JP3287745B2 - Exposure apparatus and device manufacturing method - Google Patents
Exposure apparatus and device manufacturing methodInfo
- Publication number
- JP3287745B2 JP3287745B2 JP24604095A JP24604095A JP3287745B2 JP 3287745 B2 JP3287745 B2 JP 3287745B2 JP 24604095 A JP24604095 A JP 24604095A JP 24604095 A JP24604095 A JP 24604095A JP 3287745 B2 JP3287745 B2 JP 3287745B2
- Authority
- JP
- Japan
- Prior art keywords
- light source
- light intensity
- exposure apparatus
- projection exposure
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ICやLSI等の
半導体素子、CCD等の撮像素子、磁気ヘッド等の磁気
検出器や液晶パネル等の表示素子を製造するのに使用さ
れる投影露光装置及びデバイス製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus used for manufacturing semiconductor devices such as ICs and LSIs, imaging devices such as CCDs, magnetic detectors such as magnetic heads, and display devices such as liquid crystal panels. And a device manufacturing method .
【0002】[0002]
【従来の技術】この種の投影露光装置は、光源からの光
でフライアイレンズより成るオプティカルインテグレー
ターを照明し、オプティカルインテグレーターの光射出
面又はその近傍に形成される2次光源(面光源)からの
光束をコンデンサーレンズによりマスクに照射し、投影
光学系によりマスクのパターンの像をウエハ上に投影す
る。この時の2次光源の光強度分布は、光軸上にピーク
強度があるガウス分布(通常照明)か、光軸上がゼロで
軸外に輪帯状にピーク強度がある分布(輪帯照明)であ
る。2. Description of the Related Art A projection exposure apparatus of this type illuminates an optical integrator comprising a fly-eye lens with light from a light source, and emits light from a secondary light source (surface light source) formed on or near a light exit surface of the optical integrator. Is irradiated on the mask by the condenser lens, and the image of the pattern of the mask is projected on the wafer by the projection optical system. At this time, the light intensity distribution of the secondary light source may be a Gaussian distribution having a peak intensity on the optical axis (normal illumination), or a distribution having a zero intensity on the optical axis and having an off-axis annular intensity (annular illumination). It is.
【0003】一方、オプティカルインテグレーターの光
射出面側に軸外に4つの開口を有し他の部分は遮光する
開口絞りを設けることにより正方形の4つの頂点に相当
する位置に4つの(光強度の)ピークを有するような光
強度分布を示す面光源を形成し、この面光源からの光束
をマスクに照射する構成(四重極照明)とすることによ
り、前記正方形の縦横の各片と平行な方向に延びる縦線
や横線のパターンに対する解像力が大幅に向上する。On the other hand, the optical integrator has four off-axis apertures on the light exit surface side, and the other portions are provided with aperture stops for shielding light. ) By forming a surface light source showing a light intensity distribution having a peak, and irradiating a light beam from this surface light source to a mask (quadrupole illumination), the square parallel to each of the vertical and horizontal pieces of the square can be obtained. The resolving power for vertical and horizontal line patterns extending in the direction is greatly improved.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、正方形
の4つの頂点に相当する位置に4つのピークを有するよ
うな光強度分布を示す面光源では、前記正方形の縦横の
各片の双方と交差する方向に延びる斜めパターンや、形
状が点に近いパターンおよび、くりかえしではない、孤
立したパターンに対する解像力が余り向上しない。However, in a surface light source exhibiting a light intensity distribution having four peaks at positions corresponding to the four vertices of a square, the direction intersecting both the vertical and horizontal pieces of the square The resolving power of an oblique pattern extending to a point, a pattern having a shape close to a point, and an isolated pattern which is not a repetition is not significantly improved.
【0005】本発明の目的は、縦横のパターンに加えて
少なくとも1種類の他のパターンに対する解像力をも向
上させることが可能な投影露光装置及びデバイス製造方
法を提供することにある。An object of the present invention is to provide a projection exposure apparatus and a device manufacturing method capable of improving the resolution of at least one other pattern in addition to the vertical and horizontal patterns.
Is to provide a law .
【0006】[0006]
【課題を解決するための手段】本発明は、面光源により
照明されたマスクのパターンを投影光学系により投影す
る際に、前記面光源として、中心領域と四角形の4つの
頂点に相当する位置にある4つの周辺領域と該4つの周
辺領域の隣り合う周辺領域の間にある4つの中間領域と
を有し且つ前記中心領域の光強度が前記周辺領域の光強
度の10〜40%であると共に前記中間領域の光強度が
前記周辺領域の光強度の35〜65%である光強度分布
を有する面光源を用いることにより、上記の課題を解決
する。According to the present invention, a surface light source is provided.
The illuminated mask pattern is projected by the projection optical system.
When that, as the surface light source, and four intermediate region between the four peripheral region and the peripheral region adjacent said four peripheral regions at positions corresponding to the four vertices of the central region and the square And a light intensity distribution in which the light intensity of the central region is 10 to 40% of the light intensity of the peripheral region and the light intensity of the intermediate region is 35 to 65% of the light intensity of the peripheral region.
The above problem is solved by using a surface light source having
【0007】本発明において、『周辺領域の強度』とは
その領域のピーク強度を指すが、周辺領域の強度分布は
ガウス分布に限定されずフラットな分布でも構わない。In the present invention, the "intensity of the peripheral region" refers to the peak intensity of the region, but the intensity distribution of the peripheral region is not limited to the Gaussian distribution, and may be a flat distribution.
【0008】[0008]
【発明の実施の形態】図1は本発明の一実施例を示す該
略図である。FIG. 1 is a schematic diagram showing one embodiment of the present invention.
【0009】図1は、ICやLSI等の半導体素子、C
CD等の撮像素子、磁気ヘッド等の磁気検出器や液晶パ
ネル等の表示素子などの各デバイスを製造するのに使用
可能な縮小投影型の露光装置を示す。FIG. 1 shows a semiconductor device such as an IC or LSI, C
1 shows a reduction projection type exposure apparatus that can be used to manufacture devices such as an image sensor such as a CD, a magnetic detector such as a magnetic head, and a display device such as a liquid crystal panel.
【0010】図1の投影露光装置においては、ランプを
含む光源部1からの光(i線)がコリメーターレンズ2
により平行光に変換されてフライアイレンズより成るオ
プティカルインテグレーター3を照明し、オプティカル
インテグレーター3の光射出面の近傍に置いた開口絞り
5の位置に形成される2次光源(面光源)からの光束を
コンデンサーレンズ6を折り曲げミラー7とを介してレ
チクル8(マスク)に照射し、縮小投影光学系9により
レチクル8の微細パターンの縮小像をウエハ10上に投
影する。In the projection exposure apparatus shown in FIG. 1, light (i-line) from a light source unit 1 including a lamp is collimated by a collimator lens 2.
Illuminates the optical integrator 3 composed of a fly-eye lens, and emits light from a secondary light source (surface light source) formed at the position of the aperture stop 5 near the light exit surface of the optical integrator 3 Is irradiated on the reticle 8 (mask) via the condenser mirror 6 via the bending mirror 7, and a reduced image of the fine pattern of the reticle 8 is projected on the wafer 10 by the reduction projection optical system 9.
【0011】投影光学系9の開口絞り11の位置と照明
光学系の開口絞り5の位置とは共役な位置関係(物点と
像点の関係)にあり、レチクル8がない状態で光源部1
から光を供給すると、開口絞り5の開口内に形成される
2次光源の光強度分布が開口絞り11の開口内にも生じ
る。The position of the aperture stop 11 of the projection optical system 9 and the position of the aperture stop 5 of the illumination optical system are in a conjugate positional relationship (a relationship between an object point and an image point).
When light is supplied from the aperture stop, a light intensity distribution of the secondary light source formed in the opening of the aperture stop 5 also occurs in the opening of the aperture stop 11.
【0012】レチクル8とウエハ10は夫々不図示の可
動ステージ上に保持されている。また、レチクル8は、
夫々後述する四角形の縦横の辺に平行な方向に延びる縦
横のパターンと、斜めパターン及び点状パターンの少な
くとも一方を有する。The reticle 8 and the wafer 10 are respectively held on a movable stage (not shown). Also, the reticle 8
Each has a vertical / horizontal pattern extending in a direction parallel to vertical / horizontal sides of a quadrangle, which will be described later, and at least one of a diagonal pattern and a dot-like pattern.
【0013】オプティカルインテグレーター3の光射出
面の近傍には、ある透過率分布を有するND(Neut
ral Density)フィルター4が設けられてお
り、このNDフィルターを介して絞り5の位置に形成さ
れる2次光源は、中心領域と、四角形(ここでは正方
形)の4つの頂点に相当する位置にある4つの周辺領域
と、この4つの周辺領域の隣り合う周辺領域の間にある
4つの中間領域とを有し、中心領域の光強度が周辺領域
の光強度の10〜40%に、中間領域の光強度が周辺領
域の光強度の35〜65%にあるという条件を満たして
いる。In the vicinity of the light exit surface of the optical integrator 3, an ND (Neut) having a certain transmittance distribution is provided.
ral Density) filter 4 is provided, and a secondary light source formed at the position of the diaphragm 5 via the ND filter is located at a position corresponding to the central region and four vertexes of a quadrangle (here, a square). It has four peripheral regions and four intermediate regions between the peripheral regions adjacent to the four peripheral regions, and the light intensity of the central region is 10 to 40% of the light intensity of the peripheral region, The condition that the light intensity is 35 to 65% of the light intensity in the peripheral region is satisfied.
【0014】この条件を満たさないと次のような問題が
生じる。中心領域の光強度が周辺領域の光強度の10%
に満たないとヌケ性の悪化やパターン像の変形等が生
じ、中心領域の光強度が周辺領域の光強度の40%を越
えると焦点深度があまり向上しない。一方、中間領域の
光強度が周辺領域の光強度の35%に満たないと斜めパ
ターンに対する適応性がなくなり、中間領域の光強度が
周辺領域の光強度の65%を越えると焦点深度があまり
向上しない。If this condition is not satisfied, the following problem occurs. The light intensity in the central area is 10% of the light intensity in the peripheral area
If the light intensity in the central region is less than 40% of the light intensity in the peripheral region, the depth of focus does not improve much. On the other hand, if the light intensity of the intermediate region is less than 35% of the light intensity of the peripheral region, the adaptability to the oblique pattern is lost, and if the light intensity of the intermediate region exceeds 65% of the light intensity of the peripheral region, the depth of focus is significantly improved. do not do.
【0015】図2に、開口絞り5の位置に形成される2
次光源の光強度分布を示す等高線図を示す。FIG. 2 shows that the aperture stop 5 is formed at the position of the aperture stop 5.
FIG. 3 shows a contour map showing the light intensity distribution of the next light source.
【0016】図2において、等高線は、強度が同じ部分
を結んだ線で、前述の四角形の4つの頂点に相当する位
置における強度(周辺領域のピーク強度)を100とし
て描いてあり、Aは2次光源の周辺領域、Bは2次光源
の中間領域、Cは2次光源の中心領域を、rは2次光源
の中心からの距離(半径)を示す。尚、等高線図の右側
の図は2次光源の光強度分布を極めて簡略化して描いた
図である。本発明の走査型露光装置の第2の形態におい
て、前記強度変調手段には、開口径が可変な絞り手段
や、前記露光光に対する傾き角が可変な干渉フィルター
や、回転方向に透過率が変化しているNDフィルタ回転板
を備える形態がある。 In FIG. 2, the contour line is a line connecting portions having the same intensity, and the intensity at the position corresponding to the four vertices of the above-described rectangle (the peak intensity in the peripheral area) is 100, and A is 2 A peripheral area of the secondary light source, B represents an intermediate area of the secondary light source, C represents a central area of the secondary light source, and r represents a distance (radius) from the center of the secondary light source. The figure on the right side of the contour diagram is a diagram in which the light intensity distribution of the secondary light source is extremely simplified. In a second embodiment of the scanning type exposure apparatus of the present invention, the intensity modulating means includes a diaphragm means having a variable aperture diameter.
Or an interference filter having a variable tilt angle with respect to the exposure light , or an ND filter rotating plate having a transmittance that varies in the rotation direction.
There is a form provided with.
【0017】図2に示すように、本実施例における2次
光源即ち面光源の光強度分布は、中心領域Cの光強度が
周辺領域Aの光強度の25%であり、中間領域Bの光強
度が周辺領域Aの光強度の50%である。また、4つの
周辺領域Cの(ピーク強度が生じる)位置は2次光源の
中心から距離r=0.6の位置である。この距離rの値
は、開口絞り5の開口よりも大きい開口絞り11の開口
を開口絞り5側に逆投影し、この開口像の半径で2次光
源の中心から周辺領域Cの位置までの距離を規格化した
値(開口像半径=1)である。As shown in FIG. 2, the light intensity distribution of the secondary light source, that is, the surface light source in this embodiment is such that the light intensity of the central region C is 25% of the light intensity of the peripheral region A, and the light intensity of the intermediate region B is 25%. The intensity is 50% of the light intensity in the peripheral area A. The positions of the four peripheral regions C (where the peak intensity occurs) are positions at a distance r = 0.6 from the center of the secondary light source. The value of this distance r is determined by projecting the aperture of the aperture stop 11 larger than the aperture of the aperture stop 5 back to the aperture stop 5 side, and calculating the distance from the center of the secondary light source to the position of the peripheral area C by the radius of the aperture image. Is normalized (aperture image radius = 1).
【0018】本実施例の投影露光装置は、面光源の光強
度分布は、中心領域Cの光強度が周辺領域Aの光強度の
25%で、中間領域Bの光強度が周辺領域Aの光強度の
50%であり、中心領域と、四角形の4つの頂点に相当
する位置にある4つの周辺領域と、この4つの周辺領域
の隣り合う周辺領域の間にある4つの中間領域とを有
し、中心領域の光強度が周辺領域の光強度の10〜40
%にあり、中間領域の光強度が周辺領域の光強度の35
〜65%にあるという条件を満たしているので、レチク
ル8上の縦横のパターンと斜めパターン又は点状パター
ンに対して高い解像力を示す。In the projection exposure apparatus of this embodiment, the light intensity distribution of the surface light source is such that the light intensity of the central region C is 25% of the light intensity of the peripheral region A, and the light intensity of the intermediate region B is the light intensity of the peripheral region A. 50% of the intensity, having a central region, four peripheral regions at positions corresponding to the four vertices of a rectangle, and four intermediate regions between neighboring peripheral regions of the four peripheral regions. The light intensity of the central region is 10 to 40 of the light intensity of the peripheral region.
%, And the light intensity in the middle region is 35% of the light intensity in the peripheral region.
Since the condition of 6565% is satisfied, high resolving power is exhibited for vertical and horizontal patterns on the reticle 8 and oblique patterns or point-like patterns.
【0019】本実施例の投影露光装置によれば、次に示
す2つの効果を同時に得ることができる。 (1)通常照明にくらべて焦点深度を伸ばすことができ
る。 (2)輪帯照明や四重極照明で問題となっていた、近接
効果、パターンの制限を除去することができる。According to the projection exposure apparatus of this embodiment, the following two effects can be obtained simultaneously. (1) The depth of focus can be extended as compared with normal illumination. (2) It is possible to eliminate the proximity effect and the limitation of the pattern, which are problems in the annular illumination and the quadrupole illumination.
【0020】まず、効果(1)の焦点深度について述べ
る。本実施例は、通常照明よりも焦点深度が向上してい
る。次の表は、各照明法毎に像面で0.32μmL/S
パターンに対して計算した焦点深度を示している。(条
件:i線、NA0.6、無収差レンズ)First, the depth of focus of the effect (1) will be described. In this embodiment, the depth of focus is higher than that of the normal illumination. The following table shows 0.32 μmL / S on the image plane for each illumination method.
7 shows the calculated depth of focus for the pattern. (Conditions: i-line, NA 0.6, stigmatic lens)
【0021】[0021]
【表1】 [Table 1]
【0022】この表から、本実施例は、通常照明よりも
焦点深度が深く、輪帯照明とほぼ同程度の焦点深度が得
られることが解る。From this table, it can be seen that the depth of focus of this embodiment is deeper than that of normal illumination, and that the depth of focus is almost the same as that of annular illumination.
【0023】次に、効果(2)の近接効果やパターンの
制限について述べる。図4は、図3に示すレチクルパタ
ーンを用いて、各照明法ごとに像の光強度分布シミュレ
ーションを行なった結果を示す。Next, the proximity effect of the effect (2) and the limitation of the pattern will be described. FIG. 4 shows a result of performing a light intensity distribution simulation of an image for each illumination method using the reticle pattern shown in FIG.
【0024】輪帯照明や四重極照明では、パターン同士
が、くびれた部分においてくっついてしまっているが、
通常照明や本実施例ではきれいに分離している。これ
は、面光源の中心からの光が、近接効果の低減に効果が
あるからである。In annular illumination and quadrupole illumination, patterns are stuck together at a narrow part.
In the case of the normal illumination and this embodiment, it is clearly separated. This is because light from the center of the surface light source is effective in reducing the proximity effect.
【0025】このように本実施例では、通常照明よりも
焦点深度を伸ばすことができ、且つ輪帯照明や四重極照
明が持つ問題を解消又は軽減する。本実施例の特徴をま
とめると、次のようになる。 ・通常照明よりも焦点深度が大きく、輪帯照明とほぼ同
等の焦点深度が得られる。 ・近接効果によって隣り合うパターン同士がくっついて
しまわない。 ・孤立するパターンが細くなることが大幅に軽減され
る。 ・斜め方向のパターンにもある程度対応することができ
る。 ・コントラストが高い。As described above, in this embodiment, the depth of focus can be made longer than that of normal illumination, and the problems of annular illumination and quadrupole illumination can be eliminated or reduced. The features of the present embodiment are summarized as follows. -Depth of focus is larger than that of normal illumination, and almost the same depth of focus as that of annular illumination can be obtained. -Adjacent patterns do not stick to each other due to proximity effect . · The orphaned pattern becomes narrower is greatly reduced. -It can respond to patterns in oblique directions to some extent.・ High contrast.
【0026】本実施例では中心領域の光強度25%、中
間領域の光強度50%としたが、焼きつけを行なうパタ
ーンによって縦横方向の焦点深度と斜め方向の焦点深度
のバランスや近接効果の影響度などを考えて、これ以外
の光強度分布に設定することがある。In this embodiment, the light intensity in the central region is 25% and the light intensity in the middle region is 50%. In consideration of the above, the light intensity distribution may be set to another value.
【0027】例えば、中心領域の光強度を上げると、近
接効果の低減やコントラストの向上には有効であるが、
焦点深度が低下するというデメリットがある。同様に、
中間領域の光強度を上げると、45度方向の斜めパター
ンに対する適応性が高まるが、焦点深度が低下するとい
うデメリットがある。これらの効果のバランスを考えて
各領域の光強度を調節すると、焼付けを行なう回路パタ
ーンの形状によって、それぞれの回路パターンに合わせ
た最適な有効光源形状を作ることも可能になる。次のよ
うにすればよい。 (1)近接するパターン同士の接触が問題となる場合
は、中心領域の光強度を上げる。 (2)パターンの長手方向の縮みが問題になる場合は中
心領域の光強度を下げる。 (3)斜め方向の辺が多く含まれているパターンは中間
領域の光強度を上げる。 (4)ほとんど縦横で構成されるパターンは中間領域の
光強度を下げる。For example, increasing the light intensity in the central region is effective for reducing the proximity effect and improving the contrast.
There is a disadvantage that the depth of focus is reduced. Similarly,
Increasing the light intensity in the intermediate region increases the adaptability to a 45 ° oblique pattern, but has the disadvantage of reducing the depth of focus. If the light intensity of each area is adjusted in consideration of the balance of these effects, it becomes possible to produce an optimum effective light source shape suitable for each circuit pattern depending on the shape of the circuit pattern to be printed. You can do as follows. (1) If contact between adjacent patterns poses a problem, the light intensity in the central region is increased. (2) If contraction in the longitudinal direction of the pattern becomes a problem, lower the light intensity in the central region. (3) A pattern including many oblique sides increases the light intensity in the intermediate region. (4) An almost vertical and horizontal pattern lowers the light intensity in the middle area.
【0028】上記実施例の投影露光装置はレチクル8と
ウエハ10を照明光学系(1〜7)と投影光学系9に対
して静止またはほぼ静止させて露光を行なうものである
が、本発明は、照明光学系(1〜7)と投影光学系9に
対してレチクル8とウエハ10を走査しながら露光を行
なう装置にも適用できる。この走査露光の場合、レチク
ル8を照明する照明光は、走査方向と直交する方向に延
びたスリット状の光である。The projection exposure apparatus of the above embodiment performs exposure while the reticle 8 and the wafer 10 are stationary or almost stationary with respect to the illumination optical systems (1 to 7) and the projection optical system 9. The illumination optical system (1-7) and the projection optical system 9
On the other hand, the present invention can be applied to an apparatus that performs exposure while scanning the reticle 8 and the wafer 10 . In the case of this scanning exposure, the illumination light for illuminating the reticle 8 is slit-shaped light extending in a direction orthogonal to the scanning direction.
【0029】上記各実施例の投影露光装置は、投影光学
系9として主としてレンズアセンブリで構成された光学
系を用いているが、投影光学系9としては、凹面鏡を備
えるものや、凹面鏡とレンズアセンブリとを備えるもの
が使用できる。The projection exposure apparatus of each of the above embodiments uses an optical system mainly composed of a lens assembly as the projection optical system 9. The projection optical system 9 includes a concave mirror or a concave mirror and a lens assembly. The following can be used.
【0030】上記各実施例の投影露光装置は光源として
ランプを用いているが、光源として、KrFエキシマレ
ーザー(波長約248nm)、ArF(波長193n
m)エキシマレーザー、他のタイプの光源を用いてもい
い。Although the projection exposure apparatus of each of the above embodiments uses a lamp as a light source, a KrF excimer laser (wavelength: about 248 nm) and ArF (wavelength: 193 n) are used as the light source.
m) Excimer lasers and other types of light sources may be used.
【0031】また、光源にエキシマレーザーを用いる場
合には、照明光学系として本出願人の特開平5−476
39号公報に記載されたものが適用できる。この公報に
記載された照明光学系は、オプティカルインテグレータ
ーに入射する光の強度分布を種々変えることができるの
で、例えば、この照明光学系を用いて、ある種のレチク
ルに対しては本発明の2次光源(面光源)を形成し、別
の種類のレチクルに対しては中心領域の光強度が最も高
い光強度分布や2次光源全体がほぼ均一な光強度を示す
光強度分布を形成するといい。In the case where an excimer laser is used as a light source, the present applicant's Japanese Patent Application Laid-Open No. 5-476 is used as an illumination optical system.
No. 39 can be applied. The illumination optical system described in this publication can change the intensity distribution of light incident on the optical integrator in various ways. For example, using this illumination optical system, a certain reticle can be used in accordance with the present invention. A secondary light source (surface light source) is formed, and for another type of reticle, a light intensity distribution in which the central region has the highest light intensity or a light intensity distribution in which the entire secondary light source exhibits substantially uniform light intensity is preferably formed. .
【0032】次に上記各実施例の投影露光装置を利用し
たデバイスの製造方法の一実施例を説明する。Next, an embodiment of a device manufacturing method using the projection exposure apparatus of each of the above embodiments will be described.
【0033】図5はデバイス(ICやLSI等の半導体
チップ、液晶パネルやCCD)の製造フローを示す。ス
テップ1(回路設計)では半導体デバイスの回路設計を
行なう。ステップ2(マスク製作)では設計した回路パ
ターンを形成したマスク(レチクル304)を製作す
る。一方、ステップ3(ウエハ製造)ではシリコン等の
材料を用いてウエハ(ウエハ306)を製造する。ステ
ップ4(ウエハプロセス)は前工程と呼ばれ、上記用意
したマスクとウエハとを用いて、リソグラフィー技術に
よってウエハ上に実際の回路を形成する。次のステップ
5(組み立て)は後工程と呼ばれ、ステップ4によって
作成されたウエハを用いてチップ化する工程であり、ア
ッセンブリ工程(ダイシング、ボンディング)、パッケ
ージング工程(チップ封入)等の工程を含む。ステップ
6(検査)ではステップ5で作成された半導体デバイス
の動作確認テスト、耐久性テスト等の検査を行なう。こ
うした工程を経て半導体デバイスが完成し、これが出荷
(ステップ7)される。FIG. 5 shows a flow of manufacturing devices (semiconductor chips such as IC and LSI, liquid crystal panels and CCDs). In step 1 (circuit design), the circuit of the semiconductor device is designed. In step 2 (mask fabrication), a mask (reticle 304) on which the designed circuit pattern is formed is fabricated. On the other hand, in step 3 (wafer manufacture), a wafer (wafer 306) is manufactured using a material such as silicon. Step 4 (wafer process) is referred to as a preprocess, and an actual circuit is formed on the wafer by lithography using the prepared mask and wafer. The next step 5 (assembly) is called a post-process, and is a process of forming chips using the wafer created in step 4, and includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation). Including. In step 6 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device created in step 5 are performed. Through these steps, a semiconductor device is completed and shipped (step 7).
【0034】図6は上記ウエハプロセスの詳細なフロー
を示す。ステップ11(酸化)ではウエハ(ウエハ30
6)の表面を酸化させる。ステップ12(CVD)では
ウエハの表面に絶縁膜を形成する。ステップ13(電極
形成)ではウエハ上に電極を蒸着によって形成する。ス
テップ14(イオン打ち込み)ではウエハにイオンを打
ち込む。ステップ15(レジスト処理)ではウエハにレ
ジスト(感材)を塗布する。ステップ16(露光)では
上記投影露光装置によってマスク(レチクル304)の
回路パターンの像でウエハを露光する。ステップ17
(現像)では露光したウエハを現像する。ステップ18
(エッチング)では現像したレジスト以外の部分を削り
取る。ステップ19(レジスト剥離)ではエッチングが
済んで不要となったレジストを取り除く。これらステッ
プを繰り返し行なうことによりウエハ上に回路パターン
が形成される。FIG. 6 shows a detailed flow of the wafer process. In step 11 (oxidation), a wafer (wafer 30
The surface of 6) is oxidized. Step 12 (CVD) forms an insulating film on the surface of the wafer. Step 13 (electrode formation) forms electrodes on the wafer by vapor deposition. Step 14 (ion implantation) implants ions into the wafer. In step 15 (resist processing), a resist (sensitive material) is applied to the wafer. Step 16 (exposure) uses the projection exposure apparatus to expose the wafer using the circuit pattern image of the mask (reticle 304). Step 17
In (development), the exposed wafer is developed. Step 18
In (etching), portions other than the developed resist are scraped off. In step 19 (resist stripping), unnecessary resist after etching is removed. By repeating these steps, a circuit pattern is formed on the wafer.
【0035】本実施例の製造方法を用いれば、従来は難
しかった高集積度のデバイスを製造することが可能にな
る。By using the manufacturing method of this embodiment, it is possible to manufacture a highly integrated device which has been difficult in the past.
【0036】[0036]
【発明の効果】以上、本発明によれば、縦横のパターン
に加えて少なくとも1種類の他のパターンに対する解像
力をも向上させることが可能な投影露光装置とデバイス
製造方法を提供できる。As described above, according to the present invention, it is possible to provide a projection exposure apparatus and a device manufacturing method capable of improving the resolving power of at least one type of other pattern in addition to the vertical and horizontal patterns.
【図1】本発明の投影露光装置の一実施例を示す概略図
である。FIG. 1 is a schematic view showing one embodiment of a projection exposure apparatus of the present invention.
【図2】図1の2次光源の強度分布を示す説明図であ
る。FIG. 2 is an explanatory diagram showing an intensity distribution of a secondary light source in FIG.
【図3】像の強度分布のシュミレーションに用いた微細
パターンを示す図である。FIG. 3 is a diagram showing a fine pattern used for simulation of an intensity distribution of an image.
【図4】シュミレーションの結果を示す図である。FIG. 4 is a diagram showing a result of simulation.
【図5】半導体デバイスの製造フローを示す図である。FIG. 5 is a diagram showing a manufacturing flow of the semiconductor device.
【図6】図5のウエハプロセスを示す図である。FIG. 6 is a view showing a wafer process of FIG. 5;
100 2次光源 A 2次光源の周辺部 B 2次光源の中間部 C 2次光源の中心部 100 Secondary light source A Peripheral part of secondary light source B Middle part of secondary light source C Central part of secondary light source
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 7/20 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/027 G03F 7/20
Claims (21)
を投影光学系により投影する投影露光装置において、前
記面光源として、中心領域と四角形の4つの頂点に相当
する位置にある4つの周辺領域と該4つの周辺領域の隣
り合う周辺領域の間にある4つの中間領域とを有し且つ
前記中心領域の光強度が前記周辺領域の光強度の10〜
40%であると共に前記中間領域の光強度が前記周辺領
域の光強度の35〜65%である光強度分布を有する面
光源を形成できることを特徴とする投影露光装置。1. A pattern of a mask illuminated by a surface light source
In a projection exposure apparatus for projecting light from a projection optical system , the surface light source is located between four peripheral regions located at positions corresponding to four vertices of a central region and a square, and adjacent peripheral regions of the four peripheral regions. 10 and <br/> light intensity of the central region and four intermediate region of the light intensity of the peripheral region
A surface having a light intensity distribution that is 40% and the light intensity of the intermediate region is 35 to 65% of the light intensity of the peripheral region.
A projection exposure apparatus capable of forming a light source .
比と前記周辺領域と前記中間領域の光強度の比とを変更
する強度分布変更手段を有することを特徴とする請求項
1の投影露光装置。2. The projection according to claim 1, further comprising intensity distribution changing means for changing a ratio of a light intensity between the peripheral region and the central region and a ratio between a light intensity between the peripheral region and the intermediate region. Exposure equipment.
光強度分布を有する面光源を形成できることを特徴とす
る請求項1の投影露光装置。3. A second light source having a highest light intensity in the central region .
2. The projection exposure apparatus according to claim 1 , wherein a surface light source having a light intensity distribution can be formed .
す第3の光強度分布を有する面光源を形成できることを
特徴とする請求項1の投影露光装置。4. The projection exposure apparatus according to claim 1, wherein the entire surface light source can form a surface light source having a third light intensity distribution indicating substantially uniform light intensity.
み、前記四角形の頂点が前記面光源の中心から見て前記
縦線及び横線に平行な各方向とは異なる方向にあること
を特徴とする請求項1の投影露光装置。5. The method according to claim 1, wherein the fine pattern includes a vertical line and a horizontal line, and the vertices of the rectangle are different from the respective directions parallel to the vertical and horizontal lines when viewed from the center of the surface light source. The projection exposure apparatus according to claim 1,
する請求項5の投影露光装置。6. The projection exposure apparatus according to claim 5, wherein said quadrangle is a square.
ら見て前記縦線及び横線に平行な各方向に対してほぼ4
5度を成す方向にあることを特徴とする請求項5の投影
露光装置。7. The quadrangle has a vertex of approximately 4 in each direction parallel to the vertical and horizontal lines as viewed from the center of the surface light source.
6. The projection exposure apparatus according to claim 5, wherein the direction is 5 degrees.
るオプティカルインテグレーターの光射出面又はその近
くに形成されることを特徴とする請求項1〜7の投影露
光装置。8. The projection exposure apparatus according to claim 1, wherein the surface light source is formed at or near a light exit surface of an optical integrator illuminated with light from the light source.
イアイレンズを有することを特徴とする請求項8の投影
露光装置。9. An apparatus according to claim 8, wherein said optical integrator has a fly-eye lens.
とする請求項8の投影露光装置。10. The projection exposure apparatus according to claim 8, wherein said light source is a laser.
ーであることを特徴とする請求項10の投影露光装置。11. The projection exposure apparatus according to claim 10, wherein said laser is a KrF excimer laser.
ーであることを特徴とする請求項10の投影露光装置。12. The projection exposure apparatus according to claim 10, wherein said laser is an ArF excimer laser.
する請求項8の投影露光装置。13. The projection exposure apparatus according to claim 8, wherein said light source is a lamp.
はレンズアセブリを有することを特徴とする請求項8の
投影露光装置。14. The projection exposure apparatus according to claim 8, wherein the optical system that projects the fine pattern image has a lens assembly.
は凹面鏡を有することを特徴とする請求項8の投影露光
装置。15. An apparatus according to claim 8, wherein the optical system for projecting the fine pattern image has a concave mirror.
はレンズアセブリを有することを特徴とする請求項15
の投影露光装置。16. The optical system for projecting the fine pattern image has a lens assembly.
Projection exposure equipment.
の光強度の10〜40%であり且つ前記中間領域の光強
度が前記周辺領域の光強度の35〜65%である光強度
分布を形成するための所定の透過率分布を備えたフィル
ターを有することを特徴とする請求項8の投影露光装
置。17. A light intensity distribution in which the light intensity of the central region is 10 to 40% of the light intensity of the peripheral region and the light intensity of the intermediate region is 35 to 65% of the light intensity of the peripheral region. 9. The projection exposure apparatus according to claim 8, further comprising a filter having a predetermined transmittance distribution for forming.
ンテグレーターの光射出面側に設けられることを特徴と
する請求項17の投影露光装置。18. The projection exposure apparatus according to claim 17, wherein the filter is provided on a light exit surface side of the optical integrator.
と前記微細パターンの像が投影される被露光体とを前記
面光源に対して静止又はほぼ静止させて露光を行なうこ
とを特徴とする請求項1の投影露光装置。19. The apparatus according to claim 19, wherein the exposure is performed while the mask on which the fine pattern is formed and the object on which the image of the fine pattern is projected are stopped or almost stopped with respect to the surface light source. 1. A projection exposure apparatus.
と前記微細パターンの像が投影される被露光体とを前記
面光源に対して走査しながら露光を行なうことを特徴と
する請求項1の投影露光装置。20. The projection according to claim 1, wherein the exposure is performed while scanning the mask on which the fine pattern is formed and the object on which the image of the fine pattern is projected with respect to the surface light source. Exposure equipment.
置のいずれかを用いてデバイスパターンでウエハを露光
する段階と該露光したウエハを現像する段階を含むデバ
イス製造方法。21. Exposure of a wafer with a device pattern using any one of the projection exposure apparatuses according to claim 1.
And a step of developing the exposed wafer .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24604095A JP3287745B2 (en) | 1995-09-25 | 1995-09-25 | Exposure apparatus and device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24604095A JP3287745B2 (en) | 1995-09-25 | 1995-09-25 | Exposure apparatus and device manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0992598A JPH0992598A (en) | 1997-04-04 |
JP3287745B2 true JP3287745B2 (en) | 2002-06-04 |
Family
ID=17142569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24604095A Expired - Fee Related JP3287745B2 (en) | 1995-09-25 | 1995-09-25 | Exposure apparatus and device manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3287745B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5182588B2 (en) * | 2008-04-29 | 2013-04-17 | 株式会社ニコン | Optical integrator, illumination optical system, exposure apparatus, and device manufacturing method |
-
1995
- 1995-09-25 JP JP24604095A patent/JP3287745B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0992598A (en) | 1997-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3576685B2 (en) | Exposure apparatus and device manufacturing method using the same | |
JPH09167735A (en) | Projection aligner and manufacture of semiconductor device using the projection aligner | |
JP3165711B2 (en) | Image projection method and method for manufacturing semiconductor device using the method | |
JP3057998B2 (en) | Illumination device and projection exposure apparatus using the same | |
JP3060357B2 (en) | Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus | |
JP2001284240A (en) | Illuminating optical system, projection exposure system equipped therewith, method of manufacturing device by use of projection exposure system | |
JPH11204422A (en) | Method for transferring charged particle beam | |
JPH1041225A (en) | Illuminating equipment and projection aligner using the same | |
JPH09199406A (en) | Position detecting device and manufacture of semiconductor element using thereof | |
JPH06124872A (en) | Image forming method and manufacture of semiconductor device using the method | |
KR20040087894A (en) | Device Manufacturing Method, Mask Set for use in the Method, Data Set for Controlling a Programmable Patterning Device, Method of Generating a Mask Pattern and a Computer Program | |
JP3796294B2 (en) | Illumination optical system and exposure apparatus | |
JPH1070070A (en) | Illuminator and projection aligner using the illuminator | |
US5237393A (en) | Reticle for a reduced projection exposure apparatus | |
JP3028028B2 (en) | Projection exposure apparatus and semiconductor device manufacturing method using the same | |
JP3392034B2 (en) | Illumination device and projection exposure apparatus using the same | |
JP3287745B2 (en) | Exposure apparatus and device manufacturing method | |
US5919605A (en) | Semiconductor substrate exposure method | |
JP4791630B2 (en) | Exposure equipment | |
JPH09148241A (en) | Scanning aligner and method for manufacturing device using the same | |
JPH01258419A (en) | Pattern formation | |
JP3977096B2 (en) | Mask, exposure method and device manufacturing method | |
JP3566318B2 (en) | Scanning exposure apparatus and device manufacturing method | |
JP2004071650A (en) | Exposure method | |
JPH1092729A (en) | Illumination device and scanning projection aligner using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020219 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080315 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090315 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100315 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100315 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110315 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120315 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130315 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140315 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |