[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3214729B2 - Method for producing silicon nitride reaction sintered body - Google Patents

Method for producing silicon nitride reaction sintered body

Info

Publication number
JP3214729B2
JP3214729B2 JP14173392A JP14173392A JP3214729B2 JP 3214729 B2 JP3214729 B2 JP 3214729B2 JP 14173392 A JP14173392 A JP 14173392A JP 14173392 A JP14173392 A JP 14173392A JP 3214729 B2 JP3214729 B2 JP 3214729B2
Authority
JP
Japan
Prior art keywords
powder
rmax
metal
particle radius
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14173392A
Other languages
Japanese (ja)
Other versions
JPH05330921A (en
Inventor
光雄 桑原
一仁 平賀
光弘 船木
直樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14173392A priority Critical patent/JP3214729B2/en
Publication of JPH05330921A publication Critical patent/JPH05330921A/en
Application granted granted Critical
Publication of JP3214729B2 publication Critical patent/JP3214729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は窒化ケイ素(以下、Si
3 4 という)反応焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a silicon nitride (hereinafter referred to as Si)
( Referred to as 3N 4 ).

【0002】[0002]

【従来の技術】従来、Si3 4 反応焼結体の製造に当
っては、金属Si粉末よりなる成形体と窒素ガスとを反
応させてSi3 4 を合成すると同時にそのSi3 4
を焼結する、といった方法が一般に採用されている。
2. Description of the Related Art Conventionally, in producing a Si 3 N 4 reactive sintered body, a molded body made of metallic Si powder is reacted with nitrogen gas to synthesize Si 3 N 4 and at the same time, the Si 3 N 4 is produced.
Is generally adopted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来法に
よると、焼結過程における寸法変化率が極めて小さいた
め最終形状またはそれに近い形状のSi3 4 反応焼結
体を得ることができる、といった利点がある反面、窒化
の反応速度が速く早期に成形体表面にはSi3 4 が被
膜状に生成され、そのSi3 4 により成形体内部への
窒素ガスの進入が妨害されるため、Si3 4 反応焼結
体内部の窒化が不十分となってその窒化率が最大値でも
80%程度となり、高密度で、且つ高強度なSi3 4
反応焼結体を得ることができない、という問題があっ
た。
However, according to the conventional method, the dimensional change in the sintering process is extremely small, so that an Si 3 N 4 reaction sintered body having a final shape or a shape close to the final shape can be obtained. there other hand, since the Si 3 N 4 on the surface of the molded product at an early stage fast reaction rate of the nitride is generated in the coating form, penetration of the nitrogen gas into the internal compact is hindered by the Si 3 N 4, Si 3 The nitridation inside the N 4 reaction sintered body is insufficient, and the nitridation rate is about 80% even at the maximum value, so that high density and high strength Si 3 N 4
There was a problem that a reaction sintered body could not be obtained.

【0004】本発明は前記に鑑み、特定の金属粉末を分
散させた原料粉末を用いることによって、成形体および
その構成要素である金属Si粉末(厳密に言えば、金属
Si粒子)をそれらの内部から窒化し得るようにし、こ
れにより高密度で、且つ高強度なSi3 4 反応焼結体
を得ることのできる前記製造方法を提供することを目的
とする。
[0004] In view of the above, the present invention uses a raw material powder in which a specific metal powder is dispersed, thereby forming a compact and a metal Si powder (strictly speaking, metal Si particles) as a component thereof into the inside thereof. It is an object of the present invention to provide the above-mentioned production method capable of obtaining a Si 3 N 4 reaction sintered body having a high density and a high strength.

【0005】[0005]

【課題を解決するための手段】本発明に係るSi3 4
反応焼結体の製造方法は、金属Si粉末として、それの
粒度分布が、修整アンドレアゼン(Andreasen)の充填式 Dm=1−(R/Rmax) q (ただし、Rmaxは最大粒子半径、Rは任意の粒子半
径、qは係数、Dmは最大粒子半径Rmaxから任意の
粒子半径Rまでの粒子を用いて得られた成形体における
充填率であって、Dm≦0.75である)において、最
大粒子半径Rmaxが一定であるとき、係数qが0.2
5≦q≦0.5となるように設定されたものを用意し、
その金属Si粉末に、窒化促進用金属粉末としてNi粉
末を0.0085重量%≦Ni粉末≦5重量%分散させ
た原料粉末を用いて成形体を成形する工程と、前記成形
体と窒素ガスとを反応させる1次反応焼結処理を行うこ
とにより合成Si 3 4 を含む中間体を得る工程と、前
記中間体に酸洗処理を施してその中間体からNi成分を
溶出させる工程と、前記中間体と窒素ガスとを反応させ
てSi 3 4 を合成する2次反応焼結処理を行う工程と
を順次行うことを特徴とする。
According to the present invention, Si 3 N 4 is provided.
The production method of the reaction sintered body is as follows:
The particle size distribution is modified Andreasen's (Andreasen) filling formula Dm = 1− (R / Rmax) q (where Rmax is the maximum particle radius and R is an arbitrary particle half)
Diameter, q is a coefficient, Dm is an arbitrary value from the maximum particle radius Rmax
In the molded body obtained using particles up to the particle radius R
(Dm ≦ 0.75).
When the large particle radius Rmax is constant, the coefficient q is 0.2
Prepare one set so that 5 ≦ q ≦ 0.5,
Ni powder is added to the metal Si powder as a metal powder for accelerating nitriding.
Disperse 0.0085% by weight ≦ Ni powder ≦ 5% by weight
Molding a molded body using the raw material powder,
Primary sintering process to react the body with nitrogen gas
Obtaining an intermediate containing synthetic Si 3 N 4 by
The intermediate is subjected to a pickling treatment to remove the Ni component from the intermediate.
Eluting, and reacting the intermediate with nitrogen gas
Performing a secondary reaction sintering process of synthesizing Si 3 N 4 by
Are sequentially performed.

【0006】の製造方法においては、Ni粉末に代え
て、Co粉末またはFe粉末が用いられる。この場合、
Co粉末の添加量は0.0085重量%≦Co粉末≦
4.5重量%に、またFe粉末の添加量は0.01重量
%≦Fe粉末≦4重量%にそれぞれ設定される。
[0006] In the production method of this, instead of the Ni powder, Co powder or Fe powder is used. in this case,
The amount of Co powder added is 0.0085% by weight ≦ Co powder ≦
It is set to 4.5% by weight, and the amount of Fe powder added is set to 0.01% by weight ≦ Fe powder ≦ 4% by weight.

【0007】[0007]

【作用】酸洗処理は中間体に対して行われ、したがって
中間体を得るまでの焼結処理を1次反応焼結処理とい
う。この酸洗処理によりNi成分等が溶出して形成され
る気孔は、2次反応焼結処理において中間体内部へのガ
ス進入路となるので、Si 3 4 反応焼結体における窒
化率AをA>80%、特にNi粉末またはCo粉末を用
いた場合にはA=100%まで上昇させることができ
る。またNi成分等は、Si 3 4 反応焼結体において
は不純物とみなされるが、前記酸洗処理によってNi成
分等の溶出を行うと、Ni成分等による強度への影響を
緩和して、Si 3 4 反応焼結体の強度を高めることが
できる。
The pickling treatment is performed on the intermediate,
The sintering process to obtain the intermediate is called primary reaction sintering process.
U. By this pickling treatment, Ni components and the like are eluted and formed.
Pores in the secondary reaction sintering process
Because it becomes an entry path for nitrogen, the nitrogen in the Si 3 N 4
Conversion ratio A> 80%, especially using Ni powder or Co powder
Can be increased to A = 100%
You. In addition, Ni components and the like are contained in the Si 3 N 4 reaction sintered body.
Is regarded as an impurity, but Ni is formed by the pickling process.
When elution is performed, the effect of Ni component on strength
Relaxing and increasing the strength of the Si 3 N 4 reaction sintered body
it can.

【0008】お、酸洗処理によって全部のNi成分等
が溶出されることは希であるが、残存するNi成分等
は、酸洗処理により、独立して存在している場合には微
細化され、また凝集した場合には再分散されると共に微
細化されるので、Si3 4 反応焼結体の強度低下の原
因とはならない。
[0008] The Contact, but rarely is that all of the Ni component or the like is eluted by acid pickling, Ni components, etc. The remaining, by pickling treatment, when present is independently miniaturization In addition, when they are agglomerated, they are redispersed and miniaturized, so that they do not cause a reduction in the strength of the Si 3 N 4 reaction sintered body.

【0009】ただし、Ni粉末等の添加量が前記範囲を
逸脱すると、Si3 4 反応焼結体における窒化率が大
幅に低下し、したがってその反応焼結体の強度が極端に
低くなる。
However, if the amount of Ni powder or the like deviates from the above range, the nitriding rate of the Si 3 N 4 reaction sintered body is greatly reduced, and the strength of the reaction sintered body is extremely reduced.

【0010】粉末を構成する粒子の半径が連続的に変化
する連続粒子系において、その粒子系が密充填をとると
きの充填式としてはアンドレアゼン(Andreasen)の充填
式が知られている。
The radius of the particles constituting the powder changes continuously
In a continuous particle system that
Andreazen (Andreasen) filling method
The formula is known.

【0011】この充填式は、Dm=(R/Rmax) q
で表わされ、Rmaxは最大粒子半 径、Rは任意の粒子
半径、qは係数、Dmは最大粒子半径Rmaxから任意
の粒子半径Rまでの粒子を用いて得られた成形体におけ
る充填率である。
This filling equation is given by Dm = (R / Rmax) q
In expressed, Rmax maximum particle half diameter, R is any particle
Radius, q is a coefficient, Dm is arbitrary from the maximum particle radius Rmax
Of a molded article obtained using particles up to a particle radius R of
Filling rate.

【0012】しかしながら、金属Si粉末の粒度分布を
アンドレアゼンの充填式に則って設定すると、その式は
連続粒子系が密充填をとるときの充填式であるから、成
形体における充填率が高くなりすぎてしまい、金属Si
成分の窒化反応が前記のように発熱反応であることに起
因して、Si 3 4 反応焼結体に亀裂、崩壊等が発生す
る。
However, the particle size distribution of the metal Si powder is
When set according to Andreazen's filling formula, the formula is
Since it is a filling type when the continuous particle system takes close packing,
The filling factor in the form becomes too high, and metal Si
The nitridation reaction of the components is an exothermic reaction as described above.
As a result , cracks, collapses, etc. occur in the Si 3 N 4 reaction sintered body.
You.

【0013】そこで、窒化反応による体積増加率が25
%であることを考慮して、成形体の相対密度を75%、
したがって充填率を0.75に設定し、また窒化を10
0%進行させれば、亀裂等の欠陥がなく、且つ気孔のな
いSi 3 4 反応焼結体を得ることができる。
Therefore, the rate of volume increase due to the nitriding reaction is 25%.
%, The relative density of the molded body is 75%,
Therefore, the filling rate was set to 0.75 and the nitriding was set to 10
If it is advanced by 0%, there are no defects such as cracks and no pores.
Thus, a Si 3 N 4 reaction sintered body can be obtained.

【0014】このようなことから本発明者等は金属Si
粉末の最大粒子半径Rmaxおよび最小粒子半径Rmi
nを所定値に設定し、また成形体における充填率Dmを
0.75に設定して数多の実験を行った結果、アンドレ
アゼンの充填式を、Dm=1−(R/Rmax) q (た
だし、Dm≦0.75)と修整し、最大粒子半径Rma
xが一定であるとき、係数qを0.25≦q≦0.5に
設定すると、金属Si粉末の粒度分布を最適にして高密
度で、且つ高強度なSi 3 4 反応焼結体を得ることが
できることを究明した。
From these facts, the inventors of the present invention have reported that metal Si
Maximum and minimum particle radii Rmax and Rmi of the powder
n is set to a predetermined value, and the filling rate Dm in the molded body is
As a result of conducting a number of experiments at 0.75,
The filling formula of azene is given by Dm = 1− (R / Rmax) q (
However, Dm ≦ 0.75), and the maximum particle radius Rma
When x is constant, the coefficient q is set to 0.25 ≦ q ≦ 0.5.
When set, the particle size distribution of metallic Si powder is optimized to achieve high density
To obtain high-strength and high-strength Si 3 N 4 reaction sintered body
I determined what I could do.

【0015】[0015]

【実施例】先ず、図1,図2により窒化促進用金属粉末
としてNi粉末を用いたSi3 4 反応焼結体の製造過
程について説明する。なお、便宜上、成形体(または中
間体)内における金属Si成分と窒素ガスとの直接的な
反応についての説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a manufacturing process of a Si 3 N 4 reaction sintered body using Ni powder as a metal powder for accelerating nitriding will be described with reference to FIGS. For convenience, description of a direct reaction between the metal Si component and the nitrogen gas in the molded body (or the intermediate) is omitted.

【0016】図1(a)において、金属Si粉末にNi
粉末を0.009重量%≦Ni粉末≦2.2重量%の範
囲で添加し、両粉末を十分に湿式混合して、金属Si粉
末にNi粉末を分散させた原料粉末を調製し、次いで原
料粉末を用いて圧縮成形を行うことにより成形体1を成
形し、その後成形体1を乾燥する。
In FIG. 1A, Ni powder is added to the metal Si powder.
The powder is added in the range of 0.009% by weight ≦ Ni powder ≦ 2.2% by weight, and the both powders are sufficiently wet-mixed to prepare a raw material powder in which the Ni powder is dispersed in the metal Si powder. The compact 1 is formed by performing compression molding using the powder, and then the compact 1 is dried.

【0017】図1(b)において、成形体1を窒素ガス
雰囲気中にて昇温する。この昇温過程でNi成分Niが
金属Si粉末内に拡散するので、金属Si成分SiとN
i成分Niとが反応してケイ化物NiSi3 が生成され
る。
In FIG. 1B, the temperature of the molded body 1 is increased in a nitrogen gas atmosphere. In this heating process, the Ni component Ni diffuses into the metal Si powder.
The i-component Ni reacts to produce silicide NiSi 3 .

【0018】図1(c)において、相隣る両金属Si成
分Si間の間隙から窒素ガスN2 が成形体1内部に進入
してケイ化物NiSi3 に拡散し、ケイ化物NiSi3
の外周側が窒素拡散層NiSi3 −Nとなる。
[0018] In FIG. 1 (c), the phase Tonariru nitrogen gas N 2 from the gap between the metal Si component Si diffuses into silicide NiSi 3 enters inside the molded body 1, silicide NiSi 3
Is the nitrogen diffusion layer NiSi 3 —N.

【0019】図1(d)において、金属Si成分Siと
窒素ガスN2 との反応によって成形体1表面にはSi3
4 が被膜状に生成される。この場合、被膜状のSi3
4により成形体1内部への窒素ガスN2 の進入が完全
に阻止される訳ではない。
In FIG. 1D, the surface of the compact 1 is formed of Si 3 by the reaction between the metal Si component Si and the nitrogen gas N 2.
N 4 is formed in the form of a film. In this case, the film Si 3
The entry of nitrogen gas N 2 into the inside of the molded body 1 is not completely prevented by N 4 .

【0020】図2(e)において、窒素拡散層NiSi
3 −Nでは、先ずNi成分とN成分とが反応する、つま
りNi成分によるN成分の取籠みが行われるので窒化物
NiNが生成される。この窒化物NiNは非平衡状態に
あるためN成分の解離が行われ、その解離N成分が金属
Si成分へ付与されるので、成形体1内部の窒化が行わ
れてSi3 4 が合成される。
In FIG. 2E, a nitrogen diffusion layer NiSi
In 3- N, first, the Ni component reacts with the N component, that is, the N component is taken in by the Ni component, so that nitride NiN is generated. Since this nitride NiN is in a non-equilibrium state, the N component is dissociated, and the dissociated N component is added to the metal Si component, so that the inside of the molded body 1 is nitrided to synthesize Si 3 N 4. You.

【0021】このように成形体1の表面側および内部に
て発生する窒化反応は発熱反応であるから金属Si成分
Siが熱膨脹し、これによりNi成分Niがその周囲の
金属Si成分Siによって圧縮変形されると共にその一
部が相隣る両金属Si成分Si間から食出し、この食出
し部分aによって被膜状のSi3 4 が破られる。図面
には、食出し部分aを1個のみ示したが、現実には食出
し部分aは多数発生し、被膜状のSi3 4 は多数箇所
で破られる。
As described above, the nitridation reaction occurring on the surface side and inside of the molded body 1 is an exothermic reaction, so that the metal Si component Si expands thermally, whereby the Ni component Ni is compressed and deformed by the surrounding metal Si component Si. At the same time, a part of the Si 3 N 4 is leached out between the adjacent two Si metal components Si, and the leached portion a breaks the film-like Si 3 N 4 . Although only one extruded portion a is shown in the drawing, a large number of extruded portions a actually occur and the film-like Si 3 N 4 is broken at many locations.

【0022】このような現象は、1250℃付近におい
て発生し、この段階では金属Si成分Siの略全周にS
3 4 が生成されており、したがって成形体1は合成
Si3 4 を含む中間体2に変化している。
Such a phenomenon occurs around 1250 ° C., and at this stage, S
i 3 N 4 has been produced, and thus the compact 1 has been transformed into an intermediate 2 containing synthetic Si 3 N 4 .

【0023】図2(f)において、窒素ガスが被膜状S
3 4 の破れ箇所からNi成分NiとSi成分Si回
りのSi3 4 との間の間隙を通じて中間体2内部へ進
入し、Ni成分Ni回りのケイ化物NiSi3 に拡散し
て窒素拡散層NiSi3 −Nが生成される。
In FIG. 2 (f), the nitrogen gas
The i 3 N 4 breaks into the intermediate body 2 through the gap between the Ni component Ni and the Si 3 N 4 around the Si component Si from the broken portion, and diffuses into the silicide NiSi 3 around the Ni component Ni to diffuse nitrogen. layer NiSi 3 -N is generated.

【0024】図2(g)において、窒素拡散層NiSi
3 −Nでは、前記同様にNi成分によるN成分の取籠
み、それに次ぐ解離N成分の金属Si成分への付与が行
われるのでSi3 4 が合成される。
In FIG. 2G, a nitrogen diffusion layer NiSi
In the case of 3- N, the N component is taken in by the Ni component and then the dissociated N component is added to the metal Si component in the same manner as described above, so that Si 3 N 4 is synthesized.

【0025】また前記のようなSi3 4 の合成と併行
して、図3に示すようなSi3 4合成反応も行われ
る。説明を簡略化するため1個の金属Si粉末と1個の
Ni粉末との間で行われる反応について述べる。
[0025] In parallel with the synthesis the Si 3 N 4 as described above, is also performed Si 3 N 4 synthesis reaction as shown in FIG. In order to simplify the description, a reaction performed between one metal Si powder and one Ni powder will be described.

【0026】図3(a)において、成形体を窒素ガス雰
囲気中にて昇温すると、この昇温過程でNi成分Niが
金属Si粉末内に、それを貫通するように拡散し、その
Ni成分NiとSi成分Siとが反応するので、金属S
i粉末を分割するようにケイ化物NiSi3 が生成され
る。
In FIG. 3 (a), when the temperature of the molded body is increased in a nitrogen gas atmosphere, the Ni component Ni diffuses into the metal Si powder so as to penetrate the metal Si powder in the course of the temperature increase. Since Ni and the Si component Si react, the metal S
Silicide NiSi 3 is generated to divide the i-powder.

【0027】図3(b)において、窒素ガスN2 がケイ
化物NiSi3 内に拡散し、そのケイ化物NiSi3
主として外層側が窒素拡散層NiSi3 −Nとなる。窒
素拡散層NiSi3 −Nでは、先ずNi成分とN成分と
が反応する、つまりNi成分によるN成分の取籠みが行
われるので窒化物NiNが生成される。この窒化物Ni
Nは非平衡状態にあるためN成分の解離が行われ、その
解離N成分が金属Si成分へ付与されるので、窒化が行
われてケイ化物NiSi3 の周りにSi3 4が合成さ
れる。また金属Si粉末の表面側では金属Si成分Si
と窒素ガスN2とが反応するのでSi3 4 が被膜状に
形成される。
[0027] In FIG. 3 (b), the nitrogen gas N 2 is diffused into the silicide NiSi 3, mainly the outer side of the silicide NiSi 3 is nitrogen diffusion layer NiSi 3 -N. In nitrogen diffusion layer NiSi 3 -N, first, and the Ni component and N component reacts, i.e. so Tokagomi of N component by Ni component is performed nitride NiN is generated. This nitride Ni
Since N is in a non-equilibrium state, the N component is dissociated, and the dissociated N component is added to the metal Si component. Therefore, nitriding is performed to synthesize Si 3 N 4 around the silicide NiSi 3. . On the surface side of the metal Si powder, the metal Si component Si
Reacts with the nitrogen gas N 2 to form Si 3 N 4 in a film form.

【0028】このような窒化反応によって金属Si粉末
は、外周部全体にSi3 4 を有する複数の微小片に分
割される。
By such a nitriding reaction, the metal Si powder is divided into a plurality of small pieces having Si 3 N 4 on the entire outer peripheral portion.

【0029】以上の各過程を経てSi3 4 反応焼結体
3が製造されるもので、この反応焼結体3における窒化
率Aは、Ni粉末の添加量によって変化するが、80%
<A≦98%となる。
The Si 3 N 4 reaction sintered body 3 is manufactured through the above steps. The nitriding rate A of the reaction sintered body 3 varies depending on the amount of Ni powder added.
<A ≦ 98%.

【0030】Si3 4 反応焼結体製造過程において、
酸洗処理によるNi成分の溶出は図2(e)段階終了
後、したがって1次反応焼結処理終了後の中間体2に施
される。この中間体2に酸洗処理を施すと、Ni成分の
溶出を比較的効率良く、且つ十分に行うことができる。
Ni成分の溶出により生じた気孔は、2次反応焼結処理
において中間体2内部へのガス進入路として窒化に寄与
し、最終的にはSi3 4 により埋められる
In the manufacturing process of the Si 3 N 4 reaction sintered body,
The elution of the Ni component by the pickling treatment is performed on the intermediate 2 after the completion of the step of FIG. When the intermediate 2 is subjected to the pickling treatment, the elution of the Ni component can be performed relatively efficiently and sufficiently.
The pores generated by the elution of the Ni component contribute to nitriding as a gas entrance path into the intermediate body 2 in the secondary reaction sintering process, and are finally filled with Si 3 N 4 .

【0031】4は、成形体における充填率Dm=0.
75において、金属Si粉末の最大粒子半径Rmaxを
10μmに設定し、また係数qを0.25〜0.6の範
囲で変化させた場合の粒度分布を示す。図4より、係数
qが大きくなるに従って曲線が立つ傾向にあり、したが
って充填率Dm=0.75を得るための最小粒子半径R
minが大きくなる傾向がある。
FIG . 4 shows a filling rate Dm = 0.
75 shows the particle size distribution when the maximum particle radius Rmax of the metal Si powder is set to 10 μm and the coefficient q is changed in the range of 0.25 to 0.6. From FIG. 4, the curve tends to rise as the coefficient q increases, and therefore the minimum particle radius R for obtaining the filling factor Dm = 0.75 is obtained.
min tends to be large.

【0032】係数qを0.25≦q≦0.5に設定する
と、最小粒子半径側の粒子が適当な大きさとなるため、
成形体における気孔が、窒化に適するような大きさに調
節されると共にその分散が図られ、これにより効率的な
窒化が行われるのでSi3 4 反応焼結体の高密度化お
よび高強度化が達成される。
When the coefficient q is set to 0.25 ≦ q ≦ 0.5, the particles on the minimum particle radius side have an appropriate size.
The pores in the compact are adjusted to a size suitable for nitriding and dispersed, and efficient nitriding is performed, so that the density and strength of the Si 3 N 4 reaction sintered body are increased. Is achieved.

【0033】係数qがq>0.5になると、最小粒子半
径側の粒子が大きすぎるため気孔が大きくなると共にそ
の分散が不十分となり、これにより窒化効率が低下して
Si3 4 反応焼結体の密度および強度が低くなる。一
方、係数qがq<0.25になると、最小粒子半径側の
粒子が小さすぎるため、気孔が小さくなって成形体内へ
の窒素ガスの進入が阻害され、これによりSi3 4
応焼結体が低密度且つ低強度となる。
If the coefficient q is q> 0.5, the pores become large and the dispersion becomes insufficient because the particles on the minimum particle radius side are too large, whereby the nitriding efficiency is reduced and the Si 3 N 4 reaction firing is reduced. The density and strength of the compact are reduced. On the other hand, when the coefficient q is q <0.25, the particles on the minimum particle radius side are too small, so that the pores become small and the entry of nitrogen gas into the molded body is hindered, whereby the Si 3 N 4 reaction sintering is performed. The body becomes low density and low strength.

【0034】〔例−1〕 最大粒子半径10μm、最小粒子半径0.15μm、係
数q=0.33(図4に表示)の粒度分布を有する純度
99.5%の金属Si粉末に、窒化促進用金属粉末とし
て平均粒子半径0.1μmのNi粉末を0.005重量
%≦Ni粉末≦8重量%の範囲で添加し、両粉末を十分
に湿式混合して各種原料粉末を調製した。
Example 1 Nitriding was promoted to a 99.5% pure metal Si powder having a maximum particle radius of 10 μm, a minimum particle radius of 0.15 μm, and a particle size distribution of a coefficient q = 0.33 (shown in FIG. 4). Ni powder having an average particle radius of 0.1 μm was added as a metal powder for use in a range of 0.005% by weight ≦ Ni powder ≦ 8% by weight, and both powders were sufficiently wet-mixed to prepare various raw material powders.

【0035】各原料粉末を用い、加圧力120MPaの
条件下で圧縮成形を行うことにより縦6mm、横22mm、
長さ74mmの板状成形体を成形し、各成形体に110
℃、4時間の乾燥処理を施した。各成形体の充填率Dm
は0.68〜0.72(相対密度68〜72%)であっ
た。
Each of the raw material powders is subjected to compression molding under the conditions of a pressing force of 120 MPa to obtain a 6 mm long, 22 mm wide,
A 74 mm long plate-like compact was formed, and each compact was 110
A drying treatment was performed at 4 ° C. for 4 hours. Filling rate Dm of each compact
Was 0.68 to 0.72 (relative density 68 to 72%).

【0036】各成形体を焼結炉内に設置して窒素ガス雰
囲気中にて昇温し、各成形体と窒素ガスとを反応させて
Si3 4 を合成する反応焼結処理を行い、次いで炉冷
することによって各種Si3 4 反応焼結体を得た。
Each compact was placed in a sintering furnace, heated in a nitrogen gas atmosphere, and subjected to a reaction sintering process for reacting each compact with nitrogen gas to synthesize Si 3 N 4 . Subsequently, various types of Si 3 N 4 reaction sintered bodies were obtained by furnace cooling.

【0037】昇温条件は、図5に示すように、昇温速度
10℃/min で650℃まで昇温してその温度に0.5
時間保持→同一昇温速度で1000℃まで昇温してその
温度に0.5時間保持→同一昇温速度で1200℃まで
昇温してその温度に0.5時間保持→同一昇温速度で1
250℃まで昇温してその温度に0.5時間保持→昇温
速度5℃/min で1350℃まで昇温してその温度に1
時間保持→昇温速度2℃/min で1400℃まで昇温し
てその温度に0.5時間保持→同一昇温速度で1450
℃まで昇温してその温度に1時間保持、に設定された。
As shown in FIG. 5, the temperature was raised to 650 ° C. at a rate of 10 ° C./min.
Hold at time → Heat up to 1000 ° C at the same heating rate and hold at that temperature for 0.5 hour → Heat up to 1200 ° C at the same heating rate and hold at that temperature for 0.5 hour → At the same heating rate 1
The temperature is raised to 250 ° C. and held at that temperature for 0.5 hour → The temperature is raised to 1350 ° C. at a rate of 5 ° C./min and the temperature is raised to 1350 ° C.
Hold time → Heat up to 1400 ° C at a rate of 2 ° C / min and hold at that temperature for 0.5 hour → 1450 at the same rate
The temperature was raised to ° C. and maintained at that temperature for 1 hour.

【0038】また各種原料粉末として、前記金属Si粉
末に、前記と同一の平均粒子半径を有するCo粉末を前
記と同一の添加範囲で分散させたもの、および前記金属
Si粉末に、前記と同一の平均粒子半径を有するFe粉
末を前記と同一の添加範囲で分散させたものを調製し、
これら原料粉末を用いて前記と同一条件下で各種Si3
4 反応焼結体を得た。
As the various raw material powders, the above-described metal Si powder, a Co powder having the same average particle radius as described above, dispersed in the same addition range as described above, and the above-mentioned metal Si powder, Prepare a dispersion of Fe powder having an average particle radius in the same addition range as above,
Using these raw material powders, various Si 3
An N 4 reaction sintered body was obtained.

【0039】各種Si3 4 反応焼結体について、Ni
粉末、Co粉末およびFe粉末の添加量と窒化率Aとの
関係を求めたところ、図6の結果が得られた。図中、線
NiはNi粉末を用いた場合に、線CoはCo粉末を用
いた場合に、線FeはFe粉末を用いた場合にそれぞれ
該当する。窒化率Aは、金属Si成分の窒化反応による
重量増加率が66.4%であることから、この重量増加
率を示すSi3 4 反応焼結体の窒化率AをA=100
%として求められた。
With respect to various Si 3 N 4 reaction sintered bodies, Ni
When the relationship between the amounts of the powder, the Co powder and the Fe powder and the nitriding ratio A was determined, the results shown in FIG. 6 were obtained. In the drawing, line Ni corresponds to the case where Ni powder is used, line Co corresponds to the case where Co powder is used, and line Fe corresponds to the case where Fe powder is used. Since the rate of weight increase by the nitridation reaction of the metallic Si component is 66.4%, the nitriding rate A of the Si 3 N 4 reaction sintered body showing this weight increasing rate is A = 100.
%.

【0040】図6から明らかなように、Ni粉末につい
てはその添加量を0.009重量%≦Ni粉末≦2.2
重量%に設定し、またCo粉末およびFe粉末について
はそれらの添加量を0.01重量%≦Co粉末またはF
e粉末≦2重量%に設定することによって、各Si3
4 反応焼結体の窒化率AをA>80%にすることができ
る。これら粉末の窒化促進効果はFe粉末、Co粉末、
Ni粉末の順に高くなり、Ni粉末を用いた場合には窒
化率Aを98%程度まで高めることが可能である。また
Ni粉末等の添加量を前記範囲に設定されたSi3 4
反応焼結体には亀裂、崩壊等の欠陥は生じていなかっ
た。
As is clear from FIG. 6, the amount of Ni powder added was 0.009% by weight ≦ Ni powder ≦ 2.2.
% By weight, and for Co powder and Fe powder, the added amount thereof is 0.01% by weight ≦ Co powder or F powder.
e powder ≦ 2 wt%, each Si 3 N
(4 ) The nitriding ratio A of the reaction sintered body can be set to A> 80%. The nitriding promotion effect of these powders is Fe powder, Co powder,
It increases in the order of Ni powder, and when Ni powder is used, the nitriding ratio A can be increased to about 98%. In addition, Si 3 N 4 in which the amount of Ni powder or the like is set within the above range is set.
No defects such as cracks and collapse occurred in the reaction sintered body.

【0041】なお、Ni粉末等の添加量が下限値未満と
なるか、または上限値を超えると、Si3 4 反応焼結
体の窒化率AがA<80%となるだけでなく、その反応
焼結体が崩壊した。これは、前記下限値未満では成形体
内部の窒化反応が急速に進行するからであり、また前記
上限値を超えると、金属間化合物、即ちNiSi3 等の
生成量が増大するからであると思われる。
If the amount of Ni powder or the like is less than the lower limit or exceeds the upper limit, not only the nitriding ratio A of the Si 3 N 4 reaction sintered body becomes A <80%, but also The reaction sintered body collapsed. This is because the nitridation reaction inside the molded body proceeds rapidly below the lower limit, and the intermetallic compound, that is, the production amount of NiSi 3 or the like increases above the upper limit. It is.

【0042】Ni粉末またはCo粉末を用いたSi3
4 反応焼結体のうち、その窒化率AがA≧95%である
ものについて、その物性を調べたところ表1の結果が得
られた。曲げ強さは常温下での3点曲げ試験により測定
された。
Si 3 N using Ni powder or Co powder
The physical properties of the four reaction sintered bodies whose nitriding rate A was A ≧ 95% were examined, and the results shown in Table 1 were obtained. The bending strength was measured by a three-point bending test at room temperature.

【0043】[0043]

【表1】 [Table 1]

【0044】表1より、各Si3 4 反応焼結体は気孔
量が少なく、高強度であることが判る。なお、Ni粉末
等の添加量が上限値を超えると、Si3 4 反応焼結体
の強度が極端に低下し、また1%以上の熱膨脹率を生じ
る。
From Table 1, it can be seen that each Si 3 N 4 reaction sintered body has a small amount of pores and high strength. If the amount of the Ni powder or the like exceeds the upper limit, the strength of the Si 3 N 4 reaction sintered body is extremely reduced, and a thermal expansion coefficient of 1% or more is generated.

【0045】〔例−2例−1 におけるNi粉末を分散させた各種原料粉末、C
o粉末を分散させた各種原料粉末およびFe粉末を分散
させた各種原料粉末を用いて例−1と同様の成形体を得
た。
Example 2 Various raw material powders obtained by dispersing the Ni powder in Example 1 and C
A molded product similar to that of Example 1 was obtained using various raw material powders in which o powder was dispersed and various raw material powders in which Fe powder was dispersed.

【0046】各成形体を焼結炉内に設置して窒素ガス雰
囲気中にて昇温し、各成形体と窒素ガスとを反応させる
1次反応焼結処理を行い、次いで炉冷することによって
合成Si3 4 を含む各種中間体を製造した。
Each compact was placed in a sintering furnace, heated in a nitrogen gas atmosphere, subjected to a primary reaction sintering process for reacting each compact with nitrogen gas, and then cooled in a furnace. Various intermediates containing synthetic Si 3 N 4 were produced.

【0047】各中間体に酸洗処理を施して、その中間体
からNi成分等を溶出させ、次いで各中間体を十分に乾
燥した。この酸洗処理には、塩酸と硝酸とを容量比で7
対3に混合した5%混酸水溶液が用いられた。
Each intermediate was subjected to a pickling treatment to elute Ni components and the like from the intermediate, and then each intermediate was sufficiently dried. In this pickling treatment, hydrochloric acid and nitric acid are mixed at a volume ratio of 7%.
A 5% aqueous mixed acid solution mixed in pairs 3 was used.

【0048】各中間体を再び焼結炉内に設置して窒素ガ
ス雰囲気中にて昇温し、各中間体と窒素ガスとを反応さ
せてSi3 4 を合成する2次反応焼結処理を行い、次
いで炉冷することによって各種Si3 4 反応焼結体を
得た。
Each intermediate is placed again in a sintering furnace, heated in a nitrogen gas atmosphere, and reacted with the nitrogen gas to synthesize Si 3 N 4 for secondary reaction sintering. And then cooled in a furnace to obtain various Si 3 N 4 reaction sintered bodies.

【0049】1次反応焼結処理における昇温条件は、図
5の前半と同じである。即ち、昇温速度10℃/min で
650℃まで昇温してその温度に0.5時間保持→同一
昇温速度で1000℃まで昇温してその温度に0.5時
間保持→同一昇温速度で1200℃まで昇温してその温
度に0.5時間保持→同一昇温速度で1250℃まで昇
温してその温度に0.5時間保持、に設定された。
The temperature raising conditions in the primary reaction sintering are the same as those in the first half of FIG. That is, the temperature is raised to 650 ° C. at a rate of 10 ° C./min and maintained at that temperature for 0.5 hour → The temperature is raised to 1000 ° C. at the same temperature rising rate and maintained at that temperature for 0.5 hour → the same temperature increase The temperature was raised to 1200 ° C. at a rate and held at that temperature for 0.5 hour → the temperature was raised to 1250 ° C. at the same rate and held at that temperature for 0.5 hour.

【0050】2次反応焼結処理における昇温条件は図5
の後半と略同じである。即ち、昇温速度5℃/min で1
350℃まで昇温してその温度に1時間保持→昇温速度
2℃/min で1400℃まで昇温してその温度に0.5
時間保持→同一昇温速度で1450℃まで昇温してその
温度に1時間保持、に設定された。
FIG. 5 shows the temperature rising condition in the secondary reaction sintering process.
Is almost the same as the latter half of That is, at a heating rate of 5 ° C./min,
The temperature is raised to 350 ° C. and maintained at that temperature for 1 hour → The temperature is raised to 1400 ° C. at a rate of 2 ° C./min and the temperature is raised to 0.5 ° C.
Time keeping → The temperature was raised to 1450 ° C. at the same heating rate and kept at that temperature for 1 hour.

【0051】各種Si3 4 反応焼結体について、Ni
粉末、Co粉末およびFe粉末の添加量と窒化率Aとの
関係を求めたところ、図7の結果が得られた。図中、線
NiはNi粉末を用いた場合に、線CoはCo粉末を用
いた場合に、線FeはFe粉末を用いた場合にそれぞれ
該当する。窒化率Aは、例−1と同様の方法で求められ
た。
For various Si 3 N 4 reaction sintered bodies, Ni 3
When the relationship between the amounts of powder, Co powder and Fe powder added and the nitriding ratio A was determined, the results shown in FIG. 7 were obtained. In the drawing, line Ni corresponds to the case where Ni powder is used, line Co corresponds to the case where Co powder is used, and line Fe corresponds to the case where Fe powder is used. The nitriding ratio A was determined in the same manner as in Example-1 .

【0052】図7から明らかなように、Ni粉末につい
てはその添加量を0.0085重量%≦Ni粉末≦5重
量%に設定し、またCo粉末についてはその添加量を
0.0085重量%≦Co粉末≦4.5重量%に設定
し、さらにFe粉末についてはその添加量を0.01重
量%≦Fe粉末≦4重量%に設定することによって、各
Si3 4 反応焼結体の窒化率AをA>80%にするこ
とができる。これら粉末の窒化促進効果はFe粉末、C
o粉末、Ni粉末の順に高くなり、Ni粉末を用いた場
合には、その添加量を0.03重量%≦Ni粉末≦4重
量%に、またCo粉末を用いた場合にはその添加量を
0.05重量%≦Co粉末≦0.4重量%にそれぞれ設
定することによって、Si3 4 反応焼結体の窒化率A
をA=100%にすることができる。さらにFe粉末を
用いた場合にはその添加量を0.07重量%≦Fe粉末
≦0.3重量%に設定することによってSi3 4 反応
焼結体の窒化率Aを97%≦A≦98%に高めることが
可能である。またNi粉末等の添加量を前記範囲に設定
されたSi3 4 反応焼結体には亀裂、崩壊等の欠陥は
生じていなかった。
As is clear from FIG. 7, the addition amount of Ni powder is set to 0.0085% by weight ≦ Ni powder ≦ 5% by weight, and the addition amount of Co powder is set to 0.0085% by weight ≦ 85%. By setting the Co powder to 4.5% by weight and the addition amount of Fe powder to 0.01% by weight ≦ Fe powder ≦ 4% by weight, the nitriding of each Si 3 N 4 reaction sintered body can be performed. The ratio A can be A> 80%. The nitriding promoting effects of these powders are Fe powder, C
o powder and Ni powder in this order. When Ni powder is used, the addition amount is 0.03% by weight ≦ Ni powder ≦ 4% by weight, and when Co powder is used, the addition amount is By setting 0.05% by weight ≦ Co powder ≦ 0.4% by weight, the nitriding ratio A of the Si 3 N 4 reaction sintered body
Can be set to A = 100%. Further, when Fe powder is used, the nitriding rate A of the Si 3 N 4 reaction sintered body is set to 97% ≦ A ≦ by setting the addition amount to 0.07% by weight ≦ Fe powder ≦ 0.3% by weight. It is possible to increase to 98%. In addition, no defects such as cracks and collapse occurred in the Si 3 N 4 reaction sintered body in which the addition amount of Ni powder and the like was set in the above range.

【0053】Ni粉末等の添加量を前記範囲に設定され
たSi3 4 反応焼結体の物性を調べたところ、気孔
量、Si3 4 の結晶形、収縮率および熱膨脹率につい
ては酸洗処理を行わなかったとき(表1)と略同様であ
ったが、Ni成分等は微細化されており、例えば、添加
量0.1重量%以下の場合にはNi成分等の大きさは4
0〜50mμであり、また強度は酸洗処理を行わなかっ
たときよりも高く、その上ばらつきも少なかった。例え
ば、0.2重量%のNi粉末を用いた場合、Si3 4
反応焼結体における常温下での3点曲げ試験による曲げ
強さは460MPaであった。
When the physical properties of the Si 3 N 4 reaction sintered body in which the amount of Ni powder or the like was set within the above range were examined, the pore volume, the crystal form of Si 3 N 4 , the shrinkage and the thermal expansion were found to be acid. Although substantially the same as when the washing treatment was not performed (Table 1), the Ni component and the like were fined. For example, when the added amount was 0.1% by weight or less, the size of the Ni component and the like was reduced. 4
0 to 50 mμ, and the strength was higher than when no pickling treatment was performed, and furthermore, there was little variation. For example, when 0.2% by weight of Ni powder is used, Si 3 N 4
The bending strength of the reaction sintered body at room temperature under a three-point bending test was 460 MPa.

【0054】〔例−3〕 前記修整アンドレアゼンの充填式、Dm=1−(R/R
max)q に則って粒度分布を調整された純度99.5
%の金属Si粉末に、平均粒子半径0.1μmのNi粉
末を0.2重量%分散させて各種原料粉末(1)〜(1
7)を調製した。各原料粉末(1)〜(17)における
金属Si粉末の粒度分布は表2および図8に示す通りで
ある。
[ Example-3 ] The filling formula of the modified andreazen, Dm = 1- (R / R
max) Purity 99.5 adjusted for particle size distribution according to q
% Metal Si powder, 0.2% by weight of Ni powder having an average particle radius of 0.1 μm dispersed therein to obtain various raw material powders (1) to (1).
7) was prepared. The particle size distribution of the metal Si powder in each of the raw material powders (1) to (17) is as shown in Table 2 and FIG.

【0055】[0055]

【表2】 [Table 2]

【0056】各原料粉末(1)〜(17)を用い、例−
と同様の方法、つまり酸洗処理を行う方法で各種Si
3 4 反応焼結体(1)〜(17)〔各Si3 4 反応
焼結体(1)〜(17)は各原料粉末(1)〜(17)
に対応する〕を得た。これらSi3 4 反応焼結体
(1)〜(17)における窒化率Aは97%≦A≦10
0%であった。
[0056] Using each raw material powder (1) to (17), Example -
In the same manner as in step 2 , that is, by pickling, various Si
3 N 4 reaction sintered body (1) to (17) [the Si 3 N 4 reaction sintered body (1) to (17) each raw material powder (1) - (17)
Corresponding to). The nitriding ratio A in these Si 3 N 4 reaction sintered bodies (1) to (17) is 97% ≦ A ≦ 10
It was 0%.

【0057】比較のため、前記と同一純度の三種の市販
金属Si粉末に前記と同一のNi粉末を前記と同一量分
散させて三種の原料粉末(18)〜(20)を調製し
た。市販金属Si粉末において、原料粉末(18)に用
いられたものは最大粒子半径が5μmであり、また原料
粉末(19),(20)に用いられたものは最大粒子半
径がそれぞれ2.5μmであった。
For comparison, three kinds of raw material powders (18) to (20) were prepared by dispersing the same amount of the same Ni powder as above in three kinds of commercially available metal Si powder having the same purity as above. Among the commercially available metal Si powders, those used for the raw material powder (18) had a maximum particle radius of 5 μm, and those used for the raw material powders (19) and (20) had a maximum particle radius of 2.5 μm each. there were.

【0058】図9は、各市販金属Si粉末の粒度分布を
示す。本図において、各線の符号は、便宜上各原料粉末
の符号(18)〜(19)と一致させてある。図8と図
9とを比較すると、図8においては粒度調整がなされて
いるので最大粒子半径から最小粒子半径に至る変化がな
めらかな曲線を描くが、図9においては粒度調整がなさ
れていないので最大粒子半径から最小粒子半径に至る変
化がぎくしゃくした折線を描く。
FIG. 9 shows the particle size distribution of each commercially available metal Si powder. In this drawing, the reference numerals of the respective lines are made coincident with the reference numerals (18) to (19) of the respective raw material powders for convenience. Comparing FIG. 8 with FIG. 9, in FIG. 8, since the particle size is adjusted, the change from the maximum particle radius to the minimum particle radius draws a smooth curve, but in FIG. 9, since the particle size adjustment is not performed. The change from the maximum particle radius to the minimum particle radius draws a jerky line.

【0059】各原料粉末(18)〜(20)を用い、
−2と同様の方法で各種Si3 4反応焼結体(18)
〜(20)〔各Si3 4 反応焼結体(18)〜(2
0)は各原料粉末(18)〜(20)に対応する〕を得
た。
[0059] Using each raw material powder (18) to (20), Example
Various Si 3 N 4 reaction sintered bodies in the same manner as in -2 (18)
To (20) [Each Si 3 N 4 reaction sintered body (18) to (2)
0) corresponds to each of the raw material powders (18) to (20)].

【0060】また各市販金属Si粉末を原料粉末(2
1)〜(23)として用い、例−1と同様の方法、つま
り酸洗処理を行わない方法で三種のSi3 4 反応焼結
体(21)〜(23)〔各Si3 4 反応焼結体(2
1)〜(23)は各原料粉末(21)〜(23)に対応
する〕を得た。この場合、各原料粉末(21)〜(2
3)は各原料粉末(18)〜(20)の金属Si粉末に
対応する。
Further, each commercially available metal Si powder was used as a raw material powder (2
1) as to (23), the same method as Example 1, i.e. three kinds of Si in a manner that does not perform the pickling 3 N 4 reaction sintered body (21) to (23) [the Si 3 N 4 reaction Sintered body (2
1) to (23) correspond to the respective raw material powders (21) to (23)]. In this case, the raw material powders (21) to (2)
3) corresponds to the metal Si powder of each of the raw material powders (18) to (20).

【0061】各Si3 4 反応焼結体(1)〜(1
7),(18)〜(20),(21)〜(23)につい
て、常温下で3点曲げ試験を行い、それらの曲げ強さを
測定したところ、図10に示す結果が得られた。
Each of the Si 3 N 4 reaction sintered bodies (1) to (1)
7), (18) to (20), and (21) to (23) were subjected to a three-point bending test at room temperature, and their bending strengths were measured. The results shown in FIG. 10 were obtained.

【0062】図10から明らかなように、各Si3 4
反応焼結体(1)〜(17)においては、金属Si粉末
の最大粒子半径が大きくなるに従って強度が下がる傾向
があり、また同一最大粒子半径を有する金属Si粉末を
用いた場合には係数qが大きくなるに従って強度が下が
る傾向がある。
As is clear from FIG. 10, each Si 3 N 4
In the reaction sintered bodies (1) to (17), the strength tends to decrease as the maximum particle radius of the metal Si powder increases, and the coefficient q is increased when metal Si powders having the same maximum particle radius are used. The strength tends to decrease as becomes larger.

【0063】Si3 4 反応焼結体に対する要求強度に
もよるが、金属Si粉末としては、、最大粒子半径Rm
axが一定であるとき係数qが0.25≦q≦0.5で
ある粒度分布を有するものを用いると、高強度なSi3
4 反応焼結体を得ることができる。
Although depending on the strength required for the Si 3 N 4 reaction sintered body, the metal Si powder has a maximum particle radius Rm.
When ax is constant and a coefficient q having a particle size distribution of 0.25 ≦ q ≦ 0.5 is used, high-strength Si 3
An N 4 reaction sintered body can be obtained.

【0064】金属Si粉末の最大粒子半径および最小粒
子半径について特に制限はないが、最大粒子半径を大き
くすると、それに伴い成形体における気孔の粗大化およ
び窒素の拡散距離の増加を招来するため、残存粗大気孔
量および未反応Si量が増す。一方、最小粒子半径を小
さくすると、それに伴い金属Si粉末の取扱い性が悪化
し、また金属Si粉末が大気中の酸素と反応して酸化膜
が形成され、この酸化膜により窒化が妨げられる。これ
らの点を考慮すると、金属Si粉末の最大粒子半径の上
限値は22μm、最小粒子半径の下限値は0.025μ
mであることが望ましい。
The maximum particle radius and the minimum particle radius of the metal Si powder are not particularly limited. However, if the maximum particle radius is increased, the pores in the compact become larger and the diffusion distance of nitrogen is increased. The amount of coarse pores and the amount of unreacted Si increase. On the other hand, when the minimum particle radius is reduced, the handleability of the metal Si powder deteriorates accordingly, and the metal Si powder reacts with oxygen in the air to form an oxide film, which prevents nitriding by the oxide film. Considering these points, the upper limit of the maximum particle radius of the metal Si powder is 22 μm, and the lower limit of the minimum particle radius is 0.025 μm.
m is desirable.

【0065】比較例である各Si3 4 反応焼結体(1
8)〜(20),(21)〜(23)については、金属
Si粉末が前記のような粒度分布を有する関係から成形
体における充填率が0.48〜0.52(相対密度48
%〜52%)であって、本発明における充填率Dm=
0.68〜0.72に比べて極めて低く、また窒化率A
もNi粉末を用いたもの(18)〜(20)で58%≦
A≦65%、一方、Ni粉末を用いなかったもの(2
1)〜(23)で50%≦A≦60%と悪いことが判明
した。
Each of the Si 3 N 4 reaction sintered bodies (1
Regarding 8) to (20) and (21) to (23), the filling factor in the compact was 0.48 to 0.52 (relative density of 48) because the metal Si powder had the above particle size distribution.
% To 52%), and the filling rate Dm =
0.68 to 0.72, which is extremely low.
Also, those using Ni powder (18) to (20): 58% ≦
A ≦ 65%, while no Ni powder was used (2
In 1) to (23), it was found that 50% ≦ A ≦ 60%, which was bad.

【0066】これらに起因して、各Si3 4 反応焼結
体(18)〜(20),(21)〜(23)の強度は、
粒度分布を前記のように調整された金属Si粉末を用い
た各Si3 4 反応焼結体(1)〜(17)に比べて低
くなる。
Due to these, the strength of each of the Si 3 N 4 reaction sintered bodies (18) to (20) and (21) to (23) is
The particle size distribution is lower than that of each of the Si 3 N 4 reaction sintered bodies (1) to (17) using the metal Si powder adjusted as described above.

【0067】[0067]

【発明の効果】本発明によれば、金属Si粉末に、窒化
促進用金属粉末としてNi粉末、Co粉末またはFe粉
末を特定量分散させた原料粉末を用い、またNi成分等
が溶出して形成される気孔を、2次反応焼結処理におい
て中間体内部へのガス進入路として利用すべく、製造過
程に酸洗処理を組込み、さらに成形体における気孔の大
きさおよび気孔の分散を窒化に最適な状態にすべく、金
属Si粉末の粒度分布を特定することによって、高密度
化および高強度化を達成されたSi3 4 反応焼結体を
得ることができる。
According to the present invention, a raw material powder obtained by dispersing a specific amount of Ni powder, Co powder or Fe powder as a metal powder for accelerating nitriding in a metal Si powder is used. The pickling process is incorporated in the manufacturing process to use the pores formed as a gas entrance path into the intermediate during the secondary reaction sintering process, and the pore size and pore distribution in the compact are optimized for nitriding. By specifying the particle size distribution of the metal Si powder in such a state, it is possible to obtain a Si 3 N 4 reaction sintered body that has achieved high density and high strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Si3 4 反応焼結体の製造過程の前半を示す
説明図である。
FIG. 1 is an explanatory diagram showing a first half of a manufacturing process of a Si 3 N 4 reaction sintered body.

【図2】Si3 4 反応焼結体の製造過程の後半を示す
説明図である。
FIG. 2 is an explanatory diagram showing a latter half of a manufacturing process of a Si 3 N 4 reaction sintered body.

【図3】Si3 4 反応焼結体の製造過程の要部を示す
説明図である。
FIG. 3 is an explanatory view showing a main part of a manufacturing process of a Si 3 N 4 reaction sintered body.

【図4】金属Si粉末の粒度分布の一例を示すグラフで
ある。
FIG. 4 is a graph showing an example of a particle size distribution of a metal Si powder.

【図5】Si3 4 反応焼結体の昇温条件を示すグラフ
である。
FIG. 5 is a graph showing conditions for raising the temperature of a Si 3 N 4 reaction sintered body.

【図6】Ni粉末、Co粉末またはFe粉末の添加量と
窒化率との関係の一例を示すグラフである。
FIG. 6 is a graph showing an example of the relationship between the addition amount of Ni powder, Co powder, or Fe powder and the nitriding ratio.

【図7】Ni粉末、Co粉末またはFe粉末の添加量と
窒化率との関係の他例を示すグラフである。
FIG. 7 is a graph showing another example of the relationship between the addition amount of Ni powder, Co powder or Fe powder and the nitriding ratio.

【図8】金属Si粉末の粒度分布の他例を示すグラフで
ある。
FIG. 8 is a graph showing another example of the particle size distribution of the metal Si powder.

【図9】市販金属Si粉末の粒度分布を示すグラフであ
る。
FIG. 9 is a graph showing a particle size distribution of a commercially available metal Si powder.

【図10】金属Si粉末の最大粒子半径と曲げ強さとの
関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the maximum particle radius of metal Si powder and bending strength.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 直樹 埼玉県狭山市新狭山1丁目10番地1 ホ ンダエンジニアリング株式会社内 (56)参考文献 特開 昭59−207874(JP,A) 特表 昭59−501823(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/584 - 35/596 C04B 35/65 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Naoki Ota 1-10-1 Shinsayama, Sayama-shi, Saitama Honda Engineering Co., Ltd. (56) References JP-A-59-207874 (JP, A) 59-501823 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/584-35/596 C04B 35/65

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属Si粉末として、それの粒度分布
が、修整アンドレアゼン(Andreasen)の充填式 Dm=1−(R/Rmax) q (ただし、Rmaxは最大粒子半径、Rは任意の粒子半
径、qは係数、Dmは最大粒子半径Rmaxから任意の
粒子半径Rまでの粒子を用いて得られた成形体における
充填率であって、Dm≦0.75である)において、最
大粒子半径Rmaxが一定であるとき、係数qが0.2
5≦q≦0.5となるように設定されたものを用意し、
その金属Si粉末に、窒化促進用金属粉末としてNi粉
末を0.0085重量%≦Ni粉末≦5重量%分散させ
た原料粉末を用いて成形体を成形する工程と、前記成形
体と窒素ガスとを反応させる1次反応焼結処理を行うこ
とにより合成窒化ケイ素を含む中間体を得る工程と、前
記中間体に酸洗処理を施してその中間体からNi成分を
溶出させる工程と、前記中間体と窒素ガスとを反応させ
て窒化ケイ素を合成する2次反応焼結処理を行う工程と
を順次行うことを特徴とする 窒化ケイ素反応焼結体の製
造方法。
1. Particle size distribution of metallic Si powder
However, the modified Andreasen (Andreasen) filling formula Dm = 1− (R / Rmax) q (where Rmax is the maximum particle radius and R is an arbitrary particle half)
Diameter, q is a coefficient, Dm is an arbitrary value from the maximum particle radius Rmax
In the molded body obtained using particles up to the particle radius R
(Dm ≦ 0.75).
When the large particle radius Rmax is constant, the coefficient q is 0.2
Prepare one set so that 5 ≦ q ≦ 0.5,
Ni powder is added to the metal Si powder as a metal powder for accelerating nitriding.
Disperse 0.0085% by weight ≦ Ni powder ≦ 5% by weight
Molding a molded body using the raw material powder,
Primary sintering process to react the body with nitrogen gas
Obtaining an intermediate containing synthetic silicon nitride by:
The intermediate is subjected to a pickling treatment to remove the Ni component from the intermediate.
Eluting, and reacting the intermediate with nitrogen gas
Performing a secondary reaction sintering process to synthesize silicon nitride by
Are sequentially performed .
【請求項2】 金属Si粉末として、それの粒度分布
が、修整アンドレアゼン(Andreasen)の充填式 Dm=1−(R/Rmax) q (ただし、Rmaxは最大粒子半径、Rは任意の粒子半
径、qは係数、Dmは最大粒子半径Rmaxから任意の
粒子半径Rまでの粒子を用いて得られた成形体における
充填率であって、Dm≦0.75である)において、最
大粒子半径Rmaxが一定であるとき、係数qが0.2
5≦q≦0.5となるように設定されたものを用意し、
その金属Si粉末に、窒化促進用金属粉末としてCo粉
末を0.0085重量%≦Co粉末≦4.5重量%分散
させた原料粉末を用いて成形体を成形する工程と、前記
成形体と窒素ガスとを反応させる1次反応焼結処理を行
うことにより合成窒化ケイ素を含む中間体を得る工程
と、前記中間体に酸洗処理を施してその中間体からCo
成分を溶出させる工程と 、前記中間体と窒素ガスとを反
応させて窒化ケイ素を合成する2次反応焼結処理を行う
工程とを順次行うことを特徴とする 窒化ケイ素反応焼結
体の製造方法。
2. Particle size distribution of metallic Si powder
However, the modified Andreasen (Andreasen) filling formula Dm = 1− (R / Rmax) q (where Rmax is the maximum particle radius and R is an arbitrary particle half)
Diameter, q is a coefficient, Dm is an arbitrary value from the maximum particle radius Rmax
In the molded body obtained using particles up to the particle radius R
(Dm ≦ 0.75).
When the large particle radius Rmax is constant, the coefficient q is 0.2
Prepare one set so that 5 ≦ q ≦ 0.5,
Co powder as the metal powder for promoting nitriding is added to the metal Si powder.
Powder is dispersed at 0.0085% by weight ≦ Co powder ≦ 4.5% by weight
Molding a molded body using the raw material powder,
A primary reaction sintering process is performed to react the compact with nitrogen gas.
Obtaining an intermediate containing synthetic silicon nitride by
And subjecting the intermediate to an acid washing treatment to remove Co from the intermediate.
Eluting the components and reacting the intermediate with nitrogen gas.
Performs secondary reaction sintering to synthesize silicon nitride
And a step of sequentially performing the steps .
【請求項3】 金属Si粉末として、それの粒度分布
が、修整アンドレアゼン(Andreasen)の充填式 Dm=1−(R/Rmax) q (ただし、Rmaxは最大粒子半径、Rは任意の粒子半
径、qは係数、Dmは最大粒子半径Rmaxから任意の
粒子半径Rまでの粒子を用いて得られた成形体における
充填率であって、Dm≦0.75である)において、最
大粒子半径Rmaxが一定であるとき係数qが0.25
≦q≦0.5となるように設定されたものを用意し、そ
の金属Si粉末に、窒化促進用金属粉末としてFe粉末
を0.01重量%≦Fe粉末≦4重量%分散させた原料
粉末を用いて成形体を成形する工程と、前記成形体と窒
素ガスとを反応させる1次反応焼結処理を行うことによ
り合成窒化ケイ素を含む中間体を得る工程と、前記中間
体に酸洗処理を施してその中間体からFe成分を溶出さ
せる工程と、前記中間体と窒素ガスとを反応させて窒化
ケイ素を合成する2次反応焼結処理を行う工程とを順次
行うことを特徴とする 窒化ケイ素反応焼結体の製造方
法。
3. Particle size distribution of metal Si powder
However, the modified Andreasen (Andreasen) filling formula Dm = 1− (R / Rmax) q (where Rmax is the maximum particle radius and R is an arbitrary particle half)
Diameter, q is a coefficient, Dm is an arbitrary value from the maximum particle radius Rmax
In the molded body obtained using particles up to the particle radius R
(Dm ≦ 0.75).
When the large particle radius Rmax is constant, the coefficient q is 0.25
Prepare one set so that ≦ q ≦ 0.5, and
Fe powder as metal powder for promoting nitriding
In which 0.01% by weight ≦ Fe powder ≦ 4% by weight is dispersed
Forming a molded body using the powder;
By performing a primary reaction sintering process to react
Obtaining an intermediate comprising synthetic silicon nitride,
The body is pickled and the Fe component is eluted from the intermediate.
And nitriding by reacting the intermediate with nitrogen gas.
And a step of performing a secondary reaction sintering process for synthesizing silicon.
A method for producing a silicon nitride reaction sintered body.
JP14173392A 1992-06-02 1992-06-02 Method for producing silicon nitride reaction sintered body Expired - Fee Related JP3214729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14173392A JP3214729B2 (en) 1992-06-02 1992-06-02 Method for producing silicon nitride reaction sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14173392A JP3214729B2 (en) 1992-06-02 1992-06-02 Method for producing silicon nitride reaction sintered body

Publications (2)

Publication Number Publication Date
JPH05330921A JPH05330921A (en) 1993-12-14
JP3214729B2 true JP3214729B2 (en) 2001-10-02

Family

ID=15298948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14173392A Expired - Fee Related JP3214729B2 (en) 1992-06-02 1992-06-02 Method for producing silicon nitride reaction sintered body

Country Status (1)

Country Link
JP (1) JP3214729B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192149A1 (en) * 2013-05-31 2014-12-04 京セラ株式会社 Ceramic sintered body, and anticorrosion member, filter and antihalation member formed using same
FR3045598B1 (en) * 2015-12-21 2018-01-12 Centre National De La Recherche Scientifique PROCESS FOR PRODUCING A CERAMIC FROM A CHEMICAL REACTION

Also Published As

Publication number Publication date
JPH05330921A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
JP4659278B2 (en) Tungsten sintered body and manufacturing method thereof, tungsten plate material and manufacturing method thereof
KR100611724B1 (en) High strength high toughness Mo alloy worked material and method for production thereof
JP3559382B2 (en) Method for producing silicon nitride based sintered body
JP3214729B2 (en) Method for producing silicon nitride reaction sintered body
JP3223205B2 (en) Method for producing silicon nitride reaction sintered body
JPS6016387B2 (en) Method for manufacturing heat-resistant materials
US5525292A (en) Process for producing aluminum sintering
JP3270798B2 (en) Method for producing silicon carbide sintered body
JPS6317210A (en) Production of aluminum nitride powder
JPS6389462A (en) Manufacture of silicon nitride base sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JPH0633174B2 (en) Method for manufacturing silicon nitride sintered body
JPH07138074A (en) Production of silicon nitride reaction sintered compact
JPH07138073A (en) Production of silicon nitride reaction sintered compact
JPS6026621A (en) Manufacture of heat resistant molybdenum material
JPH0227778A (en) Manufacture of thermoelectric element
JP2700786B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JPS6379763A (en) Manufacture of silicon nitride reaction sintered body
JPH0687664A (en) Production of silicon nitride sintered compact
JP2892244B2 (en) Manufacturing method of silicon nitride sintered body
JPH06316744A (en) Production of fe-ni-co series alloy parts for sealing
JPH0733528A (en) Composite sintered ceramic, its production and semiconductor production jig made therefrom
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPH02239155A (en) Production of silicon nitride sintered body
JPH01203272A (en) Production of aluminum nitride ceramics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees