JP3236422B2 - Continuous casting method of steel using magnetic field - Google Patents
Continuous casting method of steel using magnetic fieldInfo
- Publication number
- JP3236422B2 JP3236422B2 JP23972193A JP23972193A JP3236422B2 JP 3236422 B2 JP3236422 B2 JP 3236422B2 JP 23972193 A JP23972193 A JP 23972193A JP 23972193 A JP23972193 A JP 23972193A JP 3236422 B2 JP3236422 B2 JP 3236422B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- mold
- continuous casting
- molten steel
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous Casting (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁界を用いる鋼の連続
鋳造方法に関し、特に低C−Alキルド鋼などの連続鋳造
において、モールドパウダーや気泡等の巻き込みによ
る、UT欠陥、ブリスター、ふくれ、スリバー疵などの製
品欠陥を低減し、優れた品質の鋳片を製造しようとする
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method of steel using a magnetic field, and in particular, in continuous casting of low C-Al killed steel and the like, UT defects, blisters, blisters, An object of the present invention is to reduce product defects such as sliver flaws and produce slabs of excellent quality.
【0002】[0002]
【従来の技術】一般に、上記の製品欠陥を防止するに
は、 溶鋼の清浄化を強化すること、 漬浸ノズルの形状を改善して介在物やパウダーの巻き
込みを防止すること、 湾曲型スラブ連鋳機において、垂直部を採用すること
により、鋳型内での介在物および気泡の浮上を促進する
こと、 などの手法がある。2. Description of the Related Art In general, in order to prevent the above-mentioned product defects, it is necessary to enhance the cleaning of molten steel, to improve the shape of the immersion nozzle to prevent inclusions and powder from being caught, In a casting machine, there is a method of promoting the floating of inclusions and bubbles in a mold by adopting a vertical portion.
【0003】また、Iron and Steel Eng.May(1984)の第
41〜47頁や特開昭57−17356 号公報では、スラブ連鋳機
の鋳型に電磁石を配置し、漬浸ノズルから鋳型内への溶
鋼吐出流に対して、それに垂直な方向の静磁界を印加す
ることにより、溶鋼中に誘導される電流と静磁界との相
互作用によって生ずるローレンツ力で溶鋼吐出流を制動
し、このことによってモールドパウダーや気泡の巻き込
みを防止して、溶鋼中に巻き込まれた介在物の浮上促進
を図ることが提案され、さらにこの技術を発展させた方
法として、特開平2−284750号公報に開示されているよ
うな方法も知られている。これらの静磁界を用いる方法
は、鋳造速度が大きくなるほどローレンツ力が強く働く
ために高速鋳造による鋳片の品質向上に有効であり、優
れた連続鋳造方法である。[0003] Also, Iron and Steel Eng. May (1984)
In pages 41 to 47 and JP-A-57-17356, an electromagnet is arranged in a mold of a continuous slab casting machine, and a static magnetic field in a direction perpendicular to the molten steel discharge flow from the immersion nozzle into the mold is provided. When applied, the molten steel discharge flow is braked by Lorentz force generated by the interaction between the current induced in the molten steel and the static magnetic field, thereby preventing entrapment of mold powder and air bubbles, and causing entrainment in the molten steel. It has been proposed to promote the floating of inclusions, and as a method of further developing this technology, a method disclosed in Japanese Patent Application Laid-Open No. 2-284750 is known. These methods using a static magnetic field are effective in improving the quality of cast slabs by high-speed casting, because the Lorentz force increases as the casting speed increases, and are excellent continuous casting methods.
【0004】一方、鋳片の表面性状は、鋳型内での初期
凝固殻に強く影響されることが知られており、その対策
としては、例えば特開昭56−68565 号公報では、鋳型内
の溶湯面の直上に平型コイルを設置し、交流電流を通す
ことによって、溶鋼表面を誘導加熱する方法を提案して
いる。この方法によれば、鋳造条件の制御とは別個にメ
ニスカス部への入熱を制御することができ、溶鋼表面を
均一に加熱し得る点で有利な方法である。On the other hand, it is known that the surface properties of cast slabs are strongly affected by the initial solidification shell in the mold, and as a countermeasure, for example, in Japanese Patent Application Laid-Open No. 56-68565, A method of inductively heating the surface of molten steel by placing a flat coil directly above the molten metal surface and passing an alternating current has been proposed. According to this method, the heat input to the meniscus portion can be controlled independently of the control of the casting conditions, which is an advantageous method in that the molten steel surface can be uniformly heated.
【0005】[0005]
【発明が解決しようとする課題】さて、上記した静磁界
を用いる方法は、特に高速鋳造において効果が顕著であ
るが、操業上の制約から一時的に鋳造速度を低減させな
ければならない場合、溶鋼過熱度(鋳型に注入される溶
鋼温度と鋼の凝固温度との差)が十分でないと、低速の
故にメニスカス部への熱供給が低下し、そして、このメ
ニスカスの温度が低下すると表面品質の劣化を招くとい
う問題があった。すなわち、従来の静磁界を印加する方
法では、鋳造速度が遅くなると、ローレンツ力による溶
鋼吐出流の制御効果は相対的に小さくなるとともに、磁
界印加によってもたらされる溶鋼の昇温効果も小さくな
るため、表面品質の大幅な向上は期待できなかった。The above-mentioned method using a static magnetic field has a remarkable effect particularly in high-speed casting. However, when the casting speed must be temporarily reduced due to operational restrictions, the method using molten steel is difficult. If the degree of superheat (the difference between the temperature of the molten steel injected into the mold and the solidification temperature of the steel) is not sufficient, the heat supply to the meniscus decreases due to the low speed, and if the temperature of the meniscus decreases, the surface quality deteriorates There was a problem of inviting. That is, in the conventional method of applying a static magnetic field, when the casting speed is reduced, the control effect of the molten steel discharge flow by the Lorentz force becomes relatively small, and the effect of increasing the temperature of the molten steel caused by the application of the magnetic field also becomes small. No significant improvement in surface quality could be expected.
【0006】もちろんこのような問題に対しては、誘導
加熱コイルによってメニスカス部の温度を制御すること
で解決が可能である。しかし、この方法では、コイルか
ら発生する高周波磁界により、溶鋼表面に電磁力が働く
ため、溶湯面に流動を生じさせることになる。しかも、
この現象は熱供給を増加させるべく電力を増加させるよ
うな場合に却って顕著となり、溶湯面の一層の攪乱を引
き起こして、パウダーの巻き込みを誘発するという問題
に発展する。[0006] Of course, such a problem can be solved by controlling the temperature of the meniscus portion with an induction heating coil. However, in this method, an electromagnetic force acts on the surface of the molten steel due to the high-frequency magnetic field generated from the coil, so that a flow occurs on the surface of the molten metal. Moreover,
This phenomenon becomes more conspicuous when the electric power is increased in order to increase the heat supply, and causes a further disturbance of the molten metal surface, which leads to a problem of inducing powder entrainment.
【0007】そこで、本発明は、溶鋼表面に誘導加熱を
施したときに生じる、湯面攪乱の問題を有利に解消し得
る、連続鋳造方法について提案することを目的とする。Accordingly, an object of the present invention is to propose a continuous casting method that can advantageously solve the problem of molten metal surface disturbance caused when induction heating is performed on the surface of molten steel.
【0008】[0008]
【課題を解決するための手段】本発明は、連続鋳造用鋳
型の対向側壁の背面に配設した磁極で磁界を発生させ、
該磁界により浸漬ノズルから鋳型内に供給される溶鋼の
流動を制御して鋼の連続鋳造を行うに当たり、上記磁界
を、浸漬ノズルの吐出口の上方のメニスカス部において
連続鋳造用鋳型の幅方向全域に発生させる上部磁界と、
浸漬ノズルの吐出口の下方において連続鋳造用鋳型の幅
方向全域に発生させる下部磁界との2段で構成し、かつ
その上部磁界には静磁界と高周波磁界を重畳して用いる
一方、下部磁界には静磁界を用い、さらに上部静磁界と
下部静磁界との向きを互いに逆向きとしたことを特徴と
する磁界を用いる鋼の連続鋳造方法である。なお、上記
連続鋳造用鋳型には、Ni−Cr−Fe系合金あるいはNi−Cr
−Co系合金が有利に適合する。According to the present invention, a magnetic field is generated by a magnetic pole disposed on a back surface of an opposite side wall of a continuous casting mold.
In controlling the flow of molten steel supplied from the immersion nozzle into the mold by the magnetic field to perform continuous casting of steel, the magnetic field is applied to the entire width direction of the continuous casting mold in the meniscus portion above the discharge port of the immersion nozzle. An upper magnetic field generated at
A lower magnetic field generated in the entire width direction of the continuous casting mold below the discharge port of the immersion nozzle is composed of two steps. Is a method of continuously casting steel using a magnetic field, wherein a static magnetic field is used, and the directions of an upper static magnetic field and a lower static magnetic field are opposite to each other. In addition, Ni-Cr-Fe alloy or Ni-Cr
-Co-based alloys are advantageously suitable.
【0009】さて、図1に本発明方法に用いる設備の一
例を示す。図1において、符号1は1対の短辺壁1aおよ
び長辺壁1bからなる連続鋳造用鋳型、2は鋳型1内に溶
鋼を供給する浸漬ノズル、3は浸漬ノズル2の吐出口、
4はコイルCおよび鉄芯Fからなる磁界発生用の上部磁
極、同様に5は下部磁極である。これら上部磁極4およ
び下部磁極5は、連続鋳造用鋳型1の幅方向の全域を覆
う長さを有し、上部磁極4は浸漬ノズル2の吐出口3の
上方の溶鋼の表層域において、また下部磁極5は吐出口
3の下方の領域において、鋳型の全幅にわたって静磁界
を発生させる。さらに、上部磁極4のコイルCには、溶
鋼の表層域、特にメニスカス部に誘導加熱を施すため
に、直流電流に重畳して高周波電流を供給する。さらに
別の実施態様の例を図2に示す。図2において、上部磁
極4と下部磁極5はコの字型の鉄芯で連結され、解放磁
極がなく、上部磁極周りと下部磁極周りにそれぞれソレ
ノイドコイルが独立に配設されており、これらのソレノ
イドコイルには直流電流を独立に流すことができる。上
記静磁界形成手段に加えて、上部磁極4の磁極先端部に
は、凹型の断面形状を有する樋状の溝が設けられてお
り、その溝に沿って高周波電流用の被覆導線が配設され
て高周波磁場コイルC´が形成される。FIG. 1 shows an example of equipment used in the method of the present invention. In FIG. 1, reference numeral 1 denotes a continuous casting mold including a pair of short side walls 1 a and long side walls 1 b, 2 denotes an immersion nozzle for supplying molten steel into the mold 1, 3 denotes a discharge port of the immersion nozzle 2,
Numeral 4 denotes an upper magnetic pole composed of a coil C and an iron core F for generating a magnetic field, and similarly, 5 denotes a lower magnetic pole. The upper magnetic pole 4 and the lower magnetic pole 5 have a length that covers the entire area in the width direction of the continuous casting mold 1. The upper magnetic pole 4 is located in the surface layer area of the molten steel above the discharge port 3 of the immersion nozzle 2 and in the lower area. The magnetic pole 5 generates a static magnetic field over the entire width of the mold in a region below the discharge port 3. Further, a high frequency current is supplied to the coil C of the upper magnetic pole 4 so as to be superimposed on the DC current in order to perform induction heating on the surface layer area of the molten steel, particularly on the meniscus portion. An example of yet another embodiment is shown in FIG. In FIG. 2, the upper magnetic pole 4 and the lower magnetic pole 5 are connected by a U-shaped iron core, there is no open magnetic pole, and the solenoid coils are independently disposed around the upper magnetic pole and the lower magnetic pole, respectively. DC current can be independently passed through the solenoid coil. In addition to the static magnetic field forming means, a gutter-like groove having a concave cross-sectional shape is provided at the pole tip of the upper magnetic pole 4, and a covered conductor for high-frequency current is provided along the groove. Thus, a high-frequency magnetic field coil C 'is formed.
【0010】なお、図1および図2におけるコイルCは
鋳型1の背面に配置するが、通常の連続鋳造用鋳型に用
いる銅製鋳型では、上部磁極の高周波成分が吸収され、
メニスカス近傍の溶鋼の誘導加熱効率が低下し溶鋼表面
が加熱されなくなるのを防止するため、鋳型には、電気
電導度が低くかつ熱間強度の高い材質、例えばNi−Cr−
Fe合金であるInconel718やNi−Cr−Co系合金であるRENE
41、UDIMET700 、Waspaloyなどを用いることが好まし
い。それは、このような鋳型構成とすることによって、
上部磁界の高周波成分の吸収が抑制でき、メニスカス近
傍の溶鋼を一層効果的に誘導加熱することができるよう
になるからである。The coil C in FIGS. 1 and 2 is arranged on the back of the mold 1. In a copper mold used for a normal continuous casting mold, the high frequency component of the upper magnetic pole is absorbed.
To prevent the induction heating efficiency of molten steel near the meniscus from decreasing and the molten steel surface not being heated, the mold is made of a material having low electric conductivity and high hot strength, for example, Ni-Cr-.
Inconel 718 which is Fe alloy and RENE which is Ni-Cr-Co alloy
41, UDIMET700, Waspaloy and the like are preferably used. It is because of such a mold configuration,
This is because the absorption of the high frequency component of the upper magnetic field can be suppressed, and the molten steel near the meniscus can be more effectively induction-heated.
【0011】上述したように、本発明法によれば、溶鋼
の表層域、特にメニスカス部を従来のような大きな湯面
変動を生じることなく誘導加熱することができ、また浸
漬ノズルの吐出口より下流側の溶鋼流を抑制することも
できるので、モールドパウダーや気泡等の巻き込みによ
る、UT欠陥、ブリスター、ふくれ、スリバー疵などの欠
陥を低減することが可能となる。As described above, according to the method of the present invention, the surface area of molten steel, particularly the meniscus portion, can be induction-heated without causing a large fluctuation in the molten metal level as in the prior art. Since the molten steel flow on the downstream side can also be suppressed, it is possible to reduce defects such as UT defects, blisters, blisters, and sliver flaws due to entrapment of mold powder and bubbles.
【0012】[0012]
【作用】本発明においては、まず上部磁極で発生させた
上部磁界によって、鋳型の背面から溶鋼を誘導加熱する
とともに、それによって生じる湯面の攪乱を、直流磁界
成分で同時に抑制する。According to the present invention, first, the molten steel is induction-heated from the back of the mold by the upper magnetic field generated by the upper magnetic pole, and the disturbance of the molten metal surface caused by the induction magnetic field is simultaneously suppressed by the DC magnetic field component.
【0013】また、下部磁極の発生する静磁界によっ
て、浸漬ノズル吐出口から鋳型内に侵入する気泡や介在
物の浮上分離を促進する。[0013] Further, the static magnetic field generated by the lower magnetic pole promotes the floating separation of bubbles and inclusions entering the mold from the discharge port of the immersion nozzle.
【0014】さらに、各磁極によって発生させる上部磁
界と下部磁界との静磁界成分の向きを互いに逆向きに
し、両磁界の境界では静磁界成分がゼロとなるようにす
る。そして、この境界付近に浸漬ノズルの吐出口を配置
することによって、図1(b) に示すように、吐出噴流6
を、水平方向(鋳型幅方向)に延びた、静磁界成分がゼ
ロの領域を中心に流しながら、徐々に減速、分散させ
る。ここで、吐出噴流6は、短辺壁1aに衝突し、メニス
カス部側と鋳型深部側の両方向の分岐流7となる。これ
らの分岐流7は、鋳型全幅にわたる静磁界成分の印加域
に入り、ここで制動されて、メニスカス部の溶鋼流速お
よび鋳型深部への下降流速はともに減速されることにな
る。その結果、鋳型上部ではモールドパウダーの巻き込
みが、一方、鋳型下部では介在物および気泡の侵入が、
それぞれ回避され、鋳片の表面品質ならびに内部品質が
改善されるのである。Further, the directions of the static magnetic field components of the upper magnetic field and the lower magnetic field generated by each magnetic pole are made opposite to each other, so that the static magnetic field component becomes zero at the boundary between the two magnetic fields. By arranging the discharge port of the immersion nozzle near this boundary, as shown in FIG.
Is gradually decelerated and dispersed while flowing around a region where the static magnetic field component is zero and extends in the horizontal direction (the width direction of the mold). Here, the discharge jet 6 collides with the short side wall 1a, and becomes a branch flow 7 in both directions of the meniscus portion side and the mold deep portion side. These branch flows 7 enter the application region of the static magnetic field component over the entire width of the mold, where they are braked, so that the flow velocity of the molten steel at the meniscus portion and the downward flow speed to the deep portion of the mold are both reduced. As a result, mold powder is involved in the upper part of the mold, while intrusion of inclusions and air bubbles in the lower part of the mold,
Each is avoided and the surface quality as well as the internal quality of the slab is improved.
【0015】ここで、一般に、ソレノイドで発生する静
磁場の磁極間で生起する磁束φ(Wb)は起磁力をF
m (AT)、磁芯の磁気抵抗をRmc(AT/Wb)、空気中の磁
気抵抗をRma(AT/Wb)として、 φ=Fm /(Rmc+Rma) Rmc=l /μS Fm =NI ただし、l :磁芯の長さ(m)、S:磁芯の断面積(m
2 )、μ:磁芯の透磁率(H/m)、N:コイルの巻数
(−)およびI:コイル電流(A)と表される。それゆ
え、静磁界発生器として、両端に空気中に解放された磁
極を持たない、コの字型の磁芯を上部磁界および下部磁
界の磁芯として共通に用いることは、エネルギー効率向
上の観点から、また鋳型に垂直に印加される磁力線を乱
さないという観点から好ましい。Here, generally, a magnetic flux φ (Wb) generated between magnetic poles of a static magnetic field generated by a solenoid has a magnetomotive force of F (Wb).
m (AT), the magnetic resistance of the magnetic core is R mc (AT / Wb), and the magnetic resistance in air is R ma (AT / Wb), and φ = F m / (R mc + R ma ) R mc = 1 / μS F m = NI where l: length of magnetic core (m), S: cross-sectional area of magnetic core (m
2 ), μ: magnetic permeability of the magnetic core (H / m), N: number of coil turns (−), and I: coil current (A). Therefore, using a U-shaped magnetic core that does not have magnetic poles open to the air at both ends as the static magnetic field generator as the magnetic cores of the upper magnetic field and the lower magnetic field in common is a viewpoint of improving energy efficiency. From the viewpoint of not disturbing the lines of magnetic force applied perpendicular to the mold.
【0016】また、上部静磁界と下部静磁界との向きを
互いに逆向きにする理由は、鋳型の長辺壁近傍におい
て、上部から下部に連結される磁束成分により、長辺壁
に鉛直に衝突する方向の溶鋼流を制動し、初期凝固シェ
ルへの気泡、介在物の混入の低減する作用をもつからで
ある。The reason why the directions of the upper static magnetic field and the lower static magnetic field are opposite to each other is that a magnetic flux component connected from the upper part to the lower part in the vicinity of the long side wall of the mold causes a vertical collision with the long side wall. This has the effect of damping the molten steel flow in the direction in which it flows, and reducing the incorporation of bubbles and inclusions into the initially solidified shell.
【0017】[0017]
【実施例】転炉にて吹錬した極低炭素Alキルド鋼(C:
0.002 wt%)をタンディッシュ(溶鋼温度:1565℃)か
ら、表1に示すような各種のNi−Cr−Fe系合金あるいは
Ni−Cr−Co系合金からなる鋳型に供給して、鋳造速度:
1.0m/minにて幅:1200mmおよび厚さ:230 mmのスラブを
連続鋳造するに際し、図2に示した設備を用いて、鋳型
内に上部および下部磁界を、それぞれ図3に示すところ
に従って印加した。また、比較として、Ni−Cr−Fe合金
製鋳型を用いて、磁界を印加しない場合(比較例1)、
鋳型内上下部に静磁界を印加する場合(比較例2)およ
び鋳型内上部に誘導加熱を施す場合(比較例3)につい
ても、同様の連続鋳造を行った。各実施条件は、表2に
示す通りである。[Example] Ultra-low carbon Al killed steel blown in a converter (C:
0.002 wt%) from a tundish (molten steel temperature: 1565 ° C) to various Ni-Cr-Fe alloys as shown in Table 1.
Feeding to a mold made of Ni-Cr-Co alloy, casting speed:
When continuously casting a slab having a width of 1200 mm and a thickness of 230 mm at 1.0 m / min, upper and lower magnetic fields are applied in the mold according to the conditions shown in FIG. 3 using the equipment shown in FIG. did. As a comparison, when a magnetic field was not applied using a Ni-Cr-Fe alloy mold (Comparative Example 1),
The same continuous casting was performed in the case where a static magnetic field was applied to the upper and lower portions in the mold (Comparative Example 2) and the case where induction heating was performed in the upper portion of the mold (Comparative Example 3). The respective execution conditions are as shown in Table 2.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 表1に示されるように、本発明法の連続鋳造用鋳型材と
してとくに好適である、Ni−Cr−Fe系合金あるいはNi−
Cr−Co系合金は、電気伝導度が8〜9×105Ω-1m -1
であり、従来の鋳型材に比べて2桁近くも低いことがわ
かる。[Table 2] As shown in Table 1, Ni-Cr-Fe alloys or Ni-Cr alloys, which are particularly suitable as a casting material for continuous casting in the method of the present invention.
Cr-Co alloy has an electric conductivity of 8 to 9 × 10 5 Ω −1 m −1.
It can be seen that this is nearly two orders of magnitude lower than that of the conventional mold material.
【0020】各連続鋳造における、メニスカス部溶鋼の
温度上昇について測定した結果を、本発明例における上
昇温度を1としたときの指数として、図4に示す。同図
から、本発明例は誘導加熱を施した比較例3と大差のな
いことがわかる。FIG. 4 shows the result of measurement of the temperature rise of the molten steel in the meniscus portion in each continuous casting as an index when the temperature rise in the example of the present invention is set to 1. From the figure, it is understood that the example of the present invention is not much different from Comparative Example 3 in which induction heating is performed.
【0021】次に、このときの湯面変動量を比較例1の
測定結果を1として、図5に示すように、比較例3では
湯面変動量が増加しているのに対し、本発明例では湯面
変動量が極めて低く抑えられている。Next, assuming that the fluctuation of the molten metal level in this case is 1 as the measurement result of Comparative Example 1, as shown in FIG. 5, the fluctuation of the molten metal level in Comparative Example 3 is increased. In the example, the level change of the molten metal level is extremely low.
【0022】また、各連続鋳造によって得られた鋳片10
本づつに、熱間圧延、次いで冷間圧延を施し、圧延後の
鋼板表面に現れた、筋状の疵、いわゆるスリバー疵の個
数を計測した結果について、比較例1の測定結果を1と
して、図6に示す。同図から、比較例3は比較例1に比
べて減少しているものの、本発明例ほどの減少は達成さ
れないことがわかる。The slab 10 obtained by each continuous casting is used.
Each one, hot rolling, then subjected to cold rolling, the results of measuring the number of streaky flaws, so-called sliver flaws, appeared on the steel sheet surface after rolling, the measurement results of Comparative Example 1 as 1, As shown in FIG. From the figure, it can be seen that although Comparative Example 3 is smaller than Comparative Example 1, the reduction as compared with the present invention is not achieved.
【0023】さらに、上記の鋳片内部の介在物個数につ
いて調査した結果を、比較例1の測定結果を1として、
図7に示す。同図から、本発明例では介在物個数も著し
く減少していることがわかる。Further, the results of the investigation on the number of inclusions inside the slab were taken assuming that the measurement result of Comparative Example 1 was 1.
As shown in FIG. From the figure, it can be seen that the number of inclusions is significantly reduced in the example of the present invention.
【0024】加えて、上記各図から、電気伝導度が低く
かつ熱間強度が高い材質を有する、Inconel718(Ni−Cr
−Fe合金)およびRENE41、UDIMET700 、Waspaloy(Ni−
Cr−Co系合金)は、いずれも同等の優れた鋳型材である
ことが示された。In addition, as shown in the above figures, Inconel 718 (Ni-Cr) having a material with low electric conductivity and high hot strength
-Fe alloy) and RENE41, UDIMET700, Waspaloy (Ni-
Cr-Co alloys) were shown to be equally excellent mold materials.
【0025】[0025]
【発明の効果】以上説明したように本発明によれば、鋳
型全幅にわたり、上部磁界では静磁界と高周波磁界とを
重畳することによって、溶鋼表面を誘導加熱するととも
に、これによって生じる湯面の攪乱を抑えて、鋳片表面
品質を改善することができ、また下部磁界の静磁界成分
によって、溶鋼流を制動、分散して介在物や気泡の浮上
分離を促進するため、鋳片内部品質を改善することがで
きる。As described above, according to the present invention, the molten steel surface is induction-heated by superimposing a static magnetic field and a high-frequency magnetic field in the upper magnetic field over the entire width of the mold, and the molten steel surface is thereby disturbed. The surface quality of the slab can be improved, and the static magnetic field component of the lower magnetic field dampens and disperses the molten steel flow to promote the floating separation of inclusions and air bubbles. can do.
【図1】本発明方法に用いる設備の模式図である。FIG. 1 is a schematic view of equipment used in the method of the present invention.
【図2】本発明方法に用いる設備の別の態様を示す模式
図である。FIG. 2 is a schematic view showing another embodiment of the equipment used in the method of the present invention.
【図3】磁界強さの時間変化を示すグラフである。FIG. 3 is a graph showing a time change of a magnetic field intensity.
【図4】溶鋼表面の温度上昇の測定結果を示すグラフで
ある。FIG. 4 is a graph showing a measurement result of a temperature rise on a molten steel surface.
【図5】湯面変動量の測定結果を示すグラフである。FIG. 5 is a graph showing a measurement result of a molten metal level fluctuation amount.
【図6】スリバー疵の発生数の測定結果を示すグラフで
ある。FIG. 6 is a graph showing the measurement results of the number of occurrences of sliver flaws.
【図7】鋳片内部介在物個数の測定結果を示すグラフで
ある。FIG. 7 is a graph showing a measurement result of the number of inclusions in a slab.
1 連続鋳造用鋳型 4 上部磁極 1a 短辺壁 5 下部磁極 1b 長辺壁 6 吐出噴流 2 浸漬ノズル 7 分岐流 3 吐出口 DESCRIPTION OF SYMBOLS 1 Continuous casting mold 4 Upper magnetic pole 1a Short side wall 5 Lower magnetic pole 1b Long side wall 6 Discharge jet 2 Immersion nozzle 7 Branch flow 3 Discharge port
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−293620(JP,A) 特開 平5−154621(JP,A) 特開 平5−154620(JP,A) 特開 平5−96351(JP,A) 特開 平5−77007(JP,A) 特開 平3−142049(JP,A) 特開 平2−284750(JP,A) 特開 平2−117756(JP,A) 特開 昭57−17356(JP,A) 特開 昭56−68565(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/115 B22D 11/04 311 B22D 11/11 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-293620 (JP, A) JP-A-5-154621 (JP, A) JP-A-5-154620 (JP, A) JP-A-5-154620 96351 (JP, A) JP-A-5-77007 (JP, A) JP-A-3-142049 (JP, A) JP-A-2-284750 (JP, A) JP-A-2-117756 (JP, A) JP-A-57-17356 (JP, A) JP-A-56-68565 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22D 11/115 B22D 11/04 311 B22D 11 / 11
Claims (2)
した磁極で磁界を発生させ、該磁界により浸漬ノズルか
ら鋳型内に供給される溶鋼の流動を制御して鋼の連続鋳
造を行うに当たり、 上記磁界を、浸漬ノズルの吐出口の上方において連続鋳
造用鋳型の幅方向全域に発生させる上部磁界と、浸漬ノ
ズルの吐出口の下方において連続鋳造用鋳型の幅方向全
域に発生させる下部磁界との2段で構成し、かつその上
部磁界には静磁界と高周波磁界を重畳して用いる一方、
下部磁界には静磁界を用い、さらに上部静磁界と下部静
磁界との向きを互いに逆向きとしたこと、を特徴とする
磁界を用いる鋼の連続鋳造方法。1. A magnetic field is generated by magnetic poles disposed on the back side of an opposite side wall of a continuous casting mold, and the magnetic field controls the flow of molten steel supplied from an immersion nozzle into the mold to perform continuous casting of steel. An upper magnetic field that generates the magnetic field in the entire width direction of the continuous casting mold above the discharge port of the immersion nozzle and a lower magnetic field that generates the magnetic field in the entire width direction of the continuous casting mold below the discharge port of the immersion nozzle And the upper magnetic field is superimposed with a static magnetic field and a high-frequency magnetic field.
A continuous casting method for steel using a magnetic field, characterized in that a static magnetic field is used as the lower magnetic field, and the directions of the upper static magnetic field and the lower static magnetic field are opposite to each other.
いはNi−Cr−Co系合金からなる、請求項1に記載の方
法。2. The method according to claim 1, wherein the continuous casting mold is made of a Ni—Cr—Fe alloy or a Ni—Cr—Co alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23972193A JP3236422B2 (en) | 1992-10-16 | 1993-09-27 | Continuous casting method of steel using magnetic field |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4-278370 | 1992-10-16 | ||
JP27837092 | 1992-10-16 | ||
JP23972193A JP3236422B2 (en) | 1992-10-16 | 1993-09-27 | Continuous casting method of steel using magnetic field |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06190520A JPH06190520A (en) | 1994-07-12 |
JP3236422B2 true JP3236422B2 (en) | 2001-12-10 |
Family
ID=26534387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23972193A Expired - Fee Related JP3236422B2 (en) | 1992-10-16 | 1993-09-27 | Continuous casting method of steel using magnetic field |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3236422B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103447490A (en) * | 2013-09-04 | 2013-12-18 | 青岛理工大学 | Method and device for removing non-metallic inclusions in continuous casting process of hollow pipe blank |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE514946C2 (en) * | 1998-12-01 | 2001-05-21 | Abb Ab | Method and apparatus for continuous casting of metals |
CA2325808C (en) | 2000-07-10 | 2010-01-26 | Kawasaki Steel Corporation | Method and apparatus for continuous casting of metals |
US7448431B2 (en) | 2003-04-11 | 2008-11-11 | Jfe Steel Corporation | Method of continuous steel casting |
JP5034547B2 (en) * | 2007-02-22 | 2012-09-26 | Jfeスチール株式会社 | Method for continuously casting steel and method for producing hot dip galvanized steel sheet |
CN106041009B (en) * | 2016-07-22 | 2017-10-31 | 东北大学 | The vertical electro-magnetic braking device of molten steel flow in a kind of control continuous cast mold |
CN108500228B (en) * | 2017-02-27 | 2020-09-25 | 宝山钢铁股份有限公司 | Flow field control method for slab continuous casting crystallizer |
-
1993
- 1993-09-27 JP JP23972193A patent/JP3236422B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103447490A (en) * | 2013-09-04 | 2013-12-18 | 青岛理工大学 | Method and device for removing non-metallic inclusions in continuous casting process of hollow pipe blank |
Also Published As
Publication number | Publication date |
---|---|
JPH06190520A (en) | 1994-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4824502B2 (en) | Metal vertical continuous casting method using electromagnetic field and casting equipment for its implementation | |
US7735544B2 (en) | Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels | |
EP1448329B1 (en) | A device and a method for continuous casting | |
JPS6188950A (en) | Molten-metal electromagnetic agitator | |
KR930002836B1 (en) | Method and apparatus for continuous casting | |
US4678024A (en) | Horizontal electromagnetic casting of thin metal sheets | |
JP3236422B2 (en) | Continuous casting method of steel using magnetic field | |
JP3700396B2 (en) | Steel continuous casting equipment | |
KR20100005226A (en) | Steel continuous casting method and in-mold molten steel fluidity controller | |
US4741383A (en) | Horizontal electromagnetic casting of thin metal sheets | |
JP3965545B2 (en) | Steel continuous casting method and apparatus | |
JP3937651B2 (en) | Steel continuous casting method and apparatus | |
US4562879A (en) | Electromagnetically stirring the melt in a continuous-casting mold | |
JP4591156B2 (en) | Steel continuous casting method | |
JP3253012B2 (en) | Electromagnetic brake device for continuous casting mold and continuous casting method using the same | |
JP2005238276A (en) | Electromagnetic-stirring casting apparatus | |
JP2626861B2 (en) | Flow control device for molten steel in continuous casting mold | |
JPH11123511A (en) | Electromagnetic stirring method and electromagnetic strring device | |
EP0916434A1 (en) | Electromagnetic meniscus control in continuous casting | |
JPH0515949A (en) | Apparatus and method for continuously casting metal | |
JPS5942199Y2 (en) | electromagnetic stirring device | |
JPH07136747A (en) | Continuous casting method for bloom and its device | |
JP3161109B2 (en) | Continuous casting equipment | |
JPS63119962A (en) | Rolling device for electromagnetic agitation | |
WO1999021670A1 (en) | Device for casting of metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080928 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090928 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |