[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3215127B2 - Switching power supply control circuit - Google Patents

Switching power supply control circuit

Info

Publication number
JP3215127B2
JP3215127B2 JP17429491A JP17429491A JP3215127B2 JP 3215127 B2 JP3215127 B2 JP 3215127B2 JP 17429491 A JP17429491 A JP 17429491A JP 17429491 A JP17429491 A JP 17429491A JP 3215127 B2 JP3215127 B2 JP 3215127B2
Authority
JP
Japan
Prior art keywords
error amplifier
output
power supply
voltage
switching power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17429491A
Other languages
Japanese (ja)
Other versions
JPH04359675A (en
Inventor
東流 二川
俊彰 長谷見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP17429491A priority Critical patent/JP3215127B2/en
Publication of JPH04359675A publication Critical patent/JPH04359675A/en
Application granted granted Critical
Publication of JP3215127B2 publication Critical patent/JP3215127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は正弦波の交流電源を入力
とし、直流電圧を出力すると共に入力電流波形を正弦波
に近い波形になるようにして入力電流の高調波成分を減
らし、入力の力率を1に近い値とする高力率形スイッチ
ング電源いわゆるアクティブフィルタの制御回路の改善
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention takes a sine wave AC power supply as an input, outputs a DC voltage, and reduces the harmonic component of the input current by making the input current waveform close to a sine wave. The present invention relates to an improvement in a control circuit of a high power factor switching power supply that sets a power factor to a value close to one, that is, an active filter.

【0002】[0002]

【従来の技術】このようなスイッチング電源の一例とし
て従来、図1に示すような回路が提案されている。図1
において、交流電源1に高域阻止フィルタ2を介して接
続された全波整流器3の出力にリアクトル4とオン、オ
フ動作を行うスイッチ素子6を直列に接続し、スイッチ
素子6の両端にダイオ−ド7とコンデンサ8を直列に接
続し、コンデンサ8の両端には、電気的負荷9を接続し
て直流電圧を供給する。誤差増幅器11は、コンデンサ
8の両端の直流電圧を一方の入力とし、予め定められた
基準電圧源12を他方の入力として、それらの差電圧を
増幅し、その出力は、パルス発生器13に接続されてい
る。誤差増幅器11と基準電圧源12は誤差増幅回路1
0を構成する。パルス発生器13に接続された零電流検
出器5は、リアクトル4に流れる電流が零になると信号
を出力する。パルス発生器13は、誤差増幅器11の出
力信号を第一の入力、零電流検出器5の出力信号を第二
の入力として、リアクトル4に流れる電流が零になる
と、スイッチ素子6をオフからオンにするようなパルス
を出力し、そのオン期間は誤差増幅器11の出力信号に
よって決定されるような機能を有する回路である。
2. Description of the Related Art As an example of such a switching power supply, a circuit as shown in FIG. 1 has been conventionally proposed. FIG.
, A reactor 4 and a switch element 6 for performing on / off operations are connected in series to an output of a full-wave rectifier 3 connected to an AC power supply 1 via a high-frequency rejection filter 2, and a diode is connected to both ends of the switch element 6. The capacitor 7 and the capacitor 8 are connected in series, and an electric load 9 is connected to both ends of the capacitor 8 to supply a DC voltage. The error amplifier 11 amplifies the difference voltage between the DC voltage at both ends of the capacitor 8 as one input, a predetermined reference voltage source 12 as the other input, and the output thereof connected to the pulse generator 13. Have been. The error amplifier 11 and the reference voltage source 12
0. The zero current detector 5 connected to the pulse generator 13 outputs a signal when the current flowing through the reactor 4 becomes zero. The pulse generator 13 uses the output signal of the error amplifier 11 as a first input and the output signal of the zero current detector 5 as a second input, and turns the switch element 6 from off to on when the current flowing through the reactor 4 becomes zero. This is a circuit having a function of outputting a pulse such that the ON period is determined by the output signal of the error amplifier 11.

【0003】上記のような構成の従来例の動作につい
て、図2の動作波形図を参照して簡単に説明する。な
お、説明ではスイッチ素子の飽和電圧、整流器とダイオ
−ドの順方向電圧降下、リアクトルの抵抗成分などは無
視する。交流電圧の正の半サイクルについて説明するが
負の半サイクルについても極性が反転するだけで同様で
ある。図2では、模式的にスイッチング周波数を交流電
源の周波数に比べて、あまり大きく表していないが、実
際にはスイッチング周波数は、交流電源の周波数に比べ
て充分高いものとする。このためスイッチングの1周期
で入力電圧Viはほぼ一定値とみなせる。スイッチ素子
6のオン期間Tonにリアクトル4の両端に加わる電圧
はViであるのでTonの終わりにリアクトル4を流れ
る電流Ilのピ−ク値Ilpkはlがオン期間の初めに
零であるとすれば、次式で示される。 Ilpk=(Vi/L)×Ton (数1) ここで、Vi : 交流入力電圧の瞬時値 L : リアクトル4のインダクタンス値 Ton: スイッチ素子6のオン期間 ここで、周波数の周期では、スイッチ素子6のオン期間
Tonは、一定値であるものとすれば、(数1)よりリ
アクトル4を流れる電流のピ−ク値Ilpkは、全波整
流器3の出力Viに比例することがわかる。スイッチ素
子6のオフ期間にリアクトル4を流れる電流Ilは、ダ
イオ−ド7を通してコンデンサ8と負荷9に供給され
る。この期間にリアクトル4の両端に加わる電圧は、直
流出力電圧をVoとすると Vo−Vi で一定値にな
るので、Ilは直線的に減少する。Ilが零になると零
電流検出回路5の出力信号によりパルス発生器13はス
イッチ素子6をオフからオンにして次のスイッチング周
期が始まる。
The operation of the conventional example having the above configuration will be briefly described with reference to the operation waveform diagram of FIG. In the description, the saturation voltage of the switch element, the forward voltage drop between the rectifier and the diode, the resistance component of the reactor, and the like are ignored. The positive half cycle of the AC voltage will be described, but the same applies to the negative half cycle, except that the polarity is inverted. In FIG. 2, the switching frequency is not shown to be much higher than the frequency of the AC power supply, but in practice, the switching frequency is sufficiently higher than the frequency of the AC power supply. Therefore, the input voltage Vi can be regarded as a substantially constant value in one switching cycle. Since the voltage applied to both ends of the reactor 4 during the on-period Ton of the switch element 6 is Vi, the peak value Ilpk of the current Il flowing through the reactor 4 at the end of Ton assumes that l is zero at the beginning of the on-period. , As shown in the following equation. Ilpk = (Vi / L) × Ton (Equation 1) Here, Vi: instantaneous value of AC input voltage L: inductance value of reactor 4 Ton: ON period of switch element 6 Here, in the cycle of frequency, switch element 6 Assuming that the on-period Ton is a constant value, Equation 1 shows that the peak value Ilpk of the current flowing through the reactor 4 is proportional to the output Vi of the full-wave rectifier 3. The current Il flowing through the reactor 4 during the off period of the switch element 6 is supplied to a capacitor 8 and a load 9 through a diode 7. The voltage applied to both ends of the reactor 4 during this period becomes a constant value of Vo-Vi when the DC output voltage is Vo, so that Il decreases linearly. When Il becomes zero, the pulse generator 13 turns the switch element 6 from off to on according to the output signal of the zero current detection circuit 5, and the next switching cycle starts.

【0004】スイッチングの1周期でリアクトル4を流
れる電流の波形Ilは図2に示すように三角形となるの
で、1周期の平均値はピ−ク値Ilpkの1/2にな
り、前述のようにピ−ク値IlpkはViに比例するの
で、Ilの平均値もViに比例する。高域阻止フィルタ
により高周波成分を除去することで、入力電流Ilを平
均した電流となり、その波形も交流電源の電圧波形Vi
が正弦波であればそれと相似した正弦波となるので、上
記のように動作するスイッチング電源は高力率を達成す
ることができる。
Since the waveform Il of the current flowing through the reactor 4 in one cycle of the switching is a triangle as shown in FIG. 2, the average value of one cycle is 1/2 of the peak value Ilpk, as described above. Since the peak value Ilpk is proportional to Vi, the average value of Il is also proportional to Vi. By removing the high-frequency component by the high-frequency rejection filter, the current becomes an average of the input current Il.
Is a sine wave similar to the sine wave, the switching power supply that operates as described above can achieve a high power factor.

【0005】次に、直流出力電圧の安定化について、誤
差増幅器の動作と関連づけて説明すると次の通り。はじ
めに、直流出力電圧が高くなろうとすると、誤差増幅器
11の出力(図1のa)が低くなるのでパルス発生器1
3はスイッチ素子6のオン期間を短くし、その結果、入
力電流は小さくなって直流出力電圧の上昇を制限する。
逆に、直流出力電圧が小さくなろうとすると、オン期間
を長くして直流出力電圧の下降を制限する結果、直流出
力電圧を安定化することができる。以上のように図1に
示す回路例は、高力率を達成することができると同時
に、安定化された直流出力電圧を供給出来る。
Next, stabilization of the DC output voltage will be described in connection with the operation of the error amplifier. First, when the DC output voltage is going to be high, the output of the error amplifier 11 (a in FIG. 1) is low.
The reference numeral 3 shortens the ON period of the switch element 6, and as a result, the input current is reduced to limit the rise of the DC output voltage.
Conversely, if the DC output voltage is about to decrease, the ON period is lengthened to limit the drop of the DC output voltage, so that the DC output voltage can be stabilized. As described above, the circuit example shown in FIG. 1 can achieve a high power factor and can supply a stabilized DC output voltage.

【0006】[0006]

【従来技術の問題点】しかし、この例の構成のような従
来型のスイッチング電源においては、電流波形を正弦波
に近い波形になるようにして高力率とするためには、前
述のように、スイッチ素子6のオン期間Tonは略一定
値としなければならないので交流電源の周波数が50H
zあるいは60Hzである場合には誤差増幅器のロ−ル
オフ周波数を数ヘルツに設定する必要がある。このため
に安定系は高周波域で充分なゲインを得ることができな
いので、入出力条件が急変するような場合には安定化制
御の応答が遅れこの結果、出力電圧の過渡的な変動が大
きくなる欠点があった。
However, in the conventional switching power supply of the configuration of this example, in order to obtain a high power factor by making the current waveform close to a sine wave, as described above. Since the on-period Ton of the switch element 6 must be substantially constant, the frequency of the AC power
In the case of z or 60 Hz, it is necessary to set the roll-off frequency of the error amplifier to several hertz. For this reason, the stable system cannot obtain a sufficient gain in a high frequency range, so that the response of the stabilization control is delayed when the input / output conditions change suddenly. As a result, the transient fluctuation of the output voltage increases. There were drawbacks.

【0007】[0007]

【発明の目的】本発明の目的は、入出力条件の急変時に
おいても出力電圧の過渡的な変動を抑えることができる
誤差増幅回路を提供するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an error amplifying circuit which can suppress a transient fluctuation of an output voltage even when an input / output condition changes suddenly.

【0008】[0008]

【実施例】図3に本発明による誤差増幅器回路の一実施
例を示す。図3の構成について説明する。図3において
図1で説明したものと同じものは同じ符号を付けてい
る。14は第二の誤差増幅器、15は第三の誤差増幅
器、16は第二の基準電圧源、17は第三の基準電圧源
で第二の基準電圧源の電圧V2は第一の基準電圧源の電
圧V1よりやや低い、第三の基準電圧源の電圧V3はV
1よりやや高い。それぞれの誤差増幅器の出力と負側の
入力に接続された抵抗とコンデンサの直列回路はそれぞ
れの誤差増幅器の周波数特性を設定するためのものであ
る。
FIG. 3 shows an embodiment of the error amplifier circuit according to the present invention. The configuration of FIG. 3 will be described. In FIG. 3, the same components as those described in FIG. 1 are denoted by the same reference numerals. 14 is a second error amplifier, 15 is a third error amplifier, 16 is a second reference voltage source, 17 is a third reference voltage source, and the voltage V2 of the second reference voltage source is the first reference voltage source. The voltage V3 of the third reference voltage source, which is slightly lower than the voltage V1 of
Slightly higher than 1. A series circuit of a resistor and a capacitor connected to the output and the negative input of each error amplifier is for setting the frequency characteristics of each error amplifier.

【0009】[0009]

【発明の概要】本発明について、その動作を図4を用い
て説明する。スイッチング電源において、入出力の急
変、例えば負荷電流(図4のIl)が数ミリ秒の様な短
時間に増加したときに、第一の誤差増幅器11は応答が
追いつかないので誤差増幅回路10の出力aは緩やかに
上昇しこの結果Ton(図4のTon)も緩やかに増加
するが、出力電流の急激な増加をカバ−できずに出力電
圧(図4のVo)は低下する。第二の誤差増幅器14が
動作する点(図4のVoのB)まで低下すると第二の誤
差増幅器14の動作により誤差増幅回路10の出力aは
速やかに上昇してTonも速やかに増加させて出力電圧
の低下が制限される。同様にして負荷電流が急減したよ
うなときには第三の誤差増幅器15が動作して出力電圧
の上昇を抑える。図4でIlは負荷電流、Tonはオン
期間Voは出力電圧、tは時間を表わす。また、図4に
おいて、Ton、Vo曲線で点線で表した部分は従来例
であり、実線は本発明による改善例である。
The operation of the present invention will be described with reference to FIG. In the switching power supply, when the input / output suddenly changes, for example, when the load current (I1 in FIG. 4) increases in a short time such as several milliseconds, the response of the first error amplifier 11 cannot catch up, and the error amplifier circuit 10 The output a gradually rises, and as a result, Ton (Ton in FIG. 4) gradually increases. However, the output voltage (Vo in FIG. 4) decreases because the rapid increase in the output current cannot be covered. When the second error amplifier 14 decreases to a point where the second error amplifier 14 operates (B of Vo in FIG. 4), the output a of the error amplifier circuit 10 rapidly increases due to the operation of the second error amplifier 14, and Ton also increases rapidly. Output voltage drop is limited. Similarly, when the load current suddenly decreases, the third error amplifier 15 operates to suppress an increase in the output voltage. In FIG. 4, Il represents a load current, Ton represents an on-period Vo, an output voltage, and t represents time. In FIG. 4, the portion represented by the dotted line in the Ton and Vo curves is a conventional example, and the solid line is an improved example according to the present invention.

【0010】動作は以下の通り。第二の誤差増幅器14
は出力電圧が設定偏差より低下したときに誤差増幅器回
路10の出力aを高くして出力電圧を上げるように働
く。これ以外のときはダイオ−ド18により安定化動作
に寄与しない。第三の誤差増幅器15は出力電圧が設定
偏差より上昇したときに誤差増幅器回路の出力aを低く
して出力電圧を下げるように働く。これ以外のときはダ
イオ−ド19により安定化動作に寄与しない。第二の誤
差増幅器14と第三の誤差増幅器15の動作する設定偏
差はそれぞれ基準電圧源電圧V2とV3で設定される。
抵抗20があるために第二の誤差増幅器14あるいは第
三の誤差増幅器15の出力が第一の誤差増幅器11の出
力より優先される。
The operation is as follows. Second error amplifier 14
When the output voltage drops below the set deviation, the output a of the error amplifier circuit 10 is increased to increase the output voltage. In other cases, the diode 18 does not contribute to the stabilizing operation. The third error amplifier 15 functions to lower the output a of the error amplifier circuit and lower the output voltage when the output voltage rises above the set deviation. In other cases, the diode 19 does not contribute to the stabilizing operation. The set deviation at which the second error amplifier 14 and the third error amplifier 15 operate is set by reference voltage source voltages V2 and V3, respectively.
Because of the resistance 20, the output of the second error amplifier 14 or the third error amplifier 15 has priority over the output of the first error amplifier 11.

【0011】交流電源の周波数が50Hzあるいは60
Hzである場合には第一の誤差増幅器11のロ−ルオフ
周波数は数ヘルツに設定し、第二の誤差増幅器14と第
三の誤差増幅器15のロ−ルオフ周波数はこれより高く
例えば数百ヘルツ以上に設定される。
The frequency of the AC power supply is 50 Hz or 60 Hz.
In the case of Hz, the roll-off frequency of the first error amplifier 11 is set to several hertz, and the roll-off frequencies of the second error amplifier 14 and the third error amplifier 15 are higher than this, for example, several hundred hertz. This is set as above.

【0012】[0012]

【発明の効果】以上のように本発明によれば、今までス
イッチング電源の弱点とされていた入力電源の急変およ
び負荷の急変に対する出力電圧の過渡的な変動を抑制で
きる。また、それらの急変量に対して最適なる誤差増幅
器の周波数特性を誤差増幅器と並列に接続された抵抗と
コンデンサの直列回路で設定できる。本発明による、高
力率形スイッチング電源の制御回路は図1に示したよう
な回路方式以外にも誤差増幅器のロ−ルオフ周波数を低
周波に設定する必要があるような他の高力率形スイッチ
ング電源の制御回路にも適用できる。
As described above, according to the present invention, it is possible to suppress the transient fluctuation of the output voltage due to the sudden change of the input power supply and the sudden change of the load, which has been considered as the weak point of the switching power supply. Further, the frequency characteristic of the error amplifier that is optimal for these sudden changes can be set by a series circuit of a resistor and a capacitor connected in parallel with the error amplifier. The control circuit of the high power factor type switching power supply according to the present invention is not limited to the circuit system shown in FIG. 1, but is another type of high power factor type in which the roll-off frequency of the error amplifier needs to be set to a low frequency. It is also applicable to a control circuit of a switching power supply.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の高力率形スイッチング電源の基本回路図FIG. 1 is a basic circuit diagram of a conventional high power factor switching power supply.

【図2】従来例の動作を説明するための動作波形図FIG. 2 is an operation waveform diagram for explaining the operation of the conventional example.

【図3】本発明の一実施例を示す回路接続図FIG. 3 is a circuit connection diagram showing one embodiment of the present invention.

【図4】本発明による制御方法の動作を説明するための
動作波形図
FIG. 4 is an operation waveform diagram for explaining the operation of the control method according to the present invention.

【符号の説明】[Explanation of symbols]

1*──*交流電源 2*──*高域阻止フィルタ 3*──*全波整流器 4*──*リアクトル 5*──*零電流検出回路 6*──*スイッチ素子 7*──*ダイオ−ド 8*──*平滑用コンデンサ 9*──*電気的負荷 10*─*誤差増幅回路 10′**誤差増幅回路 11*─*第一の誤差増幅器 12*─*第一の基準電圧源 13*─*パルス発生器 14*─*第二の誤差増幅器 15*─*第三の誤差増幅器 16*─*第二の基準電圧源 17*─*第三の基準電圧源 18*─*ダイオ−ド 19*─*ダイオ−ド 20*─*抵抗 1 * ── * AC power supply 2 * ── * High-frequency rejection filter 3 * ── * Full-wave rectifier 4 * ── * Reactor 5 * ── * Zero current detection circuit 6 * ── * Switch element 7 * ── * Diode 8 * ── * Smoothing capacitor 9 * ── * Electrical load 10 * ─ * Error amplifier circuit 10 '** Error amplifier circuit 11 * ─ * First error amplifier 12 * ─ * First Reference voltage source 13 * ─ * pulse generator 14 * ─ * second error amplifier 15 * ─ * third error amplifier 16 * ─ * second reference voltage source 17 * ─ * third reference voltage source 18 * ─ * diode 19 * ─ * diode 20 * ─ * resistance

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】交流電源を入力とし、出力に安定化された
直流電圧を供給すると共に、入力電流を正弦波に近い波
形になるようにするスイッチング電源の制御回路におい
て、直流基準電圧と検出電圧の偏差を増幅する第一の差
動増幅器と、該第一の差動増幅器の出力に応じてスイッ
チ素子のオン、オフを制御するパルス発生器と、検出電
圧が上下の偏差の設定値を超えた時、該第一の差動増幅
器より優先的に動作して出力電圧を安定化する第二及び
第三の差動増幅器を備え、該第二及び第三の差動増幅器
は、直流基準電圧を有し且つ、該第一の差動増幅器より
応答速度が速いことを特徴とするスイッチング電源の制
御回路。
A control circuit for a switching power supply that receives an AC power supply as an input, supplies a stabilized DC voltage to an output, and controls the input current to have a waveform close to a sine wave. A first differential amplifier that amplifies the deviation of the first differential amplifier, a pulse generator that controls the turning on and off of the switch element according to the output of the first differential amplifier, and the detection voltage exceeds the set value of the vertical deviation When the first and second differential amplifiers operate preferentially over the first differential amplifier to stabilize the output voltage, the second and third differential amplifiers have a DC reference voltage. And a response speed higher than that of the first differential amplifier.
JP17429491A 1991-06-04 1991-06-04 Switching power supply control circuit Expired - Fee Related JP3215127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17429491A JP3215127B2 (en) 1991-06-04 1991-06-04 Switching power supply control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17429491A JP3215127B2 (en) 1991-06-04 1991-06-04 Switching power supply control circuit

Publications (2)

Publication Number Publication Date
JPH04359675A JPH04359675A (en) 1992-12-11
JP3215127B2 true JP3215127B2 (en) 2001-10-02

Family

ID=15976158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17429491A Expired - Fee Related JP3215127B2 (en) 1991-06-04 1991-06-04 Switching power supply control circuit

Country Status (1)

Country Link
JP (1) JP3215127B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738679B2 (en) * 2000-05-08 2004-05-18 Toshiba Kikai Kabushiki Kaisha Positional control system and positional control method
JP3463748B2 (en) 2000-10-12 2003-11-05 日本電気株式会社 DC stabilized power supply
JP5303910B2 (en) 2007-11-20 2013-10-02 株式会社リコー Switching regulator
JP2011211828A (en) * 2010-03-30 2011-10-20 Sanken Electric Co Ltd Power factor improving circuit

Also Published As

Publication number Publication date
JPH04359675A (en) 1992-12-11

Similar Documents

Publication Publication Date Title
US4035710A (en) Pulse width modulated voltage regulator-converter/power converter having means for improving the static stability characteristics thereof
USRE43516E1 (en) Fault detection for loss of feedback in forced switching power supplies
KR100718828B1 (en) Method for controlling the lc converter and lc converter
US4731722A (en) Low AC harmonic DC power supply
JPH1169787A (en) Power factor improvement circuit
JP3215127B2 (en) Switching power supply control circuit
US4644254A (en) Switch controller having a regulating path and an auxiliary regulating path parallel thereto
JPS62123695A (en) Electric source device
JP2735918B2 (en) Positive and negative output power supply
JPS62135270A (en) Control system of constant-voltage circuit
JP3210185B2 (en) DC / DC converter control circuit
JP3511989B2 (en) Switching power supply
JP3311419B2 (en) Solar power
JPS63305754A (en) Switching regulator circuit
JPH09215315A (en) Switching dc power supply
JP2000197351A (en) Power supply having improved power factor
JP2654732B2 (en) Active filter type switching power supply
JP3045204B2 (en) Switching power supply
JP2632418B2 (en) High frequency PWM inverter device
JPH044351Y2 (en)
JPH01286770A (en) Low pulsation dc power source
JPH0414841Y2 (en)
JPH02254975A (en) Rectifier circuit provided with power-factor improvement circuit
JPH0515161A (en) Power converter
JPH04156276A (en) switching regulator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees