[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3349018B2 - Induction magnet - Google Patents

Induction magnet

Info

Publication number
JP3349018B2
JP3349018B2 JP21243595A JP21243595A JP3349018B2 JP 3349018 B2 JP3349018 B2 JP 3349018B2 JP 21243595 A JP21243595 A JP 21243595A JP 21243595 A JP21243595 A JP 21243595A JP 3349018 B2 JP3349018 B2 JP 3349018B2
Authority
JP
Japan
Prior art keywords
core
coil
window
view
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21243595A
Other languages
Japanese (ja)
Other versions
JPH0945543A (en
Inventor
賢 斉藤
健嗣 森本
孝 野里
崇彦 足立
靖 前島
猛成 東中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tabuchi Electric Co Ltd
Original Assignee
Tabuchi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tabuchi Electric Co Ltd filed Critical Tabuchi Electric Co Ltd
Priority to JP21243595A priority Critical patent/JP3349018B2/en
Publication of JPH0945543A publication Critical patent/JPH0945543A/en
Application granted granted Critical
Publication of JP3349018B2 publication Critical patent/JP3349018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、複数の板材を重ね合
せてなるコアとこのコアに装着されたコイルとを有する
誘導電磁器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction magnet having a core formed by laminating a plurality of plates and a coil mounted on the core.

【0002】[0002]

【従来の技術】一般に、外鉄形のトランスにおいては、
図15に示すように、E形とI形の2種類のラミネート
コアをそれぞれ重ね合わせブロック化したのちに接合
し、このEIコア22の窓部にコイル24を嵌めこんで
組み立てられている。この場合、図16(A)に示すよ
うに、例えば1枚の横60(任意単位)×縦80のコア
材料について、横10×縦60の矩形Iを2つ打抜いた
後に中心線O1 で切断して、横60×縦40のE形のラ
ミネートコアLCを2つと、横60×縦10のI形のラ
ミネートコアLCを2つ採るようにする。このE形とI
形のラミネートコアLC,LCをそれぞれ重ね合わせて
ブロック化し、図16(B)のように接合面Mで接着す
ると、EIコアの形状が横60×縦50で、窓空間が横
10×縦30、つまり窓のアスペクト比(AR)が縦3
/横1=3のEIコアが2つ作製されることとなり、コ
ア材料に全く無駄が生じないことになる。ここで、磁路
の磁気抵抗を場所的に均一にするため、コアの外足部2
2A,22Bおよび上下の連結部22D,22Eの幅1
0に対して、中足部22Cの幅は20に設定される。
2. Description of the Related Art Generally, in a shell-type transformer,
As shown in FIG. 15, two types of E-type and I-type laminated cores are respectively overlapped to form a block, then joined, and a coil 24 is fitted into a window of the EI core 22 to assemble. In this case, as shown in FIG. 16 (A), for example, for a core material having a width of 60 (arbitrary unit) and a height of 80, two rectangles I each having a width of 10 and a height of 60 are punched, and then the center line O1 is formed. Cutting is performed so that two E-shaped laminated cores LC of 60 × 40 and two I-shaped laminated cores of 60 × 10 are taken. This E shape and I
When the laminated cores LC, LC having the same shape are overlapped to form a block and bonded at the bonding surface M as shown in FIG. 16B, the shape of the EI core is 60 × 50 and the window space is 10 × 30. That is, the aspect ratio (AR) of the window is 3
As a result, two EI cores having a width of 1/3 are produced, and no waste is caused in the core material. Here, in order to make the magnetic resistance of the magnetic path uniform in place, the outer leg 2 of the core is used.
2A, 22B and width 1 of upper and lower connecting portions 22D, 22E
With respect to 0, the width of the middle foot 22C is set to 20.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
誘導電磁器においては、次のような問題があった。上記
のように、コア材料を無駄なく使用するために、EIコ
アの形状を窓のアスペクト比(AR)3を基準にして形
成していたが、この形状に決まってしまうため、コアの
小型化を図ることが困難であるとともに、鉄,銅の材料
の使用量も決まるため、これらの使用量を節約して低コ
スト化を図ることが困難であった。これは、図16
(B)の横60×縦50のコアをO2 線で切断して、横
30×縦50で窓のアスペクト比(AR)3の内鉄形コ
アを2つ作成する場合においても同様であった。
However, the conventional induction magnet has the following problems. As described above, in order to use the core material without waste, the shape of the EI core is formed based on the aspect ratio (AR) 3 of the window. However, since the shape is determined, the size of the core is reduced. In addition, it is difficult to reduce the cost, and it is difficult to reduce the cost by reducing the amount of iron and copper used. This is shown in FIG.
The same applies to the case of cutting a core of 60 (width) × 50 (length) in FIG. 2 (B) with an O 2 line to form two inner cores of 30 × 50 (length) and an aspect ratio (AR) of a window of 3. .

【0004】また、図17のように、コア22とボビン
レスコイル24との組み立ての際、ボビンレスコイル2
4の一部を絶縁シート38でカバーしてコア22に嵌め
込むが、この嵌め込みの際、コア22の角により絶縁シ
ート38が破損しないように、コイル24とコア22と
の間に十分なクリアランスCが必要となり、窓面積を十
分に利用できなかった。
As shown in FIG. 17, when assembling the core 22 and the bobbinless coil 24, the bobbinless coil 2
4 is covered with the insulating sheet 38 and fitted into the core 22. In this fitting, sufficient clearance is provided between the coil 24 and the core 22 so that the insulating sheet 38 is not damaged by corners of the core 22. C was required, and the window area could not be fully utilized.

【0005】この発明は上記の問題点を解決するため
に、コイルの絶縁シートをコアと接触して破損させるこ
とがないとともに、分割コア部間の接合面の磁気抵抗を
減少させることができる誘導電磁器を提供することを目
的としている。
[0005] In order to solve the above-mentioned problems, the present invention is to prevent the insulating sheet of the coil from being damaged by contacting the core.
And the magnetic resistance of the joint surface between the split cores
It is an object to provide an induction magnet which can be reduced .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の誘導電磁器は、複数に分割された分割コ
ア部を互いに接合してなるコアと、このコアに装着され
たコイルと、コイルの表面を覆う絶縁シートと、絶縁シ
ートの外側からコイルの少なくとも内外周面を覆う軟磁
性のコイルカバーとを有し、前記コイルカバーがその周
囲に位置する分割コア部の少なくとも1つに接触して、
分割コア部間の接合面をバイパスする磁路を構成してい
る。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
The induction electromagnetic device according to claim 1 includes a core formed by joining a plurality of divided core portions to each other, a coil mounted on the core, an insulating sheet covering a surface of the coil, and an outside of the insulating sheet. And a soft magnetic coil cover that covers at least the inner and outer peripheral surfaces of the coil, wherein the coil cover contacts at least one of the divided core portions located therearound,
It forms a magnetic path that bypasses the joint surface between the split core portions.

【0007】[0007]

【作用および効果】請求項1の発明によれば、絶縁シー
トの外側からコイルの少なくとも内外周面を覆う軟磁性
のコイルカバーがその周囲に位置する分割コア部の少な
くとも1つに接触して、分割コア部間の接合面をバイパ
スする磁路を構成している。従って、コイルの絶縁シー
トをコアと接触して破損させることがないとともに、コ
イルカバーを通って分割コア部間に磁路が形成されるの
で実質的に接合面の磁気抵抗を減少させたと同じ効果を
得ることができる。
According to the first aspect of the present invention, the soft magnetic coil cover covering at least the inner and outer peripheral surfaces of the coil from the outside of the insulating sheet comes into contact with at least one of the divided core portions located therearound. It forms a magnetic path that bypasses the joint surface between the split core portions. Therefore, the insulating sheet of the coil is not damaged by contact with the core, and a magnetic path is formed between the divided core portions through the coil cover, thereby substantially reducing the magnetic resistance of the joint surface. Can be obtained.

【0008】[0008]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1に、この発明の第1参考例に係る誘導電磁
器のブロック図を示す。この誘導電磁器は、例えば、コ
ア12とコア12に装着されたコイル14とからなる外
鉄形のトランスである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a block diagram of an induction magnet according to a first embodiment of the present invention. This induction magnet is, for example, a shell-type transformer including a core 12 and a coil 14 mounted on the core 12.

【0009】コア12は、中央部の足部(以下、中足
部)12Cとその左右両側の足部(以下、外足部)12
A,12Bとをそれらの両端において、第1および第2
の連結部12D,12Eで連結したものであり、各部1
2A〜12Eは、それぞれ複数のほぼ矩形のけい素鋼板
のような板材(ラミネートコア)を重合して形成されて
いる。つまり、コア12は、各部12A〜12Eに5分
割されている。コイル14は、中足部12Cに装着され
て、外足部12A,12Bおよび両連結部12D,12
Eにより囲まれた矩形の窓部15に位置する。
The core 12 includes a central foot (hereinafter, middle foot) 12C and left and right foot portions (hereinafter, outer foot) 12C.
A and 12B at their ends at the first and second
Are connected by connecting portions 12D and 12E of
Each of 2A to 12E is formed by superposing a plurality of plate materials (laminate cores) such as a substantially rectangular silicon steel plate. That is, the core 12 is divided into five sections 12A to 12E. The coil 14 is mounted on the middle foot portion 12C, and the outer foot portions 12A, 12B and the two connection portions 12D, 12C.
It is located in a rectangular window 15 surrounded by E.

【0010】ここで、第1参考例のコアは、窓部15の
横寸法wを1としたとき、その縦寸法hを任意に、ま
た、コアの外形の横寸法Wが6にその縦寸法Hをh+2
にそれぞれ設定されている。つまり窓のアスペクト比
(AR)が任意に設定されたコアである。このコアが、
外形が横寸法W6×縦寸法H5で窓のアスペクト比(A
R)が3の従来コアと同等の特性を維持しながら、かつ
鉄および銅材料を節約することができる。このコアの一
例を図2に示す。このコア12は、窓部15の横寸法w
を1としたとき、その縦寸法hが2に、また、コアの外
形の横寸法Wが6にその縦寸法Hが4に、つまり外形が
横寸法W6×縦寸法H4で、窓のアスペクト比(AR)
が2に設定されている。
Here, in the core of the first reference example , when the horizontal dimension w of the window portion 15 is 1, the vertical dimension h is arbitrarily set, and the horizontal dimension W of the outer shape of the core is set to 6 H is h + 2
Are set respectively. In other words, it is a core in which the aspect ratio (AR) of the window is arbitrarily set. This core is
The outer dimensions are horizontal dimension W6 x vertical dimension H5, and the window aspect ratio (A
R) While maintaining the same properties as the conventional core of 3, the iron and copper materials can be saved. FIG. 2 shows an example of this core. The core 12 has a width w of the window 15.
Is 1, the vertical dimension h is 2, the horizontal dimension W of the external shape of the core is 6, and the vertical dimension H is 4, that is, the external size is the horizontal dimension W6 × the vertical dimension H4, and the aspect ratio of the window is (AR)
Is set to 2.

【0011】また、このコア12は、図16のように従
来コアが外足部22Aの幅10で、かつ、積厚Dであっ
た場合に、同じ積厚Dのもとでこれと同等の特性をもつ
ように、外足部12Aの幅(横寸法wと同じ)を11.
2にしたものであり、積厚Dが異なれば当然にこの幅も
これに限定されない。なお、各部12A〜12Eの接合
面Mを凹凸形状にしている理由は後述する。
When the conventional core has a width 10 and a thickness D of the outer foot portion 22A as shown in FIG. 16, the core 12 has the same thickness D under the same thickness D. 10. The width (same as the lateral dimension w) of the outer foot portion 12A is set so as to have characteristics.
This width is not limited to this as long as the thickness D is different. The reason why the joining surface M of each of the portions 12A to 12E is formed in an uneven shape will be described later.

【0012】外足部12Aおよび12Bは横11.2
(任意単位:以下同様)×縦22.4の矩形である。中
足部12Cは横22.4×縦22.4の矩形である。第
1および第2の連結部12Dおよび12Eは、横67.
2(11.2×6)×縦44.8(11.2×4)の矩
形である。これらのラミネートコアを重ね合わせブロッ
ク化したのちに接合すると、外形寸法が横67.2(1
1.2×6)×縦44.8(11.2×4)、つまりコ
アの外形が横寸法W6×縦寸法H4であって、窓空間が
横11.2×縦22.4、つまり窓のアスペクト比(A
R)が2のコア12になる。
The outer feet 12A and 12B are horizontal 11.2
(Arbitrary unit: the same applies hereinafter) × rectangle 22.4 rectangle. The midfoot portion 12C is a rectangle having a width of 22.4 × length 22.4. The first and second connecting portions 12D and 12E are provided with a horizontal 67.
It is a rectangle of 2 (11.2 × 6) × 44.8 (11.2 × 4) height. When these laminated cores are joined after being overlapped and formed into a block, the outer dimensions are 67.2 (1
1.2 × 6) × length 44.8 (11.2 × 4), that is, the outer shape of the core is the horizontal dimension W6 × the vertical dimension H4, and the window space is 11.2 × the horizontal 22.4, ie, the window Aspect ratio (A
R) becomes the core 12 of 2.

【0013】コア12の磁気回路CKは図3に示すとお
りとなる。磁束密度B=一定、巻線直流抵抗=一定、コ
ア積厚D=一定とし、図3に示す外足幅をu、中足幅を
v、窓幅をwとしたとき、1/2v=u=wの条件のも
とで、窓のアスペクト比(AR)の変化に対するトラン
スの鉄および銅材料の合計重量の変化を計算した結果を
図4に示す。実線は鉄および銅の合計重量、一点鎖線は
鉄の重量、点線は銅の重量を示す。図4の拡大図を図5
に示す。この図のように、このコアは、窓のアスペクト
比(AR)が2<AR<3の範囲のとき、窓のアスペク
ト比(AR)3の従来コアに比較して、鉄および銅の合
計重量が小さくなる。また、好ましくは2.3<AR<
2.7の範囲のコアが、鉄および銅の合計重量が充分小
さくなる。
The magnetic circuit CK of the core 12 is as shown in FIG. When the magnetic flux density B = constant, the winding DC resistance = constant, the core thickness D = constant, and the outer foot width shown in FIG. 3 is u, the middle foot width is v, and the window width is w, 1 / 2v = u FIG. 4 shows the calculation result of the change in the total weight of the iron and copper materials of the transformer with respect to the change in the aspect ratio (AR) of the window under the condition of = w. The solid line indicates the total weight of iron and copper, the dashed line indicates the weight of iron, and the dotted line indicates the weight of copper. FIG. 5 is an enlarged view of FIG.
Shown in As shown in this figure, this core has a total weight of iron and copper when the window aspect ratio (AR) is in the range of 2 <AR <3, as compared with the conventional core having the window aspect ratio (AR) 3. Becomes smaller. Preferably, 2.3 <AR <
Cores in the 2.7 range have a sufficiently low total weight of iron and copper.

【0014】ところで、トランスの軽量化においては上
記のようなARの範囲になるが、トランスの低コスト化
を図るためには、同一重量におけるコア(鉄)のコスト
とコイル(銅)のコストとの比を考慮する必要もある。
例えば、同一重量における銅のコストと鉄のコストの比
が4である場合、図5の太線に示すようなカーブを描
き、コストの最下点はAR=1の方へシフトすることに
なる。つまり、市況の変化によって、銅と鉄の単価の比
が変化することにより、低コスト化を図るためのARの
値も変化することになる。過去10数年来の銅と鉄の単
価比(3.5〜4.5)を考慮すると、1.5≦AR<
2.5で低コスト化が図ることができる。また、このコ
アは、窓のアスペクト比(AR)が任意に設定できるの
で、窓のアスペクト比(AR)が3の従来コアと同等の
特性を維持しながら、コア材料を無駄にすることなく、
低背型の誘導電磁器を形成することができる。
By the way, although the AR is in the range as described above in reducing the weight of the transformer, in order to reduce the cost of the transformer, the cost of the core (iron) and the cost of the coil (copper) with the same weight are reduced. It is also necessary to consider the ratio of
For example, if the ratio of the cost of copper to the cost of iron at the same weight is 4, a curve as shown by the thick line in FIG. 5 is drawn, and the lowest point of the cost shifts to AR = 1. In other words, the ratio of the unit price of copper and iron changes due to changes in the market conditions, so that the value of AR for reducing costs also changes. Considering the unit price ratio of copper and iron (3.5-4.5) from the past 10 years, 1.5 ≦ AR <
The cost can be reduced at 2.5. In addition, since the aspect ratio (AR) of the window can be set arbitrarily in this core, while maintaining the same characteristics as the conventional core having an aspect ratio (AR) of 3 without wasting the core material,
A low-profile induction magnet can be formed.

【0015】次に、5分割したコア12の接合面Mの状
態について説明する。図2において、足部12A〜12
Cの端部と両連結部12D,12Eとの接合面Mに矩形
の凹凸部が形成され、この凹凸部が接合面Mに直交する
方向に圧入されている。この場合、この接合面Mはゼロ
クリアランス(隙間公差ゼロ)でプレスして結合する。
Next, the state of the joint surface M of the core 12 divided into five parts will be described. In FIG. 2, the feet 12A to 12A
A rectangular concavo-convex portion is formed on a joint surface M between the end of C and the two connecting portions 12D and 12E, and the concave-convex portion is press-fitted in a direction orthogonal to the joint surface M. In this case, the joining surfaces M are joined by pressing with zero clearance (zero gap tolerance).

【0016】これは、図6に示す従来の嵌合方法を改善
したものである。図6(A)の方法では、ラミネートコ
アの左右の足部とI型コアの間に、アンダーカットUを
備えた凹凸状の接合面Mを設けたE型コアにI型コアを
矢印方向に圧入する際に、コア材料の弾性によりE型コ
アの足部の間隔を狭めるように変形させて嵌合させるた
め、変形の歪が残って、嵌合した後の接合面Mに隙間が
生じる。また、(B)の方法では、接合面Mを略きのこ
状にしたE型コアにI型コアを紙面と垂直の方向に側面
から挿入するため、接合面Mの隙間を小さくして平行に
挿入するのが困難であった。このため、接合面Mの接触
面積は大きくなるが、その隙間によりその効果が相殺さ
れて磁気抵抗を減少させることができなかった。この発
明は、かかる従来の問題点を解決したものである。
This is an improvement over the conventional fitting method shown in FIG. In the method of FIG. 6 (A), the I-shaped core is moved in the direction of the arrow to the E-shaped core having an uneven joint surface M provided with an undercut U between the left and right feet of the laminated core and the I-shaped core. At the time of press-fitting, the E-shaped core is deformed and fitted so as to reduce the distance between the legs of the E-shaped core due to the elasticity of the core material. In the method (B), since the I-type core is inserted from the side surface in the direction perpendicular to the paper surface into the E-shaped core having the substantially mushroom-shaped joining surface M, the gap between the joining surfaces M is reduced and inserted in parallel. It was difficult to do. For this reason, although the contact area of the joining surface M becomes large, the effect is offset by the gap, and the magnetic resistance cannot be reduced. The present invention has solved such a conventional problem.

【0017】この例では、凹凸の深さが1mm以上であ
って、凹凸の幅と深さとの比を1:1にしている。従っ
て、各部の接触面積は凹凸を設けない場合の2倍にな
る。これは、従来コア22はその接合面が足部の1端だ
けであったのに比較して、このコア12は足部の両端が
接合面となってギャップGの影響も2倍になるが、接触
面積が上記のとおり2倍になることから接合部の磁気抵
抗が1/2になるので、この影響を相殺できる。なお、
凹凸の深さをさらに深くすると、接触面積が大きくな
り、さらにギャップGの影響を小さくできる。このよう
に、接合面Mを凹凸にすることにより、接合面Mの面積
を大きくして、磁気抵抗を減少させることができる。
In this example, the depth of the unevenness is 1 mm or more, and the ratio of the width to the depth of the unevenness is 1: 1. Therefore, the contact area of each part is twice as large as the case where no unevenness is provided. This is because, compared to the conventional core 22 in which the joint surface is only one end of the foot portion, the core 12 has the joint surface at both ends of the foot portion, and the influence of the gap G is doubled. Since the contact area is doubled as described above, the magnetic resistance at the junction is halved, so that this effect can be offset. In addition,
When the depth of the unevenness is further increased, the contact area increases, and the influence of the gap G can be further reduced. As described above, by making the bonding surface M uneven, the area of the bonding surface M can be increased and the magnetic resistance can be reduced.

【0018】このときのコア材料の打ち抜き状態を図7
に示す。図7(A)は、第1連結部12Dおよび第2連
結部12Eの材料採りの状態を示し、接合面Mとなる凹
凸部を挟んでその両側にそれぞれの連結部12D,12
Eを採り、凹凸部でプレス切断する。接合面Mを形成し
ない図示70の微小部分は捨てる。(B)は中足部12
Cの、(C)は外足部12Aおよび12Bの材料採りの
状態を示し、やはり接合面Mとなる凹凸部を挟んでその
両側に中足部12Cと外足部12A,12Bを採り、凹
凸部でプレス切断する。このように、このラミネート板
材に用いられる5分割の各部はすべて矩形であるので、
所定の幅WT1〜WT3のけい素鋼板をこの図のように
切断すれば、無駄なく各部が得られる。従って、従来の
EI形コアと同様に、コア材料にほとんど無駄が生じな
いことになる。
FIG. 7 shows a punched state of the core material at this time.
Shown in FIG. 7A shows a state in which the first connecting portion 12D and the second connecting portion 12E are used for material pick-up, and the connecting portions 12D and 12D are provided on both sides of the uneven portion serving as the joining surface M.
Take E and press cut at the uneven part. The minute portion in FIG. 70 where the bonding surface M is not formed is discarded. (B) is the midfoot 12
C of (C) shows the state of material picking of the outer foot parts 12A and 12B, and the middle foot part 12C and the outer foot parts 12A and 12B are taken on both sides of the uneven part which also becomes the joint surface M, Press cut at the part. As described above, since each of the five divided parts used for this laminated plate is rectangular,
By cutting a silicon steel plate having a predetermined width WT1 to WT3 as shown in this figure, each part can be obtained without waste. Therefore, as in the case of the conventional EI type core, almost no waste occurs in the core material.

【0019】このように、コア12の接合面Mに凹凸を
設けることにより、接触面積を大きくして磁気抵抗を軽
減するとともに、ゼロ嵌合で圧入することにより、従来
接着もしくは溶接で固定していたものが、ワンタッチの
圧入で強固な結合が得られる。
As described above, the unevenness is provided on the joint surface M of the core 12 to increase the contact area to reduce the magnetic resistance, and is conventionally fixed by bonding or welding by press-fitting with zero fitting. However, a firm connection can be obtained by one-touch press-fitting.

【0020】この結果、この第1参考例の外形が横6
7.2×縦44.8で窓空間が横11.2×縦22.4
(AR2)で、接合面Mに凹凸を設けたコア12は、外
形が横60×縦50で窓空間が横10×縦30(AR
3)の従来コア22と同一積厚Dの下で比較すると、従
来と同様な性能を有しつつ小型化され、鉄量が従来の約
3.2%増、銅量が約11.8%減となる。従って、堅
牢かつ軽量化したトランスが作製される。
As a result, the outer shape of the first reference example is
7.2 × 44.8 vertical window space 11.2 × 22.4 vertical
In (AR2), the core 12 having the unevenness on the bonding surface M has an outer shape of 60 × 50 and a window space of 10 × 30 (AR
When compared with the conventional core 22 of 3) under the same stack thickness D, the core is downsized while having the same performance as the conventional core, the iron amount is increased by about 3.2%, and the copper amount is increased by about 11.8%. Will be reduced. Therefore, a robust and lightweight transformer is manufactured.

【0021】なお、図2の横6:縦4の外鉄形コアをO
3 線で切断して、左右の両足部にコイルが装着される横
3:縦4の内鉄形コアを2つ作成する場合においても、
従来の横3:縦5の内鉄形コアに比較して同様の効果を
得ることができる。
It should be noted that the outer core of 6 × 4 in FIG.
Even when cutting with three lines and creating two horizontal 3: vertical 4 core-shaped cores in which coils are attached to both left and right legs,
The same effect can be obtained as compared with the conventional inner core of 3: 5 in length.

【0022】図8に、図1のトランスをリーケージトラ
ンスに用いた例を示す。図8(A)〜(D)に、このコ
ア12の正面図、右側面図、平面図、およびコイル付き
の斜視図を示す。図8(D)において、コイルの1次巻
線14Pと2次巻線14Sとの間にリーケージコア16
が設けられている。なお、コア12の背面図は正面図
と、左側面図は右側面図と、底面図は平面図と同一にあ
らわれる。
FIG. 8 shows an example in which the transformer of FIG. 1 is used as a leakage transformer. 8A to 8D show a front view, a right side view, a plan view, and a perspective view of the core 12 with a coil. In FIG. 8D, the leakage core 16 is provided between the primary winding 14P and the secondary winding 14S of the coil.
Is provided. The back view of the core 12 is the same as the front view, the left side view is the same as the right side view, and the bottom view is the same as the plan view.

【0023】次に、第2参考例について説明する。図9
(A)に、第2参考例の誘導電磁器のコア32の正面図
を示す。このコア32は、窓のアスペクト比(AR)が
mであるので、窓部15の横寸法wを1としたとき、窓
部15の縦寸法hがmに、コアの外形の横寸法Wが6
に、コアの外形の縦寸法Hがm+2にそれぞれ設定され
ている。このコア32のmも1.5≦AR<3を満たす
ものである。このコア32は、二点鎖線でそれぞれ囲ま
れる中足部32Cと、その左右両側の外足部32A,B
と、それらの両端において連結する第1連結部32Dお
よび第2の連結部32Eとを有する。これらを形成する
分割コア部は、第1実施例のように5分割された矩形で
はなく、実線で示す分割コア部A,B,Cに3分割され
ている。これら分割コアA,B,C部も、上記と同様に
それぞれ複数の板材を重ね合わせて形成されている。ま
た、図示しないコイルはコア32の窓部15に装着され
る。
Next, a second reference example will be described. FIG.
(A) shows a front view of the core 32 of the induction electromagnetic device of the second reference example . Since the aspect ratio (AR) of the window of the core 32 is m, when the horizontal dimension w of the window 15 is 1, the vertical dimension h of the window 15 is m, and the horizontal dimension W of the outer shape of the core is m. 6
The vertical dimension H of the outer shape of the core is set to m + 2. M of the core 32 also satisfies 1.5 ≦ AR <3. The core 32 includes a middle foot portion 32C surrounded by a two-dot chain line, and outer foot portions 32A, B on both left and right sides thereof.
And a first connecting portion 32D and a second connecting portion 32E connected at both ends thereof. The divided core portions forming these are not divided into five rectangles as in the first embodiment, but are divided into three divided core portions A, B, and C indicated by solid lines. These divided cores A, B, and C are also formed by laminating a plurality of plate members in the same manner as described above. A coil (not shown) is mounted on the window 15 of the core 32.

【0024】分割コア部Aは、横方向に延びる胴体部A
1 とその下方に延びる第1脚部A2とからなるL字形で
あり、その横寸法が2で縦寸法がm+2である。また、
分割コア部Bは、横方向に延びる胴体部B1 とその下方
に延びる第1脚部B2 とからなるL字形であり、同様
に、その横寸法が2で縦寸法がm+2である。分割コア
部Cは、横方向に延びる胴体部C1 とその中央上方に延
びる第2脚部C2 とからなるT字形であり、その横寸法
が4で縦寸法がm+2である。
The split core portion A has a body portion A extending in the lateral direction.
It has an L-shape consisting of 1 and a first leg A2 extending downward, and has a horizontal dimension of 2 and a vertical dimension of m + 2. Also,
The split core portion B has an L-shape including a body portion B1 extending in the lateral direction and a first leg portion B2 extending below the body portion B1, and similarly has a lateral size of 2 and a vertical size of m + 2. The split core portion C has a T-shape composed of a body portion C1 extending in the lateral direction and a second leg portion C2 extending above the center thereof, and has a horizontal dimension of 4 and a vertical dimension of m + 2.

【0025】コア32は、分割コア部AとBとが左右対
称に配置され、その間に割り込むように分割コア部Cが
配置されている。分割コア部Aと分割コア部Cとは、分
割コア部Aの胴体部A1 の先端面を、分割コア部Cの第
2脚部C2 の左先端の対応する一側面に突き合わせると
ともに、分割コア部Aの第1脚部A2 の先端の一側面を
分割コア部Cの第2脚部C1 の対応する先端面に突き合
わせた形状になっている。また、分割コア部Bと分割コ
ア部Cとは、分割コア部Bの胴体部B1 の先端面を、分
割コア部Cの第2脚部C2 の右先端の対応する一側面に
突き合わせるとともに、分割コア部Bの第1脚部B2 の
先端の一側面を分割コア部Cの第2脚部C1 の対応する
先端面に突き合わせた形状になっている。これにより、
中足部の磁気通路の面積(横断面積)が外足部および連
結部の2倍になり、コア全体にわたって磁気抵抗が均一
に保たれる。
The core 32 has split core portions A and B arranged symmetrically to each other, and a split core portion C is arranged so as to cut between them. The split core portion A and the split core portion C are arranged such that the front end surface of the body portion A1 of the split core portion A abuts on the corresponding one side surface of the left end of the second leg C2 of the split core portion C, and One side of the tip of the first leg A2 of the portion A is abutted against the corresponding tip of the second leg C1 of the split core portion C. Further, the split core portion B and the split core portion C abut the front end surface of the body portion B1 of the split core portion B against one corresponding side surface of the right end of the second leg C2 of the split core portion C, One side surface of the tip of the first leg B2 of the split core portion B is abutted against the corresponding tip surface of the second leg C1 of the split core portion C. This allows
The area (cross-sectional area) of the magnetic path of the middle foot is twice as large as that of the outer foot and the connecting part, and the magnetic resistance is kept uniform over the entire core.

【0026】このコア32は、分割コア部A,B,Cに
より、窓のアスペクト比(AR)mを任意に設定できる
ので、1.5≦AR<3を満たして軽量化と低コスト化
を図る誘導電磁器あるいは従来と同等の性能を維持しな
がら低背型の誘導電磁器等を容易に形成することができ
る。また、後述するコアの製造方法により、材料の無駄
なく作成できる。さらに、このコア32の接合面Mは1
つの磁気通路で2か所で、従来コア22と同様になるの
で、磁気通路のギャップも同様となり、磁気抵抗が増え
ることもない。従って、第1参考例のように、特に接合
面に凹凸を設けなくても、従来と同様な性能を有しつつ
鉄および銅材料の重量が減少され、軽量化したトランス
が作成できる。
Since the aspect ratio (AR) m of the window can be arbitrarily set by the divided core portions A, B, and C, the core 32 satisfies 1.5 ≦ AR <3 to reduce the weight and cost. It is possible to easily form a low-profile induction magnetic device or the like while maintaining the same performance as the conventional induction magnetic device or the conventional one. In addition, the core can be manufactured without waste by the manufacturing method of the core described later. Further, the joint surface M of the core 32 is 1
Since the magnetic core is the same as the conventional core 22 at two locations in one magnetic path, the gap of the magnetic path is also the same, and the magnetic resistance does not increase. Therefore, as in the first reference example , the weight of the iron and copper materials can be reduced and the transformer can be reduced in weight while maintaining the same performance as that of the related art, without providing any irregularities on the joining surface.

【0027】上記の誘導電磁器のコア32を製造する方
法を以下に説明する。図9(B)において、まず、原板
Pに横寸法4で縦寸法m+3の矩形領域が設定される。
この矩形領域の左下隅を原点(0,0)として、横にX
軸,縦にY軸をとる。この場合、原板Pは高さがm+3
でX方向に延びたものを用いているが、高さが4でY方
向に延びたものを用いてもよい。
A method for manufacturing the above-described core 32 of the induction ceramic will be described below. In FIG. 9B, first, a rectangular area having a horizontal dimension of 4 and a vertical dimension of m + 3 is set on the original plate P.
With the lower left corner of this rectangular area as the origin (0, 0), X
The axis and the Y axis are set vertically. In this case, the original plate P has a height of m + 3.
Although the one extending in the X direction is used, a one having a height of 4 and extending in the Y direction may be used.

【0028】このXY座標上で、座標a(0,1)、b
(1,1)、c(1,m+2)、d(2,m+2)、e
(2,m+3)、f(3,m+2)、g(3,1)、i
(4,1)をとり、座標aとbとを結ぶ切断線X1 、b
とcとを結ぶに切断線Y1 、cとfとを結ぶに切断線X
2 、dとeとを結ぶ切断線Y2 、fとgとを結ぶ切断線
Y3 、gとiとを結ぶ切断線X3 をそれぞれ設定する。
そして、原板Pから上記矩形領域を切り出すとともに、
上記切断線X1 〜X3 ,Y1 〜Y3 に沿って切断する。
このようにして、原板Pに設定された横寸法4で縦寸法
m+3の矩形領域から、分割コア部A,B,Cが取り出
される。これら分割コア部A,B,Cを図9(A)のよ
うに互いに突き合わせて、コア32が組み立てられる。
On the XY coordinates, coordinates a (0, 1), b
(1, 1), c (1, m + 2), d (2, m + 2), e
(2, m + 3), f (3, m + 2), g (3,1), i
Take (4,1) and cut lines X1, b connecting coordinates a and b
Cutting line Y1 connecting c and c, cutting line X connecting c and f
2, a cutting line Y2 connecting d and e, a cutting line Y3 connecting f and g, and a cutting line X3 connecting g and i are respectively set.
Then, while cutting out the rectangular area from the original plate P,
The cutting is performed along the cutting lines X1 to X3 and Y1 to Y3.
In this way, the divided core portions A, B, and C are extracted from the rectangular area having the horizontal dimension 4 and the vertical dimension m + 3 set on the original plate P. The core 32 is assembled by abutting these divided core portions A, B, and C as shown in FIG. 9A.

【0029】このように、図9(B)の原板Pから、全
く材料の無駄がなく、窓のアスペクト比(AR)mのコ
ア32を構成する分割コア部A,B,Cがすべて採れる
ことになる。例えば、窓のアスペクト比(AR)が2の
場合には、原板Pを横寸法4で縦寸法を5にすれば、外
形が横寸法W6×縦寸法H4のコアが材料の無駄なく得
られる。
As described above, all of the divided core portions A, B, and C constituting the core 32 having the window aspect ratio (AR) m can be obtained from the original plate P shown in FIG. become. For example, when the aspect ratio (AR) of the window is 2, if the original plate P has a horizontal dimension of 4 and a vertical dimension of 5, a core having an external size of W6 × H4 can be obtained without waste of material.

【0030】次に、この発明の一実施例に係る誘導電磁
について説明する。この例では、従来、絶縁シートの
破損防止のためにコイルとコアとの間にクリアランスを
設けていたことにより、コアの窓面積を十分に利用でき
なかった課題を解決するコイルカバー36が用いられ
る。
Next, an induction electromagnetic device according to an embodiment of the present invention will be described.
The vessel will be described. In this example, conventionally, a coil cover 36 is used which solves the problem that the window area of the core could not be sufficiently utilized by providing a clearance between the coil and the core to prevent breakage of the insulating sheet. .

【0031】このコイルカバー36,36,36,36
は、ラミネートコアと同じ材質(例えば、けい素鋼板)
のものであり、図10に示すように、第1側壁42、第
1側壁42に平行な第2側壁44、および両側壁42,
44間に取り付けられた連結壁46を有している。ま
た、第1側壁42および第2側壁44の先端部にはそれ
ぞれ折曲片48,48を有している。連結壁46の長さ
tはボビンレスコイル14の1次巻線14Pおよび2次
巻線14Sのコイル面の幅tとほぼ同じ大きさになって
いる。
The coil covers 36, 36, 36, 36
Is the same material as the laminated core (for example, silicon steel plate)
As shown in FIG. 10, a first side wall 42, a second side wall 44 parallel to the first side wall 42, and both side walls 42,
A connecting wall 46 is provided between the connecting walls 44. Further, the first side wall 42 and the second side wall 44 have bent pieces 48, 48 at the distal ends thereof, respectively. The length t of the connecting wall 46 is substantially the same as the width t of the coil surface of the primary winding 14P and the secondary winding 14S of the bobbinless coil 14.

【0032】まず、1次巻線14Pおよび2次巻線14
Sの両側に絶縁シート38が巻かれる。次に、コイルカ
バー36の折曲片48を互いに広げるようにして、1次
巻線14Pについては下から上方向に、1次巻線14S
については上から下方向に、ボビンレスコイル34の絶
縁シート38を覆うように、それぞれ、このコイルカバ
ー36が嵌め込まれる。これにより、絶縁シート38
は、その表面がコイルカバー36に覆われることにな
り、図11(A)のように、このコイル14をコア12
に嵌め込んだときに、コア12の角により傷つけられる
ことがない。
First, the primary winding 14P and the secondary winding 14
The insulating sheets 38 are wound on both sides of S. Next, the primary windings 14P are arranged in such a manner that the bent pieces 48 of the coil cover 36 are spread from each other so that
The coil covers 36 are fitted to cover the insulating sheet 38 of the bobbinless coil 34 from top to bottom. Thereby, the insulating sheet 38
The surface of the coil 14 is covered with a coil cover 36. As shown in FIG.
When it is fitted in the core 12, it is not damaged by the corner of the core 12.

【0033】また、このコイルカバー36は、その周囲
に位置する分割コア部の外足部12A,12B、中足部
12Cまたは両連結部12D,12Eに接触して、分割
コア部間の接合面をバイパスする磁気通路を構成する。
例えば、図11(B)において、外足部12Aから、コ
イルカバー36を通る磁束は、一部は上方の第2の連結
部12Eに抜け、他部はコイルカバー36を廻り込んで
中足部12Cに抜ける。従って、このコイルカバー36
により、外足部12Aと第2の連結部12Eおよび中足
部12Cとの間で磁気通路が形成されるので、接合面M
がバイパスされた形となり、実質的にコア12の磁気抵
抗を減少させることができる。
The coil cover 36 comes into contact with the outer foot portions 12A, 12B, the middle foot portion 12C, or both connecting portions 12D, 12E of the divided core portions located around the coil cover 36 to form a joint surface between the divided core portions. A magnetic path that bypasses the magnetic path.
For example, in FIG. 11 (B), a part of the magnetic flux passing through the coil cover 36 from the outer foot portion 12A passes through the upper second connection portion 12E, and the other portion goes around the coil cover 36 and the middle foot portion. Exit to 12C. Therefore, this coil cover 36
As a result, a magnetic path is formed between the outer foot portion 12A, the second connecting portion 12E, and the middle foot portion 12C.
Is bypassed, and the magnetic resistance of the core 12 can be substantially reduced.

【0034】また、コイルカバー36を、上記のような
単一の板材でなく、図12(B)に示すような積層させ
た板材で構成してもよい。このコイルカバー36は、図
12(A)のように、略コの字形状の板材52〜58を
互いに矢印方向に組み合わせたものである。まず、コイ
ル14を挟んで内側の板材54と56とを突き合わせ、
次に、外側の板材52と58を突き合わせて組み立て
る。これにより、コイルカバー36の折曲片48を広げ
る必要がなく、また、各板材がはずれにくい。また、内
側の板材54と56の突き合せ部M1 と、外側の板材5
2と58の突き合せ部M2 とを、互いにその位置をずら
して設けているので、このコイルカバー36の突き合せ
部M1 ,M2 のギャップによる磁気通路の磁気抵抗の増
加が抑えられる。
Further, the coil cover 36 may be made of a laminated plate as shown in FIG. 12B, instead of a single plate as described above. As shown in FIG. 12A, the coil cover 36 is formed by combining substantially U-shaped plate members 52 to 58 in the direction of the arrow. First, the inner plate members 54 and 56 are butted with the coil 14 interposed therebetween,
Next, the outer plate members 52 and 58 are assembled by abutting each other. Accordingly, it is not necessary to expand the bent piece 48 of the coil cover 36, and each plate material is unlikely to come off. Also, the butted portion M1 of the inner plates 54 and 56 and the outer plate 5
Since the butting portions M2 of the coils 2 and 58 are provided with their positions shifted from each other, an increase in the magnetic resistance of the magnetic path due to the gap between the butting portions M1 and M2 of the coil cover 36 is suppressed.

【0035】図13に、このコイルカバー36をリーケ
ージトランスに用いた場合の正面図を示す。この図のよ
うに、それぞれコイルカバー36に覆われた1次巻線1
4Pと2次巻線14Sとの間に、けい素鋼板を積層させ
たリーケージコア16が設けられており、リーケージコ
ア16はカバーで覆われていない。このリーケージトラ
ンスにおいて、単一の大きなコイルカバーによって両巻
線14P,14Sとリーケージコア16を覆うようにす
ると、積層させたリーケージコア16の両端部16A,
16Bから外足部12Aおよび中足部12Cに向かう、
またはその逆方向に向かう磁束により、これと直交する
広い表面をもつコイルカバーに大きなうず電流損が発生
する。このため、図11では、1次巻線14Pと2次巻
線14Sとでそれぞれ分割してコイルカバー36を形成
し、リーケージコア16の両端部16A,16Bにコイ
ルカバー36が対向しないようにしてうず電流損の発生
を防止している。なお、リーケージトランスでないトラ
ンスの場合には、図14のように、コイルカバー36を
分割せずに一体に形成してもよい。
FIG. 13 is a front view when the coil cover 36 is used for a leakage transformer. As shown in this figure, the primary windings 1 covered with the coil covers 36, respectively.
A leakage core 16 in which silicon steel plates are laminated is provided between the 4P and the secondary winding 14S, and the leakage core 16 is not covered with a cover. In this leakage transformer, when both the windings 14P, 14S and the leakage core 16 are covered by a single large coil cover, both ends 16A, 16A,
From 16B toward outer foot 12A and middle foot 12C,
Alternatively, a magnetic flux directed in the opposite direction causes a large eddy current loss in a coil cover having a large surface orthogonal to the magnetic flux. For this reason, in FIG. 11, the coil cover 36 is formed by dividing the primary winding 14P and the secondary winding 14S, respectively, so that the coil cover 36 does not face both ends 16A and 16B of the leakage core 16. The generation of eddy current loss is prevented. In the case of a transformer that is not a leakage transformer, the coil cover 36 may be integrally formed without being divided as shown in FIG.

【0036】なお、この実施例では、誘導電磁器として
トランスを示したが、この発明はチョークにも適用でき
る。
In this embodiment, a transformer is shown as an induction magnet, but the present invention can be applied to a choke.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1参考例に係る誘導電磁器を示す
概略斜視図である。
FIG. 1 is a schematic perspective view showing an induction magnet according to a first reference example of the present invention.

【図2】上記のコアの構成の一例を示す図である。FIG. 2 is a diagram showing an example of the configuration of the core.

【図3】コアの寸法関係を示す図である。FIG. 3 is a diagram illustrating a dimensional relationship of a core;

【図4】上記の誘導電磁器の窓のアスペクト比とトラン
スの鉄および銅材料の体積との関係を示す図である。
FIG. 4 is a diagram showing a relationship between the aspect ratio of the window of the induction ceramic and the volumes of iron and copper materials of the transformer.

【図5】図4の拡大図である。FIG. 5 is an enlarged view of FIG. 4;

【図6】公知のコアの嵌合方法を示す図である。FIG. 6 is a view showing a known core fitting method.

【図7】コア材料の打ち抜き状態を示す図である。FIG. 7 is a view showing a punched state of a core material.

【図8】上記のコアの正面図、右側面図、平面図、およ
びコイル付きの斜視図である。
FIG. 8 is a front view, a right side view, a plan view, and a perspective view with a coil of the core.

【図9】第2参考例による誘導電磁器のコアの正面図、
およびこのコアの材料の板材を示す図である。
FIG. 9 is a front view of a core of an induction magnet according to a second reference example ;
FIG. 3 is a view showing a plate material of a material of the core.

【図10】この発明の一実施例に係る誘導電磁器のコイ
ルカバーを示す斜視図である。
FIG. 10 is a perspective view showing a coil cover of the induction electromagnetic device according to one embodiment of the present invention .

【図11】コイルカバーを有する誘導電磁器を示す正面
図である。
FIG. 11 is a front view showing an induction magnet having a coil cover.

【図12】他の実施例によるコイルカバーを示す斜視図
である。
FIG. 12 is a perspective view showing a coil cover according to another embodiment.

【図13】コイルカバーを有するリーケージトランスを
示す正面図である。
FIG. 13 is a front view showing a leakage transformer having a coil cover.

【図14】一体型のコイルカバーを示す正面図である。FIG. 14 is a front view showing an integrated coil cover.

【図15】従来の誘導電磁器を示す概略斜視図である。FIG. 15 is a schematic perspective view showing a conventional induction magnet.

【図16】従来のコア材料の打ち抜き状態を示す図であ
る。
FIG. 16 is a view showing a state in which a conventional core material is punched.

【図17】従来のコイルに絶縁シートを巻いた状態を示
す図である。
FIG. 17 is a diagram showing a state where an insulating sheet is wound around a conventional coil.

【符号の説明】[Explanation of symbols]

12…コア、12A,12B…外足部、12C…中足
部、12D…第1の連結部、12E…第2の連結部、1
4…コイル、15…窓部、36…コイルカバー
12: core, 12A, 12B: outer foot, 12C: middle foot, 12D: first connection, 12E: second connection, 1
4 ... coil, 15 ... window , 36 ... coil cover .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 足立 崇彦 兵庫県三田市テクノパーク5番地4 田 淵電機株式会社内 (72)発明者 前島 靖 兵庫県三田市テクノパーク5番地4 田 淵電機株式会社内 (72)発明者 東中 猛成 兵庫県三田市テクノパーク5番地4 田 淵電機株式会社内 (56)参考文献 特開 平4−322415(JP,A) 実開 昭63−108618(JP,U) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takahiko Adachi 5-4 Techno Park, Sanda-shi, Hyogo Tabuchi Electric Co., Ltd. (72) Inventor Yasushi Yasushi 5-4 Techno Park, Sanda-shi, Hyogo Tabuchi Electric Co., Ltd. (72) Inventor Takenari Higashinaka 5-4 Techno Park, Mita City, Hyogo Prefecture Inside Tabuchi Electric Co., Ltd. (56) References JP-A-4-322415 (JP, A) JP-A 63-108618 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数に分割された分割コア部を互いに接
合してなるコアと、 このコアに装着されたコイルと、 コイルの表面を覆う絶縁シートと、 絶縁シートの外側からコイルの少なくとも内外周面を覆
う軟磁性のコイルカバーとを有し、 前記コイルカバーがその周囲に位置する分割コア部の少
なくとも1つに接触して、分割コア部間の接合面をバイ
パスする磁路を構成している誘導電磁器。
1. A core formed by joining a plurality of divided core portions to each other, a coil mounted on the core, an insulating sheet covering a surface of the coil, and at least an inner and outer periphery of the coil from outside the insulating sheet. A soft magnetic coil cover that covers the surface, wherein the coil cover contacts at least one of the divided core portions located therearound to form a magnetic path that bypasses a joint surface between the divided core portions. Inductive porcelain.
JP21243595A 1995-07-28 1995-07-28 Induction magnet Expired - Fee Related JP3349018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21243595A JP3349018B2 (en) 1995-07-28 1995-07-28 Induction magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21243595A JP3349018B2 (en) 1995-07-28 1995-07-28 Induction magnet

Publications (2)

Publication Number Publication Date
JPH0945543A JPH0945543A (en) 1997-02-14
JP3349018B2 true JP3349018B2 (en) 2002-11-20

Family

ID=16622561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21243595A Expired - Fee Related JP3349018B2 (en) 1995-07-28 1995-07-28 Induction magnet

Country Status (1)

Country Link
JP (1) JP3349018B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281217A (en) * 2006-04-07 2007-10-25 Seiko Epson Corp Magnetic core
JP6413209B2 (en) * 2013-08-08 2018-10-31 Tdk株式会社 Multilayer coil parts
CN105185532B (en) * 2015-09-14 2017-12-15 广东新昇电业科技股份有限公司 A kind of coarse reactor iron core structure of adhesive surface and its production method
CN105185533B (en) * 2015-09-14 2017-09-29 广东新昇电业科技股份有限公司 A kind of reactor iron core structure and its manufacture craft with side panel
JP6450792B2 (en) 2017-03-17 2019-01-09 ファナック株式会社 AC reactor

Also Published As

Publication number Publication date
JPH0945543A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
JP3282183B2 (en) choke coil
EP0744757A1 (en) D.c. reactor
JP3349018B2 (en) Induction magnet
US7646281B2 (en) Snap-together choke and transformer assembly for an electric arc welder
JPS6238845B2 (en)
JPH02138712A (en) Transformer
JPH0145204B2 (en)
JP3218585B2 (en) Print coil type transformer
JP2000124047A (en) Choke coil
JP2775221B2 (en) Transformer core
KR950015006B1 (en) Transformer core
JPH1167551A (en) Transformer and power source
JPS58130732A (en) Stator core
JPS58159317A (en) Thin type transformer
JPH1050531A (en) Iron core with a gap
JPH10294220A (en) Laminate core constituting closed magnetic circuit in theta shape
JP2001155941A (en) Choke coil for power rectifying circuit and method of adjusting the same
JP7337589B2 (en) Stacked iron asystole induction device and manufacturing method thereof
WO2021255950A1 (en) Stacked-core stationary induction apparatus and method for manufacturing same
JP3371498B2 (en) Transformer and method of manufacturing the same
JPH0574634A (en) Transformer
JPS61115313A (en) Core for transformer
JPS582037Y2 (en) Trance
JPH0128646Y2 (en)
JP2001230128A (en) Magnetic core

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees