JP3290929B2 - Recycling treatment of cemented carbide - Google Patents
Recycling treatment of cemented carbideInfo
- Publication number
- JP3290929B2 JP3290929B2 JP22735097A JP22735097A JP3290929B2 JP 3290929 B2 JP3290929 B2 JP 3290929B2 JP 22735097 A JP22735097 A JP 22735097A JP 22735097 A JP22735097 A JP 22735097A JP 3290929 B2 JP3290929 B2 JP 3290929B2
- Authority
- JP
- Japan
- Prior art keywords
- aqueous solution
- cemented carbide
- carbide
- pores
- reclaiming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Processing Of Solid Wastes (AREA)
- Carbon And Carbon Compounds (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は超硬合金スクラップ
より原料粉末を回収して再生すること、特には炭化タン
グステン等の原料粉末を粒子成長や不純物の混入がな
く、超硬合金の原料粉末としてそのまま再利用できるよ
うに再生する超硬合金の再生処理方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of recovering and regenerating a raw material powder from a cemented carbide scrap. In particular, a raw material powder such as tungsten carbide is used as a raw material powder of a cemented carbide without particle growth or contamination of impurities. The present invention relates to a method for regenerating a cemented carbide that can be recycled as it is.
【0002】[0002]
【従来の技術】超硬合金とは金属炭化物粉末と金属粉末
を配合して焼結した超硬度の合金であり、主に遷移元素
系列の金属炭化物と鉄族金属を用いて製造される。即
ち、炭化タングステン(WC),炭化チタン(Ti
C),炭化タンタル(TaC)等の周期律表のIVa,V
a及びVIa族金属の炭化物のうちの少なくとも1種以上
を主体とする硬質相と、鉄(Fe),ニッケル(Ni)
及びコバルト(Co)のうちの少なくとも1種以上から
成る結合相とから構成されており、WC−Co系、WC
−TiC−Co系、WC−TiC−TaC−Co系が広
く使用されている。この超硬合金は極めて硬質であるた
め超硬工具、特に切削工具の使い捨て刃先として多用さ
れており、これに伴い使用済みのスクラップが多量に発
生している。2. Description of the Related Art A cemented carbide is a super-hard alloy obtained by blending a metal carbide powder and a metal powder and sintering the mixture. The cemented carbide is mainly produced using a transition element series metal carbide and an iron group metal. That is, tungsten carbide (WC), titanium carbide (Ti
C), IVa, V of the periodic table such as tantalum carbide (TaC)
a hard phase mainly composed of at least one of carbides of Group a and VIa metals, iron (Fe), nickel (Ni)
And a binder phase composed of at least one of cobalt (Co) and WC-Co, WC
-TiC-Co system and WC-TiC-TaC-Co system are widely used. Since this cemented carbide is extremely hard, it is frequently used as a disposable cutting edge of a cemented carbide tool, especially a cutting tool, and accordingly, a large amount of used scrap is generated.
【0003】近時、環境対策として産業界の各分野でさ
まざまなリサイクルの試みが行われているが、機械工具
のほぼ半分を占める超硬工具の主要材料であるタングス
テン(W)は全量が輸入に頼っており、希少資源である
とともに、非常に高価であるため、従来より超硬合金ス
クラップからWC,TiC,TaC等の炭化物を回収す
る方法が数多く提案されている。[0003] Recently, various recycling attempts have been made in various fields of the industry as an environmental measure. Tungsten (W), a main material of carbide tools, which accounts for almost half of machine tools, is entirely imported. And it is a rare resource and very expensive. Therefore, many methods of recovering carbides such as WC, TiC, and TaC from cemented carbide scrap have been proposed.
【0004】例えば特公昭44−27457号公報に
は、超硬工具のスクラップの再利用をはかる方法とし
て、超硬合金くずを炭素で包被し、1800〜2300
℃で加熱処理した後、破砕して粉末化させる方法が開示
されている。しかしながら、かかる手段においては18
00℃以上の高温加熱を必要とするため、炭化物粒子が
粒子成長を起こしてしまい超硬合金原料として再利用す
ることができない。[0004] For example, Japanese Patent Publication No. 44-27457 discloses a method for reusing scrap of a cemented carbide tool, in which scrap of cemented carbide is covered with carbon, and the scrap is scrapped from 1800 to 2300.
There is disclosed a method of heat-treating at a temperature of ° C., followed by crushing and powdering. However, in such means, 18
Since heating at a high temperature of 00 ° C. or more is required, carbide particles undergo particle growth and cannot be reused as a cemented carbide material.
【0005】また、特公昭56−36692号公報に
は、超硬合金を塩化第二鉄、硝酸第二鉄および塩化第二
銅のうちから選ばれた少なくとも1種の溶液、若しくは
これらの溶液に無機酸を添加した溶液に80℃以下の温
度で浸漬し、結合材であるFe,Ni,Co又はCuを
溶出させた後、残留炭化物を粉砕することにより再生粉
を得る手法が開示されている。かかる手段は炭化物を単
独で回収することができ再生技術として有効な手法であ
るが、結合相が溶出し難いため回収率が低く、結合相が
除かれたとはいえ残留炭化物の強度はさほど低下してい
ないため、粉砕が困難であり、超硬合金の原料としてそ
のまま利用することができない。Japanese Patent Publication No. 56-36692 discloses that a cemented carbide is used in at least one kind of solution selected from ferric chloride, ferric nitrate and cupric chloride, or a solution thereof. A method is disclosed in which a regenerated powder is obtained by immersing a binder in a solution containing an inorganic acid at a temperature of 80 ° C. or lower to elute the Fe, Ni, Co, or Cu binder, and then pulverizing the residual carbide. . Such a means is an effective technique as a regeneration technique that can recover carbide alone, but the recovery rate is low because the binder phase is difficult to elute, and the strength of the residual carbide decreases significantly even though the binder phase is removed. Therefore, it is difficult to pulverize and cannot be directly used as a raw material for cemented carbide.
【0006】更に米国特許第3,595,484号公報
には、超硬合金を溶融亜鉛中で処理した後、亜鉛を減圧
蒸留回収し、残留超硬合金組成物を粉砕して粉末化させ
る方法が開示されている。しかしながら、かかる手段で
は前記特公昭44−27457号と同様に炭化物粒子の
成長や使用した亜鉛の残留等の問題があり、超硬合金原
料として再利用することができない。Further, US Pat. No. 3,595,484 discloses a method of treating a cemented carbide in molten zinc, recovering the zinc by distillation under reduced pressure, and pulverizing the residual cemented carbide composition to powder. Is disclosed. However, such means have problems such as growth of carbide particles and residual zinc used as in the above-mentioned JP-B-44-27457, and cannot be reused as a cemented carbide material.
【0007】そのほか、特公昭38−4052号公報に
は、超硬合金を塩素ガスと反応させて金属炭化物及び結
合金属を塩化物として揮発させ、捕集した後化学処理を
行って金属として回収する方法が、特開昭51−370
20号公報には、酸化雰囲気中で加熱酸化せしめた超硬
合金を粉砕し、次いで還元処理を行って精製分離し、組
成金属を回収する方法が開示されているが、何れも処理
費用が高くなりコスト的に不利であるという難点があ
る。[0007] In addition, Japanese Patent Publication No. 38-4052 discloses that a cemented carbide is reacted with chlorine gas to volatilize metal carbides and binding metals as chlorides. The method is disclosed in JP-A-51-370.
No. 20 discloses a method in which a cemented carbide oxidized by heating and oxidizing in an oxidizing atmosphere is pulverized, then subjected to a reduction treatment, purified and separated, and a constituent metal is recovered. It is disadvantageous in terms of cost.
【0008】[0008]
【発明が解決しようとする課題】以上のように、従来よ
り種々の方法が提案されているが、いずれも回収品質や
処理費用に問題があり、現状では十分な成果が得られて
いるとは言い難く、回収した金属も低品質のため高級な
工具には使用できず、用途を限定して、例えばスパイク
タイヤや高速度鋼の副原料の一部として使用されている
に過ぎない。即ち、従来の再生処理方法では再生した金
属炭化物粉末の粒子成長や、再生時の不純物の混入、更
には焼結特性等に問題があって超硬合金の原料としての
再利用は困難であり、ほとんど実用化されていないのが
現状である。As described above, various methods have been conventionally proposed. However, all of them have problems in the recovery quality and processing cost, and it is considered that sufficient results have been obtained at present. It is difficult to say that the recovered metal cannot be used for high-grade tools due to its low quality, and is used only as a part of auxiliary materials of spiked tires and high-speed steel for limited applications. That is, in the conventional regeneration treatment method, there is a problem in the particle growth of the regenerated metal carbide powder, the mixing of impurities during the regeneration, and the sintering characteristics and the like, and it is difficult to reuse the material as a raw material of the cemented carbide. At present it has hardly been put to practical use.
【0009】そこで本発明は、周期律表のIVa,Va
およびVIa族金属のW,TiおよびTa等の炭化物のう
ちの少なくとも1種以上を硬質相とし、Fe,Niおよ
びCoのうちの少なくとも1種以上を結合相とする超硬
合金スクラップより、前記硬質相を単独で回収して再生
すること、特には炭化タングステン等の原料粉末を粒子
成長や不純物の混入がなく、超硬合金の原料粉末として
再利用できるように再生する超硬合金の再生処理方法を
提供することを課題とする。Accordingly, the present invention provides a method of controlling the periodic table to include I Va, Va
And a cemented carbide scrap containing at least one or more of carbides of Group VIa metals such as W, Ti and Ta as a hard phase and at least one or more of Fe, Ni and Co as a binder phase. Recovering and regenerating a phase alone, especially a method for regenerating a cemented carbide that recycles a material powder such as tungsten carbide so that it can be reused as a material powder for cemented carbide without particle growth or contamination of impurities The task is to provide
【0010】[0010]
【課題を解決するための手段】本発明は上記課題を解決
するために、超硬合金より結合材を除去して得られた多
孔体状の残渣炭化物を、その細孔内に水溶液を含んだ状
態で急冷し、水溶液を凍結させることによって相変化さ
せて体積を急膨張させることにより、残渣炭化物の結合
組織を破壊する手段、及び超硬合金を酸性水溶液ととも
に耐熱性圧力容器に充填し、水熱処理を実施することに
より超硬合金中の結合材を酸性水溶液に溶解させて除去
した後、得られた多孔体状の残渣炭化物を、その細孔内
に水溶液を含んだ状態で急冷し、水溶液を凍結させるこ
とによって相変化させて体積を急膨張させることによ
り、残渣炭化物の結合組織を破壊する手段を基本として
提供する。In order to solve the above-mentioned problems, the present invention provides a porous carbonaceous carbide obtained by removing a binder from a cemented carbide, containing an aqueous solution in its pores. Rapidly cooling in a state, freezing the aqueous solution, causing a phase change by expanding the volume and rapidly expanding the volume, thereby destroying the connective structure of the residual carbide, and filling the cemented carbide together with the acidic aqueous solution into a heat resistant pressure vessel, After the binder in the cemented carbide is dissolved in an acidic aqueous solution and removed by performing a heat treatment, the obtained porous carbonized residue is quenched in a state where the aqueous solution is contained in the pores, and the aqueous solution is cooled. Provides a means for destroying the connective structure of residual carbides by causing a phase change by freezing and rapidly expanding the volume.
【0011】また、酸性水溶液の酸性条件としてpH2
以下の酸性水溶液を用いた手段、水熱処理における処理
温度を100℃〜300℃とした手段を提供する。更
に、細孔内に水溶液を含んだ状態の多孔体状の残渣炭化
物を水溶液中で超音波処理をし、細孔内面を脆く、或い
は水溶液を細孔内に更に浸透させてから水溶液を凍結さ
せる手段、水溶液中に界面活性剤を添加してなる手段、
水溶液を凍結させて相変化させることによる体積の急膨
張を所定回数繰り返して行う手段、及び水溶液として水
又は酸性水溶液或いはアンモニア水溶液を使用する手
段、凍結手段として液体窒素を使用する手段を提供す
る。Further, the acidic condition of the acidic aqueous solution is pH 2
Means using the following acidic aqueous solution and means for setting the processing temperature in the hydrothermal treatment to 100 ° C. to 300 ° C. are provided. Further, the residual carbonaceous substance in a porous state in which the aqueous solution is contained in the pores is subjected to ultrasonic treatment in an aqueous solution, so that the inner surface of the pores is brittle or the aqueous solution is further penetrated into the pores and then the aqueous solution is frozen. Means, means comprising adding a surfactant to an aqueous solution,
A means for repeatedly performing a predetermined number of times of rapid expansion of a volume by freezing an aqueous solution to cause a phase change, a means for using water, an acidic aqueous solution, or an aqueous ammonia solution as an aqueous solution, and a means for using liquid nitrogen as a freezing means are provided.
【0012】そして、残渣炭化物の結合組織を破壊した
後に、機械的手段によって粉砕を行って微粉末化するこ
とにより超硬合金の原料粉末として回収する手段、超硬
合金は周期律表のIVa,Va,及びVIa族金属の炭化物
のうちの少なくとも1種以上を主体とし、鉄,ニッケル
又はコバルトのうちの少なくとも1種以上を結合材とす
る手段を提供する。A means for recovering the raw material powder of the cemented carbide by crushing by mechanical means and pulverizing it after breaking the connecting structure of the residual carbide. A means is provided in which at least one or more of carbides of Va and Group VIa metals are used as a main component and at least one or more of iron, nickel and cobalt are used as a binder.
【0013】超硬合金は炭化物粒子間の結合相が非常に
狭いために、常温、常圧下においては完全に結合相を溶
解することは極めて困難であるが、超硬合金のスクラッ
プを酸性水溶液とともに耐熱性圧力容器に充填し、水熱
処理を実施することにより、結合材としてのCo等を完
全に、かつ、短時間で酸性水溶液中に溶解させて回収す
ることができる。そして、結合材を除去した残渣炭化物
は多孔体状となっており、超硬合金に比べて強度が低下
しているが、なお炭化物粒子同士の結合に起因すると思
われる強度を有しており、このままでは簡単に粉砕する
ことは困難である。そこで、本発明にかかる再生処理方
法によって、この多孔体状の残渣炭化物の細孔内に水溶
液を含んだ状態で急冷し、水溶液を凍結させることによ
って相変化させて体積を急膨張させることにより、残渣
炭化物の結合組織を破壊することができる。そして、そ
の後に、機械的手段によって粉砕を行って微粉末化する
ことにより超硬合金の原料粉末として容易に回収するこ
とができ、しかも、粉末化したものは、従来の1800
℃以上の高温加熱処理でみられる粒子成長や、不純物の
混入もなく、焼結特性にも優れているため、そのまま超
硬合金の原料粉末として再利用することができる。Since the cemented carbide has a very narrow binder phase between carbide particles, it is extremely difficult to completely dissolve the binder phase at normal temperature and normal pressure. By filling in a heat-resistant pressure vessel and performing hydrothermal treatment, Co and the like as a binder can be completely and quickly dissolved in an acidic aqueous solution and recovered. And the residual carbide from which the binder has been removed is in the form of a porous body, and although the strength is lower than that of the cemented carbide, it still has the strength considered to be due to the bonding between the carbide particles, It is difficult to easily pulverize as it is. Therefore, by the regeneration treatment method according to the present invention, by rapidly cooling in a state of containing the aqueous solution in the pores of the porous residual carbide, the aqueous solution is frozen and the phase is changed to rapidly expand the volume, The connective structure of the residual carbide can be destroyed. Thereafter, the powder is pulverized by a mechanical means and pulverized into fine powder, whereby the powder can be easily recovered as a raw material powder of a cemented carbide.
It is excellent in sintering characteristics without particle growth and impurity contamination observed in high-temperature heat treatment at a temperature of not less than ℃, and can be reused as raw material powder of cemented carbide as it is.
【0014】[0014]
【発明の実施の形態】以下本発明にかかる超硬合金の再
生処理方法の具体的な実施形態を説明する。本発明で
は、超硬合金のスクラップを酸性水溶液とともに耐熱性
圧力容器に充填し、水熱処理を実施することにより超硬
合金中の結合材を酸性水溶液に溶解させて除去した後、
得られた多孔体状の残渣炭化物を、その細孔内に水溶液
を含んだ状態で急冷し、水溶液を凍結させることによっ
て相変化させて体積を急膨張させることにより、残渣炭
化物の結合組織を破壊し、その後機械的手段によって粉
砕を行って微粉末化することにより超硬合金の原料粉末
として回収することが基本手段となっている。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a specific embodiment of a method for reprocessing a cemented carbide according to the present invention will be described. In the present invention, after filling the scrap of cemented carbide in a heat-resistant pressure vessel together with the acidic aqueous solution, and dissolving the binder in the cemented carbide in the acidic aqueous solution by performing hydrothermal treatment,
The obtained porous carbonized residue is rapidly cooled in a state of containing an aqueous solution in its pores, and the aqueous solution is frozen to cause a phase change to rapidly expand the volume, thereby destroying a connective structure of the residual carbonized material. After that, the basic means is to pulverize and pulverize by mechanical means to recover the raw material powder of the cemented carbide.
【0015】先づ、超硬合金のスクラップ中の結合相を
溶解させて除去するために、WC,TiC及びTaC等
の周期律表のIVa,VaおよびVIa族金属の炭化物のう
ちの少なくとも1種以上を主体とし、Fe,Niおよび
Coのうちの少なくとも1種以上を結合材とする超硬合
金のスクラップを酸性水溶液とともに、密閉された耐熱
性圧力容器に充填して水熱処理を実施する。この酸性水
溶液を使用した水熱処理により、超硬合金のスクラップ
中の結合相を酸性水溶液中に溶解させて除去し、多孔体
状の残渣炭化物を得る。First, in order to dissolve and remove the binder phase in the scrap of the cemented carbide, at least one of carbides of metals belonging to Group IVa, Va and VIa of the periodic table such as WC, TiC and TaC is used. Mainly, scrap of cemented carbide containing at least one of Fe, Ni and Co as a binder together with an acidic aqueous solution is filled in a sealed heat-resistant pressure vessel to perform hydrothermal treatment. By the hydrothermal treatment using this acidic aqueous solution, the binder phase in the scrap of the cemented carbide is dissolved and removed in the acidic aqueous solution to obtain a porous residual carbide.
【0016】超硬合金中の結合相を酸にて溶出させる方
法は特許公報昭56−36692号や文献(工業レアメ
タル,No.77,1982,P110)等に記述があ
るが、超硬合金は炭化物粒子間の結合相が非常に狭いた
めに、常温、常圧下においては完全に結合相を溶解する
ことは極めて困難である。そこで酸による結合相の溶解
を水熱条件下で行うことにより、結合相を完全に、か
つ、短時間で溶出させることができる。本発明に用いる
酸性水溶液はpHが2以下のものであればどのようなも
のであってもよく、特に制限はない。ただ、酸化作用の
強い酸、例えばHNO3のような酸は金属炭化物を酸化
させてしまい、そのままでは超硬合金粉末として再利用
できなくなるので好ましくない。A method for eluting a binder phase in a cemented carbide with an acid is described in Japanese Patent Publication No. 56-36692 or a document (Industrial Rare Metal, No. 77, 1982, P110). Since the binder phase between the carbide particles is very narrow, it is extremely difficult to completely dissolve the binder phase at normal temperature and normal pressure. Thus, by dissolving the binder phase with an acid under hydrothermal conditions, the binder phase can be completely eluted in a short time. The acidic aqueous solution used in the present invention may have any pH as long as it is 2 or less, and is not particularly limited. However, an acid having a strong oxidizing action, for example, an acid such as HNO 3 , oxidizes the metal carbide, and cannot be reused as it is as a cemented carbide powder.
【0017】水熱処理温度は耐熱性圧力容器内の温度を
100〜300℃の範囲とする。水熱処理温度が100
℃以下、即ち水熱条件外では、現実的な処理時間内で結
合相を完全に溶出させることは困難であり、水熱処理温
度が300℃以上では耐酸性、耐圧性に優れた特殊な耐
熱性圧力容器が必要となり、装置費が高価になりすぎる
ため現実的でない。好ましくは250℃以下の温度であ
れば、耐酸性に優れ、かつ、取り扱いの容易なテフロン
製の容器が使用可能である。The temperature of the hydrothermal treatment is set so that the temperature inside the heat-resistant pressure vessel is in the range of 100 to 300 ° C. Hydrothermal treatment temperature is 100
It is difficult to completely elute the binder phase within a realistic processing time below the temperature of ℃, that is, outside the hydrothermal condition, and special heat resistance excellent in acid resistance and pressure resistance when the hydrothermal treatment temperature is 300 ℃ or more A pressure vessel is required and the equipment cost becomes too expensive, which is not practical. If the temperature is preferably 250 ° C. or lower, a Teflon container excellent in acid resistance and easy to handle can be used.
【0018】耐熱性圧力容器としては、耐酸性に優れ、
かつ、取り扱いの容易なものであればどのようなもので
あってもよく、特に限定はない。水熱処理時間、即ち超
硬合金のスクラップの結合相を溶出させるのに要する時
間は処理温度によって若干異なる。即ち、水熱処理時間
は、pHが低いほど、即ち用いる酸性水溶液が強酸であ
るほど、又濃度が高いほど、或いは処理温度が高いほど
短縮される。As a heat-resistant pressure vessel, it has excellent acid resistance,
In addition, any material may be used as long as it is easy to handle, and there is no particular limitation. The hydrothermal treatment time, that is, the time required to elute the binder phase of the cemented carbide scrap slightly varies depending on the treatment temperature. That is, the hydrothermal treatment time is reduced as the pH is lower, that is, as the acidic aqueous solution used is a stronger acid, or as the concentration is higher, or as the treatment temperature is higher.
【0019】上記の水熱処理によって、超硬合金のスク
ラップ中から結合相が酸性水溶液中に溶解して除去さ
れ、多孔体状の残渣炭化物が得られる。この水熱処理が
終った段階では、残渣炭化物の細孔内には酸性水溶液が
充填された状態である。この多孔体状の炭化物は水熱処
理前に比べて強度の低下はあるものの炭化物粒子間の結
合に起因する強度を有しており、このままでは簡単に粉
砕することは困難である。By the above hydrothermal treatment, the binder phase is dissolved and removed from the cemented carbide scrap in the acidic aqueous solution, and a porous residual carbide is obtained. At the end of the hydrothermal treatment, the pores of the residual carbide are filled with an acidic aqueous solution. Although the strength of the porous carbide is lower than that before the hydrothermal treatment, it has strength due to the bonding between the carbide particles, and it is difficult to easily pulverize as it is.
【0020】そこで得られた多孔体状の残渣炭化物の強
度を低下させ、通常の粉砕方法で容易に微粉末とするこ
とができるようにするため、細孔内に水溶液を含んだ状
態で多孔体状の残渣炭化物を急冷して細孔中の水溶液を
凍結し、水溶液を氷に相変化させる。In order to reduce the strength of the obtained porous residual carbonized material and to easily make it into a fine powder by a usual pulverizing method, the porous material containing an aqueous solution in the pores is used. The residue-like carbide is rapidly cooled to freeze the aqueous solution in the pores, and the aqueous solution is changed into ice.
【0021】残渣炭化物の細孔内に充填する水溶液とし
ては水が適当である。使用する水には特別の限定や処理
は必要ない。また、水以外にも凍結による相変化によっ
て体積が膨張するものであればどのようなものであって
もよい。具体的にはアンモニア水溶液が使用可能であ
り、アンモニア水溶液を使用した場合には、相変化に起
因する体積の急膨張率を高めることができる。なお、ア
ンモニア水溶液は任意の濃度のものを使用することがで
きる。更に、結合層を溶解除去するための水熱処理に使
用した酸性水溶液をそのまま使用することもできる。As the aqueous solution to be filled into the pores of the residual carbide, water is suitable. No special restrictions or treatments are required for the water used. In addition to water, any material may be used as long as its volume expands due to a phase change due to freezing. Specifically, an aqueous ammonia solution can be used, and when an aqueous ammonia solution is used, the rapid expansion rate of the volume caused by the phase change can be increased. Note that the aqueous ammonia solution may have any concentration. Further, the acidic aqueous solution used for the hydrothermal treatment for dissolving and removing the binding layer can be used as it is.
【0022】前記水熱処理が終了した残渣炭化物の細孔
内には、酸性水溶液が充填されており、細孔内に含ませ
る水溶液として酸性水溶液を使用する場合はこれをその
ままの状態で凍結処理を行えばよい。また、水溶液とし
て水又はアンモニア水溶液或いはその他を使用する場合
には、水熱処理の終了した残渣炭化物をよく水洗いして
細孔中から酸性水溶液を除去した後に、或いはよく水洗
いして細孔中から酸性水溶液を除去して乾燥させた後
に、水又はアンモニア水溶液中等に浸漬して、細孔中に
水又はアンモニア水溶液中等を充填させればよい。The pores of the residual carbide after the hydrothermal treatment are filled with an acidic aqueous solution. When an acidic aqueous solution is used as an aqueous solution to be contained in the pores, the freezing treatment is performed as it is. Just do it. When water or aqueous ammonia is used as the aqueous solution, the residual carbonized material after the hydrothermal treatment is thoroughly washed with water to remove the acidic aqueous solution from the pores, or washed well with water to remove the acidic aqueous solution from the pores. After removing the aqueous solution and drying, it may be immersed in water or an aqueous ammonia solution or the like to fill the pores with the aqueous or ammonia aqueous solution or the like.
【0023】急冷方法としては、細孔内に水溶液を含ん
だ残渣炭化物を液体窒素等の超低温物質に接触させるこ
とにより実施する。尚、急冷方法は水溶液を氷に相変化
させることができれば特に限定されるものではなく、特
に急冷の最低温度は低いほど好ましい。また、急冷処理
は繰り返し行うことが好ましい。The quenching method is carried out by bringing the residual carbide containing an aqueous solution into the pores into contact with an ultra-low temperature substance such as liquid nitrogen. The quenching method is not particularly limited as long as the phase of the aqueous solution can be changed to ice. In particular, the lower the minimum temperature of the quenching, the better. Further, it is preferable that the quenching treatment is repeatedly performed.
【0024】このように多孔体状の残渣炭化物の細孔中
の水溶液を急凍結させると、水溶液が固体としての氷に
相変化し、この相変化に起因して体積が急膨張し、残渣
炭化物の炭化物粒子間の結合組織を破壊するため、炭化
物の強度は急激に低下する。As described above, when the aqueous solution in the pores of the porous residual carbide is rapidly frozen, the aqueous solution undergoes a phase change to ice as a solid, and the volume rapidly expands due to this phase change, and the residual carbon is removed. In order to destroy the connective structure between the carbide particles, the strength of the carbide rapidly decreases.
【0025】また、細孔内に水溶液を含んだ多孔体状の
残渣炭化物を単に急冷するだけでなく、細孔内面を更に
脆く、或いは水溶液を細孔内に更に浸透させるために水
熱処理後に細孔内に水溶液を含んだ状態のままで超音波
処理してから急凍結させる方法と、水熱処理後に界面活
性剤を添加した水溶液を細孔内に浸透させた後に急凍結
させる方法と、水熱処理後に界面活性剤を添加した水溶
液を細孔内に浸透させた後に超音波処理してから水溶液
を急凍結させる方法も用いることができる。Further, not only the quenching of the porous residual carbon material containing the aqueous solution in the pores, but also the inner surface of the pores becomes more brittle, or after the hydrothermal treatment in order to further penetrate the aqueous solution into the pores, it becomes finer. A method of rapidly freezing after ultrasonic treatment while containing an aqueous solution in the pore, a method of rapidly freezing after penetrating an aqueous solution containing a surfactant after hydrothermal treatment, and a method of hydrothermal treatment It is also possible to use a method in which an aqueous solution to which a surfactant is added later is permeated into the pores, then subjected to ultrasonic treatment, and then rapidly frozen.
【0026】超音波処理は通常の超音波洗浄装置等を用
いれば良い。また、界面活性剤としては水溶液を細孔内
に浸透させるものであれば使用可能である。具体的には
カルボン酸塩,スルホン酸塩,硫酸エステル塩,リン酸
エステル塩,脂肪族アミン塩及び脂肪族4級アンモニウ
ム塩等を用いることができる。For the ultrasonic treatment, a usual ultrasonic cleaning device or the like may be used. Further, any surfactant can be used as long as it allows an aqueous solution to penetrate into the pores. Specifically, carboxylate, sulfonate, sulfate ester salt, phosphate ester salt, aliphatic amine salt, aliphatic quaternary ammonium salt and the like can be used.
【0027】超音波処理を行うことは炭化物間の結合組
織が脆くなって細孔中に水溶液を浸透させる作用があ
り、界面活性剤を添加した水溶液でも同様の効果が得ら
れる。更に水溶液に界面活性剤を添加してから超音波処
理を行うことによって結合組織の破壊効果が高くなり、
多孔体状の残渣炭化物間の強度を効果的に低下させるこ
とができる。The ultrasonic treatment has a function of permeating the aqueous solution into the pores because the connecting structure between the carbides becomes brittle, and the same effect can be obtained with an aqueous solution to which a surfactant is added. Further, by adding a surfactant to the aqueous solution and then performing ultrasonic treatment, the destruction effect of connective tissue is increased,
The strength between the porous residual carbides can be effectively reduced.
【0028】上記した各種の方法により水溶液の急凍結
を行い、易粉砕処理を行った後、その後に多孔体状の残
渣炭化物を機械的粉砕手段により微粉末化することによ
って超硬合金の原料粉末として回収する。機械的粉砕手
段としてはハンマーミル,ボールミルあるいはジェット
ミル等を用いる。The aqueous solution is rapidly frozen by the above-mentioned various methods, subjected to easy pulverization treatment, and thereafter, the residual carbide in a porous material is pulverized into fine powder by a mechanical pulverizing means, whereby the raw material powder of the cemented carbide is obtained. To be collected. As the mechanical pulverizing means, a hammer mill, a ball mill, a jet mill, or the like is used.
【0029】一方、前記水熱処理によって結合相の溶解
した酸性水溶液中に、水酸化ナトリウム(NaOH)や
水酸化カリウム(KOH)等のアルカリを添加して水酸
化物とし、この水酸化物を焼成して酸化物とした後、水
素還元等を行うことよって結合相を金属として再生する
ことができる。再生した結合相は超硬合金の結合材およ
び他の用途にそのまま再利用することができる。On the other hand, an alkali such as sodium hydroxide (NaOH) or potassium hydroxide (KOH) is added to the acidic aqueous solution in which the binder phase is dissolved by the hydrothermal treatment to form a hydroxide. After that, the binder phase can be regenerated as a metal by performing hydrogen reduction or the like. The regenerated binder phase can be reused as it is for cemented carbide binders and other uses.
【0030】[0030]
《実施例1》内容積10リットルのオートクレーブ内
に、WCを硬質相としCoを結合相とする超硬合金チッ
プ(株式会社東芝タンガロイ社製:TH−10,Co含
有量4〜7%)のスクラップを総重量1kg、及び酸性
水溶液として濃度10mol/リットルのHCl(塩
酸)をオートクレーブ本体が占める空間の80%に達す
るまで充填し、密閉してこれを加熱し、オートクレーブ
内温度200℃、圧力15kgf/cm2に維持して、
15時間水熱処理を行った後、冷却してから開封して、
結合相のCoを溶出した多孔体状の残渣炭化物とCoが
溶解したHCl溶液を取り出した。<< Example 1 >> In an autoclave having an inner volume of 10 liters, a cemented carbide chip having WC as a hard phase and Co as a binder phase (manufactured by Toshiba Tungaloy Co., Ltd .: TH-10, Co content 4 to 7%) was used. The scrap was filled with a total weight of 1 kg, and HCl (hydrochloric acid) having a concentration of 10 mol / l as an acidic aqueous solution was filled up to 80% of the space occupied by the autoclave body, sealed and heated, and the autoclave was heated to a temperature of 200 ° C and a pressure of 15 kgf. / Cm 2
After hydrothermal treatment for 15 hours, open after cooling
A porous residual carbon material eluted with Co of the binder phase and an HCl solution in which Co was dissolved were taken out.
【0031】図1は実施例1の水熱処理前の超硬合金チ
ップの金属組織を示す電子顕微鏡写真(×5000)、
図4はその細孔分布を示すグラフであり、図2は水熱処
理後の多孔体状の残渣炭化物の金属組織を示す電子顕微
鏡写真(×5000)、図5はその細孔分布を示すグラ
フである。図4,図5及び後記の図6のグラフにおい
て、横軸は細孔径(Å)を、縦軸は全細孔容量(cc/
g)と微分細孔容量(cc/g・logÅ)を示す。電
子顕微鏡写真に示すように水熱処理前に比べて結合相の
Coを溶解除去をした図2は、図1に比べて多孔体状と
なっていること、及び未だ炭化物どうしが強固に結合し
ていることが判る。このように酸性水熱処理による結合
相のCoを溶解除去することにより、得られた残渣炭化
物が多孔体状となっていることは、図4のグラフに示す
水熱処理前の超硬合金チップの細孔分布では細孔がほと
んど認められないのに対し、図5のグラフに示す酸性水
熱処理品である残渣炭化物は、全細孔容量が略0.00
9cc/gと大幅に増加し、しかも微分細孔容量におい
ても細孔径103Å近辺にシャープなピークが認められ
ることによって実証されている。なお、未処理の超硬合
金チップの細孔分布を示す図4において細孔径105〜
106Å近辺にブロードで小さな変化が認められ、全細
孔容量は略0.002cc/gを示しているが、これは
超硬合金チップ表面の凹凸を測定したものと考えられ
る。FIG. 1 is an electron micrograph (× 5000) showing the metal structure of the cemented carbide chip before hydrothermal treatment in Example 1,
FIG. 4 is a graph showing the pore distribution, FIG. 2 is an electron micrograph (× 5000) showing the metal structure of the porous residual carbide after hydrothermal treatment, and FIG. 5 is a graph showing the pore distribution. is there. 4 and FIG. 5 and the graph of FIG. 6 described below, the horizontal axis represents the pore diameter (Å), and the vertical axis represents the total pore volume (cc / cc).
g) and differential pore volume (cc / g · loglo). As shown in the electron micrograph, FIG. 2 in which Co of the binder phase was dissolved and removed as compared to before the hydrothermal treatment showed that it was more porous than in FIG. 1 and that the carbides were still strongly bonded. It turns out that there is. By dissolving and removing Co of the binder phase by the acidic hydrothermal treatment in this manner, the obtained residual carbide is in the form of a porous body. This is because the fine carbide particles before hydrothermal treatment shown in the graph of FIG. While pores are hardly recognized in the pore distribution, the residual carbide which is an acid hydrothermally treated product shown in the graph of FIG.
9 cc / g and increased significantly, yet has been demonstrated by a sharp peak is observed in the pore diameter 10 3 Å around even differential pore volume. In FIG. 4 showing the pore distribution of the untreated cemented carbide tip, the pore diameter is 10 5 to 10 5 .
Small changes in broad near 10 6 Å is observed, the total pore volume shows a substantially 0.002cc / g, which is considered a measure of the unevenness of the cemented carbide chip surface.
【0032】次に得られた多孔体状の残渣炭化物を十分
に水洗した後、細孔内に水を含んだままの状態で5リッ
トルの液体窒素(−197℃)が入ったステンレス製容
器中に投入して急冷し、細孔中の水を凍結させる処理を
行った。なお、投入したチップ形状の残渣炭化物の内、
約40%はチップが割れたり、チップの角が欠けてお
り、原形をとどめているのは約60%であった。Next, the obtained porous residual carbonized material is sufficiently washed with water, and in a stainless steel container containing 5 liters of liquid nitrogen (−197 ° C.) while keeping water in the pores. And quenched to freeze the water in the pores. In addition, out of the chip-shaped residual carbides that were injected,
Approximately 40% had cracked chips or chipped corners, and about 60% retained their original shape.
【0033】図3は急冷処理後の残渣炭化物の金属組織
を示す電子顕微鏡写真(×5000)、図6はその細孔
分布を示すグラフである。図3の顕微鏡写真に示すよう
に急凍結処理をすることにより、水熱処理後の図2より
更に多孔体状となり、炭化物どうしの結合が破壊されて
いることが判る。このように酸性水熱処理により得られ
た多孔体状の残渣炭化物が急冷処理によって、更に大き
な径の、全細孔容量の多い多孔体状になっていること
は、図6のグラフに示すように全細孔容量が0.023
cc/gと、図5に示す酸性水熱処理品の全細孔容量で
ある0.009cc/gより更に大幅に増加し、しかも
微分細孔容量においても細孔径103Å近辺に加えて、
細孔径104Å近辺にもシャープなピークが認められる
ことによってよって実証されている。FIG. 3 is an electron micrograph (× 5000) showing the metal structure of the residual carbide after the quenching treatment, and FIG. 6 is a graph showing the pore distribution thereof. As shown in the micrograph of FIG. 3, the rapid freezing treatment makes the porous body more porous than that of FIG. 2 after the hydrothermal treatment, and the bond between the carbides is broken. As shown in the graph of FIG. 6, the fact that the porous residual carbonized material obtained by the acidic hydrothermal treatment was turned into a porous material having a larger diameter and a larger total pore volume by the quenching treatment as shown in FIG. 0.023 total pore volume
cc / g, which is much larger than the total pore volume of 0.009 cc / g of the acidic hydrothermally treated product shown in FIG. 5, and also in the differential pore volume, in addition to the pore diameter of around 10 3 mm,
This is demonstrated by the fact that a sharp peak is observed near the pore diameter of 10 4 °.
【0034】その後、急冷処理後の多孔体状の残渣炭化
物をクラッシャーで粗砕後、ジェットミルで微粉砕を行
った。微粉砕で得られた炭化物は粒径104Å(1μ
m)以下が約50%程度の微細な粉末で、組成分析を行
った結果はCoは0.01%以下,O2は0.09%およ
びWC残であり、結合相のCoはほとんど溶解除去され
ており、超硬合金原料として再利用が可能であった。W
C回収率としては99%以上である。Thereafter, the porous carbonized residue after the quenching treatment was coarsely crushed by a crusher and then finely pulverized by a jet mill. The carbide obtained by pulverization has a particle size of 10 4 Å (1 μm).
m) The following is a fine powder of about 50%, and the result of composition analysis shows that the content of Co is 0.01% or less, the content of O 2 is 0.09% and WC residue, and the Co of the binder phase is almost dissolved and removed. And could be reused as a cemented carbide material. W
The C recovery rate is 99% or more.
【0035】一方、Coが溶解したHCl溶液はNaO
Hを加えてCo(OH)2として回収し、これを焼成し
た後水素還元を行って金属Coとした。On the other hand, the HCl solution in which Co is dissolved is NaO
H was added to recover Co (OH) 2 , which was fired and then reduced with hydrogen to obtain metal Co.
【0036】《実施例2》内容積10リットルのオート
クレーブに、WC−TiC−TaCを主体とし、Coを
結合材とする超硬合金チップ(株式会社東芝タンガロイ
社製:UX−30,Co含有量6〜12%)のスクラッ
プを総重量1kgと、及び酸性水溶液として濃度5mo
l/リットルのH2SO4をオートクレーブ本体が占める
空間の80%に達するまで充填し、密閉してこれを加熱
し、オートクレーブ内温度240℃、圧力33kgf/
cm2に維持して、12時間水熱処理を行った後、冷却
してから開封して、結合相のCoを溶出した多孔体状の
残渣炭化物とCoが溶解しH2SO4溶液を取り出した。Example 2 A cemented carbide chip containing WC-TiC-TaC as a main component and Co as a binder (manufactured by Toshiba Tungaloy Co., Ltd .: UX-30, Co content) was placed in an autoclave having an internal volume of 10 liters. 6 to 12%) of scrap with a total weight of 1 kg and a concentration of 5 mol as an acidic aqueous solution.
1 / liter of H 2 SO 4 was filled until the space occupied by the autoclave reached 80% of the space occupied by the autoclave, sealed and heated, and the autoclave temperature was 240 ° C. and the pressure was 33 kgf /.
After performing a hydrothermal treatment for 12 hours while maintaining the pressure at 2 cm 2 , the mixture was cooled and opened, and the residual carbonaceous carbide having eluted Co of the binder phase and Co were dissolved to take out the H 2 SO 4 solution. .
【0037】実施例2のH2SO4を使用した水熱処理で
得られた残渣炭化物の細孔分布は、実施例1のHClを
使用した水熱処理で得られた多孔体状炭化物の細孔分布
とほぼ同様であり、実施例2のH2SO4を使用した水熱
処理で得られた残渣炭化物も多孔体状になっていること
がわかる。The pore distribution of the residual carbide obtained by the hydrothermal treatment using H 2 SO 4 in Example 2 is the pore distribution of the porous carbide obtained by the hydrothermal treatment using HCl in Example 1. This is almost the same as that of Example 1. It can be seen that the residual carbide obtained by the hydrothermal treatment using H 2 SO 4 of Example 2 is also porous.
【0038】この多孔体状の残渣炭化物を十分に水洗し
た後、細孔内に水を含んだままの状態で、5リットルの
液体窒素(−197℃)の入ったステンレス製容器中に
投入して急冷し、細孔中の水を凍結させる処理を行っ
た。なお、実施例1と同様に投入したチップ形状の炭化
物の内の約40%はチップが割れたり、チップの角が欠
けており、原形をとどめているのは約60%であった。After sufficiently washing the porous carbon residue, it is poured into a stainless steel container containing 5 liters of liquid nitrogen (−197 ° C.) while keeping water in the pores. Quenched to freeze the water in the pores. In addition, about 40% of the chip-shaped carbides charged in the same manner as in Example 1 had cracked chips or chipped corners, and about 60% retained the original shape.
【0039】実施例2の急冷処理で得られた残渣炭化物
の細孔分布は、実施例1の急冷処理で得られた残渣炭化
物の細孔分布とほぼ同様であり、実施例2の場合も実施
例1と同様に急冷処理により、得られた多孔体状の残渣
炭化物はさらに多孔体状になっていることがわかる。次
にこの充分冷却した多孔体状の炭化物を実施例1と同様
の粗砕及び微粉砕を行った。The pore distribution of the residual carbide obtained by the quenching treatment of Example 2 is almost the same as the pore distribution of the residual carbide obtained by the quenching treatment of Example 1. It can be seen that, by the quenching treatment in the same manner as in Example 1, the obtained porous residual carbonized material is further porous. Next, this sufficiently cooled porous carbide was crushed and pulverized in the same manner as in Example 1.
【0040】微粉砕で得られた多孔体状炭化物は、粒径
104Å(1μm)以下が50%程度の微細な粉末で、
組成分析を行った結果はCoは0.01%以下,O2は
0.10%およびWC−TiC−TaC残であり、結合
相のCoはほとんど溶解除去されており、超硬合金原料
として再利用が可能である。尚、WC−TiC−TaC
回収率は98%以上であった。The porous carbide obtained by the pulverization is a fine powder having a particle size of 10 4 10 (1 μm) or less and about 50%.
As a result of composition analysis Co 0.01% is less, O 2 is 0.10% and WC-TiC-TaC residue, Co binder phase is almost dissolved and removed, re as cemented carbide material Available. In addition, WC-TiC-TaC
The recovery was 98% or more.
【0041】一方、Coが溶解したH2SO4溶液はKO
Hを加えてCo(OH)2として回収し、これを焼成し
た後、水素還元を行って金属Coとした。On the other hand, the H 2 SO 4 solution in which Co is dissolved is KO
H was added to recover Co (OH) 2 , which was fired and then reduced with hydrogen to obtain metal Co.
【0042】《実施例3》実施例1で得られた水熱処理
によってCoを溶解除去し、その後水洗して細孔内に水
を含んだ状態の多孔体状の残渣炭化物を、5リットルの
水の入った超音波洗浄器(SHARP SILENTS
ONIC UT−304)に投入して30分間の超音波
処理を行った後、5リットルの液体窒素(−197℃)
の入ったステンレス製容器中に投入して急冷処理を行っ
た。Example 3 Co was dissolved and removed by the hydrothermal treatment obtained in Example 1 and then washed with water to remove 5 l of water from the porous residual carbonized material containing water in the pores. Ultrasonic cleaner (SHARP SILENTS)
ONIC UT-304) and sonicated for 30 minutes, then 5 liters of liquid nitrogen (-197 ° C)
And quenched in a stainless steel container.
【0043】投入したチップ形状の炭化物の内の約50
%はチップが割れたり、チップの角が欠けており、原型
をとどめているのは約50%であった。冷却した炭化物
に対して実施例1と同様の粗砕及び微粉砕を行った。微
粉砕で得られた多孔体状炭化物は粒径104Å(1μ
m)以下が約60%程度の微細な粉末で、組成分析を行
った結果は実施例1と同様の結果が得られた。Approximately 50 of the injected chip-shaped carbides
The percentage of the chips was broken or the corners of the chips were missing, and about 50% of the originals remained. The same coarse and fine pulverization as in Example 1 was performed on the cooled carbide. Porous shaped carbides obtained in finely divided particle size 10 4 Å (1 [mu]
m) The following was a fine powder of about 60%, and the result of composition analysis was the same as in Example 1.
【0044】《実施例4》実施例1で得られた水熱処理
によってCoを溶解除去し、その後水洗して細孔内に水
を含んだ状態の多孔体状の残渣炭化物を、界面活性剤と
しての0.1%ドデシルベンゼンスルホン酸Na(DB
A)水溶液5リットルの入ったステンレス製容器に投入
し、この容器を振動台に乗せ1時間の振動させた後、5
リットルの液体窒素(−197℃)の入ったステンレス
製容器中に投入して急冷処理を行った。Example 4 Co was dissolved and removed by the hydrothermal treatment obtained in Example 1 and then washed with water to obtain a porous residual carbon material containing water in the pores as a surfactant. 0.1% sodium dodecylbenzenesulfonate (DB
A) The solution was poured into a stainless steel container containing 5 liters of an aqueous solution, and the container was placed on a shaking table and vibrated for 1 hour.
It was put into a stainless steel container containing 1 liter of liquid nitrogen (−197 ° C.) and quenched.
【0045】投入したチップ形状の炭化物の内の約45
%はチップが割れたり、チップの角が欠けたりしてい
て、原型をとどめているのは約55%であった。冷却し
た多孔体状の残渣炭化物は実施例1と同様の粗砕及び微
粉砕を行った。微粉砕で得られた炭化物は粒径が104
Å(1μm)以下が55%程度の微細な粉末で、組成分
析を行った結果は実施例1とほぼ同様であった。Approximately 45 of the injected chip-shaped carbides
The percentage was broken or the corner of the chip was chipped, and about 55% of the prototypes remained. The cooled residual carbonized material was subjected to the same coarse and fine grinding as in Example 1. The carbide obtained by pulverization has a particle size of 10 4
Å (1 μm) or less was a fine powder of about 55%, and the result of composition analysis was almost the same as in Example 1.
【0046】《実施例5》実施例1で得られた水熱処理
によってCoを溶解除去し、その後水洗して細孔内に水
を含んだ状態の多孔体状の残渣炭化物を、界面活性剤と
しての0.1%ドデシルベンゼンスルホン酸Na(DB
A)水溶液5リットルの入った実施例3と同様の超音波
洗浄器に投入して30分間の超音波処理を行った後、5
リットルの液体窒素(−197℃)の入ったステンレス
製容器中に投入して急冷処理を行った。投入したチップ
形状の炭化物の内の約55%はチップが割れたり、チッ
プの角が欠けており、原型をとどめているのは約45%
であった。Example 5 Co was dissolved and removed by the hydrothermal treatment obtained in Example 1 and then washed with water to obtain a porous residual carbide containing water in the pores as a surfactant. 0.1% sodium dodecylbenzenesulfonate (DB
A) The same ultrasonic cleaner as in Example 3 containing 5 liters of an aqueous solution was put therein, and subjected to ultrasonic treatment for 30 minutes.
It was put into a stainless steel container containing 1 liter of liquid nitrogen (−197 ° C.) and quenched. Approximately 55% of the injected chip-shaped carbides have cracked chips or chipped corners, and only about 45% of the original mold remains
Met.
【0047】冷却した炭化物は実施例1と同様の粗砕及
び微粉砕を行った。微粉砕で得られた多孔体状炭化物は
粒径104Å(1μm)以下が63%程度の微細な粉末
で、組成分析を行った結果は実施例1とほぼ同様であっ
た。The cooled carbide was crushed and pulverized in the same manner as in Example 1. The porous carbonized material obtained by the fine pulverization was a fine powder having a particle size of not more than 63% (1 4 μm) or less. The result of composition analysis was almost the same as that of Example 1.
【0048】《実施例6》実施例1で得られた水熱処理
によってCoを溶解除去し、その後水洗して細孔内に水
を含んだ状態の多孔体状の残渣炭化物に対して、実施例
5に示す急冷処理を繰り返し2回行った。投入したチッ
プ形状の炭化物の内の約60%は割れたり、縁が欠けて
おり、原型をとどめているのは約40%であった。Example 6 Co was dissolved and removed by the hydrothermal treatment obtained in Example 1 and then washed with water to remove residual carbon in a porous state containing water in the pores. The quenching treatment shown in FIG. 5 was repeated twice. About 60% of the input chip-shaped carbides were cracked or lacked in edges, and about 40% retained the original form.
【0049】冷却した多孔体状の残渣炭化物に対して実
施例1と同様の粗砕及び微粉砕を行った。微粉砕で得ら
れた炭化物は粒径104Å(1μm)以下が65%程度
の微細な粉末で、組成分析を行った結果は実施例1とほ
ぼ同様であった。The cooled porous carbonized residue was subjected to the same coarse and fine grinding as in Example 1. The carbide obtained by the fine pulverization was a fine powder having a particle size of 10 4 ° (1 μm) or less and about 65%. The result of composition analysis was almost the same as that of Example 1.
【0050】《比較例1》圧力容器内温度を90℃と
し、処理時間を24時間とする以外は実施例1に記載し
た方法と同様の条件および方法で超硬合金チップのスク
ラップの処理を行った。得られた残渣炭化物中および液
相中のCoの含有量を調べた結果、Coの抽出率は2
9.7%であり、得られた残渣炭化物を実施例1と同様
の方法で急冷処理を行った。なお、投入したチップ形状
の残渣炭化物はチップの割れやチップの角の欠けはな
く、全てが原型をとどめていた。<< Comparative Example 1 >> Scrap of cemented carbide chips was performed under the same conditions and methods as described in Example 1, except that the temperature in the pressure vessel was 90 ° C. and the processing time was 24 hours. Was. As a result of examining the Co content in the obtained residual carbide and the liquid phase, the extraction rate of Co was 2
It was 9.7%, and the obtained residual carbide was quenched in the same manner as in Example 1. In addition, the chipped residual carbide in the shape of the chips had no cracks or chipped corners of the chips, and all remained in the original form.
【0051】冷却した残渣炭化物に対して実施例1と同
様の粉砕操作を試みたが、微粉末化することは困難であ
った。従って本実施例で説明したように100℃以上の
水熱処理をしなければ、Co等の結合相が十分に溶媒に
溶解しないこと、及び結合相が十分に除去されていない
残渣炭化物は急冷処理をしても強度を著しく低下させる
ことができないことが判る。The same grinding operation as in Example 1 was attempted on the cooled residual carbide, but it was difficult to pulverize it. Therefore, unless a hydrothermal treatment at 100 ° C. or higher is performed as described in this example, the binder phase such as Co is not sufficiently dissolved in the solvent, and the residual carbide in which the binder phase is not sufficiently removed is subjected to a quenching treatment. It can be seen that the strength cannot be significantly reduced.
【0052】これに対して実施例1に示す超硬合金の再
生処理方法によれば、水熱処理によってCo等の結合相
がほぼ完全に除去できて結合相を回収できるとともに、
残渣炭化物を急冷して、凍結することにより、容易に粉
砕することができる。On the other hand, according to the cemented carbide regeneration treatment method shown in Embodiment 1, the binder phase such as Co can be almost completely removed by the hydrothermal treatment, and the binder phase can be recovered.
By rapidly cooling and freezing the residual carbide, it can be easily pulverized.
【0053】《比較例2》実施例1で得られた水熱処理
によってCoを溶解除去し、その後水洗した多孔体状の
残渣炭化物を、細孔内に水を含まない状態になるまで十
分に乾燥させた後、実施例1と同様の急冷処理を行っ
た。なお、投入したチップ形状の残渣炭化物はチップの
割れはなく、全てが原型をとどめていた。比較例2の急
冷処理で得られた炭化物の細孔分布は急冷処理前と同様
であり、実施例1等で認められる急冷処理の効果が認め
られない。Comparative Example 2 Co was dissolved and removed by the hydrothermal treatment obtained in Example 1, and then the porous residual carbide washed with water was sufficiently dried until water was not contained in the pores. After that, the same rapid cooling treatment as in Example 1 was performed. In addition, the chipped residual carbide in the shape of the chips did not crack the chips, and all remained the original form. The pore distribution of the carbide obtained by the quenching treatment of Comparative Example 2 is the same as before the quenching treatment, and the effect of the quenching treatment observed in Example 1 and the like is not observed.
【0054】これは細孔内に水が含まれていないため、
急凍結させることによる相変化に起因する体積の急膨張
がなく、炭化物の結合組織を破壊することができないた
めである。冷却した炭化物を実施例1と同様の粉砕操作
を試みたが、微粉末化することは困難であった。This is because water is not contained in the pores.
This is because there is no rapid expansion of the volume due to the phase change due to the rapid freezing, and the connective structure of the carbide cannot be destroyed. The same grinding operation as in Example 1 was attempted on the cooled carbide, but it was difficult to pulverize the cooled carbide.
【0055】《比較例3》実施例1で得られた水熱処理
によってCoを溶解除去し、その後水洗した多孔体状の
残渣炭化物を、急冷処理することなしに、そのまま実施
例1と同様の粗砕及び微粉砕を試みたが、容易に微粉末
化することは困難であった。Co等の結合相を除去した
のみの残留炭化物は多孔体状となっており、水熱処理前
に較べ強度の低下はあるものの、なお炭化物粒子間の結
合に起因すると思われる強度を有しているからである。Comparative Example 3 Co was dissolved and removed by the hydrothermal treatment obtained in Example 1, and then the porous residual carbide washed with water was subjected to the same crude treatment as in Example 1 without quenching. Crushing and pulverization were attempted, but it was difficult to easily pulverize. The residual carbide obtained only by removing the binder phase such as Co is in a porous state and has a strength considered to be due to the bond between the carbide particles, although the strength is lower than before the hydrothermal treatment. Because.
【0056】これに対し本発明にかかる超硬合金の再生
処理方法によれば、急冷・凍結処理により多孔体状の残
渣炭化物は強度が著しく低下しており、容易に微粉末化
することができ、しかも得られた多孔体状炭化物は、高
温での加熱工程がないために、1800℃以上での加熱
時にみられるような粒子成長のない、粒径は104Å
(1μm)以下が50%以上の微細な粉末で超硬合金原
料としてそのまま再利用が可能である。On the other hand, according to the method for regenerating cemented carbide according to the present invention, the strength of the porous residual carbide is significantly reduced by the rapid cooling / freezing treatment, and it can be easily pulverized. , yet the resulting porous shaped carbides, since there is no heating step at a high temperature, no grain growth as found upon heating at 1800 ° C. or higher, the particle size 10 4 Å
(1 μm) is a fine powder of 50% or more and can be reused as raw material of cemented carbide as it is.
【0057】[0057]
【発明の効果】以上詳細に説明したように本発明にかか
る超硬合金の再生処理方法によれば、通常の超硬合金は
炭化物粒子間の結合相が非常に狭いために、常温、常圧
下においては完全に結合相を溶解することは極めて困難
であるのに対して、超硬合金のスクラップを溶媒ととも
に耐熱性圧力容器に充填し、水熱処理を実施した後に細
孔内に溶媒を含んだ状態の多孔体状の残渣炭化物を急冷
して水溶液を急凍結させることにより、多孔体状の炭化
物の相変化に起因する体積の急膨張により結合組織を破
壊して強度を著しく低下させて粉砕を行うことができ
る。従って超硬合金スクラップを完全に、かつ、短時間
で溶媒中に溶解させて結合相を溶出させて得られた多孔
体状の残渣炭化物から炭化タングステン等の原料粉末を
粒子成長や不純物の混入なしに再生することが可能とな
り、そのまま超硬合金の原料粉末として再利用すること
ができる。As described in detail above, according to the method for reclaiming cemented carbide according to the present invention, the ordinary cemented carbide has a very narrow binder phase between carbide particles, and thus is hardened at normal temperature and normal pressure. Although it is extremely difficult to completely dissolve the binder phase in, a scrap of cemented carbide was filled in a heat-resistant pressure vessel together with a solvent and a solvent was contained in the pores after performing a hydrothermal treatment. By rapidly cooling the aqueous carbide residue in the state and rapidly freezing the aqueous solution, the connective tissue is destroyed by the rapid expansion of the volume due to the phase change of the porous carbide and the strength is significantly reduced, and the pulverization is performed. It can be carried out. Therefore, the raw material powder such as tungsten carbide can be obtained from the porous residual carbide obtained by dissolving the cemented carbide scrap completely and in a short time in a solvent to elute the binder phase without particle growth or contamination of impurities. It can be recycled as raw material powder for cemented carbide as it is.
【0058】特に従来より提案されて各種方法に比して
回収された原料粉末の品質が高く、しかも処理費用の面
でも有利であり、周期律表のIVa,VaおよびVIa族
金属のW,TiおよびTa等の炭化物のうちの少なくと
も1種以上を硬質相とし、Fe,NiおよびCoのうち
の少なくとも1種以上を結合相とする超硬合金のスクラ
ップから比較的簡単な操作工程で安価で、かつ、容易に
原料粉末を再生することができる。In particular, the quality of the raw material powders which have been conventionally collected and recovered is higher than that of various methods, and is advantageous in terms of processing cost. W, Ti of Group IVa, Va and VIa group metals of the periodic table And at least one of carbides such as Ta and the like as a hard phase and at least one or more of Fe, Ni and Co as a binder phase. In addition, the raw material powder can be easily regenerated.
【図1】水熱処理前の超硬合金スクラップの金属組織を
示す電子顕微鏡写真。FIG. 1 is an electron micrograph showing the metal structure of cemented carbide scrap before hydrothermal treatment.
【図2】水熱処理を行った後の超硬合金スクラップの残
渣炭化物の金属組織を示す電子顕微鏡写真。FIG. 2 is an electron micrograph showing the metal structure of the residual carbide of cemented carbide scrap after hydrothermal treatment.
【図3】水熱処理を行った後に冷却・凍結させた後の超
硬合金スクラップの残渣炭化物の金属組織を示す電子顕
微鏡写真。FIG. 3 is an electron micrograph showing a metal structure of residual carbide of cemented carbide scrap after being subjected to hydrothermal treatment and then cooled and frozen.
【図4】水熱処理前の超硬合金スクラップの細孔分布を
示すグラフ。FIG. 4 is a graph showing the pore distribution of cemented carbide scrap before hydrothermal treatment.
【図5】水熱処理後の超硬合金スクラップの残渣炭化物
の細孔分布を示すグラフ。FIG. 5 is a graph showing a pore distribution of residual carbide in cemented carbide scrap after hydrothermal treatment.
【図6】水熱処理後に冷却・凍結させた後の超硬合金ス
クラップの残渣炭化物の細孔分布を示すグラフ。FIG. 6 is a graph showing a pore distribution of residual carbide of cemented carbide scrap after cooling and freezing after hydrothermal treatment.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭52−108302(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01B 31/00 - 31/36 B09B 3/00 C22B 7/00 B22F 9/04 INSPEC(DIALOG) JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-52-108302 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01B 31/00-31/36 B09B 3 / 00 C22B 7/00 B22F 9/04 INSPEC (DIALOG) JICST file (JOIS)
Claims (11)
多孔体状の残渣炭化物を、その細孔内に水溶液を含んだ
状態で急冷し、水溶液を凍結させることによって相変化
させて体積を急膨張させることにより、残渣炭化物の結
合組織を破壊することを特徴とする超硬合金の再生処理
方法。1. A porous solid carbide obtained by removing a binder from a cemented carbide is rapidly cooled in a state where an aqueous solution is contained in its pores, and the aqueous solution is frozen to cause a phase change. A method for reclaiming cemented carbide, characterized by destroying the connective structure of the residual carbide by rapidly expanding the volume.
力容器に充填し、水熱処理を実施することにより超硬合
金中の結合材を酸性水溶液に溶解させて除去した後、得
られた多孔体状の残渣炭化物を、その細孔内に水溶液を
含んだ状態で急冷し、水溶液を凍結させることによって
相変化させて体積を急膨張させることにより、残渣炭化
物の結合組織を破壊することを特徴とする超硬合金の再
生処理方法。2. A porous material obtained by filling a cemented carbide together with an acidic aqueous solution into a heat-resistant pressure vessel and performing a hydrothermal treatment to dissolve and remove the binder in the cemented carbide in the acidic aqueous solution. Quenched in the state of containing an aqueous solution in its pores, and rapidly changing the phase by freezing the aqueous solution to rapidly expand the volume, thereby destroying the connective structure of the residual carbide. Method for reclaiming cemented carbide.
の酸性水溶液を用いた請求項2記載の超硬合金の再生処
理方法。3. The method for reclaiming cemented carbide according to claim 2, wherein an acidic aqueous solution having a pH of 2 or less is used as the acidic condition of the acidic aqueous solution.
300℃とした請求項2又は3記載の超硬合金の再生処
理方法。4. The treatment temperature in the hydrothermal treatment is from 100 ° C.
The method for reclaiming cemented carbide according to claim 2 or 3, wherein the temperature is set to 300 ° C.
の残渣炭化物を水溶液中で超音波処理をし、細孔内面を
脆く、或いは水溶液を細孔内に更に浸透させてから水溶
液を凍結させる請求項1,2,3又は4記載の超硬合金
の再生処理方法。5. A porous carbonaceous residue containing an aqueous solution in the pores is subjected to ultrasonic treatment in an aqueous solution to make the inner surface of the pores brittle or to further penetrate the aqueous solution into the pores before the aqueous solution. 5. The method for reclaiming cemented carbide according to claim 1, 2, 3, or 4.
求項1,2,3,4又は5記載の超硬合金の再生処理方
法。6. The method for reclaiming cemented carbide according to claim 1, wherein a surfactant is added to the aqueous solution.
よる体積の急膨張を所定回数繰り返して行う請求項1,
2,3,4,5又は6記載の超硬合金の再生処理方法。7. The method according to claim 1, wherein the rapid expansion of the volume by freezing the aqueous solution and changing the phase is repeated a predetermined number of times.
7. The method for reprocessing a cemented carbide according to 2, 3, 4, 5 or 6.
ンモニア水溶液を使用する請求項1,2,3,4,5,
6又は7記載の超硬合金の再生処理方法。8. The method according to claim 1, wherein the aqueous solution is water, an acidic aqueous solution, or an aqueous ammonia solution.
8. The method for reclaiming a cemented carbide according to 6 or 7.
項1,2,3,4,5,6,7又は8記載の超硬合金の
再生処理方法。9. The method for reclaiming cemented carbide according to claim 1, wherein liquid nitrogen is used as the freezing means.
に、機械的手段によって粉砕を行って微粉末化すること
により超硬合金の原料粉末として回収する請求項1,
2,3,4,5,6,7,8又は9記載の超硬合金の再
生処理方法。10. The method of claim 1, wherein after breaking down the connective structure of the residual carbide, the raw material powder of the cemented carbide is recovered by pulverizing by mechanical means and pulverizing it.
The method for reprocessing a cemented carbide according to 2, 3, 4, 5, 6, 7, 8, or 9.
びVIa族金属の炭化物のうちの少なくとも1種以上を主
体とし、鉄,ニッケル又はコバルトのうちの少なくとも
1種以上を結合材とする請求項1,2,3,4,5,
6,7,8,9又は10記載の超硬合金の再生処理方
法。11. A cemented carbide mainly comprises at least one or more of carbides of Group IVa, Va and VIa metals of the periodic table, and at least one or more of iron, nickel and cobalt as a binder. Claims 1, 2, 3, 4, 5,
11. The method for reclaiming cemented carbide according to 6, 7, 8, 9 or 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22735097A JP3290929B2 (en) | 1997-08-08 | 1997-08-08 | Recycling treatment of cemented carbide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22735097A JP3290929B2 (en) | 1997-08-08 | 1997-08-08 | Recycling treatment of cemented carbide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1160227A JPH1160227A (en) | 1999-03-02 |
JP3290929B2 true JP3290929B2 (en) | 2002-06-10 |
Family
ID=16859432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22735097A Expired - Fee Related JP3290929B2 (en) | 1997-08-08 | 1997-08-08 | Recycling treatment of cemented carbide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3290929B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4615234B2 (en) * | 2004-03-30 | 2011-01-19 | 独立行政法人科学技術振興機構 | Method for insolubilizing and separating boron dissolved in water, method for detoxifying boron dissolved wastewater, and method for recovering boron resources |
JP2009179818A (en) * | 2008-01-29 | 2009-08-13 | Tokyo Institute Of Technology | Method for recovering metal |
JP2009191328A (en) * | 2008-02-15 | 2009-08-27 | Tokyo Institute Of Technology | Metal recovery plant |
KR101311712B1 (en) * | 2011-09-23 | 2013-09-26 | 한국세라믹기술원 | Removing method of coating layer from waste cemented carbide |
CN104985184A (en) * | 2015-07-30 | 2015-10-21 | 东莞理工学院 | A hard alloy extrusion forming intermediate waste material recovering process |
JP6858371B2 (en) * | 2017-04-27 | 2021-04-14 | 国立研究開発法人産業技術総合研究所 | Powder and its manufacturing method |
JP7162163B2 (en) * | 2020-04-10 | 2022-10-28 | 山形県 | Porous metal and its air permeability control method |
-
1997
- 1997-08-08 JP JP22735097A patent/JP3290929B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1160227A (en) | 1999-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4257690B2 (en) | Sintered active metal powders and alloy powders for powder metallurgy applications, methods for their production and their use | |
US4234333A (en) | Process for recovering metal carbide powder from cemented carbides | |
CN103173640B (en) | A kind of preparation method of the regeneration WC-Co hard alloy containing rare earth | |
CN111575567B (en) | Regeneration method of waste high-cobalt coarse-grain hard alloy | |
DD279462A5 (en) | METHOD FOR PRODUCING SUBSTANTIALLY PURE TONERDE MATERIALS | |
JP3290929B2 (en) | Recycling treatment of cemented carbide | |
KR101101755B1 (en) | Method for recycling waste cemented carbide sludge | |
JP2004002927A (en) | Method for processing super hard alloy scrap | |
CN102978406B (en) | Regeneration method for rhenium-containing high-temperature alloy scrap | |
US10161017B2 (en) | Method for crushing hard tungsten carbide scraps | |
JPH1030130A (en) | Method for regenerating cemented carbide | |
JP2003051418A (en) | Method for recycling rare-earth magnet scrap | |
JP4183926B2 (en) | Method for recovering tantalum / niobium from tantalum / niobium-containing carbide materials | |
JP2000072430A (en) | Repowdering technique for spent sintered hard alloy part by tin impregnation method | |
Liu et al. | Removal of iron from solar grade silicon (SoG-Si) cutting slurry waste by ultrasound-assisted leaching with dilute sulfuric acid | |
US2848313A (en) | Method of chemically disintegrating and pulverizing solid material | |
KR100370269B1 (en) | A method for collecting tantalum form waste scraps containing tantalum | |
KR102370832B1 (en) | Nanoparticle dispersion strengthened composite powder and manufacturing method thereof | |
JP3120679B2 (en) | Removal method of chloride from sintering machine dust | |
US4348231A (en) | Method of recovering metal carbides | |
JP2000336404A (en) | Method for pulverizing wc-containing alloy, oxide powder of wc-containing alloy, method for regenerating wc- containing alloy, regenerated wc-containing alloy powder, production of cemented carbide using the same powder and cemented carbide using the same powder | |
Gao et al. | Resource recovery of WC-Co cermet using hydrothermal oxidation technique | |
KR20080110403A (en) | Method for recovering tungsten from wasted sludge | |
US20050175496A1 (en) | Method of reclaiming contaminated metal | |
KR960010813B1 (en) | Tungsten scrap treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |