JP3209556B2 - Leukocyte selective removal filter device - Google Patents
Leukocyte selective removal filter deviceInfo
- Publication number
- JP3209556B2 JP3209556B2 JP35799191A JP35799191A JP3209556B2 JP 3209556 B2 JP3209556 B2 JP 3209556B2 JP 35799191 A JP35799191 A JP 35799191A JP 35799191 A JP35799191 A JP 35799191A JP 3209556 B2 JP3209556 B2 JP 3209556B2
- Authority
- JP
- Japan
- Prior art keywords
- blood
- average pore
- pore diameter
- filter
- leukocyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- External Artificial Organs (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、白血球浮遊液から白血
球を選択的に捕捉、除去するフィルター装置に関する。
詳しくは全血、赤血球濃厚液、血小板濃厚液などの輸血
用血液製剤中に混入している白血球を選択的に捕捉、除
去するためのフィルター装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter device for selectively capturing and removing leukocytes from a leukocyte suspension.
More specifically, the present invention relates to a filter device for selectively capturing and removing leukocytes mixed in a blood product for transfusion such as whole blood, erythrocyte concentrate, and platelet concentrate.
【0002】[0002]
【従来の技術】近年、免疫学、輸血学の進歩に伴い、従
来の全血輸血から種々の疾患の治療に必要な成分だけを
濃縮して輸血する成分輸血が行われる様になってきてい
る。成分輸血に用いられる各種の血液製剤、即ち、赤血
球濃厚液(CRC)、血小板濃厚液(PC)、乏血小板
血漿(PPP)は献血によって得られた全血を遠心操作
で分離、分画して調整される。しかしながら、遠心操作
によって、分画された血液製剤中には多くの白血球が含
まれており、この混入白血球により輸血後副作用が誘発
されることが明らかになってきた。2. Description of the Related Art In recent years, with the advancement of immunology and transfusion, component transfusion has been performed in which only components necessary for treatment of various diseases are concentrated and transfused from conventional whole blood transfusion. . Various blood products used for component transfusion, ie, red blood cell concentrate (CRC), platelet concentrate (PC), and platelet poor plasma (PPP) are separated and fractionated by centrifugation from whole blood obtained by donating blood. Adjusted. However, it has become clear that a large number of leukocytes are contained in the fractionated blood product by centrifugation, and this mixed leukocyte induces post-transfusion side effects.
【0003】輸血後副作用の中でも頭痛、非溶血性発熱
反応、悪寒、吐き気などの比較的軽微な副作用は、血液
製剤中に含まれている白血球の残存率を10-1〜10-2
以下になるまで除去する必要があり、また輸血後GVH
D、アロ抗原感作などの重篤な副作用を予防するには、
未だ定説はないものの1回の輸血で注入される白血球の
残存率を10-3〜10-4以下にするとほぼ完全に予防で
きると考えられている(「臨床と研究」66(2):3
49、1989)。[0003] Among the side effects after blood transfusion, relatively minor side effects such as headache, non-hemolytic fever reaction, chills, and nausea are caused by reducing the residual ratio of leukocytes contained in blood products to 10 -1 to 10 -2.
GVH after blood transfusion
D, To prevent serious side effects such as alloantigen sensitization,
Although there is no established theory, it is thought that the survival rate can be almost completely prevented by setting the residual ratio of leukocytes infused by one blood transfusion to 10 −3 to 10 −4 or less (“Clinical Studies” 66 (2): 3).
49, 1989).
【0004】血液製剤から白血球を除去する方法には、
大別して、血液の比重差を利用した重力遠心分離方法と
不織布などの繊維状媒体や連続孔を有する多孔質体を濾
材としたフィルター法の2種あるが、白血球除去効率の
良いこと、操作の簡単なこと、コストが低いことの利点
からフィルター法が広く用いられている。[0004] Methods for removing leukocytes from blood products include:
Broadly classified, there are two types, a gravity centrifugation method using the difference in specific gravity of blood, and a filter method using a fibrous medium such as a nonwoven fabric or a porous body having continuous pores as a filter medium. The filter method is widely used because of its simplicity and low cost.
【0005】[0005]
【発明が解決しようとする課題】輸血後副作用が輸血用
の血液製剤に混入している白血球により誘発されること
が判明するにつれ、血液製剤から白血球を高収率で除去
する高性能な白血球除去フィルターの開発が切望される
ようになってきた。白血球除去能を向上させるには不織
布などの繊維状媒体を使用する場合、より繊維径の細い
極細繊維を使用するかまたは不織布の充填密度を高める
ことにより達成可能なことが知られている。また、連続
孔を有する多孔質体を濾材とする場合、より孔径を小さ
くすることで達成可能であることが知られている。しか
しながら、いずれの場合でも白血球除去能の向上にとも
なって、濾材に捕捉された血球や微小凝集物による目詰
まりが起こりやすくなり、圧力損失の増大化、濾過時間
の長時間化といった問題も起こり得るものであった。As it has been found that post-transfusion side effects are induced by leukocytes contaminating blood products for transfusion, high-performance leukocyte removal that removes leukocytes from blood products in high yield. The development of filters has been eagerly desired. It is known that when a fibrous medium such as a nonwoven fabric is used to improve the leukocyte removal ability, it can be achieved by using ultrafine fibers having a smaller fiber diameter or by increasing the packing density of the nonwoven fabric. It is also known that when a porous body having continuous pores is used as a filter medium, it can be achieved by making the pore diameter smaller. However, in any case, with the improvement of the leukocyte removal ability, clogging due to blood cells and microaggregates captured by the filter medium is likely to occur, which may cause problems such as an increase in pressure loss and a prolonged filtration time. Was something.
【0006】また、白血球除去操作終了後、フィルター
装置内に残留する血液は通常フィルター装置と共に廃棄
されるため、無駄に捨ててしまう血液の量をできるだけ
少なくするようなホールドアップ体積の小さい小型の白
血球除去フィルター装置が求められるようになってき
た。ホールドアップ体積とはフィルター装置の内容積を
指す。白血球の除去の機構は未だはっきりとしていない
が、不織布などの繊維状媒体を用いた場合、繊維と繊維
が絡み合った点、即ち、交絡点での粘着によるものと解
釈されており、交絡点をできるだけ増やし白血球と濾材
との接触頻度を上げて白血球除去能を向上させかつ小型
のフィルター装置にするには、先に述べたような極細繊
維を用いるか、または不織布の充填密度を上げねばなら
ず、そうすると、やはり血球目詰まりによる圧力損失の
増大化、濾過時間の長時間化が懸念されるものであっ
た。[0006] Further, since the blood remaining in the filter device after the operation of removing leukocytes is normally discarded together with the filter device, small white blood cells having a small hold-up volume so as to minimize the amount of wastefully discarded blood. There has been a need for a removal filter device. Hold-up volume refers to the internal volume of the filter device. Although the mechanism of leukocyte removal is not yet clear, when a fibrous medium such as a nonwoven fabric is used, it is interpreted as a point at which the fibers are entangled with each other, that is, due to the adhesion at the entanglement point. In order to improve the leukocyte removal ability by increasing the frequency of contact between the leukocytes and the filter medium and increase the size of the filter device, it is necessary to use the ultrafine fibers as described above or increase the packing density of the nonwoven fabric. Then, there is a concern that the pressure loss may increase due to clogging of blood cells and the filtration time may be prolonged.
【0007】[0007]
【課題を解決するための手段】本発明は、圧力損失を増
大させずにしかも単位体積当たりの白血球除去能を高め
た小型化可能な白血球選択除去フィルター装置を提供す
ることを目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to provide a small and compact leukocyte removal filter apparatus which does not increase pressure loss and has an improved ability to remove leukocytes per unit volume.
【0008】本発明はまた、全血、赤血球濃厚液、血小
板濃厚液、乏血小板血漿などの白血球浮遊液から白血球
を高収率で除去する白血球選択除去フィルター装置を提
供することを目的とする。Another object of the present invention is to provide a leukocyte selective removal filter device which removes leukocytes from leukocyte suspensions such as whole blood, erythrocyte concentrate, platelet concentrate and platelet poor plasma in high yield.
【0009】上記目的を達成する白血球選択除去フィル
ター装置とは、平均孔径が3〜100μmの連続孔を有
する多孔質体を血液の入口と出口を有する容器内に充填
したフィルター装置であって、血液の入口から出口に向
かって多孔質体の平均孔径が実質的に連続的または段階
的に減少しており、且つ該多孔質体の血液入口側の平均
孔径は25〜100μm、血液出口側の平均孔径は3〜
15μmであり、血液入口側平均孔径が血液出口側平均
孔径の3〜25倍であることを特徴とする白血球選択除
去フィルター装置である。[0009] The selective leukocyte removal filter apparatus to achieve the above object, a porous body with an average pore size of 3 to 100 [mu] m of continuous pores a filter device filled in a container having an inlet and an outlet of the blood, The average pore diameter of the porous body decreases substantially continuously or stepwise from the blood inlet to the outlet, and the average pore diameter of the porous body on the blood inlet side is 25 to 100 μm , and the blood outlet side is Average pore size is 3 ~
15 μm, and the blood inlet side average pore diameter is the blood outlet side average
It is a leukocyte selective removal filter device characterized by having a pore diameter of 3 to 25 times .
【0010】本発明はまた、平均孔径が2〜200μ
m、更に好ましくは3〜100μmの連続孔を有する多
孔質体を血液の入口と出口を有する容器内に充填したフ
ィルターであって、血液の入口から出口に向かって多孔
質体の平均孔径が実質的に連続的または段階的に減少し
ている白血球選択除去フィルター装置を示すものであ
る。 [0010] The present invention also provides an average pore size of 2 to 200 µm.
m, more preferably a filter in which a porous body having continuous pores of 3 to 100 μm is filled in a vessel having an inlet and an outlet for blood, wherein the porous body has an average pore diameter substantially from the blood inlet to the outlet. Fig . 3 shows a leukocyte selective removal filter device which is gradually or continuously reduced .
【0011】本発明における平均孔径とは、連続孔を有
する多孔質体を血液の流れ方向に対して垂直方向に切断
し、断面全体に分散している細孔の各々について直径を
測定して直径と細孔の数との関係を調べた時に、最も数
の多い細孔の円に換算した直径を表すものである。即
ち、多孔質フィルターの任意の切断面に分散する細孔は
いろいろな形でその直径もさまざまであるが、個々の細
孔をその細孔の断面積と同じ面積の円に換算し、その直
径を横軸にとり、縦軸に細孔の数をとってグラフを描く
と一般に正規分布に近い曲線となる。そして、その曲線
のピークに当たる直線が本発明でいう平均孔径である。
即ち、平均孔径とは、任意の切断面各々につきその切断
面上に分散する細孔の平均直径のことであり、どの切断
面上の平均孔径も3〜100μmの範囲内になければな
らない。また、血液の入口側と出口側の平均孔径とは、
多孔質体表面からフィルターの厚み方向に対して0.5
mm以下の部分での切断面の平均孔径をいい、また0.
5mm厚みの範囲内で平均孔径が特に変わらなければ表
面での平均孔径を血液の入口側と出口側の平均孔径とし
ても良い。平均孔径の測定は血液入口側と出口側を含み
少なくとも 3ケ所以上の切断面について、走査電子顕微
鏡で撮影し、目視により切断面上に分散している細孔の
直径をランダムに1000個以上測定し、各切断面での
平均孔径を求め、各切断面の平均孔径の相加平均値と各
切断面の平均孔径の値がほぼ等しい場合にはその多孔質
体は、ほぼ均一な平均孔径を有する多孔質体とし、血液
入口側の平均孔径が血液出口側の平均孔径の3〜25倍
あり、かつその他の切断面の平均孔径が血液入口側の平
均孔径以下、血液出口側の平均孔径以上ある場合に平均
孔径が血液の入口側から出口側に向かって減少している
多孔質体とする。In the present invention, the average pore diameter refers to a diameter of a porous body having continuous pores cut in a direction perpendicular to the blood flow direction, and the diameter of each of the pores dispersed throughout the cross section is measured. When examining the relationship between and the number of pores, it represents the diameter of the largest number of pores converted to a circle. In other words, the pores dispersed on an arbitrary cut surface of the porous filter have various diameters in various forms, but each pore is converted into a circle having the same area as the cross-sectional area of the pore, and the diameter of the pore is calculated. Is plotted on the abscissa and the number of pores is plotted on the ordinate, generally giving a curve close to a normal distribution. The straight line corresponding to the peak of the curve is the average pore diameter referred to in the present invention.
That is, the average pore diameter is the average diameter of pores dispersed on each of the cut surfaces, and the average pore size on any of the cut surfaces must be in the range of 3 to 100 μm. In addition, the average pore diameter on the blood inlet side and the blood outlet side,
0.5 from the porous material surface to the thickness direction of the filter
mm means the average pore diameter of the cut surface at a portion of not more than 0.1 mm.
If the average pore diameter is not particularly changed within the range of 5 mm in thickness, the average pore diameter on the surface may be used as the average pore diameter on the blood inlet side and the blood outlet side. The average pore diameter was measured using a scanning electron microscope on at least three cut surfaces including the blood inlet and outlet sides, and the diameter of at least 1,000 pores dispersed on the cut surface was measured visually. Then, the average pore diameter at each cut surface is determined, and when the arithmetic mean value of the average pore diameter of each cut surface and the value of the average pore diameter of each cut surface are substantially equal, the porous body has a substantially uniform average pore diameter. A porous body having an average pore diameter on the blood inlet side of 3 to 25 times the average pore diameter on the blood outlet side, and an average pore diameter on the other cut surface less than the average pore diameter on the blood inlet side and greater than the average pore diameter on the blood outlet side. In some cases, the porous body has an average pore diameter decreasing from the blood inlet to the blood outlet.
【0012】本発明における平均孔径の連続的または段
階的減少とは、フィルター材料1枚を血液の流れ方向に
切断した時、血液の入口側から出口側に向かって多孔質
体の孔径が徐々に小さくなる場合を連続的減少といい、
血液の流れ方向に対して垂直に切断した切断面の平均孔
径がほぼ均一な数枚のフィルター材料を平均孔径の大き
さ順に積層し、容器内に充填する場合を段階的減少とい
う。The continuous or stepwise reduction of the average pore diameter in the present invention means that when one filter material is cut in the blood flow direction, the pore diameter of the porous body gradually increases from the blood inlet to the blood outlet. When it becomes smaller, it is called a continuous decrease.
A case in which several filter materials having a substantially uniform average pore diameter on a cut surface cut perpendicular to the blood flow direction are stacked in order of the average pore diameter and filled into a container is referred to as stepwise reduction.
【0013】本発明の白血球選択除去フィルター装置
は、充填しているフィルター材料の平均孔径が血液の流
れ方向に連続的または段階的に減少していくように配置
されている点に特徴を有している。白血球除去の改善
は、不織布等の繊維状媒体をフィルター材料とした場
合、フィルターの充填密度を高めるか、より平均繊維径
の小さい繊維積層物を用いることにより、また均一な平
均孔径を有する多孔質体の場合は、平均孔径をより小さ
くすることにより達成可能であることが分かっている。
しかしながら上記のようなフィルター材料を用いて血液
製剤を濾過すると、経時的に血球が濾材表面に吸着し、
濾材表面が徐々に閉塞されてしまうため、圧力損失が増
大する、濾過時間が長くなるといった問題が生じてして
しまう。このような問題に対して、本発明のように平均
孔径が実質的に連続的または段階的に変化している多孔
質体のフィルター材料を用いると上記の問題が解決され
る。即ち、血液製剤を本発明により得られたフィルター
装置で処理すると、血液の入口付近のフィルター材料の
孔径が広いため、フィルター材表面での血球の目詰まり
が緩和され、血球が孔路にしたがって通過するようにな
り、その通過途中で徐々に白血球がフィルター材に吸
着、捕捉され、圧力損失を減ずることが可能となるため
である。また、このようなフィルター装置を用いるとフ
ィルター材体積の大部分が効率的、有効的に白血球捕捉
に利用されるため、単位体積当たりの白血球除去能が向
上し、かつ圧力損失が軽減されるため、濾過時間も延長
することなく短時間で血液製剤を処理することができる
ようになる。The filter device for selectively removing leukocytes of the present invention is characterized in that the filter material is arranged so that the average pore diameter of the filter material to be filled decreases continuously or stepwise in the blood flow direction. ing. Improvement of leukocyte removal can be achieved by increasing the packing density of the filter or using a fiber laminate with a smaller average fiber diameter when using a fibrous medium such as a non-woven fabric as the filter material, and by using a porous material having a uniform average pore diameter. For the body, it has been found that this can be achieved by reducing the average pore size.
However, when blood products are filtered using the above filter materials, blood cells are adsorbed to the surface of the filter material over time,
Since the surface of the filter medium is gradually closed, problems such as an increase in pressure loss and an increase in filtration time occur. With respect to such a problem, the use of a porous filter material whose average pore diameter changes substantially continuously or stepwise as in the present invention solves the above problem. That is, when a blood product is treated with the filter device obtained according to the present invention, clogging of blood cells on the filter material surface is reduced because the pore diameter of the filter material near the blood inlet is large, and the blood cells pass along the pore path. This is because, during the passage, leukocytes are gradually adsorbed and captured by the filter material, and pressure loss can be reduced. In addition, when such a filter device is used, most of the filter material volume is efficiently and effectively used for leukocyte capture, so that the leukocyte removal capacity per unit volume is improved, and pressure loss is reduced. In addition, the blood product can be processed in a short time without prolonging the filtration time.
【0014】輸血用の血液製剤の中でも赤血球濃厚液や
全血製剤には多量の赤血球が含まれている。このような
赤血球製剤は血小板濃厚液や乏血小板製剤よりも粘性が
高く、保存日数が長いため微小凝集物やマイクロアグリ
ゲートが多数含まれている場合が多々ある。そのため、
このような赤血球製剤に混入している白血球をフィルタ
ーを用いて捕捉除去しようとすると、粘性が高いことと
血球や微小凝集物のフィルター材料表面への吸着、付着
によって赤血球が通るべき経路が狭められ、或いは閉塞
されてしまうために、赤血球のフィルター内通過時の抵
抗が高まることによって圧力損失が増加してしまうとい
った問題が起こりやすいものであった。このような問題
に対して本発明の白血球除去フィルター装置は、良好な
白血球捕捉能を維持しつつ、かつ圧力損失の増加を抑制
する効果を有す。即ち、本発明のフィルター材料は、そ
の平均孔径が血液の入口側から出口側に向かって実質的
に連続的または段階的に減少しているような特徴を有す
ため、フィルター材料表面での血球や微小凝集物の目詰
まりが緩和され、血球が孔路に沿って通過するようにな
る。そして、フィルター内通過途中で徐々に白血球や微
小凝集物がフィルター材料に吸着、捕捉されるようにな
り、赤血球の通過すべき孔路が極端に狭められたり閉塞
されたりすることがなくなるため、圧力損失の増加を抑
制することが可能となるのである。また、フィルター材
体積の大部分が白血球や微小凝集物の捕捉に利用される
ため、単位体積当たりの白血球除去能が向上することに
なる。更に、血液とフィルター材料との親和性を高め
る、或いは白血球の捕捉能を更に高める目的でフィルタ
ー材料の表面に親水性のモノマーやポリマーをグラフト
重合したり、コーティングするなどの公知の表面改質
(特開平1−249063号、特開平3−502094
号)を施すとなお効果的である。Among blood products for blood transfusion, red blood cell concentrates and whole blood products contain a large amount of red blood cells. Such erythrocyte preparations are more viscous than platelet concentrates and platelet-poor preparations and have a long storage period, so that they often contain many microaggregates and microaggregates. for that reason,
When attempting to capture and remove leukocytes contaminating such red blood cell preparations using a filter, the route through which red blood cells must pass is narrowed due to the high viscosity and adsorption and adhesion of blood cells and microaggregates to the filter material surface. Or, because of the occlusion, the resistance at the time of passage of the red blood cells through the filter is increased, thereby increasing the pressure loss. In order to solve such a problem, the leukocyte removal filter device of the present invention has an effect of suppressing an increase in pressure loss while maintaining good leukocyte trapping ability. That is, since the filter material of the present invention has such a characteristic that its average pore diameter decreases substantially continuously or stepwise from the blood inlet side to the blood outlet side, the blood cells on the filter material surface And clogging of microaggregates is mitigated, and blood cells pass along the pores. Then, during the passage through the filter, leukocytes and microaggregates gradually become adsorbed and captured by the filter material, and the passage through which the red blood cells pass is not extremely narrowed or blocked, so that the pressure is reduced. It is possible to suppress an increase in loss. In addition, since most of the filter material volume is used for capturing leukocytes and microaggregates, the ability to remove leukocytes per unit volume is improved. Further, in order to increase the affinity between blood and the filter material or to further enhance the ability to capture leukocytes, a known surface modification such as graft polymerization or coating of a hydrophilic monomer or polymer on the surface of the filter material ( JP-A-1-249063, JP-A-3-502094
Is even more effective.
【0015】また、血小板濃厚液に混入している白血球
を捕捉し、かつ血小板は通過させるように本発明の白血
球除去フィルター装置で処理する場合には、血液が接触
しうるフィルター材料の表面積を小さくする必要があ
る。即ち、フィルター材料である多孔質体の表面積が大
きいと血小板がフィルター材料と接触しやすくなるため
フィルター材料と血小板との衝突頻度が増加し、血小板
損失が増大してしまうためである。このような問題に対
して、本発明のように200ml採血由来の血小板濃厚
液1単位(20ml)を処理するのに必要なフィルター
材料の実質表面積が0.10m2 以下であると、血小板
の濾材への吸着、付着頻度が低下し、血小板損失が抑制
されることとなる。血小板濃厚液は同量の全血及び赤血
球濃厚液と比較すると赤血球数で約250分の1、白血
球数で約10分の1と少なく、血小板の大きさも赤血球
の約3分の1、白血球の約5分の1と小さいためフィル
ター材料の実質表面積を小さくすることが可能であり、
また血球や微小凝集物の目詰まりによる圧力損失の増加
も本発明のフィルター装置を用いることにより回避する
ことができ、かつ充分な白血球捕捉能を維持することが
可能である。また、血小板を更に回収するには、フィル
ター材料の表面性状を親水化するなどの工夫を加えれば
なお一層効果的である。血小板のフィルター材料への付
着は材料表面性状に依存すると考えられており、例え
ば、材料表面がざらついている場合、疎水性である場合
などは血小板が材料表面によく粘着する傾向がある。こ
れに対し、材料表面が滑らかである場合、親水性である
場合には血小板の通過性が増すことが知られている。し
かし、一般に高分子多孔質体は疎水性である場合が多
く、そのようなフィルター材料を使用する場合には親水
性のモノマーを材料表面にグラフト重合したり、親水性
のポリマーを材料表面にコーティングするなどの表面改
質法が公知の材料として知られている(特開昭55−1
29755号、WO87/05812号、特開平1−2
49063号)。また、多孔質体の実質表面積とは、血
液と接し得る多孔質体の全表面積を言う。実質表面積は
水銀圧入法によって比表面積を測定し、これに多孔質体
の密度と体積を乗じて求める。When the leukocyte removal filter device of the present invention is used to capture leukocytes mixed in the platelet concentrate and pass platelets, the surface area of the filter material with which blood can come into contact is reduced. There is a need to. That is, if the surface area of the porous body as the filter material is large, the platelets easily come into contact with the filter material, so that the frequency of collision between the filter material and the platelets increases, and the platelet loss increases. In order to deal with such a problem, if the effective surface area of the filter material required to process 1 unit (20 ml) of the platelet concentrate derived from 200 ml of blood collection is 0.10 m 2 or less as in the present invention, The frequency of adsorption and adhesion to the cells is reduced, and platelet loss is suppressed. Compared with the same amount of whole blood and erythrocyte concentrate, the platelet concentrate has a red blood cell count of about 1/250 and a white blood cell count of about 1/10, a platelet size of about 1/3 of red blood cells, and a white blood cell count of about 1/3. Because it is as small as about 1/5, it is possible to reduce the effective surface area of the filter material,
In addition, an increase in pressure loss due to clogging of blood cells and microaggregates can be avoided by using the filter device of the present invention, and sufficient leukocyte capturing ability can be maintained. Further, in order to further recover the platelets, it is even more effective if measures such as making the surface properties of the filter material hydrophilic are added. It is believed that the attachment of platelets to the filter material depends on the surface properties of the material. For example, when the material surface is rough or hydrophobic, platelets tend to adhere well to the material surface. On the other hand, it is known that when the material surface is smooth and hydrophilic, the platelet permeability increases. However, in general, the porous polymer is often hydrophobic, and when such a filter material is used, a hydrophilic monomer is graft-polymerized on the material surface, or a hydrophilic polymer is coated on the material surface. A surface modification method such as the above-mentioned method is known as a known material (JP-A-55-1
No. 29755, WO 87/05812, JP-A 1-2
No. 49063). The substantial surface area of the porous body refers to the total surface area of the porous body that can come into contact with blood. The actual surface area is determined by measuring the specific surface area by the mercury intrusion method and multiplying the specific surface area by the density and volume of the porous body.
【0016】以下、本発明を実施態様に基づき詳細に説
明する。本発明に係わる上記のごとき構造を有する白血
球選択除去フィルター装置において、血液入口側の平均
孔径は10〜300μm、より好ましくは20〜200
μm、最も好ましくは25〜100μmであることが望
ましい。即ち、平均孔径が10μm未満であると白血球
除去操作時において、フィルター材表面で血球が捕捉さ
れ、目詰まりを引き起こし、圧力損失が増大する恐れが
あり、一方平均孔径が300μmを越えるものである
と、血球とフィルター材表面との接触頻度が低下するた
め、白血球の血液入口側フィルター材表面での捕捉率が
低下し、フィルター材内部での血球目詰まりを引き起こ
す恐れがあるためである。また、血液出口側の平均孔径
は1〜30μm、より好ましくは2〜20μm、最も好
ましくは3〜15μmであることが望ましい。即ち、平
均孔径が1μm未満であると孔路が狭すぎるため血液出
口側で血球の目詰まりが起こりやすくなり、一方30μ
mを越える平均孔径であると白血球の捕捉量が低下して
しまう恐れがあるためである。また、本発明の血液入口
側の平均孔径は血液出口側の平均孔径の2〜100倍、
より好ましくは3〜50倍、最も好ましくは3〜25倍
であることが望ましい。即ち、血液入口側と出口側の平
均孔径比が2倍未満であると白血球による目詰まりが生
ずる、または白血球の捕捉量が低下するおそれがあり、
一方孔径比が100倍を越えると、血液出口側での白血
球の目詰まりが生じ、圧力損失が増大する恐れがあるた
めである。また、血小板濃厚液を処理する場合の本発明
の白血球選択除去フィルター材の実質表面積は0.00
1〜0.10m2 より好ましくは0.01〜0.08m
2、最も好ましくは0.02〜0.06m2 であること
が望ましい。即ち、実質表面積が0.001m2 未満で
あると、白血球捕捉量が少な過ぎて実用に至らず、一方
実質表面積が0.10m2 を越えるものであるとホール
ドアップ体積が増加し、小型化が困難になるためであ
る。Hereinafter, the present invention will be described in detail based on embodiments. In the leukocyte selective removal filter device having the above structure according to the present invention, the average pore diameter on the blood inlet side is 10 to 300 μm, and more preferably 20 to 200 μm.
μm, most preferably 25-100 μm. That is, when the average pore diameter is less than 10 μm, during the leukocyte removal operation, blood cells are captured on the surface of the filter material, causing clogging, and there is a fear that pressure loss may increase, while the average pore diameter is more than 300 μm. This is because the frequency of contact between blood cells and the surface of the filter material is reduced, and the capture rate of leukocytes on the surface of the filter material on the blood inlet side is reduced, which may cause clogging of blood cells inside the filter material. It is desirable that the average pore diameter on the blood outlet side is 1 to 30 μm, more preferably 2 to 20 μm, and most preferably 3 to 15 μm. That is, when the average pore diameter is less than 1 μm, the pore path is too narrow, so that clogging of blood cells tends to occur at the blood outlet side, while 30 μm
If the average pore size exceeds m, the trapped amount of leukocytes may be reduced. Further, the average pore diameter on the blood inlet side of the present invention is 2 to 100 times the average pore diameter on the blood outlet side,
More preferably, it is 3 to 50 times, most preferably 3 to 25 times. That is, if the average pore diameter ratio between the blood inlet side and the outlet side is less than twice, clogging with white blood cells may occur, or the amount of captured white blood cells may decrease,
On the other hand, if the pore diameter ratio exceeds 100 times, white blood cells may be clogged on the blood outlet side, and the pressure loss may increase. When the platelet concentrate is treated, the real surface area of the leukocyte selective removal filter material of the present invention is 0.00
1 to 0.10 m 2, more preferably 0.01 to 0.08 m
2 , most preferably 0.02 to 0.06 m 2 . That is, if the real surface area is less than 0.001 m 2 , the leukocyte trapping amount is too small to be practical, while if the real surface area exceeds 0.10 m 2 , the hold-up volume increases, and miniaturization becomes difficult. Because it becomes difficult.
【0017】本発明の白血球選択除去フィルター材を構
成する高分子としては、血球にダメージを与えにくいも
のであれば特に限定はなく各種のものを用いることがで
きる。例えば、ポリウレタン、ポリアクリロニトリル、
ポリビニルアセタール、ポリエステル、ポリアミド、ポ
リスチレン、ポリスルホン、セルロース、セルロースア
セテートが挙げられる。また、本発明のフィルター材は
公知の製法によって製造されるものでも良い。またフィ
ルターに白血球の捕捉能を高めるための公知の表面改質
を行うことも好ましい。The polymer constituting the filter material for selectively removing leukocytes of the present invention is not particularly limited as long as it does not easily damage blood cells, and various polymers can be used. For example, polyurethane, polyacrylonitrile,
Examples include polyvinyl acetal, polyester, polyamide, polystyrene, polysulfone, cellulose, and cellulose acetate. Further, the filter material of the present invention may be manufactured by a known manufacturing method. It is also preferable to perform a known surface modification on the filter to enhance the ability to capture leukocytes.
【0018】[0018]
【実施例】以下本発明の白血球選択除去フィルター装置
を実施例により詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the filter device for selectively removing leukocytes according to the present invention will be described in detail with reference to embodiments.
【0019】[0019]
【実施例1】高分子材質がセルロースからなり、血液入
口側の平均孔径が50μm、血液出口側の平均孔径が8
μmの多孔質体を有効断面積が30×30mmの容器内
に充填した。Example 1 The polymer material was made of cellulose, the average pore size on the blood inlet side was 50 μm, and the average pore size on the blood outlet side was 8
A μm porous body was filled in a container having an effective cross-sectional area of 30 × 30 mm.
【0020】遠心分離により分画された赤血球濃厚液2
00cc(14〜16日保存血)を上記のフィルター装
置を組み込んだ血液回路を用い、4.5ml/分の一定
流速で濾過した。濾過の終了は血液バッグ内の血液がな
くなり、血液の流れが実質的に停止した時点とし、19
7.3ccの濾液を得た。濾過前の赤血球濃厚液(ヘマ
トクリット値67%)及び濾液の体積、白血球濃度及び
赤血球濃度としてヘマトクリット値を測定し、次の式数
1、数2に従って白血球除去率、赤血球回収率を求めた
ところ、白血球除去率が99.8%、赤血球回収率が9
4.5%であった。Erythrocyte concentrate 2 fractionated by centrifugation
00 cc (14-16 days of stored blood) was filtered at a constant flow rate of 4.5 ml / min using a blood circuit incorporating the above filter device. The filtration is terminated when the blood in the blood bag is exhausted and the blood flow substantially stops.
7.3 cc of filtrate was obtained. The hematocrit value was measured as the volume of the red blood cell concentrate (hematocrit value 67%) and the filtrate before filtration, the leukocyte concentration and the red blood cell concentration, and the leukocyte removal rate and the red blood cell recovery rate were calculated according to the following equations (1) and (2). Leukocyte removal rate is 99.8%, red blood cell recovery rate is 9
It was 4.5%.
【0021】[0021]
【数1】 (Equation 1)
【0022】[0022]
【数2】 (Equation 2)
【0023】なお、濾過前液及び濾液の体積は、各々の
重量を比重1.075で割った値とした。また、白血球
濃度の測定は次の方法で行った。 濾過前液:チュルク液によって、10倍希釈した濾過前
液をバーカーチュルク型の血球計算板に注入し、光学顕
微鏡を用いて大区画4区画中に存在する白血球をカウン
トし、この値をnpre とした。 白血球濃度(濾過前)=npre ×0.25×105 個/mlThe volumes of the pre-filtration liquid and the filtrate were determined by dividing each weight by a specific gravity of 1.075. The measurement of leukocyte concentration was performed by the following method. Before filtration liquid: by Turk was poured filtered before solution diluted 10 times in a hemocytometer Barker Turk type, count the white blood cells present in the large compartment 4 in the compartment using an optical microscope, the value n pre And Leukocyte concentration (before filtration) = npre x 0.25 x 10 5 cells / ml
【0024】濾液:濾液100μlに溶血液(1.14
5%しゅう酸アンモニウム生理食塩液)200μl及び
蛍光染色液(69.9mg/1アクリジンオレンジ液)
30μlを加えて攪拌した後、この液をバーカーチュル
ク型の血球計算板1〜3枚に注入し、落射式の蛍光顕微
鏡を用いて大区画4〜54区画中に存在する白血球をカ
ウントし、この値をnpostとした。濾液の白血球濃度は
次の式数3で求めた。Filtrate: hemolyzed (1.14 in 100 μl of filtrate)
200 μl of 5% ammonium oxalate physiological saline) and a fluorescent staining solution (69.9 mg / 1 acridine orange solution)
After adding 30 μl and stirring, the solution was injected into 1 to 3 Barker-Turck-type hemacytometers, and the white blood cells present in the large compartments 4 to 54 were counted using an epi-illumination fluorescence microscope. The value was n post . The leukocyte concentration of the filtrate was determined by the following equation (3).
【0025】[0025]
【数3】 また、血液濾過時の圧損は50mmHgであった。(Equation 3) The pressure loss at the time of blood filtration was 50 mmHg.
【0026】[0026]
【比較例1】高分子材料がポリビニルホルマールからな
り、50μmの均一な平均孔径をもつ多孔質体を実施例
1と同様な条件下で実験を行った。その結果、白血球除
去率は55.3%、赤血球回収率は96.2%、圧損は
22mmHgであった。COMPARATIVE EXAMPLE 1 An experiment was conducted under the same conditions as in Example 1 for a porous body composed of polyvinyl formal as a polymer material and having a uniform average pore diameter of 50 μm. As a result, the leukocyte removal rate was 55.3%, the red blood cell recovery rate was 96.2%, and the pressure loss was 22 mmHg.
【0027】[0027]
【比較例2】高分子材料がポリビニルホルマールからな
り、8μmの均一な平均孔径をもつ多孔質体を実施例1
と同様な条件下で実験を行った。その結果、血球及び微
小凝集物による目詰まりが生じ、124ccしか回収さ
れなかった。白血球除去率は99.8%、赤血球回収率
は89.0%、圧損は500mmHg以上であった。Comparative Example 2 A porous material having a uniform average pore diameter of 8 μm in which the polymer material was polyvinyl formal was used in Example 1.
An experiment was performed under the same conditions as described above. As a result, clogging occurred due to blood cells and microaggregates, and only 124 cc was collected. The leukocyte removal rate was 99.8%, the red blood cell recovery rate was 89.0%, and the pressure loss was 500 mmHg or more.
【0028】[0028]
【比較例3】高分子材料がセルロースからなり、血液入
口側の平均孔径が300μmで血液出口側の平均孔径が
2μmの多孔質体を実施例1と同様な条件下で実験を行
った。その結果、血球及び微小凝集物による目詰まりが
生じ、78ccしか回収されなかった。白血球除去率は
98.6%、赤血球回収率は67.3%、圧損は500
mmHg以上であった。Comparative Example 3 An experiment was conducted under the same conditions as in Example 1 for a porous body having a polymer material made of cellulose and having an average pore diameter of 300 μm on the blood inlet side and an average pore diameter of 2 μm on the blood outlet side. As a result, clogging was caused by blood cells and microaggregates, and only 78 cc was collected. Leukocyte removal rate is 98.6%, red blood cell recovery rate is 67.3%, and pressure loss is 500.
mmHg or more.
【0029】[0029]
【比較例4】高分子材料がセルロースからなり、血液入
口側の平均孔径が500μmで血液出口側の平均孔径が
8μmの多孔質体を実施例1と同様な条件下で実験を行
った。その結果、白血球除去率は98.2%、赤血球回
収率は84.5%、圧損は380mmHg以上であっ
た。Comparative Example 4 An experiment was carried out under the same conditions as in Example 1 for a porous body composed of cellulose as the polymer material and having an average pore diameter of 500 μm on the blood inlet side and an average pore diameter of 8 μm on the blood outlet side. As a result, the leukocyte removal rate was 98.2%, the red blood cell recovery rate was 84.5%, and the pressure loss was 380 mmHg or more.
【0030】[0030]
【表1】 [Table 1]
【0031】表1に実施例1及び比較例1〜4につい
て、用いた多孔質体の種類、平均孔径、血液入口側と出
口側の平均孔径の比(孔径比)、白血球除去率(%)、
赤血球回収率(%)及び圧力損失を示す。赤血球製剤か
ら白血球は捕捉し、赤血球は通過させるフィルターの性
能としては、白血球除去率が90%以上、赤血球回収率
は85%以上が実用上必要である。また、濾過時間は短
い方が好ましいため圧力損失は、200mmHg以内が
良い。Table 1 shows the types of porous bodies used, the average pore diameter, the ratio of the average pore diameter on the blood inlet side to the outlet side (pore diameter ratio), and the leukocyte removal rate (%) for Example 1 and Comparative Examples 1 to 4. ,
Shows red blood cell recovery (%) and pressure loss. As the performance of a filter that captures white blood cells from a red blood cell preparation and allows red blood cells to pass, a leukocyte removal rate of 90% or more and a red blood cell recovery rate of 85% or more are practically necessary. Further, it is preferable that the filtration time is short, so that the pressure loss is preferably within 200 mmHg.
【0032】均一な平均孔径を有する多孔質体(孔径比
=1)をフィルター材料とした場合、白血球の除去率が
低い(比較例1)または血球による目詰まりが生じ、圧
力損失が増大する(比較例2)傾向にある。また、血液
出口側の平均孔径が小さく、入口側の平均孔径が大きい
場合、即ち、孔径比が100を超えると血液出口側での
血球目詰まりが生じ圧力損失が増大する傾向にある(比
較例3)。更に血液入口側の平均孔径が300μmを超
えると血液入口側での白血球の捕捉能が低下するため、
結果として白血球除去率の低下、血液出口側での目詰ま
りによる圧力損失の増加が見られる(比較例4)。これ
に対して実施例1に示す本発明のフィルター材料を用い
た場合、良好な白血球除去率、赤血球回収率を示し、か
つ圧力損失も低いことが判る。When a porous material having a uniform average pore size (pore size ratio = 1) is used as a filter material, the leukocyte removal rate is low (Comparative Example 1) or clogging with blood cells occurs, increasing pressure loss ( Comparative Example 2) There is a tendency. Further, when the average pore diameter on the blood outlet side is small and the average pore diameter on the inlet side is large, that is, when the pore diameter ratio exceeds 100, blood cell clogging on the blood outlet side tends to increase and the pressure loss tends to increase (Comparative Example). 3). Further, when the average pore diameter on the blood inlet side exceeds 300 μm, the ability to capture leukocytes on the blood inlet side decreases,
As a result, a decrease in the leukocyte removal rate and an increase in pressure loss due to clogging at the blood outlet side are observed (Comparative Example 4). On the other hand, when the filter material of the present invention shown in Example 1 was used, it was found that the white blood cell removal rate and the red blood cell recovery rate were good and the pressure loss was low.
【0033】[0033]
【実施例2】高分子材質がポリウレタンからなり、均一
な30μmと8μmの平均孔径をもつフィルター材料を
積層し、有効濾過面積が43×43mmの容器に充填し
た。この時のフィルター厚みは2mm、フィルター材の
表面積は0.98m2 であった。Example 2 A filter material composed of polyurethane as a polymer material and having uniform average pore diameters of 30 μm and 8 μm was laminated, and filled in a container having an effective filtration area of 43 × 43 mm. At this time, the filter thickness was 2 mm, and the surface area of the filter material was 0.98 m 2 .
【0034】遠心分離により分画された血小板濃厚液2
0単位(460cc)を上記のフィルター装置を組み込
んだ血液回路を用い、1.5m落差、5g/分の流速で
濾過した。濾過の終了は血液バッグ中の血液がなくな
り、血液の流れが実質的に停止した時点とし、440c
cの濾液を得た。濾過前の血小板濃厚液及び濾液の体
積、血小板濃度、白血球濃度を測定し、数1及び数4式
に従って白血球除去率、及び血小板回収率を求めたとこ
ろ、白血球除去率が99.9%、血小板回収率が91
%、圧力損失が26mmHgであった。Platelet concentrate 2 fractionated by centrifugation
0 units (460 cc) were filtered at a 1.5 m drop at a flow rate of 5 g / min using a blood circuit incorporating the above filter device. The end of the filtration is defined as a point in time when the blood in the blood bag is exhausted and the flow of the blood substantially stops.
The filtrate of c was obtained. The volume, platelet concentration, and leukocyte concentration of the platelet concentrate and the filtrate before filtration were measured, and the leukocyte removal rate and the platelet recovery rate were determined according to Equations 1 and 4, and the leukocyte removal rate was 99.9%. Recovery rate of 91
%, And the pressure loss was 26 mmHg.
【0035】[0035]
【数4】 (Equation 4)
【0036】濾過前の白血球濃度の測定は、チュルク液
で10倍に希釈後、光学顕微鏡観察により求め、濾過後
の白血球濃度はアクリジンオレンジを加え、1.1倍希
釈した検体を蛍光顕微鏡で白血球数をカウントして求め
た。血小板濃度の測定は、250000倍希釈した検体
を自動血球カウンターで測定して求めた。また、200
ml採血由来の濃厚血小板液1単位を処理した多孔質体
の実質表面積は0.049m2 であった。The leukocyte concentration before filtration was determined by diluting 10 times with the Turk's solution and then observing by optical microscopy. The leukocyte concentration after filtration was measured by adding acridine orange, and diluting the sample by 1.1 times with a fluorescence microscope. The number was counted and determined. The platelet concentration was determined by measuring a sample diluted 250,000 times with an automatic blood cell counter. Also, 200
The substantial surface area of the porous body treated with 1 unit of the concentrated platelet solution derived from ml blood collection was 0.049 m 2 .
【0037】[0037]
【比較例5】高分子材料がポリビニルホルマールからな
り、8μmの均一な平均孔径をもつ多孔質体を有効濾過
面積が21.5×21.5mmの容器に充填した。この
時のフィルター厚みは1mm、フィルター材の表面積は
0.14m2 であった。Comparative Example 5 A porous material having a uniform average pore diameter of 8 μm was filled in a container having an effective filtration area of 21.5 × 21.5 mm. At this time, the filter thickness was 1 mm, and the surface area of the filter material was 0.14 m 2 .
【0038】遠心分離により分画された血小板濃厚液3
単位(60cc)を実施例2と同様な血液回路で処理し
たところ、目詰まりが生じ、20ccの濾液しか回収さ
れなかった。数1及び数4式に従って、白血球除去率、
及び血小板回収率を求めたところ、白血球除去率が9
8.8%、血小板回収率が11%、圧力損失が425m
mHgであった。また、200ml採血由来の濃厚血小
板液1単位を処理した多孔質体の実質表面積は0.04
7m2 であった。Platelet concentrate 3 fractionated by centrifugation
When the unit (60 cc) was treated in the same blood circuit as in Example 2, clogging occurred and only 20 cc of filtrate was collected. According to Equations 1 and 4, the leukocyte removal rate,
When the platelet recovery rate was determined, the leukocyte removal rate was 9%.
8.8%, platelet recovery rate 11%, pressure loss 425m
mHg. In addition, the substantial surface area of the porous body treated with 1 unit of the concentrated platelet solution derived from 200 ml of blood was 0.04.
7 m 2 .
【0039】[0039]
【比較例6】高分子材料がポリビニルホルマールからな
り、8μmの均一な平均孔径をもつ多孔質体を比較例5
と同様な容器に充填した。これに2−ヒドロキシエチル
メタクリレート(HEMA)とジメチルアミノエチルメ
タクリレート(DM)からなるポリマー(HEMA:D
M=97:3,HM−3と略す)の1%エタノール溶液
を入れ、窒素を21/分の流速で20分間流して余分な
ポリマー液を取り除き、更に40℃で15時間コーティ
ング後の容器を真空乾燥した。Comparative Example 6 A porous material having a uniform average pore diameter of 8 μm was used as a comparative example.
And filled in the same container. A polymer (HEMA: D) composed of 2-hydroxyethyl methacrylate (HEMA) and dimethylaminoethyl methacrylate (DM)
M = 97: 3, abbreviated as HM-3) in 1% ethanol solution, nitrogen was flowed at a flow rate of 21 / min for 20 minutes to remove excess polymer liquid, and the container after coating was further coated at 40 ° C. for 15 hours. Vacuum dried.
【0040】上記容器を血液回路に組み込み、比較例5
と同様な操作で200ml採血由来血小板濃厚液3単位
(60cc)を処理し、白血球除去率、及び血小板回収
率を求めたところ、白血球除去率が99.7%、血小板
回収率が65.0%であった。また、圧力損失が278
mmHgであり、200ml採血由来血小板濃厚液1単
位を処理した多孔質体の実質表面積は0.047m2 で
あった。Comparative Example 5
3 units (60 cc) of a 200 ml blood-collected platelet concentrate were treated in the same manner as described above, and the leukocyte removal rate and platelet recovery rate were determined. The leukocyte removal rate was 99.7% and the platelet recovery rate was 65.0%. Met. Further, the pressure loss is 278.
mmHg, and the real surface area of the porous body treated with 1 unit of 200 ml blood-collected platelet concentrate was 0.047 m 2 .
【0041】[0041]
【0042】[0042]
【比較例7】高分子材料がセルロースからなり、均一な
250μmと2μmの平均孔径をもつフィルター材料を
積層し、HM−3ポリマーを比較例6と同様な操作でコ
ーティングした後、比較例5、6と同様な血液回路で2
00ml採血由来血小板濃厚液3単位を処理したところ
目詰まりが生じ、37ccしか回収できなかった。白血
球除去率、血小板回収率を求めたところ、白血球除去率
が98.6%、血小板回収率が23.4%であった。ま
た、圧力損失が389mmHgであり、200ml採血
由来血小板濃厚液1単位を処理した多孔質体の実質表面
積は0.034m2であった。COMPARATIVE EXAMPLE 7 A polymer material comprising cellulose, a filter material having a uniform average pore diameter of 250 μm and 2 μm was laminated, and HM-3 polymer was coated in the same manner as in Comparative Example 6. Blood circuit similar to 6 and 2
When 3 units of the platelet concentrate from 00 ml of blood was treated, clogging occurred and only 37 cc could be collected. When the leukocyte removal rate and the platelet recovery rate were determined, the leukocyte removal rate was 98.6% and the platelet recovery rate was 23.4%. In addition, the pressure loss was 389 mmHg, and the substantial surface area of the porous body treated with 1 unit of 200 ml of blood-collected platelet concentrate was 0.034 m 2 .
【0043】[0043]
【実施例3】高分子材質がポリビニルホルマールからな
り、均一な50μmと30μmと8μmの平均孔径をも
つフィルター材料を積層し、HM−3ポリマーを比較例
6と同様な操作でコーティングした後、比較例5〜7と
同様な血液回路で200ml採血由来血小板濃厚液3単
位を処理し、白血球除去率、血小板回収率を求めたとこ
ろ、白血球除去率が99.6%、血小板回収率が93.
2%であった。また、圧力損失が20mmHgであり、
200ml採血由来血小板濃厚液1単位を処理した多孔
質体の実質表面積は0.062m2であった。Example 3 A polymer material made of polyvinyl formal, filter materials having uniform average pore diameters of 50 μm, 30 μm and 8 μm were laminated, and HM-3 polymer was coated in the same manner as in Comparative Example 6, and then compared. The same blood circuit as in Examples 5 to 7 was used to treat 3 units of 200 ml blood-derived platelet concentrate to determine the leukocyte removal rate and platelet recovery rate. The leukocyte removal rate was 99.6%, and the platelet recovery rate was 93.
2%. Further, the pressure loss is 20 mmHg,
The substantial surface area of the porous body treated with 1 unit of 200 ml of blood-derived platelet concentrate was 0.062 m 2 .
【0044】[0044]
【表2】 PU:ポリウレタン PVF:ポリビニルホルマール 孔径比=血液入口側の平均孔径/血液出口側の平均孔径[Table 2] PU: polyurethane PVF: polyvinyl formal Pore size ratio = Average pore size on the blood inlet side / Average pore size on the blood outlet side
【0045】表2に実施例2、3及び比較例5〜7につ
いて、用いた多孔質体の種類、平均孔径、血液入口側と
出口側の平均孔径の比(孔径比)、HM−3コーティン
グの有無、白血球除去率(%)、血小板回収率(%)、
200ml採血由来血小板濃厚液1単位を処理した時の
多孔質体の表面積及び圧力損失を示す。Table 2 shows, for Examples 2 and 3 and Comparative Examples 5 to 7 , the type of porous material used, the average pore size, the ratio of the average pore size on the blood inlet side to the outlet side (pore size ratio), and the HM-3 coating. Presence, leukocyte removal rate (%), platelet collection rate (%),
2 shows the surface area and pressure loss of a porous body when one unit of a 200 ml blood-collected platelet concentrate was treated.
【0046】血小板濃厚液から白血球は捕捉し、血小板
は通過させるフィルターの性能としては、白血球除去率
が90%以上、血小板回収率は85%以上が実用上必要
である。また、濾過時間は短い方が好ましいため圧力損
失は、200mmHg以内が良い。As a filter that captures leukocytes from a platelet concentrate and allows platelets to pass through, a leukocyte removal rate of 90% or more and a platelet recovery rate of 85% or more are practically necessary. Further, it is preferable that the filtration time is short, so that the pressure loss is preferably within 200 mmHg.
【0047】比較例5及び6は8μmの均一な平均孔径
をもつ多孔質体を充填したフィルター装置であって、フ
ィルター材料表面での目詰まりが起こり易い傾向があ
り、圧力損失が高い、フィルター材料への血小板粘着を
抑制し、血小板通過性を高める目的で親水性の高いHM
−3ポリマーをコーティングした比較例6のフィルター
は比較例5のフィルターより圧力損失が緩和されている
ものの血小板損失がまだ高い。HM−3ポリマーをコー
ティングすることにより、材料表面は親水化され、血球
の通過性は増加する。しかし用いた多孔質体の平均孔径
が8μmと均一なため、白血球や微小凝集物のフィルタ
ー材料表面での付着を抑制するには不十分であり、血液
入口側での血球や微小凝集物付着により血小板が通過す
べき孔路が狭められ、或いは閉塞されるため血小板回収
率が低下し、圧力損失も高いと考えられる。比較例7は
血液入口側の平均孔径と血液出口側の平均孔径の比が1
25と大きいため、血液出口側での血球目詰まりが誘発
された例である。Comparative Examples 5 and 6 are filter devices filled with a porous material having a uniform average pore diameter of 8 μm. The filter device has a tendency to cause clogging on the surface of the filter material, and has a high pressure loss. HM with high hydrophilicity for the purpose of suppressing platelet adhesion to platelets and enhancing platelet permeability
The filter of Comparative Example 6 coated with -3 polymer has a lower pressure loss than the filter of Comparative Example 5, but still has a higher platelet loss. By coating the HM-3 polymer, the surface of the material is hydrophilized and the permeability of blood cells is increased. However, the average pore diameter of the used porous material is uniform at 8 μm, which is not enough to suppress the adhesion of leukocytes and microaggregates on the surface of the filter material. platelets are narrowed to be hole path passes, or platelet recovery rate to be closed is reduced, it is thought to be higher pressure loss. In Comparative Example 7, the ratio of the average pore diameter on the blood inlet side to the average pore diameter on the blood outlet side was 1
This is an example in which clogging of blood cells on the blood outlet side is induced because of being as large as 25.
【0048】[0048]
【発明の効果】本発明の白血球選択除去フィルター装置
は、血液の入口と出口を有する容器内に充填した多孔質
体の平均孔径、血液入口側の平均孔径、血液出口側の平
均孔 径、入口側平均孔径/出口側平均孔径がそれぞれ最
も好ましい範囲である、3〜100μm、25〜100
μm、3〜15μm、2〜25倍に特定され、さらに血
液の入口から出口に向かって多孔質体の平均孔径が実質
的に連続的または段階的に減少している点に特徴を有す
ことから、圧力損失を増大させることなく単位体積当た
りの白血球除去能を高めることができ、また小型化が可
能となる。The filter device for selectively removing leukocytes according to the present invention comprises a porous material filled in a container having an inlet and an outlet for blood.
The average pore size of the body, the average pore size on the blood entry side, and the flatness on the blood exit side.
Hitoshiana diameter, the inlet-side average pore size / outlet average pore size respectively top
Is also a preferred range, 3 to 100 μm, 25 to 100
μm, 3 to 15 μm, 2 to 25 times, and the average pore diameter of the porous body decreases substantially continuously or stepwise from the inlet to the outlet of blood. Because of the feature, the leukocyte removal ability per unit volume can be increased without increasing the pressure loss, and the size can be reduced.
フロントページの続き (56)参考文献 特開 平3−173825(JP,A) 特開 昭54−66589(JP,A) 特開 昭64−75014(JP,A) 特表 平3−502094(JP,A) (58)調査した分野(Int.Cl.7,DB名) A61M 1/02 A61M 1/34 B01D 15/08 Continuation of the front page (56) References JP-A-3-173825 (JP, A) JP-A-54-66589 (JP, A) JP-A-64-7514 (JP, A) , A) (58) Field surveyed (Int. Cl. 7 , DB name) A61M 1/02 A61M 1/34 B01D 15/08
Claims (1)
する多孔質体を血液の入口と出口を有する容器内に充填
したフィルター装置であって、血液の入口から出口に向
かって多孔質体の平均孔径が実質的に連続的または段階
的に減少しており、且つ該多孔質体の血液入口側の平均
孔径は25〜100μm、血液出口側の平均孔径は3〜
15μmであり、血液入口側平均孔径が血液出口側平均
孔径の3〜25倍であることを特徴とする白血球選択除
去フィルター装置。1. A filter device in which a porous body having continuous pores having an average pore diameter of 3 to 100 μm is filled in a vessel having an inlet and an outlet for blood, wherein the porous body is moved from the inlet to the outlet of the blood. Is substantially continuously or stepwise reduced, and the average pore diameter of the porous body on the blood inlet side is 25 to 100 μm , and the average pore diameter on the blood outlet side is 3 to
15 μm, and the blood inlet side average pore diameter is the blood outlet side average
A selective leukocyte removal filter device having a pore diameter of 3 to 25 times .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35799191A JP3209556B2 (en) | 1991-08-22 | 1991-12-27 | Leukocyte selective removal filter device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23370291 | 1991-08-22 | ||
JP3-233702 | 1991-08-22 | ||
JP35799191A JP3209556B2 (en) | 1991-08-22 | 1991-12-27 | Leukocyte selective removal filter device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05168711A JPH05168711A (en) | 1993-07-02 |
JP3209556B2 true JP3209556B2 (en) | 2001-09-17 |
Family
ID=26531163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35799191A Expired - Fee Related JP3209556B2 (en) | 1991-08-22 | 1991-12-27 | Leukocyte selective removal filter device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3209556B2 (en) |
-
1991
- 1991-12-27 JP JP35799191A patent/JP3209556B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05168711A (en) | 1993-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0502213B1 (en) | A method for removing leukocytes and a filter system for removing the same | |
US5665233A (en) | Filter apparatus for selectively removing leukocytes | |
JP3435494B2 (en) | Leukocyte removal filter and system for leukocyte removal of body fluid | |
EP2633871B1 (en) | Novel leucocyte removal filter | |
KR0129797B1 (en) | Fitermaterial, apparatus and method for removing leukocytes | |
KR100876819B1 (en) | Method of removing leukocyte | |
EP1356855B1 (en) | Filter for processing blood and process for producing the same | |
WO1999000172A1 (en) | Leukapheretic filter medium | |
WO2015088019A1 (en) | Leukocyte removal filter material and leukocyte removal method | |
EP1507577A1 (en) | Leukocyte filter construction and a method of use thereof | |
EP1016426A1 (en) | Leukocyte-removing filter material | |
JP3176752B2 (en) | Blood filtration material | |
EP3501561A1 (en) | Filter element for blood treatment filter, blood treatment filter, and leukocyte removal method | |
JP3270125B2 (en) | Leukocyte trapping material | |
JP3461359B2 (en) | Leukocyte removal filter system and leukocyte removal method | |
JP3209556B2 (en) | Leukocyte selective removal filter device | |
JP2918595B2 (en) | White blood cell separator | |
JP3657013B2 (en) | Leukocyte removal filter material, leukocyte removal apparatus and leukocyte removal method | |
JPH0720872B2 (en) | Leukocyte removal filter and leukocyte removal method | |
JP4384823B2 (en) | Leukocyte removal filter device and leukocyte removal method | |
JPH11290060A (en) | Cell separation filter suitable for recovering cell, cell separation system and separation of cell | |
JPH01236064A (en) | White blood cell capturing filter | |
JP4148309B2 (en) | Fine aggregate removal filter material | |
JP2001347116A (en) | White blood cell removing filter device | |
JPH09122231A (en) | Hollow thread membrane type white blood cell removing filter device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080713 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080713 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090713 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090713 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090713 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090713 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |