[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3210934B2 - How to cut brittle materials - Google Patents

How to cut brittle materials

Info

Publication number
JP3210934B2
JP3210934B2 JP12614694A JP12614694A JP3210934B2 JP 3210934 B2 JP3210934 B2 JP 3210934B2 JP 12614694 A JP12614694 A JP 12614694A JP 12614694 A JP12614694 A JP 12614694A JP 3210934 B2 JP3210934 B2 JP 3210934B2
Authority
JP
Japan
Prior art keywords
crack
laser beam
laser
positions
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12614694A
Other languages
Japanese (ja)
Other versions
JPH07328781A (en
Inventor
英毅 森田
俊一 前川
俊裕 沖山
秀幸 白浜
敏幸 横山
英信 大仁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government, Japan Science and Technology Corp filed Critical Nagasaki Prefectural Government
Priority to JP12614694A priority Critical patent/JP3210934B2/en
Publication of JPH07328781A publication Critical patent/JPH07328781A/en
Application granted granted Critical
Publication of JP3210934B2 publication Critical patent/JP3210934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching

Landscapes

  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガラス、セラミックあ
るいは半導体材料等の脆性材料にレーザビームを照射す
ることにより発生する熱応力を利用して、その材料を割
断する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cutting a brittle material such as glass, ceramic or semiconductor material by utilizing thermal stress generated by irradiating the material with a laser beam.

【0002】[0002]

【従来の技術】ガラス等の脆性材料を切断する方法とし
ては、従来、研摩材を使用する研削あるいはレーザビー
ムによる溶断などがあるが、これらの方法によると、い
ずれも加工点に熱歪みが発生したり、機械的な構造破壊
等によって加工点周辺に研削割れ等が生じるなど材料の
劣化を伴う点、また、研削もしくは蒸発による材料の損
失が避けられない等の欠点がある。
2. Description of the Related Art Conventionally, as a method of cutting a brittle material such as glass, there are grinding using an abrasive or fusing by a laser beam. However, according to any of these methods, thermal strain occurs at a processing point. There are drawbacks in that the material is deteriorated, for example, grinding cracks and the like are generated around the processing point due to mechanical structure destruction and the like, and the loss of material due to grinding or evaporation is inevitable.

【0003】そこで、このような問題を解決するため、
レーザビーム照射による熱応力を利用して材料を割断す
る、いわゆるレーザ割断方法が提案されている。この方
法は、脆性材料にレーザビームを照射して、その照射位
置に生じる熱応力により微小亀裂を発生させ、その亀裂
をレーザビームによる熱応力によって加工予定線に沿う
方向に誘導することによって材料を割断する方法で、レ
ーザビームを利用した溶断に比して加工エネルギが小さ
く、しかも材料の損失がないといった利点がある。
In order to solve such a problem,
A so-called laser cleaving method has been proposed in which a material is cleaved using thermal stress due to laser beam irradiation. This method irradiates a brittle material with a laser beam, generates micro-cracks due to the thermal stress generated at the irradiation position, and induces the cracks in the direction along the processing line by the thermal stress of the laser beam. The method of cutting has the advantages that the processing energy is small and the material is not lost, as compared with the cutting using a laser beam.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記したレ
ーザ割断方法によれば、加工の起点となる初期亀裂を、
材料の端縁近傍にレーザビームを照射して、そのビーム
中心と周辺との間に発生する急峻な温度勾配により生じ
る局部的な集中応力で発生させるわけであるが、例えば
加工周辺の雰囲気温度、材料表面での散乱状態及び材料
中での光の吸収率などの諸条件によって発生する熱応力
(引張応力)がばらつき、局部的な集中応力が材料の許
容応力を超えないことがあり、このため初期亀裂の発生
の確実性が低いという問題がある。
By the way, according to the above-described laser cutting method, an initial crack which is a starting point of processing is formed.
By irradiating the laser beam near the edge of the material, it is caused by local concentrated stress caused by a steep temperature gradient generated between the beam center and the periphery, for example, ambient temperature around the processing, Thermal stress (tensile stress) generated due to various conditions such as the scattering state on the material surface and the light absorption rate in the material may fluctuate, and the localized concentrated stress may not exceed the allowable stress of the material. There is a problem that the reliability of the generation of the initial crack is low.

【0005】また、レーザ割断方法において亀裂の誘導
は、レーザビームの照射位置を割断予定線に沿って移動
し、そのビーム進行方向の後方に熱応力(引張応力)を
発生させ、亀裂先端の応力拡大係数を材料の破壊靱性値
を超えさせるといったメカニズムにより行うが、レーザ
ビームの進行速度が速いと、亀裂誘導のための熱応力が
十分とはならず亀裂進展が停止するといった問題があ
り、この加工速度の限界及び上記した初期亀裂の発生の
再現性の問題がレーザ割断方法を実用化する上での妨げ
となっている。
In the laser cutting method, the crack is induced by moving the irradiation position of the laser beam along the expected cutting line, generating a thermal stress (tensile stress) behind the beam traveling direction and causing a stress at the tip of the crack. The mechanism is used to make the expansion factor exceed the fracture toughness of the material.However, if the laser beam travels at a high speed, there is a problem that the thermal stress for crack induction is not sufficient and the crack growth stops. The problems of the processing speed limit and the reproducibility of the above-mentioned initial crack generation hinder the practical use of the laser cutting method.

【0006】さらに、この種のレーザ割断方法では、亀
裂を誘導する際にレーザビーム照射位置の移動の経路か
ら亀裂がずれて追随することがあり、このため加工精度
が悪いという問題も残されている。
Further, in this type of laser cutting method, when a crack is induced, the crack may shift from the movement path of the irradiation position of the laser beam and follow the same, so that the problem of poor machining accuracy remains. I have.

【0007】本発明はそのような事情に鑑みてなされた
もので、レーザビームを用いて脆性材料の割断を行うに
あたり、その加工起点の初期亀裂の発生率が高い方法、
及び加工速度・精度の向上を達成できる割断方法の提供
を目的とする。
[0007] The present invention has been made in view of such circumstances, and when performing the cutting of a brittle material using a laser beam, a method of generating a high initial crack rate at the processing starting point,
It is another object of the present invention to provide a cutting method capable of achieving an improvement in processing speed and accuracy.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の第1の方法は、実施例に対応する図1に示
すように、被加工材料Wの端縁近傍で、かつ割断予定線
Lを挟んだ両側の位置(2点P1,P2 )にレーザビーム
LBを同時に照射して初期亀裂Cの発生を行うことによっ
て特徴づけられる。
To achieve the above object, according to an aspect of the first method of the present invention, as shown in FIG. 1, corresponding to the embodiment, in the edge vicinity of the work piece W, and fracture Scheduled line
The laser beam is placed on both sides (two points P1, P2) of L
It is characterized by irradiating LB at the same time to generate an initial crack C.

【0009】また、本発明の第2の方法は、図2に示す
ように、被加工材料Wの端縁近傍の亀裂C付近に複数の
レーザビームを照射するとともに、それら複数のレーザ
ビームの照射位置を亀裂Cの先端の前方の位置と後方の
位置とし、かつ、各レーザビームの出力を制御した状態
で、これらビーム照射位置S1,S2 を割断予定線Lに沿
って移動させることにより亀裂Cの誘導を行うことを特
徴としている。
The second method of the present invention, as shown in FIG. 2, irradiates a plurality of laser beams near a crack C near an edge of a workpiece W, and irradiates the plurality of laser beams. The positions of the laser beams are controlled and the beam irradiation positions S1 and S2 are moved along the planned cutting line L while the positions are set at positions in front of and behind the tip of the crack C. It is characterized by performing guidance.

【0010】[0010]

【作用】まず、被加工材料Wの端縁近傍の2点のレーザ
ビームLBを同時に照射すると、そのビーム照射位置の間
に、図1(b) に示すような特異な熱応力分布が発生し、
この熱応力分布による引張応力が、レーザビーム照射位
置を1点としたときの引張応力に比して大きくなり、こ
れにより局部的な集中応力が材料の許容応力を十分に超
える値となる結果、初期亀裂が確実に発生する。
First, when the laser beam LB at two points near the edge of the workpiece W is irradiated simultaneously, a unique thermal stress distribution as shown in FIG. ,
The tensile stress due to this thermal stress distribution becomes larger than the tensile stress when the laser beam irradiation position is set to one point, and as a result, the local concentrated stress sufficiently exceeds the allowable stress of the material, An initial crack is definitely generated.

【0011】次いで、発生した亀裂Cの先端の前方の位
置S1 と後方の位置S2 に、それぞれレーザビームLBを
照射すると、その各照射位置S1 とS2 との間に、図2
(b)に示すような特異な熱応力分布、すなわち亀裂Cの
前方側が大となる熱応力分布が発生して、その前方側の
引張応力が1点のレーザビーム照射の場合に比して大き
くなる。これにより、亀裂先端の応力拡大係数が材料の
破壊靱性値を超え易くなる結果、亀裂の進展が速くなる
とともに亀裂の進展方向が割断予定線Lに対して曲がり
難くなる。
Next, when a laser beam LB is applied to the front position S1 and the rear position S2 of the tip of the generated crack C , respectively, the distance between the irradiation positions S1 and S2 is as shown in FIG.
A unique thermal stress distribution as shown in (b), that is, a thermal stress distribution in which the front side of the crack C is large occurs, and the tensile stress on the front side is larger than that in the case of laser beam irradiation at one point. Become. As a result, the stress intensity factor at the tip of the crack tends to exceed the fracture toughness value of the material. As a result, the growth of the crack is accelerated and the direction of growth of the crack is less likely to bend with respect to the planned cutting line L.

【0012】[0012]

【実施例】図1は本発明実施例の説明図である。まず、
本発明方法の実施に使用する装置は、ガラスあるいはア
ルミナセラミックなどの被加工材料Wを載置する2軸移
動ステージ(図示せず)と、このステージ上に置かれた
材料表面の2点に、レーザビームLBを同時に照射するた
めの2台のレーザ発振器(図示せず)を備えている。
FIG. 1 is an explanatory view of an embodiment of the present invention. First,
The apparatus used for carrying out the method of the present invention includes a biaxial moving stage (not shown) on which a workpiece W such as glass or alumina ceramic is placed, and two points on the surface of the material placed on this stage. Two laser oscillators (not shown) for simultaneously irradiating the laser beam LB are provided.

【0013】また、これらのレーザ発振器はステージに
対して光軸の変更が可能となっており、被加工材料Wへ
のレーザビームLBの照射位置を、割断予定線Lと直交す
る方向に線上の2点、もしくは割断予定線L上の2点の
いずれか一方に選択的に切り換えることができる。
In these laser oscillators, the optical axis can be changed with respect to the stage, and the irradiation position of the laser beam LB on the workpiece W is set on the line in a direction orthogonal to the planned cutting line L. It is possible to selectively switch to either one of two points or two points on the planned cutting line L.

【0014】さて、本発明実施例の加工手順は、まず、
2台のレーザ発振器の光軸と被加工材料Wとの位置合わ
せを行って、図1(a) に示すように、各レーザビームLB
のスポット中心を被加工材料Wの端縁近傍で割断予定線
Lを挟んで互い対称となる2点P1,P2 に合わせ、この
状態で被加工材料Wの表面の2点にレーザビームLBを同
時に照射して、被加工材料Wの端縁付近に亀裂Cを発生
させる。
The working procedure of the embodiment of the present invention is as follows.
By aligning the optical axes of the two laser oscillators and the workpiece W, as shown in FIG.
The center of the spot is aligned with two points P1 and P2 that are symmetrical with each other across the planned cutting line L near the edge of the workpiece W. In this state, the laser beam LB is simultaneously applied to two points on the surface of the workpiece W. Irradiation generates a crack C near the edge of the workpiece W.

【0015】このように被加工材料Wへのレーザビーム
照射位置を2点とすると、そのビーム照射位置の間に、
図1(b) の解析図に示すような特異な熱応力分布が発生
し、その引張応力がレーザビーム照射位置を1点とした
ときの引張応力に比して大きくなる結果、初期亀裂が確
実に発生する。なお、その亀裂の発生確率は、レーザビ
ーム照射点P1 とP2 との間の距離及びレーザの発振パ
ワー等の諸条件に左右されるが、その確率は実験等によ
り100%(従来:90%程度)を達成できることが現
段階で確認できている。
Assuming that the laser beam irradiation position on the material W to be processed is two, the distance between the beam irradiation positions is as follows.
An unusual thermal stress distribution occurs as shown in the analysis diagram of Fig. 1 (b), and the tensile stress is larger than the tensile stress when the laser beam irradiation position is set to one point. Occurs. The probability of the occurrence of the crack depends on various conditions such as the distance between the laser beam irradiation points P1 and P2 and the oscillation power of the laser. ) Has been confirmed at this stage.

【0016】次に、レーザ発振器の光軸の変更を行っ
て、図2(a) に示すように、レーザビームLBの照射位置
を割断予定線L上に沿う2点とし、また、各レーザビー
ムLBの出力を制御した状態で、ステージの移動により各
レーザビームLBの照射位置S1,S2 を割断予定線Cに沿
って移動して、材料Wの端縁付近に発生した亀裂Cを誘
導してゆく。
Next, by changing the optical axis of the laser oscillator, as shown in FIG. 2A, the irradiation position of the laser beam LB is set to two points along the planned cutting line L. With the output of the LB controlled, the irradiation positions S1 and S2 of each laser beam LB are moved along the planned cutting line C by the movement of the stage to induce a crack C generated near the edge of the material W. go.

【0017】この亀裂誘導過程において、レーザビーム
照射位置を亀裂Cの先端の前方の位置S1 と後方の位置
S2 とすることにより、これらの照射位置S1 とS2 と
の間に、図2(b) の解析図に示すような特異な熱応力分
布が発生し、その熱応力分布は亀裂Cの前方側が大とな
る。すなわち、亀裂Cの進展方向の前方側の引張応力が
常に大きくなり、これにより、レーザビームの進行速度
つまり加工速度を速くしても亀裂Cの進展が停止するこ
とはなく、しかも、亀裂Cの進展方向が割断予定線Lに
対して曲がる確率も少なくなる。
In the crack induction process, the irradiation position of the laser beam is set to the position S1 in front of the tip of the crack C and the position S2 behind, so that the irradiation position between these irradiation positions S1 and S2 is as shown in FIG. A unique thermal stress distribution as shown in the analysis diagram of FIG. 1 is generated, and the thermal stress distribution is large on the front side of the crack C. In other words, the tensile stress on the front side in the direction of propagation of the crack C is always large, so that the propagation of the crack C does not stop even if the traveling speed of the laser beam, that is, the processing speed is increased, and the crack C The probability that the direction of progress is bent with respect to the planned cutting line L is also reduced.

【0018】なお、その加工速度は、従来では高々30
mm/s程度であったのに対し、現段階で150mm/sにまで
高められること、また、加工精度については、数百μ
m;従来→数十μm(表面粗さ)にまで高められること
が、実験等により現段階で確認できている。
The processing speed is conventionally at most 30.
mm / s, it can be increased to 150 mm / s at this stage.
m: Conventionally, it has been confirmed at this stage by experiments and the like that the height can be increased to several tens μm (surface roughness).

【0019】ここで、以上の実施例において、初期亀裂
を発生する際のレーザビーム照射の2点P1 とP2 との
間の距離は、被加工材料Wの材質及び厚さ,レーザの出
力パワーなどの諸条件によって決定されるが、その2点
間の距離は、レーザビームのスポット径を 2.0 mm 程度
とすれば、3.0mm 〜3.6mm 程度が適当である。また、亀
裂Cの誘導の際のレーザビーム照射位置S1 とS2 との
間の距離については、初期亀裂発生時と同じであっても
よい。
Here, in the above embodiment, the distance between the two points P1 and P2 of laser beam irradiation when an initial crack is generated depends on the material and thickness of the material W to be processed, the output power of the laser, and the like. The distance between the two points is suitably about 3.0 mm to 3.6 mm if the spot diameter of the laser beam is about 2.0 mm. Further, the distance between the laser beam irradiation positions S1 and S2 when the crack C is induced may be the same as when the initial crack was generated.

【0020】なお、本発明の権利範囲外であるが、亀裂
誘導の際のレーザビーム照射位置S1,S2 を、図2(c)
に示すように、亀裂Cの先端近傍位置で割断予定線Lを
挟んで互い対称となる位置とする方法も考えられる。こ
の場合、図2(d) の解析図に示すような熱応力分布が発
生する。
Although not outside the scope of the present invention, the laser beam irradiation positions S1 and S2 at the time of crack induction are shown in FIG.
As shown in (1), a method is also conceivable in which positions near the tip end of the crack C are symmetrical with respect to the planned cutting line L. In this case, a thermal stress distribution occurs as shown in the analysis diagram of FIG.

【0021】ここで、本発明方法において、被加工材料
へのレーザビーム照射位置は2点に限られることなく3
点以上の任意の多点であってもよく、照射位置の数を多
くした場合、各照射点の位置関係を適宜に選定すれば、
引張応力を更に高めるための熱応力分布を発生すること
ができ、これにより、より優れた効果すなわち加工速度
・精度等が先の実施例よりも更に向上するといった効果
も期待できる。
Here, in the method of the present invention, the laser beam irradiation position on the material to be processed is not limited to two points but may be three.
Any number of points or more may be used, and if the number of irradiation positions is increased, if the positional relationship between the irradiation points is appropriately selected,
It is possible to generate a thermal stress distribution for further increasing the tensile stress, and thereby, it is possible to expect a more excellent effect, that is, an effect that the processing speed and accuracy are further improved as compared with the previous embodiment.

【0022】また、本発明方法は、ガラスやアルミナセ
ラミックのほか、石英あるいは半導体材料等の他の脆性
材料の加工に適用できることは勿論である。なお、使用
するレーザ発振器は、加工材料の材質によってCO2
ーザもしくはYAGレーザ等を適宜に選択する。
The method of the present invention can of course be applied to the processing of other brittle materials such as glass and alumina ceramics, as well as quartz and semiconductor materials. As a laser oscillator to be used, a CO 2 laser, a YAG laser, or the like is appropriately selected depending on the material of the processing material.

【0023】[0023]

【発明の効果】以上説明したように、本発明方法によれ
ば、被加工材料の表面上の少なくとも2点にレーザビー
ムを照射するので、その照射位置付近には特異な熱応力
分布が発生し、その引張応力が従来よりも大きくなる結
果、初期亀裂の発生確率が高くなるとともに加工速度・
精度がともに向上する。これによりレーザ割断方法の実
用化が達成可能となる。
As described above, according to the method of the present invention, since at least two points on the surface of the material to be processed are irradiated with the laser beam, a unique thermal stress distribution occurs near the irradiation position. As a result, the tensile stress becomes larger than before, so that the probability of initial cracks
The accuracy is improved together. Thereby, the practical use of the laser cutting method can be achieved.

【0024】また、材料へのレーザビーム照射位置を2
点(多点)とすることにより、ビーム照射による温度分
布を、通常の1点のレーザビーム照射の場合に比して低
く抑えても、十分な加工速度・精度を得ることができ、
これにより被加工材料に対する熱の影響を軽減できると
いう利点もある。
The irradiation position of the laser beam on the material is set at 2
By setting the number of points (multiple points), sufficient processing speed and accuracy can be obtained even if the temperature distribution due to beam irradiation is suppressed lower than in the case of ordinary one-point laser beam irradiation.
This also has the advantage that the effect of heat on the material to be processed can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の実施例の説明図FIG. 1 is an explanatory view of an embodiment of the method of the present invention.

【図2】同じく実施例の説明図FIG. 2 is an explanatory view of the embodiment.

【符号の説明】[Explanation of symbols]

W 被加工材料 L 割断予定線 LB レーザビーム P1,P2 初期亀裂発生の際にレーザビームを照射する
点 S1,S2 亀裂誘導のレーザビーム照射位置 C 亀裂
W Material to be processed L Expected line of cut LB Laser beam P1, P2 Point of laser beam irradiation at the time of initial crack generation S1, S2 Laser beam irradiation position of crack induction C Crack

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前川 俊一 兵庫県伊丹市春日丘1−15 (72)発明者 沖山 俊裕 兵庫県御国野町御着1174−22 (72)発明者 白浜 秀幸 長崎県長崎市川平町199−3 (72)発明者 横山 敏幸 長崎県大村市三城町1011番地 三城アパ ートイ−206 (72)発明者 大仁田 英信 長崎県大村市三城町955−1 (56)参考文献 特開 平1−108006(JP,A) 特開 昭54−153745(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shunichi Maekawa 1-15 Kasugaoka, Itami-shi, Hyogo (72) Inventor Toshihiro Okiyama 1174-22, Gokunino-cho, Hyogo Prefecture, Japan (72) Inventor Hideyuki Shirahama, Nagasaki 199-3 Hiramachi (72) Inventor Toshiyuki Yokoyama 1011 Misaki-cho, Omura-city, Nagasaki Pref. Japanese Unexamined Patent Publication No. 54-153745 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 脆性材料の端縁近傍にレーザビームを照
射し、その位置に生じる熱応力により亀裂を発生させ、
材料を割断する方法において、被加工材料の端縁近傍
で、かつ割断予定線を挟んだ両側の位置にレーザビーム
を同時に照射して上記亀裂の発生を行うことを特徴とす
る脆性材料の割断方法。
1. A laser beam is applied to the vicinity of an edge of a brittle material, and a crack is generated by thermal stress generated at the position.
In the method of cutting the material, near the edge of the material to be processed
And cutting the brittle material by simultaneously irradiating a laser beam to positions on both sides of the planned cutting line .
【請求項2】 脆性材料の端縁近傍にレーザビームを照
射して亀裂を発生させ、その亀裂近傍にレーザビームを
照射し、この照射位置を移動して上記亀裂を割断予定線
に沿って誘導することにより材料を割断する方法におい
て、被加工材料の端縁近傍の亀裂付近に複数のレーザビ
ームを照射するとともに、それら複数のレーザビームの
照射位置を亀裂先端の前方の位置と後方の位置とし、か
つ、各レーザビームの出力を制御した状態で、これらビ
ーム照射位置を上記割断予定線に沿って移動させること
により上記亀裂の誘導を行うことを特徴とする脆性材料
の割断方法。
2. A crack is generated by irradiating a laser beam near an edge of the brittle material, and a laser beam is irradiated near the crack. The irradiation position is moved to guide the crack along a predetermined cutting line. In the method of cleaving the material by performing, a plurality of laser beams are irradiated near the crack near the edge of the material to be processed, and the irradiation positions of the plurality of laser beams are set to positions in front of and behind the crack tip. And a method for cleaving a brittle material, wherein the cracks are induced by moving the irradiation positions of the laser beams along the planned cleavage line while controlling the output of each laser beam.
JP12614694A 1994-06-08 1994-06-08 How to cut brittle materials Expired - Fee Related JP3210934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12614694A JP3210934B2 (en) 1994-06-08 1994-06-08 How to cut brittle materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12614694A JP3210934B2 (en) 1994-06-08 1994-06-08 How to cut brittle materials

Publications (2)

Publication Number Publication Date
JPH07328781A JPH07328781A (en) 1995-12-19
JP3210934B2 true JP3210934B2 (en) 2001-09-25

Family

ID=14927821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12614694A Expired - Fee Related JP3210934B2 (en) 1994-06-08 1994-06-08 How to cut brittle materials

Country Status (1)

Country Link
JP (1) JP3210934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2429961B1 (en) * 2009-05-13 2017-03-01 Corning Incorporated Methods for cutting a fragile material
US11075496B2 (en) 2018-06-28 2021-07-27 Samsung Electronics Co., Ltd. Laser dicing device, method of laser beam modulation, and method of dicing a substrate

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY120533A (en) * 1997-04-14 2005-11-30 Schott Ag Method and apparatus for cutting through a flat workpiece made of brittle material, especially glass.
KR100634750B1 (en) * 1999-12-07 2006-10-16 삼성전자주식회사 Laser cutting equipment
JP3965902B2 (en) 2000-05-23 2007-08-29 株式会社日立製作所 Manufacturing method of liquid crystal display device
TWI277477B (en) 2002-03-12 2007-04-01 Mitsuboshi Diamond Ind Co Ltd Method and system for machining fragile material
KR100497005B1 (en) * 2003-01-30 2005-06-23 주식회사 에쎌텍 Cutting apparatus with laser
CN101001729B (en) * 2004-07-30 2011-03-23 三星钻石工业股份有限公司 Vertical crack forming method and vertical crack forming device in substrate
JP2008100412A (en) * 2006-10-18 2008-05-01 Murata Mfg Co Ltd Laser cutting method
JP5345334B2 (en) * 2008-04-08 2013-11-20 株式会社レミ Thermal stress cleaving method for brittle materials
JP2010090010A (en) * 2008-10-10 2010-04-22 Mitsuboshi Diamond Industrial Co Ltd Method for cutting brittle material substrate and cutting device
JP5123923B2 (en) * 2009-12-08 2013-01-23 三星ダイヤモンド工業株式会社 Method and apparatus for processing brittle substrate
KR20130071417A (en) * 2010-05-14 2013-06-28 아사히 가라스 가부시키가이샤 Cutting method and cutting device
US9212081B2 (en) * 2012-11-21 2015-12-15 Corning Incorporated Methods of cutting a laminate strengthened glass substrate
JP2016128365A (en) * 2013-04-26 2016-07-14 旭硝子株式会社 Cutting method of glass plate
JP2016128364A (en) * 2013-04-26 2016-07-14 旭硝子株式会社 Cutting method of glass plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108006A (en) * 1987-10-21 1989-04-25 Nagasaki Pref Gov Splitting of brittle material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2429961B1 (en) * 2009-05-13 2017-03-01 Corning Incorporated Methods for cutting a fragile material
US11075496B2 (en) 2018-06-28 2021-07-27 Samsung Electronics Co., Ltd. Laser dicing device, method of laser beam modulation, and method of dicing a substrate
US11811185B2 (en) 2018-06-28 2023-11-07 Samsung Electronics Co., Ltd. Laser dicing device, method of laser beam modulation, and method of dicing a substrate

Also Published As

Publication number Publication date
JPH07328781A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
JP3210934B2 (en) How to cut brittle materials
JP4478184B2 (en) Laser cleaving method and laser processing apparatus
TWI260843B (en) Focusing an optical beam to two foci
JP5639997B2 (en) Laser processing equipment
JP5113462B2 (en) Method for chamfering a brittle material substrate
JP5089735B2 (en) Laser processing equipment
US8497451B2 (en) Brittle nonmetallic workpiece and method and device for making same
JP4175636B2 (en) Glass cutting method
JP4584322B2 (en) Laser processing method
EP2429961B1 (en) Methods for cutting a fragile material
JP2004528991A5 (en)
JPH0929472A (en) Method and device for splitting and chip material
WO2007105537A1 (en) Laser processing method and laser processing system
JP2009248160A (en) Thermal stress fracture method of brittle material
WO2013039012A1 (en) Laser machining method and laser machining device
WO2006038565A1 (en) Brittle material scribing method and scribing apparatus
JP4354376B2 (en) Laser processing equipment
JP2010239157A (en) Laser cutting method
JPH10291084A (en) Laser machining method for brittle material and its device
KR20020047479A (en) Laser cutting method for non-metallic materials
JP2010138046A (en) Method and device for working material to be cut
JP2005081715A (en) Laser beam machining apparatus and laser beam machining method
JP2008183599A (en) Method for working workpiece made of highly brittle and non-metallic material, and device therefor
JPH04167985A (en) Method for cutting off wafer
JPH1034364A (en) Brittle material splitting method by plural point heat sources

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees