JP3288620B2 - Steel sheet for double-wound pipe and method for producing the same - Google Patents
Steel sheet for double-wound pipe and method for producing the sameInfo
- Publication number
- JP3288620B2 JP3288620B2 JP33575597A JP33575597A JP3288620B2 JP 3288620 B2 JP3288620 B2 JP 3288620B2 JP 33575597 A JP33575597 A JP 33575597A JP 33575597 A JP33575597 A JP 33575597A JP 3288620 B2 JP3288620 B2 JP 3288620B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- double
- steel
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、表面に銅あるいは
これに類する自己ろう付け性を有する金属をめっきし、
管状に成形した後、めっきした金属の融点以上に短時間
加熱して製造される2重巻パイプに用いて好適な冷延鋼
板およびその製造方法に関するものである。The present invention relates to a method of plating copper or a metal having a self-brazing property similar to copper on a surface thereof,
The present invention relates to a cold-rolled steel sheet suitable for use in a double-wound pipe manufactured by heating to a melting point of a plated metal for a short time after being formed into a tubular shape, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】各種コンプレッサーの接続パイプ、自動
車のブレーキチューブ等の分野では、銅パイプと同様な
外観と、優れた熱的特性、美観性を有しながら、鉄の高
強度と強靱性を具えた、いわゆる2重巻パイプが使用さ
れている。2重巻パイプについては、例えば、鉄と鋼第
66年(1980)第1号p130 に詳細な説明がある。2重巻
パイプの一般的な製造方法は次のとおりに行われる。板
厚約0.30mm程度の冷延鋼板の素材に、まず、鋼板の表裏
面に電気銅めっきを行う。その後、鋼板の圧延方向がパ
イプの軸方向となるように、かつパイプの壁が2重の板
にとなるように、鋼板を2周分丸める。その後、銅の融
点以上に加熱して銅を溶融させることにより、板間の隙
間をうめ、鋼板を互いに接合して、いわゆる「自己ろう
付け」を行う。その後、これに冷間で形状矯正、寸法精
整等を施し、製品とする。このようにして製造された2
重巻パイプには、上述したような用途から、一般に、気
密性などの信頼性が要求される。2. Description of the Related Art In the fields of connecting pipes for various compressors, brake tubes for automobiles, etc., it has the same appearance and excellent thermal characteristics and aesthetics as copper pipes, while providing the high strength and toughness of iron. Also, a so-called double wound pipe is used. For double wound pipes, for example, iron and steel
There is a detailed explanation in 1980, p. 130, 1980. A general method of manufacturing a double wound pipe is performed as follows. First, electrolytic copper plating is applied to the front and back surfaces of a cold-rolled steel sheet having a thickness of about 0.30 mm. Thereafter, the steel sheet is rounded for two turns so that the rolling direction of the steel sheet is in the axial direction of the pipe and the wall of the pipe is a double plate. Thereafter, by heating to a temperature equal to or higher than the melting point of copper to melt the copper, the gap between the plates is filled, and the steel plates are joined to each other, so-called “self-brazing” is performed. Thereafter, this is subjected to shape correction, dimensional adjustment and the like in the cold to obtain a product. 2 manufactured in this way
The heavy wound pipe is generally required to have reliability such as airtightness for the above-mentioned applications.
【0003】さて、2重巻パイプに使用される鋼板は、
板厚が0.35mm以下の極薄冷延鋼板であり、きわめて高
い成形性が要求されるため、従来から一般に、低炭素鋼
の箱焼鈍材が用いられてきた。この箱焼鈍材は、材質的
には比較的軟質で良好な成形性も有するため、2重巻パ
イプ用の素材として十分に使用可能ではあるが、製造工
程に数日間を要するため生産効率が悪く、またコイルの
長手方向、幅方向における材質の不均一性が大きいとい
う問題点があった。そのほか、2重巻パイプ用鋼板の基
本特性としては、パイプ成形用金型の消耗を軽減するた
め、また製管(管巻き)工程における形状凍結性を向上
させるために、強度を確保しながらもより軟質で成形性
に優れる材料が求められている。[0003] The steel sheet used for the double wound pipe is as follows:
Since it is an ultra-thin cold-rolled steel sheet having a thickness of 0.35 mm or less and requiring extremely high formability, a box-annealed material of low-carbon steel has been generally used conventionally. This box-annealed material is relatively soft in material and also has good formability, so that it can be sufficiently used as a material for a double-wound pipe, but the production process requires several days, resulting in poor production efficiency. In addition, there is a problem that the material is largely non-uniform in the longitudinal direction and the width direction of the coil. In addition, the basic characteristics of the steel sheet for double-wound pipes are to reduce the consumption of the mold for forming pipes and to improve the shape freezing property in the pipe-making (tube winding) process, while ensuring strength. There is a need for a softer material having excellent moldability.
【0004】[0004]
【発明が解決しようとする課題】近年、炭素量を大幅に
低減した極低炭素鋼(0.020%以下) が一般の冷延鋼板の
分野で注目されている。極低炭素鋼は、生産効率および
材質の均一性に優れる連続焼鈍法に適し、さらに軟質か
つ成形性にも優れるという特徴を有する。したがって、
上述した問題点を解決するためには、極低炭素鋼を用い
た連続焼鈍材の適用が有望であると思われる。しかし、
2重巻パイプの製造工程においては、パイプに巻いた
後、引き抜き加工により、約7〜8%程度の冷間歪が加
えられ、短時間とはいえ、銅の融点(1083℃)以上の高
温で自己ろう付けのための熱処理が加えられる。このた
め、加工−熱処理による鋼組織の粗大化が懸念される。
実際に、極低炭素鋼を素材として2重巻パイプを製造す
ると、しばしば、強度および靱性に著しい悪影響を及ぼ
す粗大粒が発生することが分かった。In recent years, ultra-low carbon steels (less than 0.020%) with significantly reduced carbon content have attracted attention in the field of general cold-rolled steel sheets. The ultra-low carbon steel is suitable for a continuous annealing method excellent in production efficiency and material uniformity, and is further characterized by being soft and excellent in formability. Therefore,
In order to solve the above-mentioned problems, it is considered that application of a continuously annealed material using ultra-low carbon steel is promising. But,
In the manufacturing process of the double-wound pipe, after being wound around the pipe, a cold strain of about 7 to 8% is applied by drawing, and a high temperature of not less than the melting point of copper (1083 ° C.) for a short time. A heat treatment for self-brazing is applied. For this reason, there is a concern about the coarsening of the steel structure due to the processing and heat treatment.
In fact, it has been found that the production of double-wound pipes from ultra-low carbon steel often results in the generation of coarse grains which significantly affect strength and toughness.
【0005】そこで、本発明の目的は、従来の技術が抱
えていた上記問題点を解決し、材質を従来材に比して格
段に向上させつつ、高い生産効率と材質の均一性を併せ
持つ、自己ろう付け性を利用した2重巻パイプの製造に
用いて好適な、冷延鋼板およびその製造方法を提供する
ことにある。本発明の具体的な目標は、以下の特性を具
えた2重巻パイプの製造に用いて好適な、冷延鋼板およ
びその製造方法を提供することにある。 1)自己ろう付けのための熱処理で、特性劣化、とくに
粗大粒による強度および靱性の劣化を生じないこと。 2)製管時の変形抵抗が低く、金型の磨耗を最小限にと
どめ、寿命の延長がはかれること。 3)製管時には軟質であり、形状凍結性に優れること。 4)最終的に十分な強度、延性および靱性を有するこ
と。あるいはさらに、 5)板厚0.35mm以下の極薄鋼板であり、しかも鋼板(鋼
帯)の長手方向および幅方向における材質の均一性に優
れ、形状のばらつきを生じないこと。[0005] Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to achieve both high production efficiency and uniformity of the material while significantly improving the material as compared with the conventional material. An object of the present invention is to provide a cold-rolled steel sheet and a method for manufacturing the cold-rolled steel sheet, which are suitable for manufacturing a double-wound pipe utilizing self-brazing properties. A specific object of the present invention is to provide a cold-rolled steel sheet suitable for use in manufacturing a double-wound pipe having the following characteristics and a method for manufacturing the same. 1) The heat treatment for self-brazing does not cause deterioration in characteristics, particularly, strength and toughness due to coarse grains. 2) Low deformation resistance during pipe production, minimizing mold wear, and extending the service life. 3) Being soft at the time of pipe production and having excellent shape freezing properties. 4) Ultimately have sufficient strength, ductility and toughness. Or 5) an ultra-thin steel sheet having a thickness of 0.35 mm or less, and having excellent material uniformity in the longitudinal direction and the width direction of the steel sheet (steel strip) and no variation in shape.
【0006】[0006]
【課題を解決するための手段】発明者らは、上記の課題
を解決するための実験、研究を重ねた結果、析出物の制
御が粒成長の防止に有効であるとしてきた従来の知見に
反して、むしろ未析出状態のNbあるいはTiを一定量以上
確保することが有効であることを見出した。そして、鋼
成分の規制、仕上げ圧延の終了温度、巻き取り温度など
の熱延条件に加え、焼鈍条件を適正な範囲に制御するこ
とにより、上記一定量以上のNb、Tiを未析出状態(すな
わち、固溶状態)で確保し、結晶粒を最適範囲に制御可
能となり、製管時の熱処理後にも安定した機械的性質を
確保できることを知見し、本発明を完成するに至った。As a result of repeated experiments and studies for solving the above-mentioned problems, the inventors have contradicted conventional knowledge that control of precipitates is effective in preventing grain growth. Rather, it has been found that it is effective to secure a certain amount of Nb or Ti in a non-precipitated state. Then, in addition to the regulation of the steel components, the finish rolling finish temperature, and the hot rolling conditions such as the winding temperature, by controlling the annealing conditions in an appropriate range, Nb and Ti in the predetermined amount or more are not precipitated (ie, (Solid solution state), the crystal grains can be controlled to the optimum range, and it has been found that stable mechanical properties can be ensured even after heat treatment at the time of pipe production, and the present invention has been completed.
【0007】すなわち、本発明の要旨構成は下記のとお
りである。 (1) C:0.0005〜0.020 wt%と、Nb:0.003 〜0.040 wt
%、Ti:0.005 〜0.060 wt%の1種または2種とを含有
し、しかも、Nb、Tiのうちの少なくとも一方は、固溶状
態で0.005 wt%以上存在し、フェライト組織の結晶粒径
が5〜10μmであることを特徴とする、成形性に優れ、
成形−熱処理後のパイプ強度、靱性に優れる2重巻パイ
プ用鋼板。That is, the gist of the present invention is as follows. (1) C: 0.0005 to 0.020 wt%, Nb: 0.003 to 0.040 wt%
%, Ti: one or two kinds of 0.005 to 0.060 wt%, and at least one of Nb and Ti is present in a solid solution state in an amount of 0.005 wt% or more, and the crystal grain size of the ferrite structure is 5-10 μm, excellent in moldability,
A steel sheet for double-wound pipe with excellent pipe strength and toughness after forming and heat treatment.
【0008】(2) C:0.0005〜0.020 wt%、 S:0.02
wt%以下、N:0.0050wt%以下と、Nb:0.003 〜0.040
wt%、Ti:0.005 〜0.060 wt%の1種または2種とを含
有し、かつ、TiN、TiS、TiCおよびNbCがこの順番で
可能な限り形成されたとして計算される、余剰のNb、Ti
量が、いずれも0.005 wt%未満であり、しかも、Nb、Ti
のうちの少なくとも一方は、固溶状態で0.005 wt%以上
存在し、フェライト組織の結晶粒径が5〜10μmである
ことを特徴とする、成形性に優れ、成形−熱処理後のパ
イプ強度、靱性に優れる2重巻パイプ用鋼板。(2) C: 0.0005 to 0.020 wt%, S: 0.02
wt% or less, N: 0.0050 wt% or less, Nb: 0.003 to 0.040
wt%, Ti: one or two of 0.005 to 0.060 wt% and surplus Nb, Ti calculated assuming that TiN, TiS, TiC and NbC are formed as much as possible in this order.
Amount is less than 0.005 wt%, and Nb, Ti
At least one of which is present in a solid solution state in an amount of 0.005 wt% or more, and has a ferrite structure having a crystal grain size of 5 to 10 μm, and has excellent formability, and pipe strength and toughness after forming and heat treatment. Excellent for double-wound pipes.
【0009】 (3) C:0.0005〜0.020 wt%、 Si:0.10wt%以下、 Mn:0.1 〜1.5 wt%、 P:0.02wt%以下、 S:0.02wt%以下、 Al:0.100 wt%以下、 N:0.0050wt%以下を含み、かつ Nb:0.003 〜0.040 wt%、 Ti:0.005 〜0.060 wt% の1種または2種を含有し、残部はFeおよび不可避的不
純物の鋼組成になる上記(1) または(2) に記載の2重巻
パイプ用鋼板。(3) C: 0.0005 to 0.020 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 1.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.100 wt% or less, N: 0.0050% by weight or less, Nb: 0.003 to 0.040% by weight, Ti: 0.005 to 0.060% by weight, the balance being Fe and unavoidable impurities. ) Or the steel sheet for a double-wound pipe according to (2).
【0010】 (4) C:0.0005〜0.020 wt%、 Si:0.10wt%以下、 Mn:0.1 〜1.5 wt%、 P:0.02wt%以下、 S:0.02wt%以下、 Al:0.100 wt%以下、 N:0.0050wt%以下を含み、かつ Nb:0.003 〜0.040 wt%、 Ti:0.005 〜0.060 wt% の1種または2種を含有し、さらに、 B:0.0005〜0.0020wt%、 Cu:0.5 wt%以下、 Ni:0.5 wt%以下、 Cr:0.5 wt%以下、 Mo:0.5 wt%以下 の群の1群または2群から選ばれる、いずれか1種また
は2種以上を含有し、残部はFeおよび不可避的不純物の
鋼組成になる上記(1) または(2) に記載の2重巻パイプ
用鋼板。(4) C: 0.0005 to 0.020 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 1.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.100 wt% or less, N: not more than 0.0050 wt%, Nb: 0.003 to 0.040 wt%, Ti: one or two of 0.005 to 0.060 wt%, B: 0.0005 to 0.0020 wt%, Cu: 0.5 wt% In the following, Ni: 0.5 wt% or less, Cr: 0.5 wt% or less, Mo: 0.5 wt% or less selected from one or two groups, and the balance is Fe and The steel sheet for a double wound pipe according to the above (1) or (2), which has a steel composition of unavoidable impurities.
【0011】(5) C:0.0005〜0.020 wt%と、Nb:0.00
3 〜0.040 wt%、Ti:0.005 〜0.060 wt%の1種または
2種とを含有する鋼素材を、終了温度1000〜850 ℃で熱
間仕上圧延し、750 ℃以下で巻き取り、次いで、冷間圧
延し、650 ℃〜850 ℃、20秒以下の条件で連続焼鈍し、
圧下率20%以下で2次冷間圧延することにより、Nb、Ti
のうちの少なくとも一方は、固溶状態で0.005 wt%以上
存在し、フェライト組織の結晶粒径が5〜10μmになる
ように調整する、ことを特徴とする成形性に優れ、成形
−熱処理後のパイプ強度、靱性に優れる2重巻パイプ用
鋼板の製造方法。(5) C: 0.0005 to 0.020 wt%, Nb: 0.00
A steel material containing 3 to 0.040 wt% and one or two of Ti: 0.005 to 0.060 wt% is hot-finished and rolled at an end temperature of 1000 to 850 ° C, wound up at 750 ° C or less, and then cooled. Rolled, and continuously annealed at 650 ° C to 850 ° C for 20 seconds or less,
Nb, Ti by secondary cold rolling at a rolling reduction of 20% or less
At least one of which is present in a solid solution state in an amount of 0.005 wt% or more, and is adjusted so that the crystal grain size of the ferrite structure is 5 to 10 μm. A method for manufacturing a steel sheet for a double-wound pipe having excellent pipe strength and toughness.
【0012】(6) C:0.0005〜0.020 wt%、S:0.02wt
%以下、N:0.0050wt%以下と、Nb:0.003 〜0.040 wt
%、Ti:0.005 〜0.060 wt%の1種または2種とを含有
し、かつ、TiN、TiS、TiCおよびNbCがこの順番で可
能な限り形成されたとして計算される、余剰のNb、Ti量
が、いずれも0.005 wt%未満である鋼素材を、終了温度
1000〜850 ℃で熱間仕上圧延し、750 ℃以下で巻き取
り、次いで、冷間圧延し、650 ℃〜850 ℃、20秒以下の
条件で連続焼鈍し、圧下率20%以下で2次冷間圧延する
ことにより、Nb、Tiのうちの少なくとも一方は、固溶状
態で0.005 wt%以上存在し、フェライト組織の結晶粒径
が5〜10μmになるように調整する、ことを特徴とす
る、成形性に優れ、成形−熱処理後のパイプ強度、靱性
に優れる2重巻パイプ用鋼板の製造方法。(6) C: 0.0005 to 0.020 wt%, S: 0.02 wt%
%, N: 0.0050 wt% or less, Nb: 0.003 to 0.040 wt%
%, Ti: one or two of 0.005 to 0.060 wt%, and the amount of excess Nb and Ti calculated assuming that TiN, TiS, TiC and NbC are formed as much as possible in this order. However, steel materials with less than 0.005 wt%
Hot finish rolling at 1000 to 850 ° C, winding at 750 ° C or less, then cold rolling, continuous annealing at 650 ° C to 850 ° C for 20 seconds or less, secondary cooling at a rolling reduction of 20% or less By cold rolling, at least one of Nb and Ti is present in a solid solution state in an amount of 0.005 wt% or more, and is adjusted so that the crystal grain size of the ferrite structure is 5 to 10 μm. A method for producing a steel sheet for a double-wound pipe having excellent formability and excellent pipe strength and toughness after forming and heat treatment.
【0013】 (7) C:0.0005〜0.020 wt%、 Si:0.10wt%以下、 Mn:0.1 〜1.5 wt%、 P:0.02wt%以下、 S:0.02wt%以下、 Al:0.100 wt%以下、 N:0.0050wt%以下を含み、かつ Nb:0.003 〜0.040 wt%、 Ti:0.005 〜0.060 wt% の1種または2種を含有し、残部はFeおよび不可避的不
純物の鋼組成になる上記(5) または(6) に記載の2重巻
パイプ用鋼板の製造方法。(7) C: 0.0005 to 0.020 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 1.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.100 wt% or less, N: 0.0050 wt% or less, Nb: 0.003 to 0.040 wt%, Ti: one or two of 0.005 to 0.060 wt%, the balance being Fe and unavoidable impurities. ) Or the method for producing a steel sheet for a double-wound pipe according to (6).
【0014】 (8) C:0.0005〜0.020 wt%、 Si:0.10wt%以下、 Mn:0.1 〜1.5 wt%、 P:0.02wt%以下、 S:0.02wt%以下、 Al:0.100 wt%以下、 N:0.0050wt%以下を含み、かつ Nb:0.003 〜0.040 wt%、 Ti:0.005 〜0.060 wt% の1種または2種を含有し、さらに、A群として、B:
0.0005〜0.0020wt%、B群として、 Cu:0.5 wt%以下、 Ni:0.5 wt%以下、 Cr:0.5 wt%以下、 Mo:0.5 wt%以下 の群の1群または2群から選ばれる、いずれか1種また
は2種以上を含有し、残部はFeおよび不可避的不純物の
鋼組成になる上記(5) または(6) に記載の2重巻パイプ
用鋼板の製造方法。(8) C: 0.0005 to 0.020 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 1.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.100 wt% or less, N: not more than 0.0050 wt%, Nb: 0.003 to 0.040 wt%, Ti: one or two of 0.005 to 0.060 wt%, and as Group A, B:
0.0005 to 0.0020 wt%, selected from Group 1 or 2 of Group B: Cu: 0.5 wt% or less, Ni: 0.5 wt% or less, Cr: 0.5 wt% or less, Mo: 0.5 wt% or less The method for producing a steel sheet for a double-wound pipe according to the above (5) or (6), wherein the steel composition contains one or more kinds, and the balance is a steel composition of Fe and inevitable impurities.
【0015】(9) 熱間仕上圧延を終了後、1秒以内に、
30℃/sec 以上の速度で急冷すること上記(5) 〜(8) の
いずれか1つに記載の2重巻パイプ用鋼板の製造方法。(9) Within one second after finishing the hot finish rolling,
The method for producing a steel sheet for a double-wound pipe according to any one of the above (5) to (8), wherein the steel sheet is rapidly cooled at a rate of 30 ° C./sec or more.
【0016】[0016]
【発明の実施の形態】以下、本発明の好ましい実施形態
について説明する。 (1) 鋼成分について; C:0.0005〜0.020 wt% Cは、その極低化により製管時の成形性 (変形応力低減
化、形状凍結性改善)の向上に寄与する。しかし、0.000
5wt%未満になると結晶粒の粗大化が顕著になり、必要
とする強度および靱性の確保が困難となるほか、いわゆ
るオレンジピール現象に類似した肌荒れを発生する危険
性が増大する。一方、0.020 wt%を超えると鋼板の延性
および形状凍結性を顕著に悪化させ、鋼板の薄肉化によ
る加工性の悪化傾向を一層強める。また、過多のC量
は、冷間圧延性も低下させる。したがって、C量は0.00
05〜0.020 wt%の範囲とする。なお、さらに高度な材質
の安定性と優れた延性を必要とする場合は、0.0010〜0.
015 wt%の範囲とするのが望ましい。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. (1) Regarding steel components: C: 0.0005 to 0.020 wt% C contributes to the improvement of formability (reduction of deformation stress and improvement of shape freezing property) at the time of pipe making due to its extremely low content. But 0.000
If the content is less than 5 wt%, the crystal grains become remarkably coarse, making it difficult to secure the required strength and toughness. In addition, the risk of causing skin roughness similar to the so-called orange peel phenomenon increases. On the other hand, if it exceeds 0.020 wt%, the ductility and shape freezing property of the steel sheet are remarkably deteriorated, and the tendency of the workability to deteriorate due to the thinning of the steel sheet is further increased. In addition, an excessive amount of C also lowers cold rollability. Therefore, the amount of C is 0.00
The range is from 05 to 0.020 wt%. In addition, when more advanced material stability and excellent ductility are required, 0.0010-0.
It is desirable to be in the range of 015 wt%.
【0017】Si:0.10wt%以下 Siは、多量に添加すると、表面処理性の低下、耐食性の
低下を引き起こすほか、鋼の顕著な固溶強化のため、成
形時の変形抵抗の増加を招くので、その上限を0.10wt%
とする。なお、特に優れた耐食性が必要な場合には、0.
02wt%以下に制限するのが好しい。Si: 0.10 wt% or less When a large amount of Si is added, it causes a decrease in surface treatment properties and a decrease in corrosion resistance. In addition, since the steel is remarkably solid-solution strengthened, the deformation resistance during molding is increased. , The upper limit is 0.10wt%
And If particularly high corrosion resistance is required, 0.
It is preferable to limit it to 02 wt% or less.
【0018】Mn:0.1 〜1.5 wt% Mnは、Sに起因する熱間割れを防止するのに有効な元素
であり、特にTi無添加鋼においては、含有するS量に応
じて添加するのが望ましい。またMnは、結晶粒の微細化
効果、特に高温保持における結晶粒の粗大化抑制効果を
有するので添加することが望ましい。これらの効果をを
発揮させるためには、少なくとも0.1 wt%の添加が必要
である。しかし、過度の添加は、耐食性を悪化させ、鋼
板の硬質化による冷間圧延性を悪化させるので、その上
限を1.5 wt%とする。なお、より良好な耐蝕性と成形性
を必要とする場合には、0.60wt%以下の範囲で添加する
のが望ましい。Mn: 0.1 to 1.5 wt% Mn is an effective element for preventing hot cracking caused by S. In particular, in the case of steel without Ti, it is necessary to add Mn according to the amount of S contained. desirable. Further, Mn is desirably added because it has an effect of refining the crystal grains, particularly an effect of suppressing the coarsening of the crystal grains when kept at a high temperature. In order to exert these effects, it is necessary to add at least 0.1 wt%. However, excessive addition deteriorates corrosion resistance and deteriorates cold rollability due to hardening of the steel sheet, so the upper limit is made 1.5 wt%. In the case where better corrosion resistance and moldability are required, it is desirable to add the compound in a range of 0.60% by weight or less.
【0019】P:0.02wt%以下 Pは、鋼を硬質化させ、フランジ加工性や形状凍結性を
悪化させ、耐食性を悪化させる有害な元素であるため、
その上限を0.02wt%とする。なお、これらの特性が特に
重要視される場合には、0.01wt%以下とするのが好まし
い。P: not more than 0.02 wt% P is a harmful element that hardens steel, deteriorates flanging workability and shape freezing property, and deteriorates corrosion resistance.
The upper limit is set to 0.02 wt%. If these characteristics are particularly important, the content is preferably 0.01 wt% or less.
【0020】S:0.02wt%以下 Sは、鋼中に介在物として存在し、鋼板の延性を減少さ
せ、耐食性の劣化をもたらす元素であるので、その上限
を0.02wt%とする。なお、特に良好な加工性が要求され
る用途においては、0.01wt%以下とすることが望まし
い。S: 0.02 wt% or less S is an element that exists as an inclusion in steel and reduces the ductility of a steel sheet and deteriorates corrosion resistance. Therefore, the upper limit is set to 0.02 wt%. For applications requiring particularly good workability, the content is desirably 0.01 wt% or less.
【0021】Al:0.100 wt%以下 Alは、鋼の脱酸に有用な元素であるが、含有量が多過ぎ
ると表面性状の悪化を招くので、その上限を0.100 wt%
とする。なお、材質の安定性という観点では、0.008 〜
0.060 wt%の範囲で添加するのが望ましい。Al: 0.100 wt% or less Al is an element useful for deoxidizing steel, but if its content is too large, it deteriorates the surface properties, so the upper limit is 0.100 wt%.
And From the viewpoint of material stability, 0.008 to
It is desirable to add in the range of 0.060 wt%.
【0022】N:0.0050wt%以下 Nは、含有量が増えると、鋼板の内部欠陥の発生を促進
し、また連続鋳造時のスラブ割れなども引き起こすほ
か、鋼を硬質化しすぎるので、上限を0.0050wt%とす
る。なお、製造工程全体を考慮した材質の安定性、歩留
まり向上という観点からすれば、0.0030wt%以下の範囲
とするのが好ましい。N: 0.0050 wt% or less N increases the content of N, which promotes the generation of internal defects in the steel sheet, causes slab cracking during continuous casting, and hardens the steel excessively. wt%. In addition, from the viewpoints of material stability and yield improvement in consideration of the entire manufacturing process, the content is preferably in the range of 0.0030 wt% or less.
【0023】Nb:0.003 〜0.040 wt% Nbは、鋼板組織の微細化に有効な元素であり、その効果
は、パイプ成形後の熱処理の後も持続する。このような
鋼組織の微細化により、パイプとして使用される際の2
次成形性(すなわち、パイプ状態での曲げ, 引張りなど
の成形性)が顕著に改善され、また耐衝撃特性も改善さ
れる。このようなNbの効果は、0.003 wt%以上の添加で
発揮されるが、0.040 wt%を超えて添加すると、鋼が硬
化し、スラブ割れが発生しやすくなるとともに、熱間、
冷間の圧延性が劣化する。従って、Nb添加量は0.003 〜
0.040 wt%の範囲とする。なお、材質上さらに好ましい
範囲は0.020 wt%以下である。Nb: 0.003 to 0.040 wt% Nb is an element effective for refining the structure of a steel sheet, and its effect is maintained even after heat treatment after pipe forming. Due to such refinement of the steel structure, 2
The secondary formability (that is, formability such as bending and tension in a pipe state) is remarkably improved, and the impact resistance is also improved. Such an effect of Nb is exhibited by adding 0.003 wt% or more. However, if it is added more than 0.040 wt%, the steel is hardened, slab cracks are easily generated, and hot,
Cold rollability deteriorates. Therefore, the amount of Nb added is 0.003 to
The range is 0.040 wt%. Note that a more preferable range in terms of the material is 0.020 wt% or less.
【0024】Ti:0.005 〜0.060 wt% Tiも、Nbとほぼ同様に、組織微細化の効果を有する。こ
の効果を得るためには0.005 wt%以上の添加が必要であ
るが、0.060 wt%を超えて添加すると表面欠陥の発生を
増大させる。従って、Ti添加量は0.005 〜0.060 wt%の
範囲とする。なお、材質上さらに好ましい範囲は0.015
%以下である。また、NbおよびTiは、単独で添加して
も、複合して添加しても各々の効果が相殺されることは
ない。Ti: 0.005 to 0.060 wt% Ti has an effect of making the structure finer, almost similarly to Nb. To obtain this effect, 0.005 wt% or more is necessary, but if it exceeds 0.060 wt%, the generation of surface defects increases. Therefore, the content of Ti is set in the range of 0.005 to 0.060 wt%. In addition, a more preferable range on the material is 0.015
% Or less. The effects of Nb and Ti are not canceled out even if they are added alone or in combination.
【0025】固溶状態のNb、Ti本発明における非常に重
要な構成要件の一つである。詳細な機構は必ずしも明ら
かではないが、固溶状態のNb、Tiの少なくとも一方を、
0.005 wt%以上存在させることにより、図1で示すよう
に、2重巻パイプの成形加工−熱処理を経た後の組織の
粗大化を顕著に防止できる。なお、図1の実験に供した
鋼組成は、0.0025wt%C−0.02wt%Si−0.5 wt%Mn−0.
01wt%P− 0.010wt%S− 0.040wt%Al−0.0020wt%N
−NbまたはTiであり、Nbは 0.018%と 0.015%、Tiは0.
040 %と0.060%のそれぞれ2水準とした。熱延条件お
よび熱処理条件は、熱延終了温度が 950〜870 ℃、巻取
り温度が720 〜540 ℃、焼鈍条件が 750℃−20sec で、
焼鈍後に2%の2次冷間圧延を行った。この結果、固溶
Nbまたは固溶Tiを0〜0.015 %という範囲で変化させる
ことができた。これら元素の固溶量は、少なくとも一方
の元素単独で存在していることが必要であり、両者を総
量のみで0.005 wt%以上存在させても上記効果が得られ
ない。また、Nb、Tiの固溶量がともに0.005 wt%以上存
在していても、それらの効果は相乗効果となって現れ、
互いに効果を相殺することはない。よって、Nb、Tiのう
ちの少なくとも一方は、固溶状態で0.005 wt%以上存在
していることが必要である。なお、ここで述べる固溶状
態のNb、Tiとは、それぞれ鋼中に含まれる全Nb、Tiの量
から、電解抽出分析によって定量された析出物としての
Nb,Tiを差し引いた量と定義する。ここに、電解抽出分
析法とは、非水溶媒系電解液定電位電解法を用いた分析
方法であり、試料を10%アセチルアセトン−1%塩化
テトラメチルアンモニウム−メチルアルコール電解液で
電解し、0.2 μmのニュークルポアフィルターにて残査
を抽出し、吸光光度法にて、各元素の定量を行うもので
ある。Nb and Ti in a solid solution state are one of the very important components in the present invention. Although the detailed mechanism is not always clear, at least one of Nb and Ti in a solid solution state is
The presence of 0.005 wt% or more can significantly prevent the coarsening of the structure after the forming and heat treatment of the double-wound pipe as shown in FIG. The steel composition used for the experiment in FIG. 1 was 0.0025 wt% C-0.02 wt% Si-0.5 wt% Mn-0.
01wt% P-0.010wt% S-0.040wt% Al-0.0020wt% N
-Nb or Ti, Nb is 0.018% and 0.015%, Ti is 0.
Two levels of 040% and 0.060% respectively. The hot rolling conditions and heat treatment conditions were as follows: hot rolling end temperature 950-870 ° C, winding temperature 720-540 ° C, annealing condition 750 ° C-20sec.
After the annealing, 2% secondary cold rolling was performed. As a result,
Nb or solid solution Ti could be changed in the range of 0 to 0.015%. It is necessary that at least one of these elements be present in the form of a solid solution, and the above effect cannot be obtained even if both elements are present in a total amount of 0.005 wt% or more. Further, even when the solid solution amounts of Nb and Ti are both 0.005 wt% or more, their effects appear as a synergistic effect,
They do not cancel each other out. Therefore, at least one of Nb and Ti needs to be present in a solid solution state in an amount of 0.005 wt% or more. Note that Nb and Ti in the solid solution state described here are the precipitates quantified by electrolytic extraction analysis from the total amount of Nb and Ti contained in the steel, respectively.
Defined as the amount after subtracting Nb and Ti. Here, the electrolytic extraction analysis method is an analysis method using a non-aqueous solvent-based electrolytic solution constant potential electrolysis method, in which a sample is electrolyzed with 10% acetylacetone-1% tetramethylammonium chloride-methyl alcohol electrolytic solution, and 0.2% The residue is extracted with a μm Newpore filter, and each element is quantified by an absorption spectrophotometry.
【0026】余剰のTiおよびNb前述したように、Tiおよ
びNbは本発明における重要な元素であるが、一方過剰な
添加は以下に述べる理由により好ましくない側面を有す
る。すなわち、Ti、Nbは、一般の冷延鋼板においては、
成形性、とくに軟質化、r値や延性の向上に好ましい元
素とされる。しかしながら本発明のような極薄の鋼板で
は、製造工程において極めて高い冷延圧下率(現状の最
高の薄熱延製造技術を用いても、最低70%以上、通常80
%以上)を必要とするため、冷間圧延の負荷が大きく、
Ti、Nbの過剰な添加は、圧延時の変形抵抗を顕著に増加
させ、表面性状を劣化させる欠点があり好ましくない。
また、強度、r値、延性等の各特性の加工方向による
差、すなわち異方性が大きくなる欠点を有する。これを
防ぐためには、Ti、Nbの過剰添加を避ける必要がある。
また、Ti、Nbとも、添加コストの面からも必要最小量で
あることが望ましい。以上のような理由から、発明者ら
は、Ti、Nbの添加の必要最少量をその析出過程から検討
した結果、下記の添加量を上限とすればよいことが明ら
かになった。すなわち、鋼の成分値を用いて、TiN、Ti
S、TiCおよびNbCがこの順番で可能な限り形成された
と仮定して計算される、余剰のTiおよびNbが各々0.005
wt%未満である必要がある。Excess Ti and Nb As described above, Ti and Nb are important elements in the present invention, while excessive addition has undesirable aspects for the following reasons. That is, Ti and Nb are, in a general cold-rolled steel sheet,
It is a preferable element for improving formability, especially softening, r value and ductility. However, in the case of an ultra-thin steel sheet as in the present invention, an extremely high cold rolling reduction rate in the manufacturing process (at least 70% or more, usually 80
%), The load of cold rolling is large,
Excessive addition of Ti and Nb is not preferable because it has the disadvantage of significantly increasing the deformation resistance during rolling and deteriorating the surface properties.
In addition, there is a disadvantage that the difference in each property such as strength, r value, and ductility depending on the processing direction, that is, anisotropy is increased. To prevent this, it is necessary to avoid excessive addition of Ti and Nb.
In addition, it is desirable that both Ti and Nb have the necessary minimum amount in view of the addition cost. For the reasons described above, the inventors have studied the necessary minimum amount of addition of Ti and Nb from the precipitation process, and as a result, it has become clear that the following addition amount may be set as the upper limit. That is, using the component values of steel, TiN, Ti
The surplus Ti and Nb are calculated assuming that S, TiC and NbC are formed as much as possible in this order.
It must be less than wt%.
【0027】具体的には、余剰のTi(以下、Tiexで表
す)は、TiN,TiS,TiCを形成した後残るTiであるか
ら、各重量%にて、次式で化学量論的に計算できる。 Tiex=Ti−(48/14)・N−(48/32)・S−(48/1
2)・C 余剰のNb(以下、Nbexで表す)の計算は以下の場合に分
けて計算する。 1)Tiが添加されていない場合には、TiN,TiS,TiCは
形成されないので、NbCのみを考慮し、下式で求められ
る。 Nbex=Nb−(93/12)・C 2)Tiが添加されており、Tiex≧0の場合、NbCを形成す
べきCは残留しないので、次式で求める。 Nbex=Nb 3)Tiが添加されており、Tiex≦0の場合 まず、TiN,TiSとして形成されるTi(以下、TiNSとす
る)を算出し、 TiNS=Ti−(48/14)・N−(48/32)・S から、TiNSの値に応じて、それぞれ 3a)TiNS≦0の場合には、CはすべてNbCを形成するの
で、 Nbex=Nb−(93/12)・C ・・・・1)と同じ 3b)TiNS>0の場合、TiNSの量だけTiCを形成した後、
残りのCがNbCを形成するので、 Nbex=Nb−(93/12)・(C−(12/48)・TiNS) により求める。なお、上記のごとく、Ti,Nb添加量に上
限を設けることは、固溶量を確保しにくくなる面を持つ
が、このような制約下でなお、固溶Ti,Nbを必要量確保
し、材質特性と2重巻パイプ成形後の強度、靭性確保と
を両立させるところに本発明の意義がある。[0027] Specifically, the excess of Ti (hereinafter, represented by Ti ex) is, TiN, TiS, because it is Ti remaining after the formation of the TiC, with each% by weight, stoichiometrically by the following formula Can be calculated. Ti ex = Ti- (48/14) N- (48/32) S- (48/1
2) · C excess Nb (hereinafter calculations represented by Nb ex) is calculated separately in the following cases. 1) When Ti is not added, since TiN, TiS, and TiC are not formed, it can be obtained by the following equation in consideration of only NbC. Nb ex = Nb− (93/12) · C 2) Since Ti is added and Ti ex ≧ 0, C to form NbC does not remain, so it is determined by the following equation. Nb ex = Nb 3) When Ti is added and Ti ex ≦ 0 First, Ti formed as TiN and TiS (hereinafter referred to as Ti NS ) is calculated, and Ti NS = Ti− (48/14 ) · N− (48/32) · S, depending on the value of Ti NS , 3a) If Ti NS ≦ 0, all C forms NbC, so Nb ex = Nb− (93 / 12) · C ······ 1) 3b) If Ti NS > 0, after forming TiC by the amount of Ti NS ,
Since the remaining C to form NbC, Nb ex = Nb- determined by (93/12) · (C- (12/48 ) · Ti NS). As described above, setting an upper limit on the amount of Ti and Nb to be added has a surface that makes it difficult to secure the amount of solid solution. However, under such restrictions, the required amount of solid solution Ti and Nb is still secured, The present invention is significant in that both the material properties and the strength and toughness after forming the double wound pipe are compatible.
【0028】また、B:0.0005〜0.0020wt%(A群)、
Cu:0.5 wt%以下、Ni:0.5 wt%以下、Cr:0.5 wt%以
下、Mo:0.5 wt%以下(以上B群)の群の1群または2
群から選ばれる、いずれか1種または2種以上を含有さ
せることができる。 B:0.0005〜0.0020wt% Bは、製管後の組織の微細化による強度確保に有効な元
素である。このような効果は、0.0005wt%以上の添加で
発揮されるが、0.0020wt%を超えて添加すると鋼板の熱
間での圧延特性が劣化して好ましくない。したがって、
B量は、0.0005〜0.0020wt%、好ましくは0.0005〜0.00
10wt%の範囲で添加する。B: 0.0005 to 0.0020 wt% (Group A)
One or two of the following groups: Cu: 0.5 wt% or less, Ni: 0.5 wt% or less, Cr: 0.5 wt% or less, Mo: 0.5 wt% or less (above B group).
Any one or more selected from the group can be contained. B: 0.0005 to 0.0020 wt% B is an element effective for ensuring the strength by making the structure finer after the pipe production. Such an effect is exhibited by the addition of 0.0005 wt% or more. However, if the addition exceeds 0.0020 wt%, the hot rolling property of the steel sheet is undesirably deteriorated. Therefore,
The amount of B is 0.0005 to 0.0020 wt%, preferably 0.0005 to 0.0020%.
Add in the range of 10 wt%.
【0029】Cu:0.5 wt%以下、Ni:0.5 wt%以下、C
r:0.5 wt%以下、Mo:0.5 wt%以下 これらの元素は、いずれも鋼板強度、とくに製管のろう
付け時に施される加熱処理後の強度を高める作用を有
し、必要に応じて添加する。しかし、0.5 wt%を超えて
添加した場合には、冷間圧延性を悪化させるので、0.5
wt%以下の範囲で添加する。上記の選択的添加元素であ
る、Bの群、Cu、Ni、CrおよびMoの群に属する各元素
は、各群単独で1種以上添加してもよいし、両群にまた
がって2種以上複合添加してもよい。Cu: 0.5 wt% or less, Ni: 0.5 wt% or less, C
r: 0.5 wt% or less, Mo: 0.5 wt% or less All of these elements have the effect of increasing the strength of the steel sheet, especially after the heat treatment applied during brazing of pipe making, and are added as necessary. I do. However, if it is added in excess of 0.5 wt%, the cold rollability deteriorates.
Add in the range of wt% or less. Each element belonging to the group of B, the group of Cu, Ni, Cr and Mo, which is the above-mentioned selective addition element, may be added alone or more alone in each group, or two or more kinds over both groups. You may add multiple.
【0030】(2) 結晶組織等について;フェライトの結
晶粒径は5〜10μmとする。結晶粒径が5μm未満で
は、鋼が硬質化し、管成形時に形状不良や工具磨耗の増
加などの不具合発生が著しくなる。一方、結晶粒径が10
μmを超えると、成形−熱処理後の組織を均一微細に保
つことが困難となり、製品の使用特性としての、強度お
よび靭性が低下する。したがって、鋼板での結晶粒径は
5〜10μmとする。(2) Regarding the crystal structure and the like; The crystal grain size of the ferrite is 5 to 10 μm. If the crystal grain size is less than 5 μm, the steel is hardened, and defects such as poor shape and increased tool wear during pipe forming become remarkable. On the other hand, when the crystal grain size is 10
If it exceeds μm, it will be difficult to keep the structure after forming-heat treatment uniform and fine, and the strength and toughness as use characteristics of the product will decrease. Therefore, the crystal grain size of the steel sheet is 5 to 10 μm.
【0031】なお、鋼板の硬度(調質度)は、T1〜T
3とすることが望ましい。調質度がT3を超えると、成
形性の劣化が顕在化することに加え、工具の短寿命化が
顕著になる。管成形−熱処理の後で十分な強度が確保で
きれば、素材強度は低い程望ましいといえる。また、以
上述べた2重巻パイプ用鋼板の成形−熱処理後の強度と
ともに靱性も重要な特性の一つである。その評価法とし
ては、パイプ状態で切欠きを入れての引張、あるいは高
速引張による試験がある。The hardness (tempering degree) of the steel sheet is from T1 to T
It is desirable to set it to 3. If the degree of tempering exceeds T3, the deterioration of the moldability becomes apparent, and the shortening of the tool life becomes remarkable. If sufficient strength can be ensured after the tube forming and heat treatment, the lower the material strength, the better. In addition, the toughness as well as the strength after forming and heat treatment of the steel sheet for a double-wound pipe described above is one of the important characteristics. As an evaluation method, there is a test by pulling a notch in a pipe state or a high-speed pull.
【0032】(3) 製造条件について; 熱間仕上圧延;熱間仕上圧延の終了温度が850 ℃を下回
ると、熱延後の組織の均一性が低下し、これが冷延焼鈍
後にも継承されるため、材質のばらつき増加、機械的な
特性の信頼性の低下につながり好ましくない。一方、10
00℃を超えるとスケールに起因する表面の疵の発生が顕
在化する。したがって、熱間仕上圧延の終了温度は1000
〜850 ℃の範囲とするのがよい。なお、熱間圧延性を考
慮すると950 〜850 ℃の範囲が好ましい。また、熱間仕
上圧延を終了した後の、Ti、Nbの析出の機会を減らすた
め、仕上圧延終了後1秒以内に30℃/sec 以上の速度で
急冷することが好ましい。さらに、熱間粗圧延を終えた
シートバーを仕上げ圧延する際に、仕上げ圧延機入り側
で、シートバーの接合を行う連続的な圧延(エンドレス
圧延)を適用することは、鋼帯の先端、後端における通
板を安定させ、仕上げ圧延直後の上記急冷を鋼帯の全長
にわたって行うことを容易とするので好ましい。(3) Manufacturing conditions: Hot finish rolling; When the finish temperature of the hot finish rolling is lower than 850 ° C., the uniformity of the structure after hot rolling is reduced, which is inherited even after cold rolling annealing. Therefore, the dispersion of the material is increased, and the reliability of the mechanical characteristics is reduced, which is not preferable. On the other hand, 10
When the temperature exceeds 00 ° C., the generation of surface flaws due to the scale becomes apparent. Therefore, the finish temperature of hot finish rolling is 1000
The temperature is preferably in the range of ~ 850 ° C. The range of 950 to 850 ° C. is preferable in consideration of hot rolling property. Further, in order to reduce the chance of precipitation of Ti and Nb after completion of hot finish rolling, it is preferable to rapidly cool at a rate of 30 ° C./sec or more within one second after finish rolling. Furthermore, when the finish rolling of the sheet bar after the hot rough rolling is performed, the continuous rolling (endless rolling) for joining the sheet bar on the side including the finish rolling mill is applied to the end of the steel strip, This is preferable because it stabilizes the threading at the rear end and facilitates the rapid cooling immediately after finish rolling over the entire length of the steel strip.
【0033】熱延後の巻取;熱間圧延後の巻取温度が75
0 ℃を超えると、添加した鋼中のNbやTiが固溶状態では
残留しにくくなり、固溶状態のNb、Tiによる、製管時の
結晶粒粗大化の抑制効果が十分に発揮されなくなる。ま
た、この場合には、長手方向に均一な材質を得ることも
困難となる。したがって、熱延後の巻取温度は750 ℃以
下、望ましくは650 ℃以下とする。その後行う、酸洗や
冷間圧延の条件については特に定める必要はなく、通常
の極薄鋼板の製造方法に準じたものとすればよい。Winding after hot rolling; winding temperature after hot rolling is 75
If the temperature exceeds 0 ° C, Nb and Ti in the added steel hardly remain in the solid solution state, and the effect of suppressing the coarsening of the crystal grains during pipe production by Nb and Ti in the solid solution state cannot be sufficiently exhibited. . In this case, it is also difficult to obtain a uniform material in the longitudinal direction. Therefore, the coiling temperature after hot rolling is set to 750 ° C or lower, preferably 650 ° C or lower. The conditions for pickling and cold rolling to be performed thereafter do not need to be particularly determined, and may be in accordance with a normal method for manufacturing a very thin steel sheet.
【0034】冷間圧延後の焼鈍;焼鈍温度が650 ℃を下
回ると、組織の大半が未再結晶組織となり、鋼板の軟質
化が達成されなくなり、製管時の負荷を軽滅するという
目標が達成されなくなる。650 ℃以上で焼鈍すれば、完
全な再結晶組織とはならないものの、本発明用途では十
分な軟質化は達成される。焼鈍温度が750 ℃以上であれ
ば、ほぼ再結晶組織となり、極めて優れた加工性が確保
される。しかし、一般の極低炭素加工用冷延鋼板で行わ
れているように、850 ℃を超えて高温で焼鈍した場合に
は、鋼組織の粗大化、不均一組織化が進むとともに、焼
鈍中にTiまたはNbの析出が促進され、製管−熱処理後の
組織の均一かつ微細化が達成されなくなる。したがっ
て、焼鈍温度は650 〜850 ℃の範囲がよく、材質の安定
性などを考慮すると700 〜800 ℃の範囲が望ましい。さ
らに、経済性、熱処理後の材質の安定性をも考慮する
と、780 ℃以下とするのが好ましい。Annealing after cold rolling: When the annealing temperature is lower than 650 ° C., most of the structure becomes an unrecrystallized structure, the steel sheet cannot be softened, and the goal of reducing the load during pipe production has been achieved. Will not be. Annealing at 650 ° C. or higher does not provide a complete recrystallized structure, but achieves sufficient softening in the present invention. If the annealing temperature is 750 ° C. or higher, a recrystallized structure is almost obtained, and extremely excellent workability is secured. However, when annealing is performed at a high temperature exceeding 850 ° C, as is the case with ordinary cold-rolled steel sheets for ultra-low carbon processing, the steel structure becomes coarse and uneven, and during annealing, Precipitation of Ti or Nb is promoted, and uniform and fine structure of the structure after pipe making-heat treatment cannot be achieved. Therefore, the annealing temperature is preferably in the range of 650 to 850 ° C, and preferably in the range of 700 to 800 ° C in consideration of the stability of the material. Further, considering the economy and the stability of the material after the heat treatment, the temperature is preferably 780 ° C. or lower.
【0035】焼鈍の均熱時間も重要な構成要件の1 つで
ある。従来の焼鈍では、安定した再結晶組織を得るた
め、少なくとも30秒程度の焼鈍を行うことが通常であっ
たが、これでは焼鈍中におけるTiやNbの析出により、本
発明が必要とする固溶Ti,Nbの確保が困難になる。前述
のごとく、焼鈍温度を850 ℃以下とし、しかも均熱時間
を20秒以下という短時間にすることにより、固溶状態の
Ti、Nbを確保することが可能となる。このような短時間
の焼鈍では、従来、深絞り用途での使用を前提とした極
低炭素鋼においては、r値、延性が不十分であると考え
られていたが、本発明の用途には問題なく適用できる。The soaking time for annealing is also one of the important components. In conventional annealing, it was usual to perform annealing for at least about 30 seconds in order to obtain a stable recrystallized structure.However, in this case, precipitation of Ti or Nb during annealing causes solid solution required by the present invention. It becomes difficult to secure Ti and Nb. As described above, by setting the annealing temperature to 850 ° C or less and the soaking time to 20 seconds or less,
Ti and Nb can be secured. Conventionally, in such a short-time annealing, it has been considered that the r value and ductility are insufficient in the ultra-low carbon steel presumed to be used for deep drawing, but the use of the present invention is not sufficient. Applicable without problems.
【0036】焼鈍後の2次冷間圧延;焼鈍後に行う2次
冷間圧延は、表面粗度の調整のほか、板厚の低減の役割
を有している。このための2次冷間圧延圧下率は、1.0
%以上行うことが望ましい。しかし、20%を超えて2次
冷間圧延を行うと、機械的特性のうち特に降伏応力が増
加するため製管性が劣化する。したがって、焼鈍後の2
次冷間圧延の圧下率は20%以下とする。望ましくは 1.0
〜10%とする。Secondary Cold Rolling after Annealing: Secondary cold rolling performed after annealing not only adjusts the surface roughness but also reduces the thickness of the sheet. The secondary cold rolling reduction for this purpose is 1.0
% Or more is desirable. However, when the secondary cold rolling is performed at more than 20%, particularly the yield stress among the mechanical properties increases, so that the pipe formability deteriorates. Therefore, after annealing,
The rolling reduction of the next cold rolling shall be 20% or less. Preferably 1.0
~ 10%.
【0037】表面処理;上述した工程を経て本発明によ
る鋼板が製造できる。この鋼板の最終板厚については特
に定めないが、0.35mm以下の範囲で、本発明を適用する
ことの優位性がより有効に発揮される。以上説明した鋼
板は、銅のように自己ろう付け作用を有する金属をめっ
きし、製管後の熱処理でろう付け処理を行う。従って、
さらなるめっき処理は基本的に不要であるが、上記金属
めっきの作用を補うような、化学的、電気化学的処理を
必要に応じて行うことは可能である。Surface treatment: The steel sheet according to the present invention can be manufactured through the above-described steps. The final thickness of the steel sheet is not particularly limited, but the advantage of applying the present invention is more effectively exhibited in the range of 0.35 mm or less. The steel plate described above is plated with a metal having a self-brazing action, such as copper, and is subjected to a brazing treatment by a heat treatment after pipe production. Therefore,
Although further plating treatment is basically unnecessary, it is possible to perform chemical and electrochemical treatments as necessary to supplement the action of the metal plating.
【0038】[0038]
【実施例】実施例1 表1に示す成分組成で残部が実質的にFeからなる鋼を転
炉で溶製し、この鋼スラブを、表2に示す条件で熱間圧
延(熱延終了後0.5 秒以内に50℃/sec の急冷)した。
熱間圧延では、260 mm厚のスラブを4パスで粗圧延し、
30mm厚のシートバーとして、7スタンドのタンデム圧延
機で2.6 mmの熱延母板を製造した。次いで、酸洗し、タ
ンデム圧延機で冷間圧延し、焼鈍および2次冷間圧延を
行った。この鋼板に30μm厚みの電気銅めっきを行い、
通常の方法で3.45mmφの2重巻パイプに成形し、5%の
引抜加工の後、1120℃×20sec の熱処理を行い、銅めっ
き層を溶融させてろう付けした。EXAMPLES Example 1 A steel having the composition shown in Table 1 and the balance substantially consisting of Fe was smelted in a converter, and this steel slab was hot-rolled (after hot rolling was completed) under the conditions shown in Table 2. Rapid cooling at 50 ° C / sec within 0.5 seconds).
In hot rolling, a 260 mm thick slab is roughly rolled in four passes,
As a 30 mm-thick sheet bar, a 2.6 mm hot rolled mother plate was manufactured by a tandem rolling mill of 7 stands. Next, it was pickled, cold rolled by a tandem rolling mill, and subjected to annealing and secondary cold rolling. This steel plate is electroplated with a thickness of 30 μm,
It was formed into a 3.45 mmφ double wound pipe by a usual method, and after 5% drawing, heat treatment was performed at 1120 ° C. for 20 seconds to melt and braze the copper plating layer.
【0039】[0039]
【表1】 [Table 1]
【0040】[0040]
【表2】 [Table 2]
【0041】このようにして製造した、鋼板および自己
ろう付け処理2重巻パイプに対して以下の調査を実施し
た。 1)横断面部のフエライト結晶粒径 2)静的引張試験による引張強度 3)低温(−40℃)引張試験による絞り(靱性を評
価):衝撃的な高速引張と等価 4)曲げ試験(180 °曲げ) いずれの試験とも、2重巻パイプについてはパイプのま
まの状態でおこなうことを除き、通常の機械的特性を調
査する手法と同じとした。The following investigation was carried out on the steel sheet and the self-brazing double-wound pipe manufactured as described above. 1) Ferrite grain size in cross section 2) Tensile strength by static tensile test 3) Drawing (evaluation of toughness) by low temperature (-40 ° C) tensile test: equivalent to shocking high speed tensile 4) Bending test (180 °) Bending) In each of the tests, the method was the same as that used for investigating ordinary mechanical characteristics, except that a double-wound pipe was carried out as it was.
【0042】得られた試験結果を表3に示す。固溶状態
のNb、Ti量が適正範囲にある、本発明例は、高温の熱処
理においても結晶粒の粗大化を招くことなく、十分な強
度と延性、良好な低温における靭性(引張試験による絞
り)と曲げ加工性、良好な形状凍結性を有していること
がわかる。なお、鋼12、13、14は、鋼板が硬質なため、
最終的な冷延鋼板の段階で良好な形状が確保できず、ま
た、曲げ加工性も劣っていた。Table 3 shows the obtained test results. The present invention example, in which the amounts of Nb and Ti in the solid solution state are within the appropriate range, has sufficient strength and ductility, and good toughness at low temperature (drawing by a tensile test) without causing the crystal grains to become coarse even in a high-temperature heat treatment. ), Bending workability and good shape freezing property. In addition, steel 12, 13 and 14 have a hard steel plate,
A good shape could not be secured at the stage of the final cold rolled steel sheet, and the bending workability was also poor.
【0043】[0043]
【表3】 [Table 3]
【0044】実施例2 表1のNo. 1の組成からなるスラブを、表4に示す条件
で熱間圧延(冷却条件は実施例1と同様)、酸洗、冷間
圧延の後、連続焼鈍および2次冷間圧延を行い、極薄冷
延鋼板を製造した。なお、従来鋼である低炭素アルミキ
ルド鋼の箱焼鈍材を比較例として用いた。次いで、この
鋼板表面にに、実施例1と同様の銅めっきを行い、2重
巻パイプを製造した。評価のための試験項目は、実施例
1で行った試験のほか、製管に用いた金型の磨耗量(金
型寿命)を追加した。金型寿命の評価は、比較例(低炭
素アルミキルド鋼の箱焼鈍材)の寿命を1とする相対比
で表した。 Example 2 A slab having the composition of No. 1 in Table 1 was hot-rolled under the conditions shown in Table 4 (cooling conditions were the same as in Example 1), pickled, cold-rolled, and then continuously annealed. And secondary cold rolling was performed to produce an ultra-thin cold-rolled steel sheet. A box-annealed low carbon aluminum killed steel, which is a conventional steel, was used as a comparative example. Next, the surface of this steel plate was subjected to the same copper plating as in Example 1 to produce a double-wound pipe. As test items for evaluation, in addition to the test performed in Example 1, the amount of wear (die life) of the die used for pipe making was added. The evaluation of the mold life was represented by a relative ratio where the life of the comparative example (box-annealed low carbon aluminum killed steel) was set to 1.
【0045】[0045]
【表4】 [Table 4]
【0046】得られた試験結果を表4に併せて示す。表
4からわかるように、本発明例は、軟質であるため、比
較例を上回る、おおむね1.5 倍程度の優れた金型寿命を
示している。また、本発明範囲にある固溶状態のNb、Ti
を含有する場合には、製管後の組織の粗大化が有効に抑
制されていることが明らかである。The test results obtained are shown in Table 4. As can be seen from Table 4, the examples of the present invention are excellent in mold life, which is about 1.5 times higher than that of the comparative example because they are soft. Further, Nb and Ti in a solid solution state within the scope of the present invention.
In the case of containing, it is apparent that the coarsening of the tissue after the tube production is effectively suppressed.
【0047】[0047]
【発明の効果】以上説明したように、本発明によれば、
製管時には軟質であるために変形抵抗が低く、金型の摩
耗を低減することで、その寿命の延長をはかることがで
きる。また、本発明によれば、優れた成形性のみなら
ず、管成形−熱処理の工程を経ても、フェライト粒径の
粗大化が抑制されるので、強度、靱性などの特性に優れ
た2重巻パイプを製造することが可能になる。また、本
発明によれば、連続焼鈍法を採用するので、高い生産効
率と材質の均一化を達成できる。したがって、本発明に
よれば、品質の高く、気密性が高い、2重巻パイプを、
効率よく経済的に製造可能になる。As described above, according to the present invention,
Since it is soft during pipe production, its deformation resistance is low, and the life of the mold can be extended by reducing the wear of the mold. Further, according to the present invention, not only the excellent formability but also the coarsening of the ferrite grain size is suppressed even after the tube forming-heat treatment step, so that the double winding having excellent properties such as strength and toughness is provided. It becomes possible to manufacture pipes. Further, according to the present invention, since the continuous annealing method is employed, high production efficiency and uniform material can be achieved. Therefore, according to the present invention, a high quality, highly airtight double wound pipe
It can be manufactured efficiently and economically.
【図1】固溶状態のNb量または固溶状態のTi量とフェラ
イトの結晶粒径との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of Nb in solid solution or the amount of Ti in solid solution and the crystal grain size of ferrite.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/54 C22C 38/54 (56)参考文献 特開 平6−81080(JP,A) 特開 平7−228921(JP,A) 特開 平8−170148(JP,A) 特開 平4−325656(JP,A) 特開 平5−230595(JP,A) 特開 平4−311519(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI C22C 38/54 C22C 38/54 (56) References JP-A-6-81080 (JP, A) JP-A-7-228921 (JP) JP-A-8-170148 (JP, A) JP-A-4-325656 (JP, A) JP-A-5-230595 (JP, A) JP-A-4-3111519 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60
Claims (8)
少なくとも一方は、固溶状態で0.005 wt%以上存在し、
フェライト組織の結晶粒径が5〜10μmであることを特
徴とする、成形性に優れ、成形−熱処理後のパイプ強
度、靱性に優れる2重巻パイプ用鋼板。(1) C: 0.0005 to 0.020 wt%, Nb: 0.003 to 0.040 wt%, and Ti: 0.005 to 0.060 wt%, and at least one of Nb and Ti Is present in a solid solution state in an amount of 0.005 wt% or more,
A steel sheet for a double-wound pipe having excellent formability and excellent pipe strength and toughness after forming and heat treatment, wherein the ferrite structure has a crystal grain size of 5 to 10 μm.
およびNbCがこの順番で可能な限り形成されたとして計
算される、余剰のNb、Ti量が、いずれも0.005 wt%未満
であり、しかも、Nb、Tiのうちの少なくとも一方は、固
溶状態で0.005 wt%以上存在し、フェライト組織の結晶
粒径が5〜10μmであることを特徴とする、成形性に優
れ、成形−熱処理後のパイプ強度、靱性に優れる2重巻
パイプ用鋼板。2. One or two of C: 0.0005 to 0.020 wt%, S: 0.02 wt% or less, N: 0.0050 wt% or less, Nb: 0.003 to 0.040 wt%, Ti: 0.005 to 0.060 wt%. Containing TiN, TiS, TiC
And NbC are calculated as having been formed in this order as much as possible. The amount of excess Nb and Ti is less than 0.005 wt%, and at least one of Nb and Ti is in a solid solution state. A steel sheet for a double-wound pipe which is present in an amount of 0.005 wt% or more and has a ferrite structure having a crystal grain size of 5 to 10 μm, and has excellent formability, and excellent pipe strength and toughness after forming and heat treatment.
純物の鋼組成になる、請求項1または2に記載の2重巻
パイプ用鋼板。C: 0.0005 to 0.020 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 1.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.100 wt% or less, N : Nb: 0.003 to 0.040 wt%, one or two of Ti: 0.005 to 0.060 wt%, the balance being steel composition of Fe and unavoidable impurities. Or the steel sheet for a double wound pipe according to 2.
部はFeおよび不可避的不純物の鋼組成になる、請求項1
または2に記載の2重巻パイプ用鋼板。4. C: 0.0005 to 0.020 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 1.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.100 wt% or less, N : 0.005 wt% or less, Nb: 0.003 to 0.040 wt%, Ti: one or two of 0.005 to 0.060 wt%, B: 0.0005 to 0.0020 wt%, Cu: 0.5 wt% or less , Ni: 0.5 wt% or less, Cr: 0.5 wt% or less, Mo: 0.5 wt% or less, the balance being a steel composition of Fe and unavoidable impurities. Item 1
Or the steel sheet for a double wound pipe according to 2.
〜850 ℃で熱間仕上圧延し、750 ℃以下で巻き取り、次
いで、冷間圧延し、650 ℃〜850 ℃、20秒以下の条件で
連続焼鈍し、圧下率20%以下で2次冷間圧延することを
特徴とする、成形性に優れ、成形−熱処理後のパイプ強
度、靱性に優れる2重巻パイプ用鋼板の製造方法。5. A steel material containing 0.0005 to 0.020 wt% of C: 0.003 to 0.040 wt% of Nb, and 0.005 to 0.060 wt% of Ti: an end temperature of 1000%.
Hot finish rolling at ~ 850 ° C, winding at 750 ° C or less, then cold rolling, continuous annealing at 650 ° C to 850 ° C for 20 seconds or less, secondary cold rolling at a rolling reduction of 20% or less A method for producing a steel sheet for a double-wound pipe having excellent formability, and excellent in pipe strength and toughness after forming and heat treatment, characterized by rolling.
およびNbCがこの順番で可能な限り形成されたとして計
算される、余剰のNb、Ti量が、いずれも0.005 wt%未満
である鋼素材を、終了温度1000〜850 ℃で熱間仕上圧延
し、750 ℃以下で巻き取り、次いで、冷間圧延し、650
℃〜850 ℃、20秒以下の条件で連続焼鈍し、圧下率20%
以下で2次冷間圧延することを特徴とする、成形性に優
れ、成形−熱処理後のパイプ強度、靱性に優れる2重巻
パイプ用鋼板の製造方法。6. One or two of C: 0.0005 to 0.020 wt%, S: 0.02 wt% or less, N: 0.0050 wt% or less, Nb: 0.003 to 0.040 wt%, Ti: 0.005 to 0.060 wt%. Containing TiN, TiS, TiC
And NbC are calculated as formed in this order as much as possible. A surplus of Nb and Ti, each of which is less than 0.005 wt%, is subjected to hot finish rolling at an end temperature of 1000 to 850 ° C. Winding at 750 ° C or less, then cold rolling, 650
Continuous annealing at ℃ ~ 850 ℃, 20 seconds or less, rolling reduction 20%
A method for producing a steel sheet for a double-wound pipe having excellent formability, and excellent pipe strength and toughness after forming and heat treatment, characterized by performing secondary cold rolling below.
純物の鋼組成になる請求項5または6に記載の2重巻パ
イプ用鋼板の製造方法。7. C: 0.0005 to 0.020 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 1.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.100 wt% or less, N And Nb: 0.003 to 0.040 wt%, and Ti: 0.005 to 0.060 wt%, and the balance is steel composition of Fe and inevitable impurities. 7. The method for producing a steel sheet for a double-wound pipe according to 6.
部はFeおよび不可避的不純物の鋼組成になる請求項5ま
たは6に記載の2重巻パイプ用鋼板の製造方法。8. C: 0.0005 to 0.020 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 1.5 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.100 wt% or less, N : 0.005 wt% or less, Nb: 0.003 to 0.040 wt%, Ti: one or two of 0.005 to 0.060 wt%, B: 0.0005 to 0.0020 wt%, Cu: 0.5 wt% or less , Ni: 0.5 wt% or less, Cr: 0.5 wt% or less, Mo: 0.5 wt% or less, the balance being a steel composition of Fe and unavoidable impurities. 7. The method for producing a steel sheet for a double-wound pipe according to 5 or 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33575597A JP3288620B2 (en) | 1996-12-06 | 1997-12-05 | Steel sheet for double-wound pipe and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-326697 | 1996-12-06 | ||
JP32669796 | 1996-12-06 | ||
JP33575597A JP3288620B2 (en) | 1996-12-06 | 1997-12-05 | Steel sheet for double-wound pipe and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10219391A JPH10219391A (en) | 1998-08-18 |
JP3288620B2 true JP3288620B2 (en) | 2002-06-04 |
Family
ID=26572272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33575597A Expired - Fee Related JP3288620B2 (en) | 1996-12-06 | 1997-12-05 | Steel sheet for double-wound pipe and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3288620B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3659542B2 (en) * | 1997-03-12 | 2005-06-15 | 日新製鋼株式会社 | Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same |
JP5365181B2 (en) * | 2008-12-24 | 2013-12-11 | Jfeスチール株式会社 | Steel sheet and manufacturing method thereof |
KR101746802B1 (en) * | 2015-12-22 | 2017-06-13 | 주식회사 포스코 | Cold-rolled steel sheet for continuous-type self-brazing and manufacturing method of the same |
-
1997
- 1997-12-05 JP JP33575597A patent/JP3288620B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10219391A (en) | 1998-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1191114B1 (en) | High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same | |
KR100611541B1 (en) | Cold-rolled steel sheet having excellent strain aging hardening properties and method for producing the same | |
EP2589678B1 (en) | High-strength steel sheet with excellent processability and process for producing same | |
JP4062961B2 (en) | High tensile hot-rolled steel sheet excellent in mold galling resistance and fatigue resistance and method for producing the same | |
KR100502040B1 (en) | Steel sheet for double-rolled tube and method for making the same | |
JP2007239097A (en) | Method for manufacturing hot rolled steel sheet for high-strength cold rolled steel sheet | |
EP0659890A2 (en) | Method of manufacturing small planar anisotropic high-strength thin can steel plate | |
JPH03277741A (en) | Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture | |
JP3449003B2 (en) | Steel plate for cans and manufacturing method thereof | |
JP5035268B2 (en) | High tensile cold-rolled steel sheet | |
JP3288620B2 (en) | Steel sheet for double-wound pipe and method for producing the same | |
JP2004270006A (en) | Method of producing component having excellent shape-fixability | |
JP4622187B2 (en) | Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them | |
JP6947327B2 (en) | High-strength steel sheets, high-strength members and their manufacturing methods | |
JPH1081919A (en) | Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance | |
JP3373983B2 (en) | Method for producing ferritic stainless steel strip excellent in press formability, ridging resistance and surface properties | |
JP4747473B2 (en) | Hot-rolled steel sheet and hot-dip galvanized steel sheet excellent in stretch flangeability and methods for producing them | |
JPH03170618A (en) | Highly efficient production of cold-rolled steel sheet extremely excellent in workability | |
JPH1060542A (en) | Production of steel sheet for can | |
JP4094498B2 (en) | Deep drawing high strength cold-rolled steel sheet and method for producing the same | |
JP3109388B2 (en) | Manufacturing method of high workability cold rolled steel sheet with small in-plane anisotropy | |
JP2000212690A (en) | High strength hot rolled steel sheet excellent in formability and surface property and its production | |
JP2007177293A (en) | Ultrahigh-strength steel sheet and manufacturing method therefor | |
JP3806983B2 (en) | Cold-rolled steel sheet material for deep drawing with excellent ridging resistance after cold rolling and annealing | |
JP3270685B2 (en) | Method for producing cold-rolled steel sheet for deep drawing and hot-dip galvanized steel sheet with excellent ridging resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080315 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090315 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100315 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100315 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110315 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120315 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130315 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130315 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140315 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |