JP3350691B2 - High activation and stabilization of hydrogen storage metal - Google Patents
High activation and stabilization of hydrogen storage metalInfo
- Publication number
- JP3350691B2 JP3350691B2 JP11207296A JP11207296A JP3350691B2 JP 3350691 B2 JP3350691 B2 JP 3350691B2 JP 11207296 A JP11207296 A JP 11207296A JP 11207296 A JP11207296 A JP 11207296A JP 3350691 B2 JP3350691 B2 JP 3350691B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- metal material
- hydrogen storage
- gas
- storage metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims description 161
- 239000001257 hydrogen Substances 0.000 title claims description 154
- 229910052739 hydrogen Inorganic materials 0.000 title claims description 154
- 238000003860 storage Methods 0.000 title claims description 93
- 230000004913 activation Effects 0.000 title claims description 9
- 229910052751 metal Inorganic materials 0.000 title claims description 6
- 239000002184 metal Substances 0.000 title claims description 6
- 230000006641 stabilisation Effects 0.000 title claims description 5
- 238000011105 stabilization Methods 0.000 title claims description 5
- 239000007769 metal material Substances 0.000 claims description 87
- 239000007789 gas Substances 0.000 claims description 67
- 238000006243 chemical reaction Methods 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 39
- 229910001512 metal fluoride Inorganic materials 0.000 claims description 26
- 230000003213 activating effect Effects 0.000 claims description 22
- 230000000087 stabilizing effect Effects 0.000 claims description 22
- 239000011737 fluorine Substances 0.000 claims description 18
- 229910052731 fluorine Inorganic materials 0.000 claims description 18
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 13
- 238000010298 pulverizing process Methods 0.000 claims description 12
- 231100000572 poisoning Toxicity 0.000 claims description 11
- 230000000607 poisoning effect Effects 0.000 claims description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000002344 surface layer Substances 0.000 claims description 7
- 238000001947 vapour-phase growth Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 239000013067 intermediate product Substances 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 238000012545 processing Methods 0.000 description 18
- 239000000956 alloy Substances 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 14
- 150000002431 hydrogen Chemical class 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- 238000001994 activation Methods 0.000 description 8
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- KVBCYCWRDBDGBG-UHFFFAOYSA-N azane;dihydrofluoride Chemical compound [NH4+].F.[F-] KVBCYCWRDBDGBG-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- QKCGXXHCELUCKW-UHFFFAOYSA-N n-[4-[4-(dinaphthalen-2-ylamino)phenyl]phenyl]-n-naphthalen-2-ylnaphthalen-2-amine Chemical compound C1=CC=CC2=CC(N(C=3C=CC(=CC=3)C=3C=CC(=CC=3)N(C=3C=C4C=CC=CC4=CC=3)C=3C=C4C=CC=CC4=CC=3)C3=CC4=CC=CC=C4C=C3)=CC=C21 QKCGXXHCELUCKW-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 231100000614 poison Toxicity 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012916 structural analysis Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 229910017768 LaF 3 Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000003682 fluorination reaction Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009849 vacuum degassing Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910020794 La-Ni Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- -1 fluorine ions Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000007096 poisonous effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- BYMUNNMMXKDFEZ-UHFFFAOYSA-K trifluorolanthanum Chemical compound F[La](F)F BYMUNNMMXKDFEZ-UHFFFAOYSA-K 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Powder Metallurgy (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素を吸蔵する金
属材を微粉化すると同時に表面又は表面層を高活性化
し、且つ腐食性、被毒性を有する気体、液体、蒸気等に
対し非活性化して安定化する処理法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for pulverizing a metal material that absorbs hydrogen and simultaneously activating a surface or a surface layer, and deactivating a corrosive or poisonous gas, liquid or vapor. And a stabilizing treatment method.
【0002】[0002]
【従来の技術】従来、水素吸蔵金属材が安定的に水素の
吸蔵、放出を行うようにするには、高温、高圧、高真空
等で初期の活性化処理を必要とし、例えばMg−Ni合
金の場合は、350℃で真空脱ガス処理し、2〜5MP
aで10回以上の水素の吸蔵、放出を繰り返す必要があ
り、La−Ni系合金の場合は、80〜100℃で真空
脱ガス処理し、1〜3MPaで10回以上の水素の吸
蔵、放出を繰り返す必要がある。2. Description of the Related Art Conventionally, in order for a hydrogen storage metal material to stably store and release hydrogen, an initial activation process at high temperature, high pressure, high vacuum or the like is required. In the case of, a vacuum degassing treatment is performed at 350 ° C.
It is necessary to repeat the occlusion and desorption of hydrogen at least 10 times at a. In the case of a La-Ni alloy, vacuum degassing is performed at 80 to 100 ° C., and occlusion and desorption of hydrogen is performed at 1 to 3 MPa at least 10 times. Need to be repeated.
【0003】また、一度活性化処理された水素吸蔵金属
材であっても、再度大気中に曝されると、激しい酸化を
受け、水素吸蔵能が失われ、また、着火、発火による粉
塵爆発の危険性を伴うため、取り扱いには十分な配慮を
必要としていた。[0003] Further, even if the hydrogen storage metal material once activated is exposed to the atmosphere again, it is severely oxidized and loses its hydrogen storage capacity. Further, dust explosion due to ignition or ignition may occur. Due to the danger, sufficient care was required for handling.
【0004】また、活性化処理された水素吸蔵金属材
は、非常に活性な表面を持つため、水素以外の、例えば
一酸化炭素、硫化水素、水蒸気、酸素等がプロセス中に
微量に含んでいる場合、それらガス類により著しく表面
が被毒し、安定的な水素の吸蔵、放出が不可能になり、
プロセスガスには高純度の水素ガスを必要とした。[0004] Further, the activated hydrogen storage metal material has a very active surface, and thus, in addition to hydrogen, for example, a trace amount of carbon monoxide, hydrogen sulfide, water vapor, oxygen and the like is contained in the process. In such a case, the gases poison the surface significantly, making it impossible to stably store and release hydrogen.
High purity hydrogen gas was required for the process gas.
【0005】また、本来1MPa未満で使用する場合に
おいても、初期の活性化処理に1MPa以上の高圧を必
要とするため、高圧ガス取締法に準拠した過剰な設備投
資を必要とされてきた。[0005] Further, even when originally used at less than 1 MPa, an initial activation treatment requires a high pressure of 1 MPa or more, so that excessive capital investment in compliance with the High Pressure Gas Control Law has been required.
【0006】以上のように、水素吸蔵金属材を使用する
に当っては、初期の活性化処理の作業性、不安定性、取
り扱いの危険性、コスト高などが実用上問題となってい
た。As described above, in using the hydrogen storage metal material, workability, instability, danger of handling, high cost, and the like of the initial activation treatment have been practically problematic.
【0007】上記の問題を解決するために、薬液を用い
た表面処理法、例えば無電解めっき法を用いた銅やニッ
ケルによる水素吸蔵金属材のマイクロカプセル化法や、
フッ素イオンを含んだアルカリ水溶液中での表面処理に
よる水素吸蔵金属材の高活性化又は安定化処理法が提案
されている。In order to solve the above problems, a surface treatment method using a chemical solution, for example, a microencapsulation method of a hydrogen storage metal material using copper or nickel using an electroless plating method,
A method for highly activating or stabilizing a hydrogen storage metal material by surface treatment in an aqueous alkaline solution containing fluorine ions has been proposed.
【0008】しかし、薬液によって処理する方法には、
次のような問題点がある。 目的とする表面層を得るには微妙なpH調整を必要と
する。 処理量に対し大きな装置を必要とする。 最終乾燥に時間がかかる。 処理後の廃液処理が厄介である。 特に安定化処理をする場合の水素化による微粉化処理
が別プロセスで必要となる。 処理コストが高い。 以上の点により工業的生産において、効率的な生産を望
むことは難しく、問題を十分に解決するまでには至って
いない。However, the method of treating with a chemical solution includes:
There are the following problems. A delicate pH adjustment is required to obtain the desired surface layer. Requires large equipment for throughput. It takes time for final drying. Waste liquid treatment after treatment is troublesome. In particular, a pulverization treatment by hydrogenation in the case of performing a stabilization treatment is required in another process. High processing cost. From the above points, it is difficult to expect efficient production in industrial production, and the problem has not yet been sufficiently solved.
【0009】[0009]
【発明が解決しようとする課題】そこで本発明は、上記
問題を解消するために、薬液によらずに水素吸蔵金属材
の表面を水素に対し活性化し、且つ表面被毒を有する物
質に対し非活性して安定化でき、工業的生産において、
効率的な生産のできる水素吸蔵金属材の高活性化及び安
定化処理法を提供しようとするものである。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention activates the surface of a hydrogen-absorbing metal material with respect to hydrogen without using a chemical solution, and uses a non-chemical material to prevent surface poisoning. It can be activated and stabilized, and in industrial production,
An object of the present invention is to provide a method for highly activating and stabilizing a hydrogen storage metal material that can be efficiently produced.
【0010】[0010]
【課題を解決するための手段】上記課題を解決するため
の本発明の第1の水素吸蔵金属材の高活性化及び安定化
処理法は、反応容器内に水素吸蔵金属材を充填し、所要
の温度まで加熱した後、その反応容器内に例えば、フッ
化水素ガス、酸性フッ化アンモニウム及びフッ化アンモ
ニウムのガス、三フッ化窒素ガスなどのフッ素系ガスと
水素ガスを同時に所要の圧力で導入し、水素吸蔵金属材
を微粉化すると共にその表面に、金属フッ化物を主成分
とする膜を気相成長により形成して、少くとも表面又は
表面層を、水素分子に対し高活性化すると共に、水素分
子以外の表面被毒を有する物質に対し非活性化すること
を特徴とするものである。In order to solve the above-mentioned problems, a first method for highly activating and stabilizing a hydrogen-absorbing metal material according to the present invention is to fill a hydrogen-occluding metal material into a reaction vessel, , And simultaneously introduce a fluorine-based gas and a hydrogen gas such as hydrogen fluoride gas, ammonium acid fluoride and ammonium fluoride gas, and nitrogen trifluoride gas into the reaction vessel at a required pressure. Then, the hydrogen storage metal material is pulverized, and a film containing a metal fluoride as a main component is formed on the surface by vapor phase growth, so that at least the surface or the surface layer is highly activated with respect to hydrogen molecules. And deactivates substances having surface poisoning other than hydrogen molecules.
【0011】本発明の第2の水素吸蔵金属材の高活性化
及び安定化処理法は、上記第1の高活性化及び安定化処
理法で処理した水素吸蔵金属材の充填されている反応容
器内に、更にフッ素系ガスと水素ガスを同時に所要の圧
力、温度条件にて導入し、水素吸蔵金属材に対し水素の
吸蔵、放出を繰り返して、さらに水素吸蔵金属材の微粉
化処理を進展させ、且つその金属材の表面又は表面層に
金属フッ化物を主成分とする膜を形成して、水素分子に
対し高活性化すると共に、水素分子以外の表面被毒を有
する物質に対し非活性化することを特徴とするものであ
る。The second method for highly activating and stabilizing a hydrogen storage metal material according to the present invention is directed to a reaction vessel filled with the hydrogen storage metal material treated by the first high activation and stabilization method. Further, a fluorine-based gas and a hydrogen gas are simultaneously introduced under the required pressure and temperature conditions, and the storage and release of hydrogen are repeatedly performed on the hydrogen storage metal material, thereby further promoting the pulverization of the hydrogen storage metal material. In addition, a film containing metal fluoride as a main component is formed on the surface or the surface layer of the metal material to activate hydrogen molecules highly and deactivate substances having surface poisoning other than hydrogen molecules. It is characterized by doing.
【0012】本発明の第3の水素吸蔵金属材の高活性化
及び安定化処理法は、上記第1又は第2の高活性及び安
定化処理法で処理した反応容器内の水素吸蔵金属材を、
その金属材に見合った温度条件で不活性ガス又は水素ガ
スにて熱処理を施して、金属フッ化物を主成分とする膜
を均質化し、水素分子に対しより高活性化すると共に、
水素分子以外の表面被毒を有する物質を一層非活性化す
ることを特徴とするものである。The third method for highly activating and stabilizing a hydrogen-absorbing metal material of the present invention comprises the step of treating the hydrogen-absorbing metal material in a reaction vessel treated by the first or second high-activity and stabilizing method. ,
Heat treatment with an inert gas or hydrogen gas at a temperature condition appropriate for the metal material to homogenize the film containing metal fluoride as a main component, and to further activate hydrogen molecules,
It is characterized in that substances having surface poisoning other than hydrogen molecules are further deactivated.
【0013】上記第1〜第3の水素吸蔵金属材の高活性
及び安定化処理法に於ける反応容器に充填する前の水素
吸蔵金属材は、粉末、インゴットなどの素材、又は水素
吸蔵金属をマトリックスとした複合材、中間製品、若し
くは完成品のいずれでもよい。The hydrogen storage metal material before filling the reaction vessel in the first to third hydrogen storage metal materials with high activity and stabilization is a material such as powder or ingot, or a hydrogen storage metal. It may be any of a matrix composite material, an intermediate product, or a finished product.
【0014】上記本発明の第1の水素吸蔵金属材の高活
性化及び安定化処理法によれば、フッ素系ガスと水素ガ
スとの混合ガスにより水素吸蔵金属材の表面又は表面層
に気相成長による金属フッ化膜が形成されると同時にそ
の金属フッ化膜からの水素の吸蔵により水素吸蔵金属材
にクラック及び微粉化が発生し、それによる新生表面に
も金属フッ化膜が引き続き形成される。従って、最終的
には水素吸蔵金属材の全表面に金属フッ化膜が形成さ
れ、水素分子に対し高活性となり、高温、高圧、高真空
を必要としていた水素吸蔵金属材の初期活性化を低温、
低圧、真空排気無しで可能となり、また、表面に形成さ
れた金属フッ化膜は安定した化合物層であるから、大気
中における発火、着火の危険性が無く、水素分子以外の
表面被毒を有する物質に対しては非活性である為、取り
扱い上の危険性が解決されると共にこれまで危険を回避
する為に必要とされてきた設備、生産、輸送における保
全費用を大幅に削減できる。According to the first method for activating and stabilizing a hydrogen-absorbing metal material according to the first aspect of the present invention, the surface or surface layer of the hydrogen-absorbing metal material is vapor-phased by a mixed gas of a fluorine-based gas and a hydrogen gas. At the same time as the metal fluoride film is formed by the growth, hydrogen absorption from the metal fluoride film causes cracks and micronization of the hydrogen storage metal material, and the metal fluoride film continues to be formed on the newly formed surface. You. Therefore, eventually, a metal fluoride film is formed on the entire surface of the hydrogen storage metal material, and becomes highly active against hydrogen molecules. The initial activation of the hydrogen storage metal material, which required high temperature, high pressure, and high vacuum, is performed at low temperature. ,
Low pressure, no vacuum evacuation, and the metal fluoride film formed on the surface is a stable compound layer, so there is no danger of ignition or ignition in the atmosphere and surface poisoning other than hydrogen molecules Being inert to the substance, handling dangers are resolved and maintenance costs in equipment, production and transport that have previously been required to avoid the dangers are greatly reduced.
【0015】また、本発明の第1の水素吸蔵金属材の高
活性化及び安定化処理法は、フッ素系ガスと水素ガスと
の混合ガスによる気相中で、化合物反応と水素吸蔵によ
る微粉化反応を同時に行うので、従来の薬液処理による
場合と異なり、同じ設備内で同時に処理できて生産性が
高く、大がかりな設備や複雑な工程を必要とせずに大量
生産規模にも対応可能で処理費用の大幅な削減が可能で
ある。Further, the first method for activating and stabilizing a hydrogen-absorbing metal material according to the first aspect of the present invention is a method for compounding and pulverizing by hydrogen absorption in a gas phase using a mixed gas of a fluorine-based gas and a hydrogen gas. Since the reactions are performed simultaneously, unlike conventional chemical processing, they can be processed simultaneously in the same facility and have high productivity, and can be used on a large-scale production scale without requiring large-scale facilities and complicated processes, and processing costs are high. It is possible to significantly reduce
【0016】さらに、本発明の第2の水素吸蔵金属材の
高活性化及び安定化処理法によれば、前記の微粉化され
その表面に金属フッ化膜が形成された水素吸蔵金属材に
対し水素の吸蔵、放出が繰り返されて、さらに微粉化処
理とその新生表面に金属フッ化膜が形成されるので、水
素分子に対しより高活性となり、安定化する。Further, according to the second method for activating and stabilizing a hydrogen-absorbing metal material of the present invention, the hydrogen-absorbing metal material which has been finely divided and whose surface has a metal fluoride film formed thereon can be used. Since the occlusion and release of hydrogen are repeated, a fine powder treatment and a metal fluoride film are formed on the newly formed surface, so that the hydrogen molecules have higher activity and are stabilized.
【0017】さらにまた、本発明の第3の水素吸蔵金属
材の高活性化及び安定化処理法によれば、前記の第1又
は第2の処理法によって、微粉化されその表面に金属フ
ッ化膜が形成された水素吸蔵金属材に対し、その金属材
に見合った温度条件で熱処理が施されるので、金属フッ
化膜が均質化し、水素吸蔵金属材がより一層安定化す
る。Further, according to the third method for highly activating and stabilizing a hydrogen-absorbing metal material of the present invention, the surface is pulverized by the above-mentioned first or second processing method and the surface thereof is treated with metal fluoride. The heat treatment is performed on the hydrogen-absorbing metal material on which the film is formed at a temperature condition suitable for the metal material, so that the metal fluoride film is homogenized and the hydrogen-occluding metal material is further stabilized.
【0018】[0018]
【発明の実施の形態】本発明の基本的構成と具体的な実
施例について説明する。先ず、基本的構成について説明
する。本発明は、基本的には水素吸蔵金属材の表面に、
気相成長により金属フッ化膜を形成せしめると共にその
金属フッ化膜からの水素の吸蔵による微粉化処理を同時
に行うものであり、水素吸蔵金属材としては通常水素吸
蔵合金として従来から知られているものが広い範囲で使
用され、その代表的なものとして、希土類合金、Mg系
合金が示される。気相成長により水素吸蔵金属材の表面
に金属フッ化膜を形成し、且つ水素吸蔵による微粉化処
理を同時に進行させる際の処理条件は、処理される水素
吸蔵金属材特有の圧力−水素濃度−温度依存特性を考慮
した水素ガスとフッ素系ガスとの混合比を用いることが
必要となる。処理ガスとしては、水素ガスとフッ化水素
ガス、酸性フッ化アンモニウム及びフッ化アンモニウム
のガス、三フッ化窒素ガスなどのいずれかのフッ素系ガ
スとの混合ガスであるが、特に水素ガスとフッ化水素ガ
スとの混合ガスが好適である。この混合ガス内のフッ素
濃度としては、通常、0.1〜70vol%好ましくは
1〜40vol%の範囲で選ばれる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic configuration of the present invention and a specific embodiment will be described. First, the basic configuration will be described. The present invention is basically, on the surface of the hydrogen storage metal material,
A metal fluoride film is formed by vapor phase growth, and at the same time, a pulverization process is performed by absorbing hydrogen from the metal fluoride film. The hydrogen storage metal material is conventionally conventionally known as a hydrogen storage alloy. Are used in a wide range, and rare earth alloys and Mg-based alloys are shown as typical examples. The processing conditions for forming a metal fluoride film on the surface of the hydrogen storage metal material by vapor phase growth and simultaneously proceeding the pulverization treatment by hydrogen storage are as follows: pressure-hydrogen concentration-specific to the hydrogen storage metal material to be processed. It is necessary to use a mixture ratio of hydrogen gas and fluorine-based gas in consideration of temperature-dependent characteristics. The processing gas is a mixed gas of hydrogen gas and any fluorine-based gas such as hydrogen fluoride gas, ammonium acid fluoride and ammonium fluoride gas, and nitrogen trifluoride gas. A mixed gas with hydrogen fluoride gas is preferred. The concentration of fluorine in the mixed gas is usually selected in the range of 0.1 to 70 vol%, preferably 1 to 40 vol%.
【0019】また、処理温度及び処理圧力は、水素吸蔵
金属材の圧力−水素濃度−温度特性を考慮し、通常、処
理温度は常温〜350℃、処理圧力は大気圧〜5MP
a、好ましくは処理される水素吸蔵金属材に吸蔵される
水素の濃度が、供給圧力1MPa未満で90%以上とな
る温度条件にて処理するのが望ましい。また、金属フッ
化膜形成時間は通常10〜360分程度で充分である。
水素吸蔵金属材表面の金属フッ化膜形成のフッ素化反応
は、水素吸蔵金属材とフッ素との反応特性にもよるが、
処理温度が高いほど反応が進み易い為、処理温度条件が
高い水素吸蔵金属材は、処理ガス中のフッ素濃度を低く
して処理することが望ましく、処理温度が高く、処理ガ
ス中のフッ素濃度も高い場合、必要以上にフッ化処理が
進行し、本来水素吸蔵金属が持つ諸特性が損なわれるの
で、気を付けねばならない。The processing temperature and the processing pressure are usually determined in consideration of the pressure-hydrogen concentration-temperature characteristics of the hydrogen absorbing metal material, and the processing temperature is usually from room temperature to 350 ° C., and the processing pressure is from atmospheric pressure to 5MPa.
a, preferably, the treatment is performed under a temperature condition in which the concentration of hydrogen absorbed in the treated hydrogen storage metal material is 90% or more at a supply pressure of less than 1 MPa. The time required for forming the metal fluoride film is usually about 10 to 360 minutes.
The fluorination reaction of forming a metal fluoride film on the surface of the hydrogen storage metal material depends on the reaction characteristics between the hydrogen storage metal material and fluorine.
Since the reaction proceeds more easily as the processing temperature is higher, it is desirable that the hydrogen storage metal material having a higher processing temperature condition be processed with a lower fluorine concentration in the processing gas, and the higher the processing temperature and the higher the fluorine concentration in the processing gas. If it is high, the fluorination treatment proceeds more than necessary, and various properties inherent in the hydrogen storage metal are impaired, so care must be taken.
【0020】上記水素吸蔵金属材を水素吸蔵による微粉
化処理と同時にフッ化処理する処理装置の一例を図1の
模式図で説明すると、1は水素吸蔵金属材を充填した反
応容器、2は反応容器1を加熱する電気炉、3は反応容
器1のガス導入ライン4に連なるガス供給システムで、
切替バルブ、流量制御装置等を内蔵している。5はガス
供給システム3の上流の不活性ガス貯蔵用ボンベ、6は
別系統の原料ガス貯蔵用ボンベ、7は反応容器1の真空
排気装置である。FIG. 1 is a schematic view showing an example of a processing apparatus for simultaneously fluorinating the above-mentioned hydrogen-absorbing metal material with pulverization by hydrogen storage. 1 is a reaction vessel filled with the hydrogen-absorbing metal material, and 2 is a reaction vessel. An electric furnace 3 for heating the vessel 1 is a gas supply system connected to the gas introduction line 4 of the reaction vessel 1.
Built-in switching valve, flow control device, etc. 5 is an inert gas storage cylinder upstream of the gas supply system 3, 6 is a raw material gas storage cylinder of another system, and 7 is a vacuum exhaust device of the reaction vessel 1.
【0021】この処理装置により水素吸蔵金属材を微粉
化すると同時に表面に金属フッ化膜を形成する場合は、
不活性ガス貯蔵用ボンベ5のN2 ,Ar,He等のいず
れかの不活性ガスを、ガス供給システム3によりガス導
入ライン4を通して反応容器1内に毎分10L程度フロ
ーし、常温から350℃の範囲で十分にパージし、反応
容器1内を不活性ガスで置換するか、真空排気装置7に
て反応容器1内を1torr以下まで真空排気する。次
に、電気炉2により反応容器1全体を所要の処理温度に
加熱する。次いで、原料ガス貯蔵用ボンベ6の水素ガス
と、フッ化水素ガス、酸性フッ化アンモニウム及びフッ
化アンモニウムのガス、三フッ化窒素ガスなどのいずれ
かのフッ素系ガスとの混合ガスを、ガス供給システム3
によりガス導入ライン4を通して反応容器1内に1MP
a未満の圧力で導入し、該反応容器1内の水素吸蔵金属
材の表面に金属フッ化膜を形成し且つ金属フッ化膜から
の水素吸蔵による微粉化処理を同時に行う。通常、1回
の金属フッ化膜の形成と微粉化処理で十分であるが、特
に被毒性や腐食性の強い環境下で使用する場合は、数回
の混合ガスによる水素の吸蔵、放出を繰り返して、さら
に微粉化を進め、その表面に金属フッ化膜を形成する。
所定の処理を行った後は、再度不活性ガスを反応容器1
内に導入し、反応容器1内に残存している混合ガスをパ
ージする。そして水素吸蔵金属材の表面に形成された金
属フッ化膜の均質化を図る為に、不活性ガス又は水素ガ
ス中において熱処理を行う。In the case where the hydrogen storage metal material is pulverized by this processing apparatus and a metal fluoride film is formed on the surface at the same time,
Any inert gas such as N 2 , Ar, He or the like in the inert gas storage cylinder 5 is flowed by the gas supply system 3 through the gas introduction line 4 into the reaction vessel 1 at about 10 L / min. , The inside of the reaction vessel 1 is replaced with an inert gas, or the inside of the reaction vessel 1 is evacuated to 1 torr or less by the vacuum evacuation device 7. Next, the entire reaction vessel 1 is heated to a required processing temperature by the electric furnace 2. Next, a gas mixture of the hydrogen gas in the raw material gas storage cylinder 6 and any fluorine-based gas such as hydrogen fluoride gas, ammonium acid fluoride and ammonium fluoride gas, and nitrogen trifluoride gas is supplied. System 3
1MP into the reaction vessel 1 through the gas introduction line 4
The pressure is lower than a, and a metal fluoride film is formed on the surface of the hydrogen storage metal material in the reaction vessel 1, and the pulverization treatment by hydrogen absorption from the metal fluoride film is performed simultaneously. Normally, a single formation of the metal fluoride film and pulverization treatment are sufficient, but especially when used in a highly toxic or corrosive environment, repeated absorption and release of hydrogen with the mixed gas several times Then, pulverization is further promoted, and a metal fluoride film is formed on the surface.
After performing the predetermined treatment, the inert gas is again supplied to the reaction vessel 1.
And the mixed gas remaining in the reaction vessel 1 is purged. Then, in order to homogenize the metal fluoride film formed on the surface of the hydrogen storage metal material, heat treatment is performed in an inert gas or a hydrogen gas.
【0022】このように処理された水素吸蔵金属材は、
水素吸蔵によって発生したクラック及び微粉化による新
生表面の全てに金属フッ化膜が形成され、有効且つ比表
面積の大きい水素吸蔵金属材となり、水素分子に対し高
活性であり、水素分子以外の表面被毒、腐食を有する物
質に対し非活性であるという特性を示す。The hydrogen storage metal material thus treated is
A metal fluoride film is formed on all of the cracks generated by hydrogen storage and the newly formed surface due to micronization, and it becomes a hydrogen storage metal material that is effective and has a large specific surface area, is highly active against hydrogen molecules, and has a surface coating other than hydrogen molecules. It is inactive against poisons and corrosive substances.
【0023】次に、本発明の水素吸蔵金属材の高活性化
及び安定化処理法の具体的な実施例について説明する。 〈実施例1〉反応容器内に機械的に500μm以下まで
粉砕した水素吸蔵合金LaNi4,7Al0,3 10gを充
填し、次に反応容器を80℃に加熱した状態でN2 ガス
をフローしながら反応容器内のガス置換を行い、次いで
反応容器内に水素ガスと10vol%のフッ化水素ガス
との混合ガスを0.98MPaの圧力で水素が吸蔵しな
くなるまで導入し、1時間水素吸蔵と同時にフッ化膜の
形成を行った。処理後、試料の殆どは38μm以下の粒
径に微粉化されていた。また、試料をX線回折法による
構造解析を行った処、LaNi5 及びLaF3 のピーク
が確認され、よって、母合金を十分に残したまま母合金
中のLaとフッ素との化合物フッ化ランタンが形成され
ていることが確認された。解析プロファイルを図2に示
す。Next, a specific embodiment of the method for highly activating and stabilizing the hydrogen storage metal material of the present invention will be described. Example 1 A reaction vessel was filled with 10 g of a hydrogen storage alloy LaNi 4,7 Al 0.3 , which was mechanically pulverized to 500 μm or less, and then N 2 gas was flowed while the reaction vessel was heated to 80 ° C. While replacing the gas in the reaction vessel, a mixed gas of hydrogen gas and 10 vol% hydrogen fluoride gas was introduced into the reaction vessel at a pressure of 0.98 MPa until hydrogen was no longer absorbed, and hydrogen was absorbed for one hour. At the same time, a fluoride film was formed. After the treatment, most of the samples were pulverized to a particle size of 38 μm or less. When the sample was subjected to structural analysis by X-ray diffraction, peaks of LaNi 5 and LaF 3 were confirmed. Therefore, a compound of lanthanum fluoride of La and fluorine in the mother alloy while the mother alloy was sufficiently left. It was confirmed that was formed. The analysis profile is shown in FIG.
【0024】また実施例1にて処理された試料の水素吸
蔵金属材としての特性について以下に示す。 (評価1)前記実施例1によって処理された試料及び比
較例として未処理の試料についての初期水素吸蔵特性を
同条件にて測定した。図3は横軸に時間、縦軸は合金中
に吸蔵された水素の合金との重量比(wt%)を示して
おり、反応条件は、合金温度40℃一定、真空排気0.
01torrから30分行い、水素導入圧力1MPaで
行った。また、フッ化膜を形成した試料は処理後30日
間40℃の乾燥空気中で保存し、未処理の試料は機械的
に500μm以下に粉砕された試料を一度微粉化処理
し、その後、フッ化膜を形成した試料と同様の条件で保
存した。その結果、前記実施例1によって処理された試
料は、水素導入後直ちに吸蔵を開始し、約20分でほぼ
平衡し、そのときの吸蔵量は約1.25wt%であっ
た。それに対し未処理品は、水素導入後1時間位いから
徐々に吸蔵を開始するが、3時間経過しても吸蔵量は
0.2wt%にも達しなかった。このように実施例1に
よって処理された試料は、30日間40℃の乾燥空気中
で保存しても、未処理の試料に比し初期の水素化反応速
度が速く、殆ど酸化による影響を受けない、安定且つ高
活性化な表面状態を維持していた。The characteristics of the sample treated in Example 1 as a hydrogen storage metal material are shown below. (Evaluation 1) The initial hydrogen storage characteristics of the sample treated according to Example 1 and the untreated sample as a comparative example were measured under the same conditions. FIG. 3 shows the time on the horizontal axis and the weight ratio (wt%) of the hydrogen absorbed in the alloy to the alloy, and the reaction conditions were as follows: the alloy temperature was constant at 40 ° C .;
The operation was performed for 30 minutes from 01 torr, and performed at a hydrogen introduction pressure of 1 MPa. The sample on which the fluoride film was formed was stored in dry air at 40 ° C. for 30 days after the treatment, and the untreated sample was once pulverized mechanically to a size of 500 μm or less, and then fluorinated. The sample was stored under the same conditions as the sample on which the film was formed. As a result, the sample treated according to Example 1 started occlusion immediately after the introduction of hydrogen, and was substantially equilibrated in about 20 minutes, and the occluded amount at that time was about 1.25 wt%. On the other hand, the untreated product gradually started to occlude from about one hour after the introduction of hydrogen, but the occluded amount did not reach 0.2 wt% even after 3 hours. The sample thus treated according to Example 1 has a faster initial hydrogenation reaction rate than the untreated sample and is hardly affected by oxidation, even when stored in dry air at 40 ° C. for 30 days. , And maintained a stable and highly activated surface state.
【0025】〈実施例2〉反応容器内に機械的に500
μm以下まで粉砕した水素吸蔵合金LaNi4,7Al
0,3 10gを充填し、次に反応容器を60℃に加熱した
状態でN2 ガスをフローしながら反応容器内のガス置換
を行い、次いで反応容器内に水素ガスと3vol%のフ
ッ化水素ガスとの混合ガスを0.98MPaの圧力で水
素が吸蔵しなくなるまで導入し、10分間水素吸蔵と同
時にフッ化膜の形成を行い、然る後反応容器内を1to
rrまで真空排気した。そして混合ガスの導入と真空排
気を1サイクルとし、計10サイクル処理を行った。処
理後、試料の平均粒径はメジアン値で15μm前後とな
っていた。また、試料をX線回折法による構造解析を行
った処、実施例1と同様にLaNi5 及びLaF3 のピ
ークが確認された。Example 2 500 mechanically placed in a reaction vessel
Hydrogen storage alloy LaNi 4,7 Al ground to less than μm
The reaction vessel was filled with 10 g of 0.3 g, and then, while the reaction vessel was heated to 60 ° C., the gas in the reaction vessel was replaced while flowing N 2 gas. Then, hydrogen gas and 3 vol% hydrogen fluoride were introduced into the reaction vessel. A gas mixture with the gas is introduced at a pressure of 0.98 MPa until hydrogen is no longer absorbed, and a hydrogen fluoride film is formed at the same time as hydrogen absorption for 10 minutes.
Evacuated to rr. The introduction of the mixed gas and the evacuation were defined as one cycle, and a total of 10 cycles were performed. After the treatment, the average particle size of the sample was around 15 μm in median value. Further, when the sample was subjected to structural analysis by X-ray diffraction, peaks of LaNi 5 and LaF 3 were confirmed as in Example 1.
【0026】(評価2)実施例2にて処理した試料が水
素吸蔵金属材にとって最も被毒の受けやすい一酸化炭素
に対し、耐被毒性を有しているかについて未処理の試料
と比較試験をし、その結果を図4に示した。図4は、横
軸に水素の吸蔵、放出によるサイクル数、縦軸に水素吸
蔵量の変化の割合を示している。比較試験は、先ず前記
2種類の試料を80℃で0.1torrまで真空排気
し、次に7Nの高純度水素ガスを用い、導入圧力2.5
MPaの条件で活性化処理を3回行った。活性化処理
後、1000ppmの一酸化炭素を含んだ水素ガスを温
度80℃、導入圧力1MPaで吸蔵速度1SCCM/g
−alloyまで吸蔵させ、その後、温度80℃で放出
速度1SCCM/g−alloyまで放出を行い、サイ
クル数による有効水素移動量の変化を見た。その結果、
未処理の試料は5サイクル目で有効水素移動量0wt
%、初期吸蔵量に対し0%となり、完全に水素吸蔵金属
材として持つ本来の特性を失ってしまった。それに対し
実施例2にて処理した試料は50サイクル目でも安定し
て有効水素移動量1.0wt%前後を示し、初期水素吸
量に対し約95%の吸蔵量を維持している。よって、実
施例2にて処理された水素吸蔵金属材は、最も被毒の影
響を受けやすい一酸化炭素に対し非活性化する事が確認
された。(Evaluation 2) A comparative test was carried out on an untreated sample to determine whether the sample treated in Example 2 had resistance to poisoning of carbon monoxide, which is the most susceptible to hydrogen storage metal materials. The results are shown in FIG. In FIG. 4, the horizontal axis indicates the number of cycles due to hydrogen storage and release, and the vertical axis indicates the rate of change in the hydrogen storage amount. In the comparative test, first, the two types of samples were evacuated to 80 deg. C to 0.1 torr, and then a 7 N high-purity hydrogen gas was introduced at an introduction pressure of 2.5
The activation treatment was performed three times under the condition of MPa. After the activation treatment, a hydrogen gas containing 1000 ppm of carbon monoxide was stored at a temperature of 80 ° C. and an introduction pressure of 1 MPa, and an occlusion rate of 1 SCCM / g.
-Alloy, and then released at a temperature of 80 ° C. to a release rate of 1 SCCM / g-alloy, and the change in the effective hydrogen transfer amount with the number of cycles was observed. as a result,
Untreated sample has an effective hydrogen transfer amount of 0 wt at the 5th cycle
%, And 0% of the initial storage amount, completely losing the original characteristics of the hydrogen storage metal material. On the other hand, the sample treated in Example 2 stably exhibited an effective hydrogen transfer amount of about 1.0 wt% even at the 50th cycle, and maintained an occluded amount of about 95% of the initial hydrogen absorbed amount. Therefore, it was confirmed that the hydrogen storage metal material treated in Example 2 was inactivated against carbon monoxide, which is most susceptible to poisoning.
【0027】〈実施例3〉反応容器内に機械的に500
μm以下まで粉砕した水素吸蔵合金Mg2 Ni10gを
充填し、次に反応容器を200℃に加熱した状態でN2
ガスをフローしながら反応容器内のガス置換を行い、次
いで反応容器内に水素ガスと5vol%のフッ化水素ガ
スとの混合ガスを0.98MPaの圧力で水素が吸蔵し
なくなるまで導入し、3時間水素吸蔵と同時にフッ化膜
の形成を行い、然る後反応容器を350℃に昇温し1時
間熱処理を行った。その後、反応容器を常温まで冷却
し、反応容器内をN2 ガスで置換した後、大気中で反応
容器より試料を取り出し、発火、着火の無いことを確認
した。また、実施例3により処理された試料を温度35
0℃、真空排気0.01torrまで脱ガス処理した
後、その試料表面をエネルギー分散型X線分析装置にて
元素分析を行った処、試料表面にフッ素が存在している
ことを確認した。解析プロファイルを図5に示す。Example 3 500 mechanically placed in a reaction vessel
10 g of a hydrogen storage alloy Mg 2 Ni pulverized to not more than μm, and then N 2 was heated to 200 ° C.
The gas in the reaction vessel is replaced while the gas is flowing, and then a mixed gas of hydrogen gas and 5 vol% hydrogen fluoride gas is introduced into the reaction vessel at a pressure of 0.98 MPa until hydrogen is no longer occluded. A fluoride film was formed at the same time as hydrogen absorption for one hour, and then the temperature of the reaction vessel was raised to 350 ° C. and heat treatment was performed for one hour. Thereafter, the reaction vessel was cooled to room temperature, and the inside of the reaction vessel was replaced with N 2 gas. Thereafter, a sample was taken out of the reaction vessel in the atmosphere, and it was confirmed that there was no ignition or ignition. In addition, the sample treated according to the third embodiment
After degassing to 0 ° C. and evacuation to 0.01 torr, the surface of the sample was subjected to elemental analysis using an energy dispersive X-ray analyzer, and it was confirmed that fluorine was present on the sample surface. The analysis profile is shown in FIG.
【0028】(評価3)実施例3にて処理された試料に
吸蔵していた水素量の測定を行った。測定は反応容器内
に充填した試料を350℃に昇温した後、あらかじめ
0.01torrまで真空排気されたリザーバータンク
に放出させ、その時の圧力平衡値により試料から放出さ
れる水素量を算出した。その結果、放出量は3wt%前
後であった。また、フッ化膜形成時に吸蔵された水素を
放出させた後、温度350℃で0.01torrまで真
空排気し、再度温度250℃、0.98MPaの導入圧
力で水素を吸蔵させた。その結果を図6に示す。図6
は、横軸に水素吸蔵時間、縦軸に試料に吸蔵された水素
量を示している。この図6で判るように水素導入後直ち
に吸蔵を開始し、約3分間でほぼ平衡に達し、その時の
水素吸蔵量は3.3wt%であった。よって、実施例3
にて処理された水素吸蔵金属材は、水素を吸蔵した状態
であっても水素吸蔵金属材の温度が水素放出温度未満で
あれば、大気中であっても安全に取り扱うことができ、
しかも吸蔵されている水素は放出に十分な温度に加熱す
ることにより容易に放出され、また二回目からの水素吸
蔵特性は既に数回活性化処理した未処理の試料と同程度
の水素吸蔵特性を示す事が確認された。(Evaluation 3) The amount of hydrogen occluded in the sample treated in Example 3 was measured. In the measurement, after the temperature of the sample filled in the reaction vessel was raised to 350 ° C., the sample was discharged into a reservoir tank which was evacuated to 0.01 torr in advance, and the amount of hydrogen released from the sample was calculated based on the pressure equilibrium value at that time. As a result, the release amount was about 3 wt%. Further, after releasing the hydrogen occluded during the formation of the fluoride film, vacuum evacuation was performed at a temperature of 350 ° C. to 0.01 torr, and hydrogen was occluded again at a temperature of 250 ° C. and an introduction pressure of 0.98 MPa. FIG. 6 shows the result. FIG.
Indicates the hydrogen storage time on the horizontal axis, and the amount of hydrogen stored in the sample on the vertical axis. As can be seen from FIG. 6, storage started immediately after the introduction of hydrogen, and reached approximately equilibrium in about 3 minutes, at which time the amount of stored hydrogen was 3.3 wt%. Therefore, Embodiment 3
The hydrogen-storing metal material treated in the above can be safely handled even in the atmosphere, even if the temperature of the hydrogen-storing metal material is lower than the hydrogen release temperature even in the state of storing hydrogen,
Moreover, the stored hydrogen is easily released by heating to a temperature sufficient for release, and the hydrogen storage characteristics from the second time have the same hydrogen storage characteristics as the untreated sample that has already been activated several times. Was confirmed.
【0029】[0029]
【発明の効果】以上の通り本発明の水素吸蔵金属材の高
活性化及び安定化処理法は、水素ガスとフッ素系ガスと
の混合ガスにより、水素吸蔵金属材の表面に気相成長に
よるフッ化膜を形成すると同時に、そのフッ化膜の形成
により水素吸蔵が加速的に進行し水素吸蔵金属材の微粉
化及びクラックが発生する。更に水素吸蔵によって発生
したクラック等の新生面にもフッ化膜の形成が引き続き
進行する。以上のように本処理法はフッ化膜形成と水素
吸蔵が連続的に起こり、最終的には水素吸蔵金属材の全
表面にフッ化膜を形成するものであるから、水素分子に
対し高活性で且つ安定化する。従って、高温、高圧、高
真空での吸蔵、放出を10回以上必要としていた水素吸
蔵金属材の初期活性化を、低温、低圧、真空排気無しで
も可能となり、しかも表面に形成されたフッ化膜は非常
に安定した化合物であるから、大気に曝された状態でも
大気中の酸素、水分の影響が極めて少ないため、急激な
酸化反応などによる発火、着火による粉塵爆発の危険性
が無く、それは水素を吸蔵している状態でも同様であ
る。また、水素分子以外の表面被毒、腐食を有する物質
に対しては非活性であるため、取り扱い上の危険性が解
決されると共に、これまで危険を回避するために必要と
されてきた設備、生産、輸送における保全費用を大幅に
削減できる。As described above, the method for highly activating and stabilizing a hydrogen storage metal material according to the present invention uses a mixed gas of a hydrogen gas and a fluorine-based gas to cover the surface of the hydrogen storage metal material by gas phase growth. Simultaneously with the formation of the oxidized film, the formation of the fluoride film accelerates the hydrogen storage and causes the hydrogen storage metal material to be pulverized and cracked. Further, the formation of a fluoride film continues on a new surface such as a crack generated by hydrogen absorption. As described above, in this treatment method, the formation of the fluoride film and the hydrogen absorption occur continuously, and finally the fluoride film is formed on the entire surface of the hydrogen storage metal material. And stabilize. Therefore, the initial activation of the hydrogen-absorbing metal material, which required storage and desorption at high temperature, high pressure, and high vacuum 10 times or more, can be performed at low temperature, low pressure, without vacuum evacuation, and the fluoride film formed on the surface Is a very stable compound, so it has very little effect of oxygen and moisture in the atmosphere even when exposed to the air.Therefore, there is no danger of ignition or dust explosion due to ignition due to a rapid oxidation reaction. The same applies to the state where occlusion is performed. In addition, since it is inactive against substances having surface poisoning and corrosion other than hydrogen molecules, dangers in handling are solved, and equipment that has been required to avoid dangers, Maintenance costs in production and transportation can be significantly reduced.
【0030】また、本発明の水素吸蔵金属材の高活性化
及び安定化処理法は、水素ガスとフッ素系ガスとの混合
ガスによる気相中で、化合物反応と水素による微粉化反
応を同時に同じ設備内で行うことができるので、生産性
が高く、大がかりな設備や複雑な工程を必要とせず、大
量生産規模にも対応可能で、しかも処理費用の大幅な削
減可能である。Further, the method for highly activating and stabilizing a hydrogen-absorbing metal material of the present invention is characterized in that the compound reaction and the pulverization reaction with hydrogen are simultaneously performed in the gas phase with a mixed gas of hydrogen gas and fluorine-based gas. Since the process can be carried out in the facility, the productivity is high, large-scale facilities and complicated processes are not required, it is possible to cope with mass production scale, and the processing cost can be greatly reduced.
【0031】さらに、本発明の水素吸蔵金属材の高活性
化及び安定化処理法により処理された水素吸蔵金属材
は、大気中において非常に安定した状態を維持するた
め、あらかじめ所要の粒径に調整した状態で大気中で保
存しておいても、使用時には直ぐに低温、低圧で水素吸
蔵金属材が本来持つ水素吸蔵特性を示すため、これを使
えばあらかじめ使用用途に調整された状態で在庫がで
き、またプラントなどの立ち上げロスも最小に押さえる
ことが可能となる。しかも水素を吸蔵している状態でも
大気中で取り扱いが可能なため、水素を水素吸蔵金属材
に蓄え輸送する場合にも特に金属製の耐圧容器内に密閉
充填する必要がなく、袋詰め程度の簡単な梱包にて水素
を安全に輸送可能となる。Further, the hydrogen storage metal material treated by the method for highly activating and stabilizing the hydrogen storage metal material of the present invention has a required particle diameter in advance in order to maintain a very stable state in the atmosphere. Even if it is stored in the air in the adjusted state, it immediately shows the inherent hydrogen storage characteristics of the hydrogen storage metal material at low temperature and low pressure at the time of use. It is possible to minimize the startup loss of a plant or the like. In addition, since it can be handled in the atmosphere even when it is storing hydrogen, it is not necessary to tightly fill it in a metal pressure-resistant container when storing and transporting hydrogen in a metal material storing hydrogen. Hydrogen can be safely transported with simple packaging.
【0032】また、表面処理された水素吸蔵金属材は水
素分子以外の物質に対し非活性であるため、水素濃度の
低いガス中から安定的に水素のみを回収することがで
き、またヒートポンプや自動車燃料貯蔵用、水素運搬
用、熱輸送用等の水素貯蔵タンクに使用した際にも長時
間にわたって安定した性能を維持することが可能とな
り、さらに小型、大型ニッケル水素二次電池用負極材と
して使用した際にも初期の充放電特性、電解液に対する
耐食性、サイクル寿命に優れたものとなる。Further, since the surface-treated hydrogen storage metal material is inactive to substances other than hydrogen molecules, only hydrogen can be stably recovered from a gas having a low hydrogen concentration. When used in hydrogen storage tanks for fuel storage, hydrogen transport, heat transport, etc., it can maintain stable performance for a long time, and can be used as a negative electrode material for small and large nickel-metal hydride secondary batteries In this case, the initial charge-discharge characteristics, corrosion resistance to the electrolyte, and cycle life are excellent.
【図1】本発明の水素吸蔵金属材の高活性化及び安定化
処理法を実施する為の処理装置の一例の模式図である。FIG. 1 is a schematic view of an example of a processing apparatus for performing a method for highly activating and stabilizing a hydrogen storage metal material of the present invention.
【図2】本発明の実施例1により処理された水素吸蔵金
属材をX線解析法により構造解析を行った解析プロファ
イルを示す図である。FIG. 2 is a view showing an analysis profile obtained by performing a structural analysis on a hydrogen storage metal material treated according to Example 1 of the present invention by an X-ray analysis method.
【図3】本発明の実施例1により処理された試料と未処
理試料の水素吸蔵に要する時間と水素吸蔵量との関係を
示す図である。FIG. 3 is a diagram showing the relationship between the time required for hydrogen storage and the amount of hydrogen storage of a sample treated according to Example 1 of the present invention and an untreated sample.
【図4】本発明の実施例2にて処理された試料と未処理
試料の水素の吸蔵、放出によるサイクル数と水素吸蔵量
の変化率との関係を示す図である。FIG. 4 is a diagram showing the relationship between the number of cycles of hydrogen absorption and release and the rate of change in the hydrogen storage amount of the sample treated and the untreated sample in Example 2 of the present invention.
【図5】本発明の実施例3により処理された水素吸蔵金
属材の試料表面をエネルギー分散型X線分析装置により
元素分析した解析プロファイルを示す図である。FIG. 5 is a diagram showing an analysis profile obtained by performing an elemental analysis on a sample surface of a hydrogen storage metal material treated according to Example 3 of the present invention using an energy dispersive X-ray analyzer.
【図6】本発明の実施例3にて処理された試料の水素吸
蔵時間と水素吸蔵量との関係を示す図である。FIG. 6 is a diagram showing a relationship between a hydrogen storage time and a hydrogen storage amount of a sample treated in Example 3 of the present invention.
1 反応容器 2 電気炉 3 ガス供給システム 4 ガス導入ライン 5 不活性ガス貯蔵ボンベ 6 原料ガス貯蔵ボンベ 7 真空排気装置 DESCRIPTION OF SYMBOLS 1 Reaction container 2 Electric furnace 3 Gas supply system 4 Gas introduction line 5 Inert gas storage cylinder 6 Raw material gas storage cylinder 7 Vacuum exhaust system
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 学 東京都大田区山王2丁目5番13号 株式 会社ベンカン内 (72)発明者 中澤 亨 東京都大田区山王2丁目5番13号 株式 会社ベンカン内 (72)発明者 菊山 裕久 大阪府堺市海山町7丁目227番地 橋本 化成株式会社三宝工場内 (72)発明者 平山 良司 大阪府堺市海山町7丁目227番地 橋本 化成株式会社三宝工場内 (56)参考文献 特開 平7−268649(JP,A) 特開 昭52−86921(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 3/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Manabu Ito 2-5-13, Sanno, Ota-ku, Tokyo Inside Benkan Corporation (72) Inventor Toru Nakazawa 2-5-13, Sanno, Ota-ku, Tokyo Bencan Corporation (72) Inventor Hirohisa Kikuyama 7-227, Kaiyama-cho, Sakai-shi, Osaka Pref. In Hashimoto Chemicals Co., Ltd. Sanpo Plant (72) Inventor Ryoji Hirayama 7-227, Kaiyama-cho, Sakai-shi, Osaka Pref. 56) References JP-A-7-268649 (JP, A) JP-A-52-86921 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 3/00
Claims (4)
所要の温度まで加熱した後、その反応容器内にフッ素系
ガスと水素ガスを同時に所要の圧力で導入し、水素吸蔵
金属材を微粉化すると共にその表面に、金属フッ化物を
主成分とする膜を気相成長により形成して、少くとも表
面又は表面層を、水素分子に対し高活性化すると共に、
水素分子以外の表面被毒を有する物質に対し非活性化す
ることを特徴とする水素吸蔵金属材の高活性化及び安定
化処理法。1. A reaction vessel is filled with a hydrogen storage metal material,
After heating to the required temperature, a fluorine-based gas and a hydrogen gas are simultaneously introduced into the reaction vessel at a required pressure to pulverize the hydrogen-absorbing metal material and form a film mainly composed of metal fluoride on its surface. Is formed by vapor phase growth, and at least the surface or surface layer is highly activated against hydrogen molecules,
A method for highly activating and stabilizing a hydrogen-absorbing metal material, comprising deactivating a substance having surface poisoning other than hydrogen molecules.
化及び安定化処理法で処理した水素吸蔵金属材の充填さ
れている反応容器内に、更にフッ素系ガスと水素ガスを
同時に所要の圧力、温度条件にて導入し、水素吸蔵金属
材に対し水素の吸蔵、放出を繰り返して、さらに水素吸
蔵金属材の微粉化処理を進展させ且つその金属材の表面
又は表面層に金属フッ化物を主成分とする膜を形成し
て、水素分子に対し高活性化すると共に、水素分子以外
の表面被毒を有する物質に対し非活性化することを特徴
とする水素吸蔵金属材の高活性化及び安定化処理法。2. A fluorine-containing gas and a hydrogen gas are further charged into a reaction vessel filled with the hydrogen storage metal material treated by the method for activating and stabilizing the hydrogen storage metal material according to claim 1.
At the same time, it is introduced under the required pressure and temperature conditions, and repeatedly occluding and releasing hydrogen with respect to the hydrogen-absorbing metal material, further advances the pulverization treatment of the hydrogen-absorbing metal material, and forms a metal on the surface or surface layer of the metal material. By forming a film containing fluoride as a main component, it is highly activated against hydrogen molecules, and deactivated against substances having surface poisoning other than hydrogen molecules. Activation and stabilization treatment method.
高活性化及び安定化処理法で処理した反応容器内の水素
吸蔵金属材を、その金属材に見合った温度条件で不活性
ガス又は水素ガスにて熱処理を施して、金属フッ化物を
主成分とする膜を均質化し、水素分子に対しより高活性
化すると共に、水素分子以外の表面被毒を有する物質を
一層非活性化することを特徴とする水素吸蔵金属材の高
活性化及び安定化処理法。3. A hydrogen storage metal material in a reaction vessel which has been treated by the method for highly activating and stabilizing a hydrogen storage metal material according to claim 1 or 2 is converted into an inert gas at a temperature condition suitable for the metal material. Alternatively, heat treatment with hydrogen gas is performed to homogenize the film containing metal fluoride as a main component, thereby further activating hydrogen molecules and deactivating substances having surface poisoning other than hydrogen molecules. A method for highly activating and stabilizing a hydrogen storage metal material, characterized in that:
蔵金属材の高活性化及び安定化処理法に於ける反応容器
に充填する前の水素吸蔵金属材が、粉末、インゴットな
どの素材、又は水素吸蔵金属をマトリックスとした複合
材、中間製品、若しくは完成品のいずれかであることを
特徴とする水素吸蔵金属材の高活性化及び安定化処理
法。4. The hydrogen storage metal material according to claim 1 or 2 or 3, wherein the hydrogen storage metal material before filling in a reaction vessel in the method for highly activating and stabilizing a hydrogen storage metal material is a material such as a powder or an ingot. Alternatively, a method for highly activating and stabilizing a hydrogen storage metal material, which is one of a composite material, an intermediate product, and a finished product using the hydrogen storage metal as a matrix.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11207296A JP3350691B2 (en) | 1996-04-09 | 1996-04-09 | High activation and stabilization of hydrogen storage metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11207296A JP3350691B2 (en) | 1996-04-09 | 1996-04-09 | High activation and stabilization of hydrogen storage metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09278401A JPH09278401A (en) | 1997-10-28 |
JP3350691B2 true JP3350691B2 (en) | 2002-11-25 |
Family
ID=14577376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11207296A Expired - Lifetime JP3350691B2 (en) | 1996-04-09 | 1996-04-09 | High activation and stabilization of hydrogen storage metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3350691B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102601355A (en) * | 2012-03-20 | 2012-07-25 | 昆明理工大学 | Surface modification method for improving corrosion resistance of bronze powder |
CN102699348A (en) * | 2012-07-02 | 2012-10-03 | 昆明理工大学 | Method of preparing micron-sized spherical high-purity nickel powder |
US8435916B2 (en) | 2005-03-28 | 2013-05-07 | Stella Chemifa Corporation | Catalyst comprising platinum black and fluorine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998013158A1 (en) * | 1996-09-26 | 1998-04-02 | Toyota Jidosha Kabushiki Kaisha | Hydrogen absorbing alloy powder and method of producing hydrogen absorbing alloy powder |
CN114888282B (en) * | 2022-04-11 | 2023-06-06 | 华南理工大学 | A, A 2 B 7 Fluorination modification method of hydrogen storage alloy, obtained fluorination modified hydrogen storage alloy and application thereof |
-
1996
- 1996-04-09 JP JP11207296A patent/JP3350691B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8435916B2 (en) | 2005-03-28 | 2013-05-07 | Stella Chemifa Corporation | Catalyst comprising platinum black and fluorine |
CN102601355A (en) * | 2012-03-20 | 2012-07-25 | 昆明理工大学 | Surface modification method for improving corrosion resistance of bronze powder |
CN102699348A (en) * | 2012-07-02 | 2012-10-03 | 昆明理工大学 | Method of preparing micron-sized spherical high-purity nickel powder |
Also Published As
Publication number | Publication date |
---|---|
JPH09278401A (en) | 1997-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1215020A (en) | Process and apparatus for treating solutions containing tritiated water | |
US4153484A (en) | Hydrogen storage material | |
Gualtieri et al. | Control of the hydrogen absorption and desorption of rare‐earth intermetallic compounds | |
JPH0822721B2 (en) | Method and apparatus for low-temperature storage of hydrogen by metal-assisted carbon | |
Mizuno et al. | Titanium concentration in FeTix (l⩽ x⩽ 2) alloys and its effect on hydrogen storage properties | |
JP3350691B2 (en) | High activation and stabilization of hydrogen storage metal | |
FR2507626A1 (en) | OXYGEN-STABILIZED ZIRCONIUM-VANADIUM-IRON ALLOY AND METHOD FOR FIXING HYDROGEN USING THE SAME | |
Uchida et al. | Kinetics of hydrogen absorption by LaNi5 with oxide surface layers | |
JP2835327B2 (en) | High activation and stabilization of hydrogen storage metal | |
KR100427678B1 (en) | Highly activated hydrogen containing material and method for producing the material | |
Sakaguchi et al. | The confinement of hydrogen in LaNi5 by poisoning of the hydride surface | |
JP2709792B2 (en) | High activation and stabilization of hydrogen storage metal | |
Meli et al. | XPS analysis of the getter mechanism and getter activation process | |
JP3406615B2 (en) | Activation, initial activation and stabilization of hydrogen storage alloy | |
JPS6159241B2 (en) | ||
Hampton et al. | Surface study of liquid water treated and water vapor treated Mg2. 35Ni alloy | |
JPS62167201A (en) | Method for activating hydrogen storage alloy | |
DE3234671C1 (en) | Process for coating hydrogen storage material with palladium | |
JPS635321B2 (en) | ||
JP2000239703A (en) | Manufacture of hydrogen storage alloy powder excellent in oxidation resistance | |
JP2002146449A (en) | Method for regenerating hydrogen storage alloy | |
JP3173164B2 (en) | Method for modifying surface material and apparatus therefor | |
JP3319333B2 (en) | Stabilization method of hydrogen storage alloy | |
Litvinov et al. | Sputtering of Oxides from LaNi5 Surface | |
US20220266195A1 (en) | Process for removing carbon monoxide and/or gaseous sulphur compounds from hydrogen gas and/or aliphatic hydrocarbons |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020618 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070920 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080920 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090920 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090920 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100920 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110920 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110920 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120920 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130920 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |