JP3295008B2 - Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties - Google Patents
Manufacturing method of non-oriented electrical steel sheet with excellent magnetic propertiesInfo
- Publication number
- JP3295008B2 JP3295008B2 JP34121196A JP34121196A JP3295008B2 JP 3295008 B2 JP3295008 B2 JP 3295008B2 JP 34121196 A JP34121196 A JP 34121196A JP 34121196 A JP34121196 A JP 34121196A JP 3295008 B2 JP3295008 B2 JP 3295008B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- alloy
- oriented electrical
- electrical steel
- magnetic properties
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Continuous Casting (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、磁気特性の優れ
た無方向性電磁鋼板の製造方法に関し、特に鋼板中の析
出物、介在物の組成および形態を制御することにより、
鉄損特性の有利な改善を図ろうとするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties, and in particular, by controlling the composition and morphology of precipitates and inclusions in the steel sheet.
It is intended to improve the iron loss characteristics advantageously.
【0002】[0002]
【従来の技術】一般に、無方向性電磁鋼板で最も重要と
される特性は、鉄損であるが、この鉄損は、冷間圧延後
の仕上げ焼鈍によって得られる再結晶粒径に大きく依存
し、低鉄損の製品を得るためには、基本的に結晶粒径を
大きくすることが必要とされる。もっとも低い鉄損は、
再結晶粒径が 150〜250 μm のときに得られることが知
られている。2. Description of the Related Art In general, the most important characteristic of non-oriented electrical steel sheets is iron loss, which greatly depends on the recrystallized grain size obtained by finish annealing after cold rolling. In order to obtain a product with low iron loss, it is basically necessary to increase the crystal grain size. The lowest iron loss is
It is known that it can be obtained when the recrystallized grain size is 150 to 250 μm.
【0003】ここに、結晶粒の成長性は、鋼中に分散す
る第2相、すなわち析出物や介在物の影響が大きく、そ
の成分やサイズ分布、分散状態に大きく左右される。従
って、かかる粒径に再結晶させるためには、窒化物、硫
化物のような微細な析出物を極力低減することが有効で
ある。[0003] Here, the growth of crystal grains is greatly affected by the second phase dispersed in the steel, ie, precipitates and inclusions, and is greatly influenced by the components, size distribution, and dispersion state. Therefore, in order to recrystallize to such a particle size, it is effective to reduce fine precipitates such as nitrides and sulfides as much as possible.
【0004】しかしながら、現在の工業的技術レベルに
おいて、鋼材中の析出物、介在物を粒成長性に影響しな
い程度まで低減させた高清浄鋼を溶製することは極めて
難しく、また汎用の実用材料の製造に際してはコストの
問題も無視できないため、かような高清浄鋼の溶製は実
質的に不可能であった。[0004] However, at the current level of industrial technology, it is extremely difficult to melt high-purity steel in which precipitates and inclusions in the steel are reduced to such an extent that the grain growth is not affected, and general-purpose practical materials are used. In the production of steel, the problem of cost cannot be neglected, and it is substantially impossible to melt such high-purity steel.
【0005】そのため、鋼中にはある程度の析出物、介
在物の残留が避けられず、それに起因して磁気特性の劣
化を余儀なくされていた。特にMnS、AlN等の比較的固
溶温度の低い析出物が形成された場合には、スラブ加熱
や熱延板焼鈍、冷延後の再結晶焼鈍等の過程で一旦固溶
した後、冷却の段階で微細に再析出し、かかる微細析出
物は粒成長抑制効果が非常に大きいため、磁気特性を著
しく劣化させていた。[0005] For this reason, some precipitates and inclusions remain in the steel inevitably, resulting in the deterioration of the magnetic properties. In particular, when precipitates having a relatively low solid solution temperature such as MnS and AlN are formed, they are once dissolved in the process of slab heating, hot-rolled sheet annealing, recrystallization annealing after cold rolling, etc., and then cooled. The fine precipitates are re-precipitated finely at a stage, and since such fine precipitates have a very large effect of suppressing grain growth, the magnetic properties are remarkably deteriorated.
【0006】この固溶・再析出を避ける手段としては、
スラブ加熱温度や熱延板焼鈍温度、冷延後の再結晶焼鈍
温度を低温化する方法がある。しかしながら、スラブ加
熱温度の低温化は、析出物の固溶を防止する効果はある
ものの、それに伴って熱延温度も低下するため、圧延が
困難になるだけでなく、熱延板に未再結晶部が残った
り、再結晶しても粒径が小さいので、その後の冷延、再
結晶による製品板の集合組織が劣化し、無方向性電磁鋼
板の製品特性にとって好ましくない。同様に、熱延板焼
鈍温度を低くする方法においても、再結晶や粒成長が不
十分となり、製品板の集合組織の劣化が避けられない。
さらに、再結晶焼鈍温度を低くした場合には、低温のた
めにかえって粒成長速度が遅くなり、限られた焼鈍時間
では十分な粒径が得られない。このように、析出物を固
溶・再析出させることなしに磁気特性の良好な製品を得
るには限界があり、実質的に特段の効果は期待できな
い。As means for avoiding this solid solution and reprecipitation,
There is a method of lowering the slab heating temperature, the hot rolled sheet annealing temperature, and the recrystallization annealing temperature after cold rolling. However, although lowering the slab heating temperature has the effect of preventing solid solution of precipitates, it also lowers the hot rolling temperature, which not only makes rolling difficult, but also makes the hot rolled sheet unrecrystallized. Since the grain size is small even if a part remains or is recrystallized, the texture of the product sheet is deteriorated by subsequent cold rolling and recrystallization, which is not preferable for the product characteristics of the non-oriented electrical steel sheet. Similarly, in the method of lowering the annealing temperature of the hot-rolled sheet, recrystallization and grain growth become insufficient, and deterioration of the texture of the product sheet is inevitable.
Further, when the recrystallization annealing temperature is lowered, the grain growth rate is rather lowered due to the low temperature, and a sufficient grain size cannot be obtained with a limited annealing time. As described above, there is a limit in obtaining a product having good magnetic properties without dissolving and re-precipitating a precipitate, and no particular effect can be expected.
【0007】また、析出物等の悪弊を回避する手段とし
て、析出物の形態を制御する方法があるが、かような析
出物の形態制御方法としては、鋼中Sを REMサルファイ
ドやSbサルファイド等の固溶温度の高い析出物として固
定する方法(特開昭51-62115号公報)や、REM と同様に
Caを用いてSを固定する方法(特公昭58-17248号公報、
特公昭58-17249号公報および特開昭59-74213号公報)、
Zrを添加する方法(特公平1-52448号公報、特開昭51-6
0624号公報)等があるAs a means for avoiding the adverse effects of precipitates, there is a method of controlling the form of precipitates. As such a method of controlling the form of precipitates, S in steel is converted to REM sulfide, Sb sulfide, or the like. Method of fixing as a precipitate having a high solid solution temperature (JP-A-51-62115)
Method for fixing S using Ca (Japanese Patent Publication No. 58-17248,
JP-B-58-17249 and JP-A-59-74213),
Method of adding Zr (Japanese Patent Publication No. 1-52448, JP-A-51-6)
0624)
【0008】しかしながら、これらの方法で十分な効果
を得るためには、高価な副原料を多量に添加する必要が
あり、製品のコストアップが大きな問題となる。それば
かりか、 REMサルファイドは(REM, Mn, Al, Si)(O, S)
のように非常に複雑な析出形態をとる上に、溶融中で浮
上しにくく、鋼中に多量に残留する欠点もある。従っ
て、 REMサルファイド (主にCeサルファイド)単体での
固溶温度は高くても、実際は複合析出物であるため、部
分的に固溶・再析出する。[0008] However, in order to obtain a sufficient effect by these methods, it is necessary to add a large amount of expensive auxiliary materials, which raises a problem of an increase in product cost. Not only that, REM sulfide is (REM, Mn, Al, Si) (O, S)
In addition to the fact that it takes a very complicated precipitation form as described above, it is difficult to float during melting and has a disadvantage that it remains in a large amount in steel. Therefore, even though the solid solution temperature of REM sulfide (mainly Ce sulfide) alone is high, it is actually a composite precipitate, and partially solid solution and reprecipitate.
【0009】また、Caを用いた方法においても、析出物
がAl(O, N)+(Ca, Mn)(S, O)のような非常に複雑な形態
をとるため、同様に粒成長に対して完全に無害とは言い
難く、特に低鉄損を指向した高級な無方向性電磁鋼板の
製造に際しては問題となっていた。また、特に特開昭59
-74213号公報においては、製鋼炉で溶製された溶鋼の取
鍋精錬に当たり、まずSiおよびAlを添加して十分に脱酸
し、その脱酸溶鋼中にCa合金と脱硫フラックスとを混合
添加して脱硫する方法が提案されているが、高コストに
対しては十分な効果が得られていない。Also, in the method using Ca, since the precipitate takes a very complicated form such as Al (O, N) + (Ca, Mn) (S, O), similarly, the grain growth also takes place. On the other hand, it is hard to say that it is completely harmless, and this has been a problem particularly in the production of high-grade non-oriented electrical steel sheets aimed at low iron loss. In particular, Japanese Unexamined Patent Publication No.
According to JP-74213, in ladle refining of molten steel smelted in a steelmaking furnace, first, Si and Al are added and deoxidized sufficiently, and a Ca alloy and a desulfurization flux are mixed and added to the deoxidized molten steel. Although a method of desulfurizing by using the method has been proposed, a sufficient effect has not been obtained for high cost.
【0010】[0010]
【発明が解決しようとする課題】上記したように、無方
向性電磁鋼板において良好な磁気特性を得るためには、
十分な粒成長性を確保する必要があり、それに影響する
析出物を制御することが重要なのであるが、現在までの
ところ、工業的レベルで有効かつ安価な製造方法は開発
されていない。この発明は、上記の問題を有利に解決す
るもので、従来に比べて、安価かつ効果的に硫化物系介
在物を制御することによって、粒成長性を向上ならし
め、もって鉄損特性の一層の向上を達成した無方向性電
磁鋼板の有利な製造方法を提案することを目的とする。As described above, in order to obtain good magnetic properties in a non-oriented electrical steel sheet,
It is necessary to ensure sufficient grain growth, and it is important to control the precipitates affecting the grain growth. However, up to now, an effective and inexpensive production method at an industrial level has not been developed. The present invention advantageously solves the above-mentioned problems, and controls the sulfide-based inclusions inexpensively and effectively as compared with the prior art, thereby improving the grain growth and thereby further improving the iron loss characteristics. It is an object of the present invention to propose an advantageous method for producing a non-oriented electrical steel sheet that has achieved an improvement.
【0011】[0011]
【課題を解決するための手段】以下、この発明の解明経
緯について説明する。さて、発明者らは、Ca合金の添加
量およびCa合金と脱硫フラックスとの混合比について検
討したところ、特開昭59-74213号公報のように、溶鋼t
当たり1kg以上もの大量のCa合金を添加しなくても、Ca
合金と脱硫フラックスの混合比を適切な範囲に規制して
やれば、むしろ1kg/t未満で最大の効果が得られること
の知見を得た。この発明は、上記の知見に立脚するもの
である。The details of the invention will be described below. By the way, the present inventors examined the addition amount of Ca alloy and the mixing ratio of Ca alloy and desulfurization flux. As described in Japanese Patent Application Laid-Open No. 59-74213,
Even without adding a large amount of Ca alloy as much as 1 kg per
It has been found that if the mixing ratio of the alloy and the desulfurization flux is restricted to an appropriate range, the maximum effect can be obtained with less than 1 kg / t. The present invention is based on the above findings.
【0012】すなわち、この発明は、 C:0.01wt%以下、 Si:3.5 wt%以下、 Mn:1.5 wt%以下、 Al:2.5 wt%以下、 S:0.01wt%以下、 P:0.1 wt%以下 を含有する組成になる溶鋼を、連続鋳造によりスラブと
した後、熱間圧延、冷間圧延ついで仕上げ焼鈍を施して
無方向性電磁鋼板を製造するに当たり、連続鋳造完了ま
での間に、Ca合金と脱硫フラックスとを混合添加して脱
硫するものとし、その際、Ca合金の添加量を 0.2kg/t以
上、 1.0kg/t未満とし、かつCa合金と脱硫フラックスと
の添加量比を重量比で、0.50≦Ca合金/脱硫フラックス
≦5.0 の範囲に規制することを特徴とする磁気特性に優
れた無方向電磁鋼板の製造方法である。That is, the present invention provides: C: 0.01 wt% or less, Si: 3.5 wt% or less, Mn: 1.5 wt% or less, Al: 2.5 wt% or less, S: 0.01 wt% or less, P: 0.1 wt% or less After forming molten steel having a composition containing, into a slab by continuous casting, hot rolling, cold rolling and then finish annealing to produce a non-oriented electrical steel sheet, until the completion of continuous casting, Ca alloy And desulfurization flux are mixed and desulfurized.At this time, the addition amount of Ca alloy is 0.2 kg / t or more and less than 1.0 kg / t, and the addition ratio of Ca alloy and desulfurization flux is weight ratio. A method for producing a non-oriented electrical steel sheet having excellent magnetic properties, characterized by restricting the range of 0.50 ≦ Ca alloy / desulfurization flux ≦ 5.0.
【0013】[0013]
【発明の実施の形態】以下、この発明を由来するに至っ
た実験結果に基づいて具体的に説明する。図1に、Ca合
金の添加量が 3.0, 0.9, 0.5 kg/t のとき、Ca合金とフ
ラックスとの添加量比が鉄損改善に及ぼす影響について
調査した結果を示す。なお、縦軸の鉄損比は、Ca合金の
添加量が 0.5 kg/t で、かつCa合金とフラックスの添加
量比を1:1としたときの鉄損W15/50 を 1.0として、
これに対する比で示した。同図から明らかなように、Ca
合金の添加量が1kg/t未満で、かつCa合金/フラックス
添加量比が 0.5〜5.0 のとき、特に良好な鉄損特性が得
られている。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described based on experimental results which have led to the present invention. FIG. 1 shows the results of an investigation on the effect of the addition ratio of the Ca alloy and the flux on iron loss improvement when the addition amount of the Ca alloy is 3.0, 0.9, and 0.5 kg / t. The iron loss ratio on the vertical axis is defined as 1.0, with the iron loss W 15/50 when the addition amount of Ca alloy is 0.5 kg / t and the addition amount ratio of Ca alloy and flux is 1: 1.
The ratio to this is shown. As is clear from FIG.
Particularly good iron loss characteristics are obtained when the addition amount of the alloy is less than 1 kg / t and the Ca alloy / flux addition amount ratio is 0.5 to 5.0.
【0014】次に、図2に、Ca合金/フラックス添加量
比が 0.3のときのCa合金添加量と鉄損特性との関係につ
いて調べた結果を示す。同図より明らかなように、Ca合
金の添加量が 0.2kg/t以上、 1.0kg/t未満の時にとりわ
け良好な鉄損特性が得られた。Next, FIG. 2 shows the results of a study on the relationship between the Ca alloy addition amount and the iron loss characteristics when the Ca alloy / flux addition amount ratio is 0.3. As is clear from the figure, particularly good iron loss characteristics were obtained when the addition amount of the Ca alloy was 0.2 kg / t or more and less than 1.0 kg / t.
【0015】この発明によって、鉄損が低減する理由に
ついては、必ずしも明確に解明されたわけではないが、
発明者らは次のように考えている。すなわち、Ca合金添
加量を1kg/t未満と少量に抑えることによって、最終製
品中に残留する磁気特性にとって有害なCaの析出物を最
小限に抑制でき、またCa合金とフラックスとの添加量比
を適切な範囲に制限することによって、最も有害な硫化
物の微細な析出が最小限にくい止められたことによるも
のと考えられる。Although the reason why the present invention reduces iron loss has not always been clearly elucidated,
The inventors consider as follows. That is, by keeping the Ca alloy addition amount to a small amount of less than 1 kg / t, Ca precipitates harmful to the magnetic properties remaining in the final product can be suppressed to a minimum, and the addition ratio of the Ca alloy to the flux can be minimized. It is considered that by restricting to an appropriate range, the finest precipitation of the most harmful sulfides was hardly minimized.
【0016】次に、この発明において素材成分を前記の
範囲に限定した理由について説明する。 C:0.01wt%以下 Cは、γ域を拡大し、α−γ変態点を低下させる。焼鈍
中にγ相がα粒界にフィルム状に生成しα粒の成長を抑
制するため、Cは基本的に少なくする必要がある。ま
た、SiやAl等のα相安定化元素を多量に含有し、全温度
域でγ相が生成しない場合でも鉄損特性の時効劣化を引
き起こすので、C含有量は0.01wt%以下とする必要があ
る。なお、下限は特に限定されないが、コスト等の面か
ら0.0005wt%以上とすることが望ましい。Next, the reason why the material components are limited to the above ranges in the present invention will be described. C: 0.01 wt% or less C expands the γ region and lowers the α-γ transformation point. During annealing, the γ phase is formed in the form of a film at the α grain boundary to suppress the growth of the α grains, so that C must be basically reduced. Also, C content should be 0.01 wt% or less because it contains a large amount of α-phase stabilizing elements such as Si and Al, and causes aging deterioration of iron loss characteristics even when γ-phase is not generated in all temperature ranges. There is. The lower limit is not particularly limited, but is preferably 0.0005 wt% or more from the viewpoint of cost and the like.
【0017】Si:3.5 wt%以下 Siは、鋼の比抵抗を高め鉄損を低下させる有用元素であ
り、目標とする磁気特性に応じて含有量を変化させる。
しかしながら、同時に硬度も上昇させ、冷間圧延性を悪
化させるので、上限を 3.5wt%とした。なお、下限は特
に定めるものではないが、比抵抗を高める観点から0.05
wt%以上含有させることが望ましい。Si: 3.5 wt% or less Si is a useful element that increases the specific resistance of steel and reduces iron loss, and changes the content according to target magnetic properties.
However, at the same time, the hardness is increased and the cold rollability is deteriorated. Therefore, the upper limit is set to 3.5 wt%. Although the lower limit is not particularly defined, it is 0.05 from the viewpoint of increasing the specific resistance.
It is desirable to contain at least wt%.
【0018】Al:2.5 wt%以下 Alは、Siと同様に、鋼の比抵抗を高め鉄損を低下させる
元素であり、目標とする磁気特性に応じて含有量を変化
させる。しかしながら、その含有量が多い場合には連続
鋳造時にモールドとの潤滑性が低下し、鋳造が困難とな
るので、上限を2.5 wt%に定めた。Al: 2.5 wt% or less Al, like Si, is an element that increases the specific resistance of steel and reduces iron loss, and changes the content according to target magnetic properties. However, when the content is large, the lubricity with the mold decreases during continuous casting, and casting becomes difficult. Therefore, the upper limit is set to 2.5 wt%.
【0019】Mn:1.5 wt%以下 Mnも、SiやAlほどではないが鋼の比抵抗を高め、鉄損を
低下させる効果があり、また熱間圧延性を改善する効果
もある。しかしながら、多量に含有すると冷間圧延性が
劣化するので、上限を 1.5wt%に定めた。Mn: 1.5 wt% or less Mn also has the effect of increasing the specific resistance of the steel and reducing iron loss, though not as much as that of Si and Al, and also has the effect of improving hot rolling properties. However, if contained in large amounts, the cold rollability deteriorates, so the upper limit was set to 1.5 wt%.
【0020】S:0.01wt%以下 Sは、析出物、介在物を形成し粒成長性を阻害するの
で、極力低減すべき元素である。この発明は、Ca合金を
脱硫に用い、Sの析出形態を制御するによってSを無害
化するものであるが、鋼中における残存量が多い場合に
は、介在物の粒子数が増え、またSを固定するためのCa
が相対的に不足すると介在物中のMnSの割合が増え、や
はり粒成長性に悪影響を及ぼすので、Sは0.01wt%以下
まで低減するものとした。S: 0.01 wt% or less S is an element to be reduced as much as possible because it forms precipitates and inclusions and inhibits grain growth. The present invention uses Ca alloy for desulfurization and makes S harmless by controlling the precipitation form of S. However, when the residual amount in steel is large, the number of particles of inclusions increases, and Ca for fixing
If the content is relatively insufficient, the proportion of MnS in the inclusions increases, which also has an adverse effect on the grain growth. Therefore, the content of S was reduced to 0.01 wt% or less.
【0021】P:0.1 wt%以下 Pも、SiやAlほどではないが鋼の比抵抗を高め、鉄損を
低下させる効果があるだけでなく、粒界偏析により冷延
再結晶後の集合組織を改善して磁束密度を向上させる効
果がある。しかしながら、過度に添加すると粒界偏析量
が多くなってかえって粒成長性を阻害し鉄損を劣化させ
るので、0.1 wt%以下で含有させるものとした。P: 0.1 wt% or less P, although not as effective as Si or Al, has the effect of increasing the specific resistance of steel and reducing iron loss, and also has a texture after cold rolling recrystallization due to grain boundary segregation. To improve the magnetic flux density. However, if added excessively, the amount of grain boundary segregation increases, which rather inhibits grain growth and degrades iron loss. Therefore, the content is set to 0.1 wt% or less.
【0022】以上、必須成分について説明したが、その
他にも各種の公知元素を添加することが可能であり、例
えば磁気特性改善成分としてB,Ni, Cu, Sn, Biおよび
Ge等を添加することができる。Although the essential components have been described above, various other known elements can be added. For example, B, Ni, Cu, Sn, Bi and
Ge or the like can be added.
【0023】また、使用するCa合金としては、金属カル
シウムを鉄製フープで被覆したワイヤー状のもの、また
はカルシウムシリコン合金をインジェクションに適した
寸法に粒度調整したもの等が好適である。一方、脱硫フ
ラックスとしては、石灰 (CaO)、フッ化カルシウム (Ca
F)、ソーダ灰 (Na2CO3) など通常使用される公知のも
の、いずれもが適合する。As the Ca alloy to be used, a wire-like material in which calcium metal is covered with an iron hoop, or a calcium-silicon alloy whose particle size has been adjusted to a size suitable for injection, are suitable. On the other hand, lime (CaO), calcium fluoride (Ca
F), soda ash (Na 2 CO 3 ), and other commonly used well-known materials are suitable.
【0024】次に、製造方法について説明すると、この
発明では、製造方法は特に限定されることはなく、従来
公知の方法が適用できる。なお、スラブ加熱温度は1000
℃以上とすることが好適である。というのは、加熱温度
が1000℃以上になると、オストワルド成長により、結晶
粒の一層の成長が期待できるからである。Next, the manufacturing method will be described. In the present invention, the manufacturing method is not particularly limited, and a conventionally known method can be applied. The slab heating temperature is 1000
It is preferable that the temperature is set to not less than ° C. This is because when the heating temperature is 1000 ° C. or higher, further growth of crystal grains can be expected by Ostwald ripening.
【0025】[0025]
【実施例】C:0.003 wt%, Si:2.8 wt%, Mn:0.2 wt
%, Al:0.3 wt%およびP:0.04wt%を、含有し、残部
は実質的にFeの組成になる鋼を、転炉および真空脱ガス
により溶製し、連続鋳造により厚み:215 mm、幅:1000
mmのスラブとした。この際、Ca合金(CaSi)と、CaO, C
aFの混合物を主成分とする脱硫フラックスとを表1に示
す割合で混合したものを添加して、それぞれS:0.008
wt%まで脱硫した。ついで、通常のガス加熱炉で1100℃
に加熱した後、熱間圧延により厚み:2.5mmの熱延板と
した。その後、1000℃, 60秒の熱延板焼鈍を施したの
ち、1回の冷間圧延で厚み:0.5 mmの冷延板とし、つい
で 820℃, 60秒の再結晶焼鈍を施して製品板とした。か
くして得られた製品板の磁気特性について調べた結果を
表1に併記する。[Example] C: 0.003 wt%, Si: 2.8 wt%, Mn: 0.2 wt%
%, Al: 0.3% by weight and P: 0.04% by weight, the balance being substantially Fe, steel was melted by a converter and vacuum degassing, and the thickness was 215 mm by continuous casting. Width: 1000
mm slab. At this time, Ca alloy ( CaSi ) , CaO, C
A mixture of a desulfurization flux containing a mixture of aF as a main component at a ratio shown in Table 1 was added.
Desulfurized to wt%. Then, in a normal gas heating furnace 1100 ℃
After hot-rolling, a hot-rolled sheet having a thickness of 2.5 mm was formed by hot rolling. Then, after subjecting the hot-rolled sheet to annealing at 1000 ° C for 60 seconds, the cold-rolled sheet having a thickness of 0.5 mm is formed by one cold rolling, and then subjected to recrystallization annealing at 820 ° C for 60 seconds to obtain a product sheet. did. The results of examining the magnetic properties of the product plate thus obtained are also shown in Table 1.
【0026】[0026]
【表1】 [Table 1]
【0027】同表より明らかなように、この発明に従う
条件で脱硫した場合はいずれも、従来の場合と比較して
優れた鉄損値が得られた。As is clear from the table, in each case of desulfurization under the conditions according to the present invention, an excellent iron loss value was obtained as compared with the conventional case.
【0028】[0028]
【発明の効果】かくして、この発明に従い、Ca合金と脱
硫フラックスとの混合比を適正な範囲に規制することに
より、 1.0kg/t未満という少量のCa合金の添加で硫化物
系介在物の弊害を効果的に抑制することができ、従っ
て、良好な粒成長性の下で鉄損特性に優れた無方向性電
磁鋼板を安価に得ることができる。Thus, according to the present invention, by controlling the mixing ratio of the Ca alloy and the desulfurization flux to an appropriate range, the addition of a small amount of the Ca alloy of less than 1.0 kg / t causes the adverse effect of the sulfide inclusions. Therefore, a non-oriented electrical steel sheet excellent in iron loss characteristics under favorable grain growth properties can be obtained at low cost.
【図1】Ca合金とフラックスとの添加量比が鉄損改善に
及ぼす影響を示したグラフである。FIG. 1 is a graph showing the effect of the addition ratio of a Ca alloy and a flux on iron loss improvement.
【図2】Ca合金添加量と鉄損特性との関係を示したグラ
フである。FIG. 2 is a graph showing a relationship between a Ca alloy addition amount and iron loss characteristics.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C21C 7/076 C21C 7/076 A C21D 8/12 C21D 8/12 A C22C 38/00 303 C22C 38/00 303U 38/06 38/06 H01F 1/16 H01F 1/16 A (58)調査した分野(Int.Cl.7,DB名) C21C 7/064 B22D 11/00 B22D 11/108 C21C 7/00 C21C 7/04 C21C 7/076 C21D 8/12 C22C 38/00 C22C 38/06 H01F 1/16 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI C21C 7/076 C21C 7/076 A C21D 8/12 C21D 8/12 A C22C 38/00 303 C22C 38/00 303U 38/06 38 / 06 H01F 1/16 H01F 1/16 A (58) Fields investigated (Int. Cl. 7 , DB name) C21C 7/064 B22D 11/00 B22D 11/108 C21C 7/00 C21C 7/04 C21C 7 / 076 C21D 8/12 C22C 38/00 C22C 38/06 H01F 1/16
Claims (1)
した後、熱間圧延、冷間圧延ついで仕上げ焼鈍を施して
無方向性電磁鋼板を製造するに当たり、 連続鋳造完了までの間に、Ca合金と脱硫フラックスとを
混合添加して脱硫するものとし、その際、Ca合金の添加
量を 0.2kg/t以上、 1.0kg/t未満とし、かつCa合金と脱
硫フラックスとの添加量比を重量比で、0.50≦Ca合金/
脱硫フラックス≦5.0 の範囲に規制することを特徴とす
る磁気特性に優れた無方向電磁鋼板の製造方法。1. A composition containing: C: 0.01 wt% or less, Si: 3.5 wt% or less, Mn: 1.5 wt% or less, Al: 2.5 wt% or less, S: 0.01 wt% or less, P: 0.1 wt% or less. The molten steel to be slab by continuous casting, hot rolling, cold rolling and then finish annealing to produce a non-oriented electrical steel sheet, Ca alloy and desulfurization flux until the completion of continuous casting Is desulfurized by mixing and adding, and at that time, the addition amount of the Ca alloy is 0.2 kg / t or more and less than 1.0 kg / t, and the addition amount ratio between the Ca alloy and the desulfurization flux is 0.50 ≦ Ca alloy /
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties, characterized in that desulfurization flux is regulated within a range of ≤5.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34121196A JP3295008B2 (en) | 1996-12-20 | 1996-12-20 | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34121196A JP3295008B2 (en) | 1996-12-20 | 1996-12-20 | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10183227A JPH10183227A (en) | 1998-07-14 |
JP3295008B2 true JP3295008B2 (en) | 2002-06-24 |
Family
ID=18344245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34121196A Expired - Fee Related JP3295008B2 (en) | 1996-12-20 | 1996-12-20 | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3295008B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7880998B2 (en) | 2007-12-21 | 2011-02-01 | Hitachi Global Storage Technologies Netherlands B.V. | Multiple writing process for magnetic bit-patterned media |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116445806A (en) | 2022-01-07 | 2023-07-18 | 宝山钢铁股份有限公司 | Non-oriented electrical steel plate with excellent magnetic performance and manufacturing method thereof |
-
1996
- 1996-12-20 JP JP34121196A patent/JP3295008B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7880998B2 (en) | 2007-12-21 | 2011-02-01 | Hitachi Global Storage Technologies Netherlands B.V. | Multiple writing process for magnetic bit-patterned media |
Also Published As
Publication number | Publication date |
---|---|
JPH10183227A (en) | 1998-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06322443A (en) | Production of grain-oriented magentic steel sheet reduced in iron loss | |
US5853659A (en) | Steel, steel sheet having excellent workability and method of producing the same by electric furnace-vacuum degassing process | |
CN108754338B (en) | Production process of high-magnetic-induction low-iron-loss oriented silicon steel | |
CN106498307B (en) | The good high-strength and high ductility lightweight steel of 780MPa grades of cold-forming properties and its manufacturing method | |
EP0947597B1 (en) | Method of producing a grain-oriented electrical steel sheet excellent in magnetic characteristics | |
EP0084569B1 (en) | Process for manufacturing isotropic electromagnetic steel plate having excellent magnetic characteristics | |
JPS5849627B2 (en) | Method for producing non-temporal cold-rolled steel sheet | |
EP0861914A1 (en) | Method for producing silicon-chromium grain oriented electrical steel | |
JP3889100B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties | |
US4615750A (en) | Process for producing a grain-oriented electrical steel sheet | |
JP3295008B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties | |
JP3456295B2 (en) | Melting method of steel for non-oriented electrical steel sheet | |
JP3458683B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing | |
JP3430830B2 (en) | Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties | |
JPH07122090B2 (en) | Method of melting directional silicon steel material | |
JP3421536B2 (en) | Non-oriented electrical steel sheet excellent in magnetic properties and method for producing the same | |
KR100414625B1 (en) | Manufacturing method of high strength cold rolled enamel steel sheet with excellent fish scale resistance and adhesion | |
JP4218136B2 (en) | Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same | |
JPH0967654A (en) | Nonoriented silicon steel sheet excellent in core loss characteristics | |
EP0119088B1 (en) | Steel for use as material of cold-rolled steel sheet | |
JP2004204252A (en) | Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR | |
JPS6055567B2 (en) | Manufacturing method of non-oriented silicon steel sheet with low iron loss | |
JP4267320B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JPH0565524A (en) | Production of slab for grain oriented silicon steel | |
JPH07122088B2 (en) | Method for manufacturing slabs for grain-oriented silicon steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080405 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090405 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100405 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100405 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110405 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110405 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120405 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130405 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130405 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140405 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |