JP3223311B2 - Treatment method of condensate and desalinated reclaimed water - Google Patents
Treatment method of condensate and desalinated reclaimed waterInfo
- Publication number
- JP3223311B2 JP3223311B2 JP09591594A JP9591594A JP3223311B2 JP 3223311 B2 JP3223311 B2 JP 3223311B2 JP 09591594 A JP09591594 A JP 09591594A JP 9591594 A JP9591594 A JP 9591594A JP 3223311 B2 JP3223311 B2 JP 3223311B2
- Authority
- JP
- Japan
- Prior art keywords
- condensed
- desalinated
- regenerated water
- water
- demineralized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は火力発電プラントなどに
おける復水脱塩再生水の処理方法に関し、さらに詳しく
は、復水脱塩再生水中に含まれるアンモニウムイオンを
効率良く除去し脱塩水として分離すると共に、アンモニ
ア、その他含まれる不純物をそれぞれ分離回収すること
ができる処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating condensate and desalinated reclaimed water in a thermal power plant and the like. More specifically, the present invention relates to a method for efficiently removing ammonium ions contained in condensed and desalinated reclaimed water and separating it as desalinated water. In addition, the present invention relates to a processing method capable of separating and recovering ammonia and other contained impurities.
【0002】[0002]
【従来の技術】火力発電プラントなどにおける復水は、
通常脱塩装置により脱塩され循環使用されている。一方
脱塩装置は、定期的に酸とアルカリによりイオン交換樹
脂の再生が行われる。この再生時の排水を復水脱塩再生
水という。該再生水中には一般に環境基準を越える量の
アンモニア性窒素が含まれ、その一部もしくは大部分は
アンモニウムイオンとして液中に存在している。従来か
らこのような復水脱塩再生水中のアンモニア性窒素を環
境基準以下に低減する方法として、生物学的脱窒法、ア
ンモニア放散法、塩素処理法、蒸発濃縮法等が知られて
いる。2. Description of the Related Art Condensation in thermal power plants
Usually, it is desalinated by a desalination unit and used in circulation. On the other hand, in the desalination apparatus, the ion exchange resin is periodically regenerated with an acid and an alkali. The wastewater at the time of this regeneration is called condensate demineralized regenerated water. The regenerated water generally contains ammonia nitrogen in an amount exceeding the environmental standard, and a part or most of the ammonia nitrogen is present in the liquid as ammonium ions. Conventionally, biological denitrification, ammonia emission, chlorination, evaporative concentration, and the like have been known as methods for reducing the amount of ammonia nitrogen in such condensate, desalinated and reclaimed water below environmental standards.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、これら
の方法は効率良くアンモニウムイオンをアンモニアとし
て分離回収することが困難であった。さらに復水脱塩再
生水中には他の成分として、SO4 2- イオン、Na + イ
オン、Cl - イオン等の不純物が含まれており、これら
不純物、アンモニア、および再使用可能な脱塩水を別個
に分離することが困難であった。そこで本発明はこのよ
うな問題を解決する復水脱塩再生水の処理方法の提供を
課題とするものである。However, it has been difficult for these methods to efficiently separate and recover ammonium ions as ammonia. Furthermore, the condensed demineralized regenerated water contains impurities such as SO 4 2- ions, Na + ions, and Cl − ions as other components, and these impurities, ammonia, and reusable demineralized water are separately separated. Was difficult to separate. Therefore, an object of the present invention is to provide a method for treating condensed, desalinated, and reclaimed water that solves such a problem.
【0004】[0004]
【課題を解決するための手段】本発明の復水脱塩再生水
の処理方法は、アンモニウムイオンを含有する復水脱塩
再生水を電気透析し、アンモニウムイオンの低減された
希釈液を脱塩水として分離すると共に、アンモニウムイ
オンの濃縮された濃縮液をアルカリ性のpH条件下で蒸
留してアンモニアを留出分離し、その蒸留残液を乾燥し
て固形分を分離することを特徴とするものである。According to the present invention, there is provided a method for treating condensate and desalinated regenerated water, which comprises subjecting condensed and desalinated regenerated water containing ammonium ions to electrodialysis, and separating a dilute solution containing reduced ammonium ions as desalinated water. In addition, the concentrated solution in which ammonium ions are concentrated is distilled under alkaline pH conditions to distill and separate ammonia, and the distillation residue is dried to separate solids.
【0005】本発明の好ましい実施態様においては、復
水脱塩再生水に酸を添加して酸性の復水脱塩再生水と
し、その酸性の復水脱塩再生水を電気透析する。その際
好ましくは復水脱塩再生水のpHが2〜4になるように
酸が添加される。本発明の他の好ましい実施態様におい
ては、火力発電所からのアンモニウムイオンを含有する
復水脱塩再生水を電気透析をするにあたって、予め復水
脱塩再生水から0.1μm以上の粒経の固定粒子が除去
される。本発明のさらに他の好ましい実施態様において
は、乾燥に際して流出される液成分が電気透析する前の
復水脱塩再生水中に戻される。本発明のさらに他の好ま
しい実施態様においては、留出分離されたアンモニアが
硫酸と反応されて硫安として回収される。[0005] In a preferred embodiment of the present invention, an acid is added to the condensed demineralized regenerated water to obtain an acidic condensed demineralized regenerated water, and the acid condensed demineralized regenerated water is subjected to electrodialysis. At that time, an acid is preferably added so that the pH of the condensed water and the regenerated water is 2 to 4. In another preferred embodiment of the present invention, in the electrodialysis of the condensed demineralized regenerated water containing ammonium ions from a thermal power plant, fixed particles having a particle diameter of 0.1 μm or more are previously obtained from the condensed demineralized regenerated water. Is removed. In still another preferred embodiment of the present invention, the liquid component discharged during drying is returned to the condensed demineralized regenerated water before electrodialysis. In still another preferred embodiment of the present invention, the ammonia separated by distillation is reacted with sulfuric acid and recovered as ammonium sulfate.
【0006】次に、本発明の復水脱塩再生水の処理方法
をさらに詳細に説明する。図1は本発明の処理方法を実
施するためのフローシートの一例であり、1はpH調整
槽、1aはその攪拌器、3はフイルタ、4は第一の電気
透析装置、5は第二の電気透析装置、6は蒸留装置、7
は乾燥装置、8は冷却装置、9は反応装置、10は乾燥
装置である。なお電気透析装置は、場合によっては一つ
とすることもできる。復水脱塩再生装置(図示せず)か
らの復水脱塩再生水aは、pH調整槽1で攪拌器1aに
より添加される酸bと混合されpHを4以下、好ましく
は2〜4程度に調整される。そして液中には沈澱しない
アンモニウムイオン(NH4 + イオン)とその他の無機
イオンが残存される。添加する酸としては鉱酸、例えば
塩酸または硫酸が好ましい。なお液中に残される固形分
濃度が0.2mg/リットル程度になるように沈殿物の
除去をすることが好ましい。Next, the method for treating condensed, desalinated, and regenerated water of the present invention will be described in more detail. FIG. 1 is an example of a flow sheet for carrying out the treatment method of the present invention, wherein 1 is a pH adjustment tank, 1a is its agitator, 3 is a filter, 4 is a first electrodialysis device, and 5 is a second Electrodialysis machine, 6 is distillation machine, 7
Denotes a drying device, 8 denotes a cooling device, 9 denotes a reaction device, and 10 denotes a drying device. The number of electrodialyzers may be one depending on the case. The condensate and desalinated regenerated water a from a condensate and desalination regenerator (not shown) is mixed with the acid b added by the stirrer 1a in the pH adjustment tank 1 to adjust the pH to 4 or less, preferably about 2 to 4. Adjusted. Then, ammonium ions (NH 4 + ions) which do not precipitate and other inorganic ions remain in the liquid. As the acid to be added, a mineral acid such as hydrochloric acid or sulfuric acid is preferable. It is preferable to remove the precipitate so that the concentration of the solid content remaining in the liquid is about 0.2 mg / liter.
【0007】pH調整槽1からの再生水はポンプ2によ
り配管cを通って、所望により設けられるフイルタ3に
送られる。一般に電気透析装置の透析膜は処理液中に存
在する酸化鉄や固形粒子の付着量に比例してその透析性
能が低下する。そして火力発電所からの復水脱塩再生水
中の固形粒子は、本発明者らの研究によれば、ほとんど
0.1〜1.0μmの範囲に分布し、0.1μm以下は
実質的に存在しないことが判明した。そこで0.1μm
以上の粒径の固形粒子を有効に分離する特性のフイルタ
を使用することにより、透析効率を高く維持しながら電
気透析膜の有効処理時間を大幅に延長することが可能と
なる。特に火力発電プラントは長時間、例えば1年に1
度しか運転停止が出来ないので、電気透析膜を含めた復
水脱塩再生水の有効処理時間の延長は極めて重要であ
る。このような性能を有するフイルタとして好ましいも
のは、多数の中空糸を束ねて構成された中糸膜フイルタ
である。中空糸膜フイルタは単位容積当たりの膜面積を
極めて大きくでき、且つその膜の孔径を精密に制御して
製造することができ、さらに洗浄も簡単にできるので上
記目的に使用するフイルタとして好適である。Regenerated water from the pH adjusting tank 1 is sent by a pump 2 through a pipe c to a filter 3 provided as required. Generally, the dialysis performance of the dialysis membrane of the electrodialysis apparatus is reduced in proportion to the amount of iron oxide or solid particles present in the processing solution. According to the study of the present inventors, the solid particles in the condensate and desalinated reclaimed water from the thermal power plant are almost distributed in the range of 0.1 to 1.0 μm, and substantially 0.1 μm or less is present. Turned out not to be. 0.1 μm
By using a filter having a characteristic of effectively separating solid particles having the above particle diameter, it is possible to greatly extend the effective treatment time of the electrodialysis membrane while maintaining a high dialysis efficiency. In particular, thermal power plants are used for a long time, for example, once a year.
Since the operation can be stopped only once, it is extremely important to extend the effective treatment time of the condensed demineralized regenerated water including the electrodialysis membrane. A filter having such performance is preferably a middle-fiber membrane filter formed by bundling a large number of hollow fibers. The hollow fiber membrane filter is suitable as a filter used for the above purpose because the membrane area per unit volume can be extremely large, and the pore size of the membrane can be controlled precisely, and the membrane can be easily cleaned. .
【0008】図2は本発明に使用されるフイルタ3とし
ての中空糸膜フイルタ11、およびそれを洗浄するため
の周辺装置の一例を示したフローシートである。中空糸
膜フイルタ11は容器12とその中に設けられた仕切板
13、および仕切板13に支持された中空糸モジュール
14を備えている。そして仕切板13の下側がフイルタ
一次側、上側がフイルタ二次側となり、配管cから導入
される再生水は中空糸膜の外側から内側にろ過されて配
管dから排出される。なお再生水ろ過中の中空糸膜の内
外差圧は差圧計15により監視される。図中AO、MO
およびDOは電磁弁や空気駆動式の弁、または手動弁等
の開閉弁であり、中空糸モジュール14の洗浄等のため
に使用され、これらは図示しない制御装置からの信号に
より、または手動により開閉される。再生水ろ過中はA
O、DOを閉じてMOを開く。洗浄時はMOを閉じAO
を開くことにより、配管lにより供給される加圧された
空気が空気ろ過器16、配管m、および配管nを通って
容器12内に供給される。FIG. 2 is a flow sheet showing an example of a hollow fiber membrane filter 11 as a filter 3 used in the present invention and a peripheral device for cleaning the same. The hollow fiber membrane filter 11 includes a container 12, a partition plate 13 provided therein, and a hollow fiber module 14 supported by the partition plate 13. The lower side of the partition plate 13 is the primary side of the filter, and the upper side is the secondary side of the filter. The regenerated water introduced from the pipe c is filtered from the outside to the inside of the hollow fiber membrane and discharged from the pipe d. The pressure difference between the inside and outside of the hollow fiber membrane during the filtration of the regenerated water is monitored by the differential pressure gauge 15. AO, MO in the figure
And DO are on-off valves such as solenoid valves, air-driven valves, and manual valves, and are used for cleaning the hollow fiber module 14, etc., and these are opened and closed by a signal from a control device (not shown) or manually. Is done. A during reclaimed water filtration
Close O, DO and open MO. Close MO and AO for cleaning
Is opened, the pressurized air supplied by the pipe 1 is supplied into the container 12 through the air filter 16, the pipe m, and the pipe n.
【0009】配管mからの空気は中空糸膜の内側から外
側に通過し、膜孔に付着された固形粒子をフイルタ一次
側に吹き飛ばし剥離洗浄する。その際配管nからの空気
により中空糸モジュール14に振動が与えられ、前記洗
浄を促進する。容器12内の空気は配管oから外部に排
出される。開閉弁DOは容器12内の再生水を配管qか
ら排出するためのもので、洗浄に先立って作動させるこ
とができる。その際図面上その右側にあるAOの開閉弁
を開けることにより排出をよりスムーズに行うことがで
きる。この中空糸膜フイルタ11は通常2個以上複数個
並列して設けられ、一個が洗浄中に他の中空糸膜フイル
タ11により再生水の処理を継続するようになされる。[0009] The air from the pipe m passes from the inside to the outside of the hollow fiber membrane, and blows off solid particles attached to the membrane holes to the primary side of the filter to be washed off. At this time, the hollow fiber module 14 is vibrated by the air from the pipe n to promote the cleaning. The air in the container 12 is discharged from the pipe o to the outside. The on-off valve DO is for discharging the reclaimed water in the container 12 from the pipe q, and can be operated prior to washing. At this time, the discharge can be performed more smoothly by opening the on-off valve of the AO on the right side in the drawing. Usually, two or more hollow fiber membrane filters 11 are provided in parallel, and one of the hollow fiber membrane filters 11 is configured to continue the treatment of regenerated water by another hollow fiber membrane filter 11 during washing.
【0010】図1において、フイルタ3により固形粒子
を除去された再生水は、配管dにより第一の電気透析装
置4の希釈側4aに流入される。第一の電気透析装置4
で電気透析処理により一定量のアンモニウムイオンおよ
びその他の無機イオン類が低減された再生水は、さらに
配管eにより第二の電気透析装置5の希釈側5aに流入
され、その電気透析処理によりアンモニウムイオンおよ
びその他の無機イオン類がさらに低減される。第二の電
気透析装置5からの再生水は配管iを通って排出され、
再使用するか系外に放出される。第二の電気透析装置5
の濃縮側5bには配管pにより補給水が供給され、そこ
から流出するアンモニウムイオンおよびその他の無機イ
オン類の濃縮された濃縮水は、配管gにより第一の電気
透析装置4の濃縮側4bに流入される。In FIG. 1, regenerated water from which solid particles have been removed by a filter 3 flows into a dilution side 4 a of a first electrodialysis apparatus 4 through a pipe d. First electrodialysis device 4
The regenerated water from which a certain amount of ammonium ions and other inorganic ions have been reduced by the electrodialysis treatment flows into the dilution side 5a of the second electrodialysis device 5 through the pipe e, and the ammonium ions and the other ions are reduced by the electrodialysis treatment. Other inorganic ions are further reduced. Regenerated water from the second electrodialysis device 5 is discharged through a pipe i,
Reused or released out of the system. Second electrodialysis device 5
Supply water is supplied to the concentration side 5b of the first electrodialysis apparatus 4 by a pipe g, and concentrated water of ammonium ions and other inorganic ions flowing out therefrom is supplied to the concentration side 4b of the first electrodialysis apparatus 4 by a pipe g. Is flowed in.
【0011】次に、図3は電気透析の原理を説明するた
めに示した模式的な図である。例えばチタン板に白金メ
ッキした陽極板17と、ステンレス板からなる陰極板1
8との間には陰イオン交換膜Aと陽イオン交換膜Cが交
互に配置される。陰イオン交換膜Aとしては、例えばイ
オン交換基として4級アンモニウム塩を1.5〜3.0
(meq/g乾燥樹脂)含むスチレン/ジビニルベンゼ
ン共重合体系の膜が使用され、陽イオン交換膜Cとして
は、例えばイオン交換基としてスルホン酸基を1.5〜
3.0(meq/g乾燥樹脂)含むスチレン/ジビニル
ベンゼン共重合体系の膜が使用される。Next, FIG. 3 is a schematic view for explaining the principle of electrodialysis. For example, an anode plate 17 formed by platinum plating a titanium plate and a cathode plate 1 formed of a stainless steel plate
8, anion exchange membranes A and cation exchange membranes C are alternately arranged. As the anion exchange membrane A, for example, a quaternary ammonium salt as an ion exchange group is 1.5 to 3.0.
A styrene / divinylbenzene copolymer-based membrane containing (meq / g dry resin) is used. As the cation exchange membrane C, for example, a sulfonic acid group as an ion exchange group is 1.5 to 1.5%.
A styrene / divinylbenzene copolymer film containing 3.0 (meq / g dry resin) is used.
【0012】これらイオン交換膜の対数は復水中に含ま
れるアンモニア分の濃度等により異なるが、一般に20
0〜600対程度用いられる。前記のように酸として硫
酸を用いた場合は、図3に示すように例えばアンモニウ
ムイオン(NH4 + イオン)と硫酸イオン(SO4 2- イ
オン)が陰−陽極間に形成された電場によって電気的に
泳動する。アンモニウム等の陽イオンは陰極板18の方
向に泳動し、陽イオン交換膜Cを透過して濃縮側に入
り、さらに陰極板18方向へ泳動しようとするが、陰イ
オン交換膜Aに阻止されて濃縮液中に残存する。一方硫
酸イオンは陽極板17の方向に泳動し、陰イオン交換膜
Aを透過して濃縮側に入り、さらに陽極板17方向に泳
動しようとするが、陽イオン交換膜Cに阻止されて濃縮
液中に残存する。かくして濃縮液中のアンモニウムイオ
ンおよび硫酸イオンは、移動媒体である濃縮液によって
電気透析装置から取り出される。なお陽極17および陰
極18近傍に陽極液および陰極液をそれぞれ流通させ
る。The logarithm of these ion-exchange membranes varies depending on the concentration of ammonia contained in the condensate water, but is generally 20
About 0 to 600 pairs are used. When sulfuric acid is used as the acid as described above, for example, as shown in FIG. 3, ammonium ion (NH 4 + ion) and sulfate ion (SO 4 2- ion) are generated by an electric field formed between the negative electrode and the positive electrode. Electrophoresis. Cations such as ammonium migrate toward the cathode plate 18, pass through the cation exchange membrane C and enter the concentration side, and then try to migrate toward the cathode plate 18, but are blocked by the anion exchange membrane A. Remains in the concentrate. On the other hand, sulfate ions migrate toward the anode plate 17, pass through the anion exchange membrane A, enter the concentration side, and then try to migrate toward the anode plate 17, but are blocked by the cation exchange membrane C, and concentrate. Remains inside. Thus, ammonium ions and sulfate ions in the concentrate are removed from the electrodialysis apparatus by the concentrate, which is a moving medium. An anolyte solution and a catholyte solution are allowed to flow near the anode 17 and the cathode 18, respectively.
【0013】再び図1において、第一の電気透析装置4
の濃縮側4bから流出される濃縮水は配管fにより蒸留
装置6に流入される。蒸留装置6としては例えば蒸留塔
やストリッパー装置を使用することができる。蒸留装置
6に流入された濃縮水は配管jによって供給されるアル
カリ源、例えば苛性ソーダ(NaOH)によって、pH
をアルカリ性、特に高アルカリ性の条件にされてその一
部が蒸留(またはストリッピング)される。このように
pHをアルカリ性の条件下で蒸留することにより、液中
に存在するアンモニウムイオンを効率良く且つ高い濃度
のアンモニアとして分離することができる。このことは
次の実験により確認された。すなわち、先ずフラスコに
アンモニウムイオンを含む液を所定量入れ、pHが表1
のような値になるように苛性ソーダ(NaOH)を添加
した。次にフラスコの口から配管を導出し、冷却器を通
して留出液溜に接続してフラスコを電気ヒータで加熱
し、所定間隔でフラスコ中のアンモニウムイオン濃度と
留出液溜に溜まった液量とからアンモニウムイオン量を
算出し、初期にフラスコにあるアンモニウム量に対する
アンモニウムイオン除去率(%)として留出量率(フラ
スコ中の初期の液量を100とした留出量の割合を%と
して表わす)毎にそれぞれ測定した。結果を次の表1に
示す。Referring again to FIG. 1, the first electrodialysis device 4
The concentrated water flowing out of the enrichment side 4b flows into the distillation apparatus 6 through the pipe f. As the distillation device 6, for example, a distillation column or a stripper device can be used. The concentrated water that has flowed into the distillation device 6 is subjected to pH adjustment by an alkali source, for example, caustic soda (NaOH) supplied by a pipe j.
Is made alkaline, especially highly alkaline, and a part thereof is distilled (or stripped). By distilling the pH under alkaline conditions, ammonium ions present in the liquid can be efficiently separated as high-concentration ammonia. This was confirmed by the following experiment. That is, first, a predetermined amount of a solution containing ammonium ions was placed in a flask, and the pH was adjusted as shown in Table 1.
Caustic soda (NaOH) was added to obtain a value as shown in FIG. Next, the pipe was led out from the mouth of the flask, connected to the distillate reservoir through a cooler, and the flask was heated by an electric heater. At predetermined intervals, the ammonium ion concentration in the flask and the amount of liquid accumulated in the distillate reservoir were determined. The amount of ammonium ions is calculated from the above, and the amount of distillate is calculated as the ammonium ion removal rate (%) based on the amount of ammonium in the flask at the beginning (the ratio of the amount of distillate with the initial amount of liquid in the flask being 100 is expressed as%). Each time was measured. The results are shown in Table 1 below.
【0014】[0014]
【表1】 [Table 1]
【0015】図4は表1の結果をもとに、液中からのア
ンモニウムイオンの蒸留分離による除去率がpH値をパ
ラメータとして示された曲線である。この実験データか
ら蒸留装置6における蒸留条件として、pH10以上、
特にpH11〜13程度とすることが好ましいことが分
かる。蒸留装置6から配管lにより留出する成分は、図
示しない冷却装置で冷却してアンモニア水として回収す
ることもできるが、本例では反応装置9へ導入し、そこ
で配管kから供給される硫酸と反応させて硫安溶液とし
ている。反応装置9から流出する硫安溶液は、例えば蒸
気をエネルギー源とする遠心薄膜乾燥機のような乾燥装
置10に配管rにより導入される。乾燥装置10に導入
された硫安溶液はここで乾燥され、蒸発成分は配管iに
連結された配管sから流出されて脱塩水の一部となり、
固形分である硫安は配管tから系外に排出されて肥料と
して利用される。配管lから流出される蒸発成分をより
効率良く液化するために配管lの途中に冷却装置を設け
ることもできる。なお上記のような遠心薄膜乾燥機の構
造および作用はよく知られているのでその詳細な説明は
省略する。FIG. 4 is a curve showing, based on the results in Table 1, the removal rate of ammonium ions from the liquid by distillation separation, using the pH value as a parameter. From the experimental data, the distillation conditions in the distillation apparatus 6 were pH 10 or more,
In particular, it is understood that the pH is preferably about 11 to 13. The component distilled from the distillation apparatus 6 through the pipe 1 can be cooled by a cooling device (not shown) and recovered as ammonia water. In this example, the component is introduced into the reaction apparatus 9, where sulfuric acid supplied from the pipe k is added. The reaction is made into an ammonium sulfate solution. The ammonium sulfate solution flowing out of the reaction device 9 is introduced by a pipe r into a drying device 10 such as a centrifugal thin film dryer using steam as an energy source. The ammonium sulfate solution introduced into the drying device 10 is dried here, and the evaporated component flows out of the pipe s connected to the pipe i and becomes a part of demineralized water,
Ammonium sulfate, which is a solid content, is discharged out of the system from the pipe t and is used as fertilizer. In order to more efficiently liquefy the evaporated components flowing out of the pipe 1, a cooling device may be provided in the middle of the pipe 1. Since the structure and operation of the above-described centrifugal thin film dryer are well known, a detailed description thereof will be omitted.
【0016】蒸留装置6から配管uにより排出される実
質的にアンモニウムイオンを含まない液成分は乾燥装置
7に導入されて乾燥される。この乾燥装置7も乾燥装置
10と同様な遠心薄膜乾燥機を使用することができる。
乾燥装置7により液中の水分を数%程度まで蒸発させ、
配管vから流出する蒸発成分は冷却装置8により冷却さ
れて液化し、配管wにより第一の電気透析装置4への配
管dに戻される。なお乾燥装置7に導入される液は、配
管mによって供給される鉱酸、好ましくは硫酸によって
pHを中性にされる。一方、乾燥装置7から配管xによ
り排出される固形分は系外に排出されるが、この固形分
中にはNa2 SO4 、NaClのような、例えばガラス
製造用の原料として有用な成分が含まれており有効に利
用され得る。The liquid component substantially free of ammonium ions discharged from the distillation device 6 through the pipe u is introduced into the drying device 7 and dried. As the drying device 7, a centrifugal thin film dryer similar to the drying device 10 can be used.
The moisture in the liquid is evaporated to about several% by the drying device 7,
The evaporating component flowing out of the pipe v is cooled and liquefied by the cooling device 8 and returned to the pipe d to the first electrodialysis apparatus 4 by the pipe w. The liquid introduced into the drying device 7 is neutralized with a mineral acid, preferably sulfuric acid, supplied through a pipe m. On the other hand, solids discharged from the drying device 7 through the pipe x are discharged to the outside of the system, and components such as Na 2 SO 4 and NaCl useful as raw materials for glass production, for example, are contained in the solids. It is included and can be used effectively.
【0017】[0017]
【実施例】次に図1のフローシートのように構成したプ
ロセスで実施した本発明の実施例を説明する。配管aか
ら140T/日の火力発電所からの復水脱塩再生水をp
H調整槽1に供給し、硫酸を添加してpHを3に調整し
た。pH調整された再生水中にはSS(浮遊固形物質)
が20ppm含有されていた。また再生水中には他の成
分として、NH4 + イオンが1,130ppm、SO4
2- イオン8,050ppm、Na + イオン2,440p
pm、Cl - イオン40ppm含まれており、TDSは
11,660ppmであった。Next, an embodiment of the present invention implemented by a process configured as shown in the flow sheet of FIG. 1 will be described. Condensate and desalinated reclaimed water from a thermal power plant at 140 T / day from pipe a
The solution was supplied to the H adjusting tank 1 and the pH was adjusted to 3 by adding sulfuric acid. SS (suspended solid matter) in reclaimed water whose pH has been adjusted
Was contained at 20 ppm. In the reclaimed water, NH 4 + ions are contained as other components at 1,130 ppm and SO 4
2,050 ppm of 2- ion, 2,440 p of Na + ion
pm, Cl - contains ions 40 ppm, TDS was 11,660Ppm.
【0018】pH調整した再生水を次に図2のように構
成されたフイルタ3に導入し、0.1μm以上の粒径の
固形粒子を除去してSSを0.2ppmまでにした後、
第一の電気透析装置4および第二の電気透析装置5を順
次通過させて電気透析処理をした。これら電気透析処理
装置4および5の有効膜面積は36.8dm/対、組込
膜対数は200、膜面流速は14cm/sであり、電流
密度はそれぞれ2.9A/dm2 、0.8A/dm2 で
あった。また配管pから7.3m3 /日の補給水を供給
した。電気透析処理されて配管iから放出された再生水
は137m3 /日であり、そのNH4 イオンは5pp
m、TDSは150ppmであった。The pH-adjusted regenerated water is then introduced into a filter 3 constructed as shown in FIG. 2 to remove solid particles having a particle size of 0.1 μm or more to reduce SS to 0.2 ppm.
The electrodialysis treatment was performed by sequentially passing through the first electrodialysis device 4 and the second electrodialysis device 5. The effective membrane areas of these electrodialysis treatment devices 4 and 5 are 36.8 dm / pair, the number of incorporated membranes is 200, the membrane surface flow rate is 14 cm / s, and the current densities are 2.9 A / dm 2 and 0.8 A, respectively. / Dm 2 . Also, 7.3 m 3 / day of makeup water was supplied from the pipe p. The regenerated water discharged from the pipe i after the electrodialysis treatment was 137 m 3 / day, and its NH 4 ion was 5 pp.
m and TDS were 150 ppm.
【0019】一方、配管fからの濃縮水は10m3 /日
であり、そのNH4 イオンは15,700ppm、TD
Sは161,200ppmであった。この濃縮水をpH
11とした後、蒸留装置6に導入して蒸留した。蒸留装
置6からの留出成分は2t/日であり、そのアンモニウ
ムイオンの含有量は濃縮液中のアンモニウムイオン量の
ほぼ98%であった。この留出成分を反応装置9に導入
して硫酸と反応させ、硫安溶液として乾燥装置10に導
入した。そして乾燥装置10で乾燥して3.9T/日の
蒸気成分とほぼ600Kg/日の硫安粉末を得た。蒸留
装置6から乾燥装置7に排出した残留液は8T/日であ
り、硫酸中で中和処理した後、乾燥装置7で乾燥されて
7T/日の蒸気成分と、ほぼ1100Kg/日のNa2
SO4 が99.5%、NaClが0,5%の成分割合か
らなる固形分として分離された。なお本実施例は150
時間の連続運転を行ったが、電気透析装置を含めた装置
上の支障は全くなく、その有効性を実証することができ
た。On the other hand, the concentrated water from the pipe f is 10 m 3 / day, its NH 4 ion is 15,700 ppm, and TD
S was 161,200 ppm. PH of this concentrated water
After setting to 11, it was introduced into the distillation apparatus 6 and distilled. The distillate from the distillation apparatus 6 was 2 t / day, and the content of ammonium ions was about 98% of the amount of ammonium ions in the concentrate. This distillate component was introduced into the reactor 9 to react with sulfuric acid, and was introduced into the drying device 10 as an ammonium sulfate solution. Then, it was dried by the drying device 10 to obtain a steam component of 3.9 T / day and an ammonium sulfate powder of approximately 600 kg / day. The residual liquid discharged from the distillation device 6 to the drying device 7 is 8 T / day. After neutralization treatment in sulfuric acid, the remaining liquid is dried by the drying device 7 to obtain a vapor component of 7 T / day and approximately 1100 kg / day of Na 2.
It was isolated as a solid consisting of 99.5% SO 4 and 0.5% NaCl. In this example, 150
Although the continuous operation was performed for a long time, there was no trouble on the apparatus including the electrodialysis apparatus, and the effectiveness was proved.
【0020】[0020]
【発明の効果】本発明は火力発電プラントなどにおける
アンモニウムイオンを含む復水脱塩再生水を処理するに
際し、復水脱塩再生水を先ず電気透析し、希釈液として
再使用可能な脱塩水を効率良く分離し、次いでpHがア
ルカリ性の条件下に濃縮液を蒸留して高いアンモニア濃
度成分としてアンモニウムイオンを効率良く分離し、そ
の留出残液を乾燥して他の不純物を固形分として分離す
るようにしたので、再使用可能な脱塩水、アンモニア成
分、および復水脱塩再生水中に存在する他の不純物等を
それぞれ効率良く且つ低い消費エネルギーで分離するこ
とができる。そして本発明の処理方法によれば、処理す
べき復水脱塩再生水からアンモニウムイオンを分離回収
すること、再使用可能な脱塩水を分離回収すること、お
よび他の不純物を固形分として分離回収することによ
り、無排水化、無廃棄物化を達成することも可能であ
る。さらにアンモニア成分を硫酸と反応させて硫安溶液
とし、それを乾燥させて硫安粉末として回収するとき
は、蒸留成分として得られるアンモニアの濃度が高いの
で、乾燥に要するエネルギーを著しく軽減することがで
きる。According to the present invention, when treating condensed demineralized regenerated water containing ammonium ions in a thermal power plant or the like, the condensed demineralized regenerated water is first subjected to electrodialysis to efficiently use reusable demineralized water as a diluent. Then, the concentrated solution is distilled under alkaline conditions to efficiently separate ammonium ions as a high ammonia concentration component, and the distillate residue is dried to separate other impurities as solids. Therefore, the reusable demineralized water, ammonia component, and other impurities present in the condensed demineralized regenerated water can be separated efficiently and with low energy consumption. According to the treatment method of the present invention, ammonium ions are separated and recovered from the condensed demineralized regenerated water to be processed, reusable demineralized water is separated and recovered, and other impurities are separated and recovered as solids. By doing so, it is possible to achieve no drainage and no waste. Further, when the ammonium component is reacted with sulfuric acid to form an ammonium sulfate solution, which is dried and recovered as ammonium sulfate powder, the concentration of ammonia obtained as a distillation component is high, so that the energy required for drying can be significantly reduced.
【図1】本発明の処理方法を実施するためのフローシー
ト。FIG. 1 is a flow sheet for implementing the processing method of the present invention.
【図2】本発明において使用することができるフイルタ
の一例を示すフローシート。FIG. 2 is a flow sheet showing an example of a filter that can be used in the present invention.
【図3】本発明における電気透析の原理を説明するため
に示した模式的な図。FIG. 3 is a schematic diagram shown for explaining the principle of electrodialysis in the present invention.
【図4】液中からのアンモニウムイオンの蒸留分離によ
る除去率がアルカリ性の数値をパラメータとして示され
た曲線。FIG. 4 is a curve showing the removal rate of ammonium ions from a liquid by distillation separation, using alkaline values as parameters.
1 pH調整槽 1a 攪拌器 2 ポンプ 3 フイルタ 4 第一の電気透析装置 5 第二の電気透析装置 6 蒸留装置 7 乾燥装置 8 冷却装置 9 反応装置 10 乾燥装置 11 中空糸膜フイルタ 12 容器 13 仕切板 14 中空糸モジュール 15 差圧計 16 空気ろ過器 17 陽極 18 陰極 A 陰イオン交換膜 C 陽イオン交換膜 AO 開閉弁 MO 開閉弁 DO 開閉弁 DESCRIPTION OF SYMBOLS 1 pH adjustment tank 1a Stirrer 2 Pump 3 Filter 4 First electrodialysis device 5 Second electrodialysis device 6 Distillation device 7 Drying device 8 Cooling device 9 Reaction device 10 Drying device 11 Hollow fiber membrane filter 12 Container 13 Partition plate 14 Hollow fiber module 15 Differential pressure gauge 16 Air filter 17 Anode 18 Cathode A Anion exchange membrane C Cation exchange membrane AO On-off valve MO On-off valve DO On-off valve
フロントページの続き (51)Int.Cl.7 識別記号 FI C01C 1/24 C01C 1/24 H C02F 1/04 C02F 1/04 C 1/469 1/46 103 (72)発明者 村吉 泰男 東京都港区西新橋三丁目7番1号 東芝 プラント建設株式会社内 (72)発明者 小林 拡 東京都千代田区丸の内二丁目1番2号 旭硝子株式会社内 (72)発明者 福井 史郎 東京都千代田区丸の内二丁目1番2号 旭硝子株式会社内 (56)参考文献 特開 平7−80254(JP,A) 特開 平2−169090(JP,A) 特開 平7−88477(JP,A) 特開 昭54−119757(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 9/00,1/46 B01D 61/44 Continued on the front page (51) Int.Cl. 7 Identification symbol FI C01C 1/24 C01C 1/24 H C02F 1/04 C02F 1/04 C 1/469 1/46 103 (72) Inventor Yasuo Murayoshi Tokyo 3-7-1, Nishishinbashi, Minato-ku Toshiba Plant Construction Co., Ltd. (72) Inventor Hiroshi Kobayashi 2-1-2, Marunouchi, Chiyoda-ku, Tokyo Asahi Glass Co., Ltd. (72) Inventor Shiro Fukui Marunouchi, Chiyoda-ku, Tokyo 2-1-2 1-2 Asahi Glass Co., Ltd. (56) References JP-A-7-80254 (JP, A) JP-A-2-169090 (JP, A) JP-A-7-88477 (JP, A) JP 54-119757 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 9/00, 1/46 B01D 61/44
Claims (6)
再生水を電気透析し、アンモニウムイオンの低減された
希釈液を脱塩水として分離すると共に、アンモニウムイ
オンの濃縮された濃縮液をアルカリ性のpH条件下で蒸
留してアンモニアを留出分離し、その蒸留残液を乾燥し
て固形分を分離することを特徴とする復水脱塩再生水の
処理方法。1. A method for electrodialyzing condensed and demineralized regenerated water containing ammonium ions to separate a dilute solution containing reduced ammonium ions as demineralized water and to convert a concentrated solution containing ammonium ions into alkaline pH conditions. A method for treating condensed, desalinated, and reclaimed water, comprising distilling off ammonia by distillation under reduced pressure, drying the distillation residue, and separating solids.
水脱塩再生水とし、その酸性の復水脱塩再生水を電気透
析する請求項1の復水脱塩再生水の処理方法。2. The method for treating condensed and desalinated regenerated water according to claim 1, wherein an acid is added to the condensed and desalinated regenerated water to obtain an acidic condensed and desalinated regenerated water, and the acidic condensed and desalinated regenerated water is subjected to electrodialysis.
うに酸が添加される請求項2の復水脱塩再生水の処理方
法。3. The method according to claim 2, wherein an acid is added so that the pH of the condensed demineralized regenerated water becomes 2 to 4.
含有する復水脱塩再生水を電気透析をするにあたって、
0.1μm以上の粒径の固形粒子を復水脱塩再生水から
予め除去する請求項1または2の復水脱塩再生水の処理
方法。4. The electrodialysis of condensed demineralized regenerated water containing ammonium ions from a thermal power plant,
3. The method for treating condensed and desalinated regenerated water according to claim 1 or 2, wherein solid particles having a particle size of 0.1 μm or more are removed from the condensed and desalinated regenerated water in advance.
析する前の復水脱塩再生水中に戻すようにした請求項1
または2の復水脱塩再生水の処理方法。5. The method according to claim 1, wherein the liquid component discharged during drying is returned to the condensed water and desalinated regenerated water before electrodialysis.
Or 2) a method for treating condensed and desalinated regenerated water.
せて硫安として回収する請求項1または2の復水脱塩再
生水の処理方法。6. The method for treating condensed demineralized regenerated water according to claim 1, wherein the ammonia separated by distillation is reacted with sulfuric acid and recovered as ammonium sulfate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09591594A JP3223311B2 (en) | 1994-04-07 | 1994-04-07 | Treatment method of condensate and desalinated reclaimed water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09591594A JP3223311B2 (en) | 1994-04-07 | 1994-04-07 | Treatment method of condensate and desalinated reclaimed water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07275896A JPH07275896A (en) | 1995-10-24 |
JP3223311B2 true JP3223311B2 (en) | 2001-10-29 |
Family
ID=14150582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09591594A Expired - Lifetime JP3223311B2 (en) | 1994-04-07 | 1994-04-07 | Treatment method of condensate and desalinated reclaimed water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3223311B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6706093B2 (en) * | 2000-05-23 | 2004-03-16 | Rohm And Haas Company | Method and apparatus for preventing iron contamination in corrosive service |
JP4599113B2 (en) * | 2004-08-04 | 2010-12-15 | 株式会社東芝 | Impurity removal equipment |
JP2007147453A (en) * | 2005-11-28 | 2007-06-14 | Hitachi Ltd | Method and device for processing ammonia-containing regenerated waste solution from condensate demineralizer |
JP2010064074A (en) * | 2009-12-07 | 2010-03-25 | Hitachi-Ge Nuclear Energy Ltd | Method and apparatus for treating ammonia-containing regeneration waste liquid from condensate demineralizer |
KR101655416B1 (en) * | 2016-04-18 | 2016-09-12 | 한전원자력연료 주식회사 | A ammonia-containing radioactive waste solidification method |
-
1994
- 1994-04-07 JP JP09591594A patent/JP3223311B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07275896A (en) | 1995-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103539288B (en) | Industrial wastewater recovery method and wastewater recovery system | |
CN105384300B (en) | A kind of method of multistage electrically-driven ion film process high slat-containing wastewater | |
EP2374761A2 (en) | Zero liquid discharge water treatment system and method | |
CN106396228A (en) | Device and method for treating industrial wastewater with high salt content | |
US4752363A (en) | Effluent treatment | |
CN103979729A (en) | Desulfurization waste water recycling and zero discharge system and method | |
JP2001070989A (en) | Method and apparatus for treating organic wastewater containing high concentration of salts | |
CN105000755A (en) | Wastewater zero-emission industrial sewage treatment system and treatment method | |
CN206467086U (en) | A kind of high saliferous industrial waste water disposal device | |
CN109231632A (en) | The processing method and system of a kind of highly mineralized mine water reuse and resource utilization | |
CN105000737A (en) | Industrial sewage treatment system and sewage treatment method | |
JPH10323664A (en) | Wastewater-recovering apparatus | |
CN107381885A (en) | Zero-discharge process and equipment for treating high-salt-content wastewater | |
JP3800449B2 (en) | Method and apparatus for treating organic wastewater containing high concentrations of salts | |
JP3223311B2 (en) | Treatment method of condensate and desalinated reclaimed water | |
CN110759570A (en) | Treatment method and treatment system for dye intermediate wastewater | |
JP2000051665A (en) | Desalination method | |
KR0162157B1 (en) | Process for treating chemical waste by reverse osmotic membrane system | |
KR100398417B1 (en) | A method for treating electrogalvanizing wastewaters | |
CN209411998U (en) | A kind of processing system of highly mineralized mine water reuse and resource utilization | |
AU634661B2 (en) | Recovery of sodium hydroxide and aluminum hydroxide from etching waste | |
CN206915894U (en) | High zero release equipment who contains salt waste water treatment | |
JP3385388B2 (en) | Treatment method for wastewater containing ammonia nitrogen | |
Wisniewski et al. | Water recovery from etching effluents for the purpose of rinsing stainless steel | |
CN211921176U (en) | Metal processing wastewater treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080824 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090824 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100824 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110824 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 11 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 11 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120824 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130824 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130824 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140824 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |