an appropriate combination.

【0080】前記の場合、コレステリック液晶層をその
強度や操作性などに応じて1層又は2層以上の支持体で
保持することもできる。2層以上の支持体を用いる場合
には、偏光の状態変化を防止する点などより例えば無配
向のフィルムや、配向しても複屈折の小さいトリアセテ
ートフィルムなどの如く位相差が可及的に小さいものが
好ましく用いうる。
In the above case, the cholesteric liquid crystal layer may be held by one or two or more supports depending on the strength and operability. When a support having two or more layers is used, the retardation is as small as possible, for example, a non-oriented film or a triacetate film having a small birefringence even if oriented, from the viewpoint of preventing a change in the polarization state. Those can be preferably used.

【0081】なお円偏光分離層は、上記の分離性能の均
一化や斜め入射光の波長シフトに対処する点等より平坦
な層として形成されていることが好ましく、重畳物の場
合にも各層は平坦なものであることが好ましい。コレス
テリック液晶層の重畳には、製造効率や薄膜化などの点
より液晶ポリマーの使用が特に有利である。
The circularly polarized light separating layer is preferably formed as a flat layer from the viewpoints of uniformizing the above-mentioned separation performance and coping with the wavelength shift of obliquely incident light. It is preferably flat. For the superposition of the cholesteric liquid crystal layer, the use of a liquid crystal polymer is particularly advantageous in terms of production efficiency and thinning.

【0082】図1〜図3に例示の如く、導光板1の出射
面側に円偏光分離層4を配置することで、導光板より出
射した光が円偏光分離層に入射し、左右の内の所定(仮
に左)の円偏光は透過し、所定外(右)の円偏光は反射
され、その反射光は、戻り光として導光板に再入射す
る。導光板に再入射した光は、下面の反射層等からなる
反射機能部分で反射されて再び円偏光分離層に入射し、
透過光と反射光(再々入射光)に再度分離される。
As shown in FIGS. 1 to 3, by disposing the circularly polarized light separating layer 4 on the exit surface side of the light guide plate 1, the light emitted from the light guide plate is incident on the circularly polarized light separating layer, and the left and right portions are separated. The predetermined (provisionally left) circularly polarized light is transmitted, and the non-predetermined (right) circularly polarized light is reflected, and the reflected light re-enters the light guide plate as return light. The light that has re-entered the light guide plate is reflected by the reflective function portion including the reflective layer on the lower surface and re-enters the circularly polarized light separating layer,
It is again separated into transmitted light and reflected light (re-incident light).

【0083】従って、反射光としての再入射光は、円偏
光分離層を透過しうる所定の円偏光となるまで円偏光分
離層と導光板との間に閉じ込められて反射を繰返すこと
となるが、本発明においては再入射光の利用効率等の点
より、上記したように可及的に少ない繰返し数で、就
中、初回の再入射光が反射の繰返しなく出射するように
したものが好ましい。
Therefore, the re-incident light as the reflected light is confined between the circularly polarized light separating layer and the light guide plate and is repeatedly reflected until it becomes a predetermined circularly polarized light which can be transmitted through the circularly polarized light separating layer. In the present invention, from the viewpoint of the efficiency of use of the re-incident light, etc., it is preferable that the first re-incident light is emitted without repetition of reflection, with the number of repetitions being as small as possible as described above. .

【0084】図2や図3に例示の如く、円偏光分離層4
の光出射側(上方)には直線偏光変換手段としての位相
差層5を設けることができる。その場合には、円偏光分
離層より出射した円偏光が位相差層に入射して位相変化
を受け、その位相変化が1/4波長に相当する波長の光
は直線偏光に変換され、他の波長光は楕円偏光に変換さ
れる。変換された楕円偏光は、前記の直線偏光に変換さ
れた光の波長に近いほど扁平な楕円偏光となる。かかる
結果、偏光板を透過しうる直線偏光成分を多く含む状態
の光が位相差層より出射される。
As illustrated in FIGS. 2 and 3, the circularly polarized light separating layer 4
On the light emission side (upper side) of the above, a retardation layer 5 as a linear polarization conversion means can be provided. In that case, the circularly polarized light emitted from the circularly polarized light separating layer is incident on the phase difference layer and undergoes a phase change, and the light having a wavelength corresponding to the quarter phase change is converted into linearly polarized light. Wavelength light is converted to elliptically polarized light. The converted elliptically polarized light becomes flatter elliptically polarized light as it becomes closer to the wavelength of the light converted to the linearly polarized light. As a result, light having a large amount of linearly polarized light components that can pass through the polarizing plate is emitted from the retardation layer.

【0085】前記の如く、円偏光分離層の光出射側に必
要に応じて配置する位相差層は、円偏光分離層より出射
した円偏光を直線偏光成分の多い状態に変換することを
目的とするものである。直線偏光成分の多い状態に変換
することにより、偏光板を透過しやすい光とすることが
できる。この偏光板は、例えば液晶表示装置の場合、液
晶セルに対する視野角の変化で発生する偏光特性の低下
を防止して表示品位を維持する光学素子や、より高度な
偏光度を実現してよりよい表示品位を達成する光学素子
などとして機能するものである。
As described above, the phase difference layer, which is arranged on the light emitting side of the circularly polarized light separating layer as necessary, is intended to convert the circularly polarized light emitted from the circularly polarized light separating layer into a state in which the linearly polarized light component is large. To do. By converting into a state in which there is a large amount of linearly polarized light component, it is possible to make the light easily transmitted through the polarizing plate. In the case of a liquid crystal display device, for example, this polarizing plate is an optical element that prevents deterioration of polarization characteristics caused by a change in viewing angle with respect to a liquid crystal cell and maintains display quality, and realizes a higher degree of polarization. It functions as an optical element that achieves display quality.

【0086】すなわち前記において、偏光板を用いず
に、円偏光分離層よりの出射偏光をそのまま液晶セルに
入射させて表示を達成することは可能であるが、偏光板
を介することで前記した表示品位の向上等をはかりうる
ことから必要に応じて偏光板が用いられる場合がある。
その場合に、偏光板に対する透過率の高いほど表示の明
るさの点より有利であり、その透過率は偏光板の偏光軸
(透過軸)と一致する偏光方向の直線偏光成分を多く含
むほど高くなるので、それを目的に直線偏光変換手段を
介して円偏光分離層よりの出射偏光を所定の直線偏光に
変換するものである。
That is, in the above, it is possible to achieve the display by directly entering the outgoing polarized light from the circularly polarized light separating layer into the liquid crystal cell without using the polarizing plate, but by using the polarizing plate, the above-mentioned display is achieved. A polarizing plate may be used as necessary because it can improve the quality.
In that case, the higher the transmittance to the polarizing plate is, the more advantageous it is in terms of display brightness, and the higher the transmittance is, the more the linear polarization component in the polarization direction that matches the polarization axis (transmission axis) of the polarizing plate is included. Therefore, for that purpose, the outgoing polarized light from the circularly polarized light separating layer is converted into a predetermined linear polarized light through the linear polarized light converting means.

【0087】ちなみに、通例のヨウ素系偏光板に自然光
や円偏光を入射させた場合、その透過率は約43%程度
であるが、直線偏光を偏光軸を一致させて入射させた場
合には80%を超える透過率を得ることができ、従って
光の利用効率が大幅に向上して明るさに優れる液晶表示
などが可能となる。またかかる偏光板では、99.99
%に達する偏光度も達成できる。円偏光分離層の単独で
は、かかる高偏光度の達成は困難で、特に斜めからの入
射光に対する偏光度が低下しやすい。
By the way, when natural light or circularly polarized light is made incident on a usual iodine type polarizing plate, its transmittance is about 43%, but when linearly polarized light is made incident with the polarization axes aligned, it becomes 80%. It is possible to obtain a transmissivity in excess of%, so that the utilization efficiency of light is significantly improved and a liquid crystal display or the like having excellent brightness can be realized. Moreover, in such a polarizing plate, 99.99
A degree of polarization of up to% can also be achieved. It is difficult to achieve such a high degree of polarization by using the circularly polarized light separating layer alone, and the degree of polarization with respect to obliquely incident light is likely to decrease.

【0088】位相差層としては、円偏光分離層より出射
した円偏光を、1/4波長の位相差に相当して直線偏光
を多く形成しうると共に、他の波長の光を前記直線偏光
と可及的にパラレルな方向に長径方向を有し、かつ可及
的に直線偏光に近い扁平な楕円偏光に変換しうるものが
好ましい。位相差層は、円偏光分離層や拡散層、あるい
は液晶セルの偏光板と一体的に設けることもできる。
As the retardation layer, the circularly polarized light emitted from the circularly polarized light separating layer can form a large amount of linearly polarized light corresponding to the phase difference of 1/4 wavelength, and light of other wavelengths can be converted to the linearly polarized light. Those having a major axis in parallel directions as much as possible and capable of converting into flat elliptically polarized light as close to linearly polarized light as possible are preferable. The retardation layer may be provided integrally with the circularly polarized light separation layer, the diffusion layer, or the polarizing plate of the liquid crystal cell.

【0089】前記の如き位相差層を用いることにより、
その出射光の直線偏光方向や楕円偏光の長径方向が偏光
板の透過軸と可及的に平行になるように配置して、偏光
板を透過しうる直線偏光成分の多い状態の光を得ること
ができる。位相差層は、適宜な材質で形成でき、透明で
均一な位相差を与えるものが好ましく、一般には位相差
板が用いられる。
By using the retardation layer as described above,
Arrange so that the linear polarization direction of the emitted light and the major axis direction of the elliptically polarized light are as parallel as possible to the transmission axis of the polarizing plate, and obtain light with a large amount of linearly polarized light components that can pass through the polarizing plate. You can The retardation layer can be formed of an appropriate material and is preferably transparent and gives a uniform retardation. Generally, a retardation plate is used.

【0090】位相差層にて付与する位相差は、円偏光分
離層より出射される円偏光の波長域などに応じて適宜に
決定しうる。ちなみに可視光域では波長範囲や変換効率
等の点より、殆どの位相差板がその材質特性より正の複
屈折の波長分散を示すものであることも加味して、その
位相差が小さいもの、就中100〜180nm、特に11
0〜150nm以下の位相差を与えるものが好ましく用い
うる。
The retardation imparted by the retardation layer can be appropriately determined according to the wavelength range of circularly polarized light emitted from the circularly polarized light separating layer. Incidentally, in view of the wavelength range and conversion efficiency in the visible light region, taking into consideration that most retardation plates exhibit positive birefringence wavelength dispersion than their material characteristics, the phase difference is small, Especially 100-180nm, especially 11
A material that gives a phase difference of 0 to 150 nm or less can be preferably used.

【0091】位相差板は、1層又は2以上の重畳層とし
て形成することができる。1層からなる位相差板の場合
には、複屈折の波長分散が小さいものほど波長毎の偏光
状態の均一化をはかることができて好ましい。一方、位
相差板の重畳化は、波長域における波長特性の改良に有
効であり、その組合せは波長域などに応じて適宜に決定
してよい。
The retardation plate can be formed as one layer or as a superposed layer of two or more layers. In the case of a retardation plate consisting of one layer, it is preferable that the birefringence has a smaller wavelength dispersion because the polarization state can be made uniform for each wavelength. On the other hand, the superposition of retardation plates is effective for improving the wavelength characteristics in the wavelength range, and the combination thereof may be appropriately determined according to the wavelength range and the like.

【0092】なお可視光域を対象に2層以上の位相差板
とする場合、上記の如く100〜180nmの位相差を与
える層を1層以上の奇数層として含ませることが直線偏
光成分の多い光を得る点より好ましい。100〜180
nmの位相差を与える層以外の層は、通例200〜400
nmの位相差を与える層で形成することが波長特性の改良
等の点より好ましいが、これに限定するものではない。
When a retardation plate having two or more layers for the visible light region is used, it is often the case that a layer giving a retardation of 100 to 180 nm is included as one or more odd-numbered layers as a linear polarization component. It is preferable in terms of obtaining light. 100-180
The layers other than the layer that gives the phase difference of nm are usually 200 to 400.
It is preferable to form a layer that gives a phase difference of nm from the viewpoint of improving wavelength characteristics and the like, but it is not limited to this.

【0093】位相差板は、例えばポリカーボネートやポ
リスルホン、ポリエステルやポリメチルメタクリレー
ト、ポリアミドやポリビニールアルコール等からなるフ
ィルムを延伸処理してなる複屈折性シートなどとして得
ることができる。発光強度や発光色を広い視野角で均一
に維持する点よりは、位相差層の面内における位相差の
誤差が小さいほど好ましく、就中、その誤差が±10nm
以下であることが好ましい。
The retardation plate can be obtained, for example, as a birefringent sheet obtained by stretching a film made of polycarbonate, polysulfone, polyester, polymethylmethacrylate, polyamide, polyvinyl alcohol or the like. From the viewpoint of maintaining uniform emission intensity and emission color over a wide viewing angle, it is preferable that the in-plane retardation error of the retardation layer is small, and in particular, the error is ± 10 nm.
The following is preferable.

【0094】位相差層に設定する位相差や光学軸の方向
は、目的とする直線偏光の振動方向などに応じて適宜に
決定することができる。ちなみに135nmの位相差を与
える位相差層の場合、円偏光の向きに応じて光学軸に対
し振動方向が+45度又は−45度の直線偏光(波長5
40nm)が得られる。なお位相差層が2層以上からなる
場合、特にその外部側表面層を100〜180nmの位相
差を与える層が占める場合にはその層に基づいて配置角
度を設定することが好ましい。
The retardation and the direction of the optical axis set in the retardation layer can be appropriately determined according to the intended vibration direction of the linearly polarized light. By the way, in the case of a retardation layer that gives a retardation of 135 nm, depending on the direction of circularly polarized light, the vibration direction is +45 degrees or -45 degrees linearly polarized light (wavelength 5
40 nm) is obtained. When the retardation layer is composed of two or more layers, particularly when the outer surface layer is occupied by a layer giving a retardation of 100 to 180 nm, it is preferable to set the arrangement angle based on the layer.

【0095】上記のように本発明による偏光光源装置
は、円偏光分離層による反射光(再入射光)を偏光変換
による出射光として再利用することで反射ロス等を防止
し、その出射光を必要に応じ位相差層等を介し直線偏光
成分をリッチに含む光状態に変換して偏光板を透過しや
すくし吸収ロスを防止して、光利用効率の向上をはかり
うるようにしたものである。この方式により、理想的に
は偏光板を透過する光量を約2倍に増量しうるが、光源
として利用する点よりは、偏光板を透過しうる直線偏光
成分を65%以上、就中70%以上含むことが好まし
い。
As described above, in the polarized light source device according to the present invention, the reflected light (re-incident light) by the circularly polarized light separating layer is reused as the emitted light by the polarization conversion to prevent the reflection loss and the like and to prevent the emitted light. If necessary, it is possible to improve the light utilization efficiency by converting the linearly polarized light component into a rich optical state through a retardation layer or the like to easily transmit through a polarizing plate and prevent absorption loss. . By this method, ideally, the amount of light transmitted through the polarizing plate can be doubled, but from the point of use as a light source, the linearly polarized light component that can pass through the polarizing plate is 65% or more, especially 70%. It is preferable to include the above.

【0096】本発明による偏光光源装置は、上記の如く
光の利用効率に優れて明るく、垂直性に優れて明暗ムラ
の少ない光を提供し、大面積化等も容易であることより
液晶表示装置等におけるバックライトシステムなどとし
て種々の装置に好ましく用いることができる。
As described above, the polarized light source device according to the present invention provides light that is excellent in light utilization efficiency, bright, and excellent in verticality and has little unevenness in brightness and darkness. It can be preferably used for various devices such as a backlight system in the above.

【0097】図11に本発明による偏光光源装置8をバ
ックライトシステムに用いた液晶表示装置9を例示し
た。91が下側の偏光板、92が液晶セル、93が上側
の偏光板、94が補償用拡散板である。下側の偏光板9
1や補償用拡散板94は、必要に応じて設けられる。
FIG. 11 illustrates a liquid crystal display device 9 using the polarized light source device 8 according to the present invention in a backlight system. Reference numeral 91 is a lower polarizing plate, 92 is a liquid crystal cell, 93 is an upper polarizing plate, and 94 is a compensating diffusion plate. Lower polarizing plate 9
1 and the compensation diffusion plate 94 are provided as needed.

【0098】液晶表示装置は一般に、液晶シャッタとし
て機能する液晶セルとそれに付随の駆動装置、偏光板、
バックライト、及び必要に応じての補償用位相差板等の
構成部品を適宜に組立てることなどにより形成される。
本発明においては、上記した偏光光源装置を用いる点を
除いて特に限定はなく、従来に準じて形成することがで
きる。特に、直視型の液晶表示装置を好ましく形成する
ことができる。
Generally, a liquid crystal display device includes a liquid crystal cell functioning as a liquid crystal shutter and a driving device, a polarizing plate,
It is formed by appropriately assembling components such as a backlight and, if necessary, a retardation plate for compensation.
The present invention is not particularly limited except that the above-mentioned polarized light source device is used, and it can be formed according to the conventional method. In particular, a direct-viewing type liquid crystal display device can be preferably formed.

【0099】従って用いる液晶セルについては特に限定
はなく、適宜なものを用いうる。就中、偏光状態の光を
液晶セルに入射させて表示を行うものに有利に用いら
れ、例えばツイストネマチック液晶やスーパーツイスト
ネマチック液晶を用いた液晶セル等に好ましく用いうる
が、非ツイスト系の液晶や二色性染料を液晶中に分散さ
せたゲストホスト系の液晶、あるいは強誘電性液晶を用
いた液晶セルなどにも用いうる。液晶の駆動方式につい
ても特に限定はない。
Therefore, the liquid crystal cell to be used is not particularly limited, and an appropriate one can be used. In particular, it is advantageously used for displaying by making light in a polarized state incident on a liquid crystal cell, and can be preferably used, for example, in a liquid crystal cell using a twisted nematic liquid crystal or a super twisted nematic liquid crystal, but a non-twisted liquid crystal. Also, it can be used for guest-host liquid crystal in which a dichroic dye is dispersed in liquid crystal, or a liquid crystal cell using ferroelectric liquid crystal. The liquid crystal driving method is not particularly limited.

【0100】なお高度な直線偏光の入射による良好なコ
ントラスト比の表示を得る点よりは偏光板として、特に
バックライト側の偏光板として、例えばヨウ素系や染料
系の吸収型直線偏光子などの如く偏光度の高いものを用
いた液晶表示装置が好ましい。またバックライト側の偏
光板、すなわち拡散層の光出射側の偏光板と拡散層の光
学軸とを一致又は近似させた配置状態が光利用効率の点
などより好ましい。
From the point of view of obtaining a good contrast ratio by the incidence of a high degree of linearly polarized light, as a polarizing plate, particularly as a polarizing plate on the backlight side, for example, an iodine type or dye type absorption type linear polarizer, etc. A liquid crystal display device using one having a high degree of polarization is preferable. In addition, a polarizing plate on the backlight side, that is, a state in which the polarizing plate on the light emitting side of the diffusion layer and the optical axis of the diffusion layer are aligned or approximate to each other is preferable from the viewpoint of light utilization efficiency.

【0101】液晶表示装置の形成に際しては、例えば視
認側の偏光板の上に設ける拡散板やアンチグレア層、反
射防止膜や保護層や保護板、あるいは液晶セルと偏光板
の間に設ける補償用位相差板などの適宜な光学素子を適
宜に配置することができる。
When forming a liquid crystal display device, for example, a diffusion plate or an antiglare layer provided on the polarizing plate on the viewing side, an antireflection film, a protective layer or a protective plate, or a compensating retardation plate provided between the liquid crystal cell and the polarizing plate. Appropriate optical elements such as the above can be appropriately arranged.

【0102】前記の補償用位相差板は、複屈折の波長依
存性などを補償して視認性の向上等をはかることを目的
とするものである。本発明においては、視認側又は/及
びバックライト側の偏光板と液晶セルの間等に必要に応
じて配置される。なお補償用位相差板としては、波長域
などに応じて適宜なものを用いることができ、1層又は
2層以上の重畳層として形成されていてよい。補償用位
相差板は、上記した直線偏光変換用の位相差板で例示の
延伸フィルムなどとして得ることができる。
The above-mentioned compensating retardation plate is intended to improve the visibility by compensating for the wavelength dependency of birefringence and the like. In the present invention, it is arranged between the polarizing plate on the viewing side and / or the backlight side and the liquid crystal cell as necessary. As the retardation plate for compensation, an appropriate one may be used depending on the wavelength range and the like, and may be formed as one layer or a superposed layer of two or more layers. The retardation plate for compensation can be obtained as a stretched film or the like exemplified as the retardation plate for linearly polarized light conversion described above.

【0103】本発明において、上記した偏光光源装置や
液晶表示装置を形成する光学素子ないし部品は、全体的
又は部分的に積層一体化されて固着されていてもよい
し、分離容易な状態に配置したものであってもよい。液
晶表示装置等の形成に際しては、垂直性や平行光性に優
れる出射光を供給し、円偏光分離層を介した再入射光も
散乱等によるロスや角度変化の少ない状態で、かつ初期
出射光との方向の一致性よく再出射して、視認性の向上
に有効な方向の出射光を効率よく供給する偏光光源装置
が好ましく用いうる。
In the present invention, the optical elements or parts forming the above-mentioned polarized light source device or liquid crystal display device may be wholly or partially laminated and integrally fixed, or may be arranged in an easily separable state. It may be one. When forming a liquid crystal display device, etc., the emitted light with excellent verticality and parallelism is supplied, and the re-incident light that has passed through the circularly polarized light separation layer is in a state with little loss or angular change due to scattering etc. It is preferable to use a polarized light source device that re-emites light with a good coincidence with the direction and efficiently supplies the emitted light in the direction effective for improving the visibility.

【0104】[0104]

【実施例】【Example】

参考例1 アクリル系の主鎖を有するガラス転移温度が57℃の側
鎖型コレステリック液晶ポリマーを、トリアセチルセル
ロースフィルムのポリイミドラビング処理面にスピンコ
ート方式で成膜後、140℃で30秒間加熱後さらに1
20℃で2分間加熱して急冷し、鏡面状の選択反射状態
を呈する円偏光分離板を得た。これは、420〜505
nmの波長範囲で良好な選択反射性を示し、この領域で9
0%以上を正反射方向に選択反射するものであった。
Reference Example 1 After forming a side chain type cholesteric liquid crystal polymer having an acrylic main chain and a glass transition temperature of 57 ° C. on a polyimide rubbing-treated surface of a triacetyl cellulose film by spin coating, heating at 140 ° C. for 30 seconds 1 more
It was heated at 20 ° C. for 2 minutes and rapidly cooled to obtain a circularly polarized light separating plate exhibiting a specular selective reflection state. This is 420-505
Shows good selective reflectivity in the wavelength range of nm,
0% or more was selectively reflected in the regular reflection direction.

【0105】参考例2 アクリル系の主鎖を有するガラス転移温度が64℃の側
鎖型コレステリック液晶ポリマーを、トリアセチルセル
ロースフィルムのポリイミドラビング処理面にスピンコ
ート方式で成膜後、150℃で30秒間加熱後さらに1
30℃で2分間加熱して急冷し、鏡面状の選択反射状態
を呈する円偏光分離板を得た。これは、500〜590
nmの波長範囲で良好な選択反射性を示し、この領域で9
0%以上を正反射方向に選択反射するものであった。
Reference Example 2 After forming a side chain type cholesteric liquid crystal polymer having an acrylic main chain and a glass transition temperature of 64 ° C. on a polyimide rubbing-treated surface of a triacetyl cellulose film by a spin coating method, the film was formed at 150 ° C. at 30 ° C. 1 second after heating for 1 second
It was heated at 30 ° C. for 2 minutes and rapidly cooled to obtain a circularly polarized light separating plate exhibiting a specular selective reflection state. This is 500-590
Shows good selective reflectivity in the wavelength range of nm,
0% or more was selectively reflected in the regular reflection direction.

【0106】参考例3 アクリル系の主鎖を有するガラス転移温度が75℃の側
鎖型コレステリック液晶ポリマーを、トリアセチルセル
ロースフィルムのポリイミドラビング処理面にスピンコ
ート方式で成膜後、170℃で30秒間加熱後さらに1
45℃で2分間加熱して急冷し、鏡面状の選択反射状態
を呈する円偏光分離板を得た。これは、595〜705
nmの波長範囲で良好な選択反射性を示し、この領域で9
0%以上を正反射方向に選択反射するものであった。
Reference Example 3 A side-chain cholesteric liquid crystal polymer having an acrylic main chain and a glass transition temperature of 75 ° C. was spin-coated on the polyimide rubbing-treated surface of a triacetyl cellulose film, and then at 170 ° C. for 30 minutes. 1 second after heating for 1 second
It was heated at 45 ° C. for 2 minutes and cooled rapidly to obtain a circularly polarized light separating plate exhibiting a specular selective reflection state. This is 595-705
Shows good selective reflectivity in the wavelength range of nm,
0% or more was selectively reflected in the regular reflection direction.

【0107】参考例4 参考例1、参考例2及び参考例3で得た円偏光分離板を
積層して重畳型の円偏光分離板を得た。これは、420
〜705nmの波長範囲で良好な選択反射性を示し、この
領域で90%以上を正反射方向に選択反射するものであ
った。
Reference Example 4 The circularly polarized light separating plates obtained in Reference Example 1, Reference Example 2 and Reference Example 3 were laminated to obtain a superimposed circularly polarized light separating plate. This is 420
Good selective reflectivity was exhibited in the wavelength range of ˜705 nm, and 90% or more of this region was selectively reflected in the specular reflection direction.

【0108】実施例1 ポリメチルメタクリレートを加熱溶融させて180℃の
金属金型に注入して1時間保持した後、徐冷して面内位
相差が10nm以下の導光板を得た。この導光板は、幅1
95mm、奥行150mm、入射面の厚さ5mm、その対向端
の厚さ1mm、上面は平坦、下面は入射面からその対向端
に向かって平面に近い下側に突出した湾曲面(図6)
に、入射面に平行な凹部(図8a)を有効幅185mmで
有してその凹部は表1に示した形態を有するものであっ
た。
Example 1 Polymethylmethacrylate was melted by heating, poured into a metal mold at 180 ° C., held for 1 hour, and then gradually cooled to obtain a light guide plate having an in-plane retardation of 10 nm or less. This light guide plate has a width of 1
95 mm, depth 150 mm, incident surface thickness 5 mm, opposite end thickness 1 mm, upper surface is flat, lower surface is a curved surface projecting from the incident surface toward the opposite end to a lower surface close to a plane (FIG. 6)
In addition, there was a recess (FIG. 8a) parallel to the incident surface with an effective width of 185 mm, and the recess had the form shown in Table 1.

【0109】なお前記の凹部は、表面形状測定装置で測
定したものである。凹部の横断面における仮想下辺を基
準辺として、頂点(短辺面と長辺面の交点)からの基準
辺に対する法線で分割される左右の辺の長さに基づいて
短辺面と長辺面の上面への投影幅を決定し、頂点と基準
辺間の法線長さにより高さを決定した。なお上面に対す
る角度の、短辺面(θ2)と長辺面(θ1)とでの±の符
号の逆転は、上面を基準とした場合に計測方向が逆転す
ることを意味し、短辺面の計測方向を正方向としたこと
による。
The concave portion is measured by a surface shape measuring device. Based on the length of the left and right sides divided by the normal to the reference side from the apex (the intersection of the short side surface and the long side surface) with the virtual lower side in the cross section of the recess as the reference side, the short side surface and the long side The projected width of the surface on the upper surface was determined, and the height was determined by the normal length between the apex and the reference side. The reversal of the sign of ± between the short side surface (θ 2 ) and the long side surface (θ 1 ) with respect to the upper surface means that the measurement direction is reversed when the upper surface is used as a reference. This is because the measurement direction of the surface is the positive direction.

【0110】[0110]

【表1】 [Table 1]

【0111】前記で得た導光板の入射面に直径3mmの冷
陰極管を配置し、銀蒸着を施したポリエチレンテレフタ
レートフィルムからなる光源ホルダにて冷陰極管を包囲
し、導光板の下面に銀蒸着を施したポリエチレンテレフ
タレートフィルムからなる反射シートを銀蒸着面側を介
し配置してサイドライト型の面光源装置を得、その上面
に参考例4で得た円偏光分離板と、位相差が135nmの
位相差板をその順序で配置すると共に、拡散シートを配
置して偏光光源装置を得た。なお拡散シートの配置位置
は、導光板と円偏光分離板の間、円偏光分離板と位相差
板の間、又は位相差板の上面の3種とした。
A cold cathode tube having a diameter of 3 mm is arranged on the incident surface of the light guide plate obtained as described above, and the cold cathode tube is surrounded by a light source holder made of a polyethylene terephthalate film on which silver is vapor-deposited. A side sheet type surface light source device was obtained by arranging a reflection sheet made of a vapor-deposited polyethylene terephthalate film with the silver vapor deposition surface side interposed between the circularly polarized light separating plate obtained in Reference Example 4 and the phase difference of 135 nm. The retardation plate of 1 was arranged in that order, and the diffusion sheet was arranged to obtain a polarized light source device. The positions of the diffusing sheets were set between the light guide plate and the circularly polarized light separating plate, between the circularly polarized light separating plate and the retardation plate, or on the upper surface of the retardation plate.

【0112】前記の拡散シートは、平均粒径1μmでそ
の標準偏差が0.1μmのシリカ微粒子10部(重量
部、以下同じ)を市販の紫外線硬化樹脂100部に分散
させ、その分散液を厚さ50μmのトリアセチルセルロ
ースフィルムの表面に塗布し、紫外線で硬化処理して得
たものである。
In the above diffusion sheet, 10 parts (parts by weight, the same applies hereinafter) of silica fine particles having an average particle size of 1 μm and a standard deviation of 0.1 μm are dispersed in 100 parts of a commercially available ultraviolet curable resin, and the dispersion liquid is thickened. It was obtained by applying it to the surface of a 50 μm thick triacetyl cellulose film and curing it with ultraviolet rays.

【0113】実施例2 シリカ微粒子の使用量を20部としたほかは実施例1に
準じて拡散シートを得、それを用いて偏光光源装置を得
た。
Example 2 A diffusion sheet was obtained in the same manner as in Example 1 except that the amount of silica fine particles used was 20 parts, and a polarizing light source device was obtained using the diffusion sheet.

【0114】実施例3 平均粒径が2μmのシリカ微粒子を用いたほかは実施例
1に準じて拡散シートを得、それを用いて偏光光源装置
を得た。
Example 3 A diffusion sheet was obtained in the same manner as in Example 1 except that silica fine particles having an average particle size of 2 μm were used, and a polarizing light source device was obtained using the diffusion sheet.

【0115】比較例1 トリアセチルセルロースフィルムに代えて、二軸延伸ポ
リエチレンテレフタレートフィルムを用いたほかは実施
例1に準じて拡散シートを得、それを用いて偏光光源装
置を得た。
Comparative Example 1 A diffusion sheet was obtained in the same manner as in Example 1 except that a biaxially stretched polyethylene terephthalate film was used instead of the triacetyl cellulose film, and a polarizing light source device was obtained by using the diffusion sheet.

【0116】比較例2 シリカ微粒子に代えて、平均粒径が1.5μmの酸化チ
タン粉末を用いたほかは実施例1に準じて拡散シートを
得、それを用いて偏光光源装置を得た。
Comparative Example 2 A diffusion sheet was obtained in the same manner as in Example 1 except that titanium oxide powder having an average particle diameter of 1.5 μm was used instead of the silica fine particles, and a polarizing light source device was obtained using the diffusion sheet.

【0117】比較例3 平均粒径が8μmのシリカ微粒子を30部用いたほかは
実施例1に準じて拡散シートを得、それを用いて偏光光
源装置を得た。
Comparative Example 3 A diffusion sheet was obtained in the same manner as in Example 1 except that 30 parts of silica fine particles having an average particle diameter of 8 μm were used, and a polarized light source device was obtained using the diffusion sheet.

【0118】比較例4 実施例1に準じて得た拡散シートの基材側に同じトリア
セチルセルロースフィルムを光学軸を一致させて貼着し
た拡散シートを得、それを用いて実施例1に準じて偏光
光源装置を得た。
Comparative Example 4 A diffusion sheet obtained by adhering the same triacetylcellulose film to the substrate side of the diffusion sheet obtained according to Example 1 with the optical axes aligned, was used, and according to Example 1 A polarized light source device was obtained.

【0119】比較例5 拡散シートを用いないほかは実施例1に準じて偏光光源
装置を得た。
Comparative Example 5 A polarized light source device was obtained in the same manner as in Example 1 except that the diffusion sheet was not used.

【0120】評価試験1 実施例、比較例で得た拡散シートの塗工層の厚さを膜厚
測定装置(大塚電子社製、MCPD−1000)にて調
べると共に、表面粗さ計にて表面凹凸の平均高さを調べ
た。また拡散シートの正面方向と上下左右30度の角度
における位相差を複屈折測定装置(オーク社製、ADR
−100XY、TFM−120CFT)にて調べた。さ
らに位相差測定装置(大塚電子社製)を用いた回転検光
子法にて、直線偏光を入射させた際の長軸強度と短軸強
度を調べた。長短軸強度比は、上記したように偏光状態
の保存性能を示すものである。加えて拡散シートに平行
光線を垂直入射させた場合の透過率も調べた。
Evaluation Test 1 The thickness of the coating layers of the diffusion sheets obtained in Examples and Comparative Examples was examined with a film thickness measuring device (MCPD-1000 manufactured by Otsuka Electronics Co., Ltd.), and the surface was measured with a surface roughness meter. The average height of the irregularities was examined. In addition, the phase difference between the front direction of the diffusion sheet and the angle of 30 degrees vertically and horizontally is measured by a birefringence measuring device (ADR, ADR
-100XY, TFM-120CFT). Further, the long-axis intensity and the short-axis intensity when linearly polarized light was made incident were examined by a rotation analyzer method using a phase difference measuring device (manufactured by Otsuka Electronics Co., Ltd.). The long / short axis intensity ratio indicates the storage performance of the polarization state as described above. In addition, the transmittance when parallel rays were vertically incident on the diffusion sheet was also examined.

【0121】前記の結果を表2に示した。The above results are shown in Table 2.

【表2】 [Table 2]

【0122】なお前記において、拡散シートの配置位
置、すなわち導光板と円偏光分離板の間、円偏光分離板
と位相差板の間、又は位相差板の上面の配置位置の相違
で実質的な特性の相違は認められなかった。
In the above description, there is a substantial difference in characteristics due to the arrangement position of the diffusion sheet, that is, between the light guide plate and the circular polarization separation plate, between the circular polarization separation plate and the phase difference plate, or the arrangement position of the upper surface of the phase difference plate. I was not able to admit.

【0123】評価試験2 実施例、比較例で得た偏光光源装置の上面に、スーパー
ツイストネマチック液晶セルを配置して液晶表示装置を
得た。この液晶セルは、その両面に位相差板を設けてノ
ーマリーホワイトの白黒モードに調整したものであり、
液晶表示装置は円偏光分離板直上の位相差板の角度を変
化させて白状態時の透過率が最大となるように調整し
た。この液晶表示装置の非選択状態における表示状態を
観察し、拡散シートの有無による正面輝度の変化とモア
レ発生の有無を調べた。
Evaluation Test 2 A liquid crystal display device was obtained by disposing a super twist nematic liquid crystal cell on the upper surface of the polarized light source device obtained in each of Examples and Comparative Examples. This liquid crystal cell has retarders on both sides and is adjusted to a normally white monochrome mode.
The liquid crystal display device was adjusted so that the transmittance in the white state was maximized by changing the angle of the retardation plate directly above the circularly polarized light separating plate. The display state of the liquid crystal display device in the non-selected state was observed, and the change in front luminance due to the presence or absence of the diffusion sheet and the presence or absence of moire were examined.

【0124】前記の結果を表3に示した。The above results are shown in Table 3.

【表3】 [Table 3]

【0125】表2より、実施例及び比較例2,3で拡散
シートの位相差が30nm以下を満足し、比較例1では非
常に位相差が大きく、比較例4では57nmの位相差であ
ることがわかる。また実施例及び比較例1,4の拡散シ
ートはほぼ透明であったが、比較例2,3では乳白色で
あった。さらに表面粗さでは実施例及び比較例1,2,
4で平均高さ5μm以下を満足し、比較例3では9μmと
大きいことがわかる。加えて実施例では長/短軸強度比
が8/1以上であるが、比較例では4/1以下であり、
特に比較例2,3では長/短軸強度比だけでなく、検光
子を入れないときの観測強度も実施例より20%以上低
い値であった。
From Table 2, it is found that the retardation of the diffusion sheet in Examples and Comparative Examples 2 and 3 is less than 30 nm, the retardation in Comparative Example 1 is very large, and the retardation in Comparative Example 4 is 57 nm. I understand. The diffusion sheets of Examples and Comparative Examples 1 and 4 were almost transparent, but milky white in Comparative Examples 2 and 3. Further, in terms of surface roughness, Examples and Comparative Examples 1, 2,
It can be seen that in Example 4, the average height is 5 μm or less, and in Comparative Example 3, it is as large as 9 μm. In addition, the long / short axis strength ratio is 8/1 or more in the examples, but is 4/1 or less in the comparative examples,
In particular, in Comparative Examples 2 and 3, not only the long / short axis intensity ratio, but also the observed intensity without the analyzer was 20% or more lower than that of the example.

【0126】一方、表3より液晶表示装置では拡散シー
トを用いない比較例5でモアレが発生し、ギラギラとし
た表示であった。これに対し、拡散シートを用いた実施
例及び比較例1〜4ではモアレを防止し得たが、正面輝
度の低下が実施例の場合には拡散シートを用いないとき
の20%以下であったのに、比較例ではその低下が大き
く画面表示が暗いものであった。なお液晶表示装置とし
た場合にも、拡散シートの配置位置の相違で実質的な特
性の相違は認められなかった。
On the other hand, from Table 3, in the liquid crystal display device, the moire was generated in Comparative Example 5 in which the diffusion sheet was not used, and the display was glaring. On the other hand, in Examples and Comparative Examples 1 to 4 in which the diffusion sheet was used, moiré could be prevented, but the decrease in front luminance was 20% or less in the case of not using the diffusion sheet in the Example. However, in the comparative example, the decrease was large and the screen display was dark. Even in the case of a liquid crystal display device, no substantial difference in characteristics was observed due to the difference in the arrangement position of the diffusion sheet.

【0127】上記の結果より総合的に、実施例の場合に
はその拡散シートによって輝度の低下を抑制しつつ明る
い表示を達成でき、円偏光分離層と組合せた場合に高い
光利用効率を実現できて、モアレを防止した明るくて見
やすい高表示品位の液晶表示装置を形成できることがわ
かる。
From the above results, comprehensively, in the case of the embodiment, it is possible to achieve a bright display while suppressing a decrease in brightness by the diffusion sheet, and to realize high light utilization efficiency when combined with a circularly polarized light separating layer. Thus, it is possible to form a bright and easy-to-view high-quality liquid crystal display device that prevents moire.

【図面の簡単な説明】[Brief description of drawings]

【図1】偏光光源装置例の側面説明断面図FIG. 1 is a side sectional view showing an example of a polarized light source device.

【図2】他の偏光光源装置例の側面説明断面図FIG. 2 is a side explanatory cross-sectional view of another example of the polarized light source device.

【図3】さらに他の偏光光源装置例の側面説明断面図FIG. 3 is a side explanatory cross-sectional view of still another example of the polarized light source device.

【図4】導光板例の斜視説明図FIG. 4 is a perspective explanatory view of an example of a light guide plate.

【図5】他の導光板例の側面説明図FIG. 5 is a side view of another example of the light guide plate.

【図6】さらに他の導光板例の側面説明図FIG. 6 is an explanatory side view of still another example of the light guide plate.

【図7】さらに他の導光板例の側面説明図FIG. 7 is a side view of another example of the light guide plate.

【図8】凸部例の側面説明図FIG. 8 is an explanatory side view of an example of a convex portion.

【図9】凹部例の側面説明図FIG. 9 is a side view illustrating an example of a concave portion.

【図10】拡散層の有(a)又は無(b)による明暗ム
ラの説明図
FIG. 10 is an explanatory diagram of bright and dark unevenness due to presence (a) or absence (b) of a diffusion layer.

【図11】液晶表示装置例の側面説明断面図FIG. 11 is a side explanatory cross-sectional view of an example of a liquid crystal display device.

【符号の説明】[Explanation of symbols]

8:偏光光源装置 1:導光板 11:上面 12,16,17,18:下面 21,22,23,24:下面における凸部 25,26,27,28:下面における凹部 31,33,35,37,42,44,46,48:長
辺面 32,34,36,38,41,43,45,47:短
辺面 13:入射面 2,6:反射層 3:拡散層 4:円偏光分離層 5:位相差層 7:光源 9:液晶表示装置
8: polarized light source device 1: light guide plate 11: upper surface 12, 16, 17, 18: lower surface 21, 22, 23, 24: convex portion 25, 26, 27, 28 on lower surface: concave portion 31, 33, 35, on lower surface 37, 42, 44, 46, 48: Long side surfaces 32, 34, 36, 38, 41, 43, 45, 47: Short side surface 13: Incident surface 2, 6: Reflective layer 3: Diffusing layer 4: Circularly polarized light Separation layer 5: Retardation layer 7: Light source 9: Liquid crystal display device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−265892(JP,A) 特開 平7−20466(JP,A) 特開 平6−324333(JP,A) 特開 平7−36032(JP,A) 特開 平9−73083(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/00 F21V 8/00 G02F 1/13357 ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-6-265892 (JP, A) JP-A-7-20466 (JP, A) JP-A-6-324333 (JP, A) JP-A-7- 36032 (JP, A) JP-A-9-73083 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G02B 6/00 F21V 8/00 G02F 1/13357

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上下面の少なくとも一方に微細なプリズ
ム状凹凸を有して側面からの入射光を上下面の一方より
明暗ムラのある状態で出射する導光板の出射面側に円偏
光分離層と拡散層を有し、その拡散層が円偏光分離層に
よる反射光又は透過光に基づく偏光の通過する位置に配
置されていると共に、その拡散層の位相差が波長633
nmの垂直入射光に基づいて30nm以下であることを特徴
とする偏光光源装置。
1. A circularly polarized light separating layer on the exit surface side of a light guide plate which has fine prismatic irregularities on at least one of the upper and lower surfaces, and which allows incident light from the side surface to exit from one of the upper and lower surfaces in a state with uneven brightness. And a diffusion layer, and the diffusion layer becomes a circularly polarized light separation layer.
Is placed at a position where polarized light based on reflected light or transmitted light
And the phase difference of the diffusion layer is at a wavelength of 633.
A polarized light source device having a wavelength of 30 nm or less based on vertically incident light of nm.
【請求項2】 請求項1において、導光板におけるプリ
ズム状凹凸のピッチが20〜500μmであり、円偏光
分離層がシートからなると共に、拡散層の位相差が入射
角30度以内で入射した波長633nmの光に基づいて3
0nm以下である偏光光源装置。
2. The wavelength according to claim 1, wherein the pitch of the prismatic irregularities in the light guide plate is 20 to 500 μm, the circularly polarized light separating layer is made of a sheet, and the phase difference of the diffusing layer is an incident angle within 30 degrees. 3 based on 633 nm light
A polarized light source device having a wavelength of 0 nm or less.
【請求項3】 請求項1又は2において、拡散層が、一
方の面より入射した任意偏光面の直線偏光の他面よりの
透過光の回転検光子法による測定に基づく光の三刺激値
の内のYで示した長軸強度が短軸強度の5倍以上のもの
である偏光光源装置。
3. The tristimulus value of light according to claim 1 or 2, wherein the diffusion layer has a value obtained by measuring the transmitted light from the other side of the linearly polarized light of an arbitrary polarization plane which is incident from one side by the rotation analyzer method. A polarized light source device in which the major axis strength indicated by Y in the figure is 5 times or more the minor axis strength.
【請求項4】 請求項1〜3において、拡散層が、プラ
スチック基材にシリカ微粒子含有の樹脂層を設けた拡散
シートからなり、その樹脂層が谷部を基準とした平均高
さで5μm以下の凹凸表面を有するものである偏光光源
装置。
4. The diffusion layer according to any one of claims 1 to 3, wherein the diffusion layer is a diffusion sheet having a resin layer containing silica fine particles on a plastic substrate, and the resin layer has an average height of 5 μm or less with respect to a valley portion. A polarized light source device having an uneven surface.
【請求項5】 請求項1〜4において、導光板が、下面
に光入射面と平行な微細プリズム状凹凸を有するもので
ある偏光光源装置。
5. The polarized light source device according to claim 1, wherein the light guide plate has fine prismatic irregularities parallel to the light incident surface on the lower surface.
【請求項6】 請求項5において、導光板の微細プリズ
ム状凹凸が長辺面と短辺面とで形成され、その長辺面の
出射面に対する傾斜角が0〜10度、短辺面のそれが2
0〜50度である偏光光源装置。
6. The micro prism-shaped unevenness of the light guide plate according to claim 5, wherein the long side surface and the short side surface are formed, and the inclination angle of the long side surface with respect to the emission surface is 0 to 10 degrees. It is 2
A polarized light source device of 0 to 50 degrees.
【請求項7】 請求項1〜6において、円偏光分離層の
光出射側に位相差層を有する偏光光源装置。
7. The polarized light source device according to claim 1, having a retardation layer on the light exit side of the circularly polarized light separating layer.
【請求項8】 請求項7において、位相差層が100〜
180nmの位相差を示す位相差板又はそれを含む積層位
相差板からなる偏光光源装置。
8. The retardation layer according to claim 7, wherein
A polarized light source device comprising a retardation plate showing a retardation of 180 nm or a laminated retardation plate including the retardation plate.
【請求項9】 請求項7又は8において、拡散層が円偏
光分離層と位相差層の間に位置する偏光光源装置。
9. The polarized light source device according to claim 7, wherein the diffusion layer is located between the circularly polarized light separation layer and the retardation layer.
【請求項10】 請求項7又は8において、拡散層が位
相差層の光出射側に位置する偏光光源装置。
10. The polarized light source device according to claim 7, wherein the diffusion layer is located on the light emission side of the retardation layer.
【請求項11】 請求項10において、拡散層の光出射
側に偏光板を有してその偏光板と拡散層の光学軸が一致
又は近似する状態にある偏光光源装置。
11. The polarized light source device according to claim 10, wherein a polarizing plate is provided on the light emitting side of the diffusion layer, and the optical axes of the polarizing plate and the diffusion layer are the same or approximate to each other.
【請求項12】 少なくとも片側に偏光板を有する液晶
セルの片側に、請求項1〜11に記載の偏光光源装置を
配置したことを特徴とする液晶表示装置。
12. A liquid crystal display device comprising the polarized light source device according to claim 1 arranged on one side of a liquid crystal cell having a polarizing plate on at least one side.
JP13422596A 1996-04-30 1996-04-30 Polarized light source device and liquid crystal display device Expired - Fee Related JP3361012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13422596A JP3361012B2 (en) 1996-04-30 1996-04-30 Polarized light source device and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13422596A JP3361012B2 (en) 1996-04-30 1996-04-30 Polarized light source device and liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH09297222A JPH09297222A (en) 1997-11-18
JP3361012B2 true JP3361012B2 (en) 2003-01-07

Family

ID=15123355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13422596A Expired - Fee Related JP3361012B2 (en) 1996-04-30 1996-04-30 Polarized light source device and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3361012B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020999B2 (en) * 1997-02-28 2007-12-12 セイコーエプソン株式会社 Backlight device and liquid crystal display device using the same
JP4113633B2 (en) * 1999-04-20 2008-07-09 日東電工株式会社 Liquid crystal display
EP1143269B1 (en) 2000-01-13 2007-03-14 Nitto Denko Corporation Optical path changing polarizer
US6747801B2 (en) 2000-01-13 2004-06-08 Nitto Denko Corporation Optical film and liquid-crystal display device
JP2001194534A (en) 2000-01-13 2001-07-19 Nitto Denko Corp Light transmission plate and its manufacturing method
JP4609962B2 (en) 2000-02-02 2011-01-12 日東電工株式会社 Optical film
JP4442836B2 (en) 2000-02-02 2010-03-31 日東電工株式会社 Optical film
JP2001228315A (en) 2000-02-14 2001-08-24 Nitto Denko Corp Reflecting plate and liquid crystal display device
JP2002131552A (en) 2000-10-24 2002-05-09 Nitto Denko Corp Light guiding plate, planer light source device and reflective liquid crystal display
JP4662402B2 (en) 2001-03-12 2011-03-30 日東電工株式会社 Light guide plate for front light for both external light and illumination modes, surface light source device for front light for both external light and illumination modes, and front light type reflective liquid crystal display device for both external light and illumination modes
JP2002303864A (en) * 2001-04-03 2002-10-18 Nitto Denko Corp Lighting device and liquid crystal display device
KR100781594B1 (en) * 2001-12-28 2007-12-03 엘지.필립스 엘시디 주식회사 Active matrix organic electroluminescent device and manufacturing method thereof
KR20050042145A (en) 2002-08-09 2005-05-04 미츠비시 레이온 가부시키가이샤 Flat light source device
JP2014074729A (en) * 2011-01-27 2014-04-24 Konica Minolta Advanced Layers Inc Liquid crystal display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69409977T2 (en) * 1993-01-11 1998-10-22 Koninkl Philips Electronics Nv Lighting system and such a comprehensive display device
JPH06265892A (en) * 1993-03-10 1994-09-22 Asahi Glass Co Ltd Illumination device and liquid crystal display device
JP3516466B2 (en) * 1993-06-29 2004-04-05 旭硝子株式会社 Lighting device and liquid crystal display device
JPH0736032A (en) * 1993-07-23 1995-02-07 Fuji Xerox Co Ltd Back light source
JPH0973083A (en) * 1995-09-05 1997-03-18 Toshiba Corp Illuminator and liquid crystal display device

Also Published As

Publication number Publication date
JPH09297222A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
KR100519178B1 (en) Light guide plate, surface light source device, polarization light source device and liquid crystal display device
US8016445B2 (en) Planar light emitting element, image display element, and image display device using the same
US6504589B1 (en) Backlight device and liquid crystal display device
JP3260688B2 (en) Surface light source device, polarizing surface light source device, and liquid crystal display device
US20020176036A1 (en) Liquid crystal display device
JP3361012B2 (en) Polarized light source device and liquid crystal display device
KR20020001594A (en) Light pipe, plane light source unit and reflection type liquid-crystal display device
JP2000330107A (en) Liquid crystal display device
JP2002023155A (en) Reflective liquid crystal display device
JPH09304770A (en) Separation layer for circular polarized light, optical element, polarization light source device and liquid crystal display device
JPH1054909A (en) Circularly polarized light separating layer, optical element, polarization light source device and liquid crystal display device
JP2001051268A (en) Liquid crystal display device
JPH11242908A (en) Lighting system and liquid crystal display using the same
KR100714518B1 (en) Liquid crystal display device
JP2000147429A (en) Polarization surface light source device and liquid crystal display device
JP3187714B2 (en) Light guide plate, polarized light source device and liquid crystal display device
JP2001147329A (en) Light guide plate, surface light source device and liquid crystal display device
JPH10142407A (en) Reflection plate, surface light source apparatus and liquid crystal display device
JPH10282342A (en) Light conductive plate, surface light source device, polarization light source device, and liquid crystal display device
JP3303278B2 (en) Polarization plane light source device and liquid crystal display device
JP3286239B2 (en) Light guide plate, surface light source device and liquid crystal display device
JP2002006143A (en) Light guide plate, surface light source device and reflective liquid crystal display device
JPH10253833A (en) Light transmitting plate, surface light source device, polarizing light source device and liquid crystal display
JPH1152377A (en) Optical path control platte, surface light source device, polarizing light source device and liquid crystal display device
JP3184103B2 (en) Light guide plate, surface light source device, polarized light source device, and liquid crystal display device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141018

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees