JP3279081B2 - Signal playback method - Google Patents
Signal playback methodInfo
- Publication number
- JP3279081B2 JP3279081B2 JP17821394A JP17821394A JP3279081B2 JP 3279081 B2 JP3279081 B2 JP 3279081B2 JP 17821394 A JP17821394 A JP 17821394A JP 17821394 A JP17821394 A JP 17821394A JP 3279081 B2 JP3279081 B2 JP 3279081B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- electrode
- recording medium
- magnetization
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Digital Magnetic Recording (AREA)
- Magnetic Heads (AREA)
- Recording Or Reproducing By Magnetic Means (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、磁気テープや磁気ディ
スクに書き込まれた各種情報信号を再生するための信号
再生方法に関し、特に高記録密度を具現化する新規な信
号再生方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal reproducing method for reproducing various information signals written on a magnetic tape or a magnetic disk, and more particularly to a novel signal reproducing method for realizing a high recording density.
【0002】[0002]
【従来の技術】高密度磁気記録を達成するため、これま
で磁気記録媒体には、より保磁力Hcが大きく、残留磁
化が大きい磁性体が用いられてきている。具体的に記せ
ば、γFe2O3からCo−γFe2O3、金属磁性粉末、
Co蒸着、あるいはハードディスクにおいては、塗布型
からCr下地Co−Ni、Cr下地CoCrTa、Co
PtCr等の順で進歩してきている。2. Description of the Related Art To achieve high-density magnetic recording, a magnetic material having a larger coercive force Hc and a large residual magnetization has been used for a magnetic recording medium. Specifically, γFe 2 O 3 to Co-γFe 2 O 3 , metal magnetic powder,
In the case of Co deposition or a hard disk, the coating type is changed to Co-Ni under Cr, CoCrTa under Co,
Progress has been made in the order of PtCr and the like.
【0003】このように、磁気記録媒体の記録材料は、
酸化物粉→金属粉→金属膜の順で進歩している。これ
は、高Br、高Hcを目指したためである。一方、再生
ヘッドにおいては、媒体磁化の変化からの誘導起電力を
利用するインダクティブ型から、磁気抵抗変化を利用す
る、いわゆるMR型へと研究が進められ、一部実用化し
つつある。As described above, the recording material of the magnetic recording medium is as follows.
Progress is made in the order of oxide powder → metal powder → metal film. This is because high Br and high Hc were aimed at. On the other hand, in the reproducing head, research is progressing from an inductive type using an induced electromotive force due to a change in medium magnetization to a so-called MR type using a magnetoresistance change, and a part of the reproducing head is being put to practical use.
【0004】MR型では、媒体の磁化がパーマロイ薄膜
等へ誘導され、パーマロイ磁化の変化によりパーマロイ
電気抵抗が変化することにより再生信号が得られる。イ
ンダクティブ型に比べMR型では、変化すべき領域が極
めて小さくとも大きな再生出力がえられることにより、
より高感度が達成されこれにより、磁気記録のトラック
幅低減が可能となる。In the MR type, a reproduction signal is obtained by the magnetization of the medium being induced into a permalloy thin film or the like, and the permalloy electric resistance changing due to the change in the permalloy magnetization. Compared to the inductive type, the MR type provides a large reproduction output even if the area to be changed is extremely small,
Higher sensitivity is achieved, which allows a reduction in the track width of magnetic recording.
【0005】[0005]
【発明が解決しようとする課題】ところで、MR型の磁
気ヘッド(MRヘッド)には、ヨーク型とMRパーマロ
イが摺動面に露出する非ヨーク型があるが、非ヨーク型
の方が再生感度が高いとされている。しかしながら、非
ヨーク型のMRヘッドでは、MR素子が媒体摺動面に露
出するため、磁気テープ等の接触型のシステムにおいて
は、耐久性、信頼性に問題がある。特に、電気抵抗が低
い金属蒸着膜を磁気テープの磁性層に用いた場合には、
MR再生電流がテープ側へ流れてしまうため、非ヨーク
型は使用不能である。The MR type magnetic head (MR head) includes a yoke type and a non-yoke type in which an MR permalloy is exposed on a sliding surface. The non-yoke type has a higher read sensitivity. Is said to be high. However, in a non-yoke type MR head, since the MR element is exposed on the medium sliding surface, there is a problem in durability and reliability in a contact type system such as a magnetic tape. In particular, when a metal deposited film having low electric resistance is used for the magnetic layer of the magnetic tape,
Since the MR reproducing current flows to the tape side, the non-yoke type cannot be used.
【0006】ハードディスクの場合には、磁気ヘッドが
約0.1μm程度媒体から浮上しているため、金属蒸着
膜を用いた磁気記録媒体へも非ヨーク型MRヘッドが応
用可能であり、一部実用化されているが、より高密度記
録を実現するために、ヘッド浮上量は低下される傾向に
あり、この場合はやはり絶縁性が問題となる。また、よ
りトラック幅を狭くした場合には、MR素子両端での磁
化の不安定性、あるいは、バルクハウゼンノイズを防止
しつつ高度を高める方法等に問題が残されている。[0006] In the case of a hard disk, since the magnetic head is levitated from the medium by about 0.1 µm, a non-yoke type MR head can be applied to a magnetic recording medium using a metal deposition film. However, in order to achieve higher density recording, the flying height of the head tends to be reduced, and in this case, the insulating property still becomes a problem. Further, when the track width is further narrowed, there remains a problem in the method of increasing the altitude while preventing the instability of magnetization at both ends of the MR element or Barkhausen noise.
【0007】このように、テープ系においては高出力が
得られる蒸着テープと再生感度が高い非ヨーク型MRヘ
ッドの組合せは不可能であり、また、ディスク系におい
ても今後の低浮上量化、狭トラック化において問題が残
されている。そこで本発明は、上述の課題を解消すべく
提案されたものであって、高密度記録化を達成すること
ができ、しかも高出力、高信頼性を有する全く新規な信
号再生方法を提供することを目的とする。As described above, it is impossible to combine a vapor-deposited tape capable of obtaining a high output with a non-yoke type MR head having a high reproduction sensitivity in a tape system. Problems remain in the development. Therefore, the present invention has been proposed to solve the above-mentioned problems, and it is an object of the present invention to provide a completely novel signal reproducing method capable of achieving high-density recording and having high output and high reliability. With the goal.
【0008】[0008]
【課題を解決するための手段】上述の目的を達成するた
めに、本発明は、磁化反転により磁性層に信号が記録さ
れた磁気記録媒体に対して磁性体よりなる電極を接触或
はトンネル電流が流れる程度に近接させるとともに、前
記電極を構成する磁性体の磁化の向きを前記磁性層の反
転磁化のいずれか一方の向きと略同一とし、磁気記録媒
体と電極との間の電気抵抗を測定して再生信号とするこ
とを特徴とするものである。SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a magnetic recording medium in which signals are recorded on a magnetic layer by magnetization reversal. And the direction of magnetization of the magnetic material constituting the electrode is made substantially the same as the direction of one of the reversal magnetizations of the magnetic layer, and the electrical resistance between the magnetic recording medium and the electrode is measured. In the form of a reproduction signal.
【0009】本発明においては、電極から直接磁気記録
媒体へ電流を流し、その際の電気抵抗が電極−磁気記録
媒体間の磁化の方向の整合性により変化することを利用
し、再生出力を得る。すなわち、表面の電気抵抗が低い
磁気記録媒体と、これと接触或は近接し、かつ磁気記録
媒体の反転磁化のいずれかの磁化方向と同方向で他方の
磁化方向とは反対方向の磁化方向を持ち、かつ電気抵抗
が低い硬質磁性体である電極を用いて、媒体−電極間の
電気抵抗を測定することにより、再生信号を得る。In the present invention, a current is passed directly from the electrode to the magnetic recording medium, and a reproduction output is obtained by utilizing the fact that the electric resistance at that time changes due to the consistency of the direction of magnetization between the electrode and the magnetic recording medium. . That is, a magnetic recording medium having a low surface electrical resistance is contacted with or close to the magnetic recording medium, and a magnetization direction in the same direction as the magnetization direction of one of the reversal magnetizations of the magnetic recording medium and opposite to the other magnetization direction. A reproduction signal is obtained by measuring the electric resistance between the medium and the electrode using an electrode which is a hard magnetic material having a low electric resistance.
【0010】ここで、磁気記録媒体−電極間に電流を流
すためには、電極がもう一端必要となるが、磁気記録媒
体の電気抵抗は一般に金属膜の中では高いため、非磁性
補助電極を硬質磁性体電極の近くに設置することが望ま
れる。電極は、磁気記録媒体に対して垂直あるいは斜め
に設置されるため、媒体に面内磁化膜を用いた場合には
電極には垂直磁化膜を、媒体に垂直磁化膜を用いた場合
には、電極には面内磁化膜を用いることで、電極と媒体
間の磁化の向きを一致させることができる。電極内に磁
化構造がある場合には、電子が散乱されるため、電極は
角型比1である必要がある。Here, another electrode is required to allow a current to flow between the magnetic recording medium and the electrode. However, since the electric resistance of the magnetic recording medium is generally high in a metal film, a non-magnetic auxiliary electrode is required. It is desired to be installed near the hard magnetic electrode. Since the electrodes are installed perpendicularly or obliquely to the magnetic recording medium, when the in-plane magnetized film is used for the medium, the perpendicular magnetized film is used for the electrode, and when the perpendicular magnetized film is used for the medium, By using an in-plane magnetized film for the electrode, the direction of magnetization between the electrode and the medium can be matched. If the electrode has a magnetized structure, electrons are scattered, so the electrode needs to have a squareness ratio of 1.
【0011】具体的には、例えば磁気記録媒体としてC
o系合金斜方蒸着テープを用いる場合には、電極として
Co−Cr、Co/Pt系多層膜、Co−Pd系多層
膜、CoPtBO等の垂直磁化膜を用いる。磁気記録媒
体としてCo−Cr、Co/Pt系多層膜、Co−Pd
系多層膜、CoPtBO等の垂直磁気記録媒体を用いる
場合には、電極にCo系合金斜方蒸着膜やCr下地Co
系合金膜等の面内異方性磁性膜を用いる。Specifically, for example, as a magnetic recording medium, C
When an o-based alloy oblique deposition tape is used, a perpendicular magnetization film such as a Co-Cr, Co / Pt-based multilayer, a Co-Pd-based multilayer, or CoPtBO is used as an electrode. Co-Cr, Co / Pt based multilayer film, Co-Pd as magnetic recording medium
When using a perpendicular magnetic recording medium such as a Co-based multilayer film or CoPtBO, a Co-based alloy obliquely deposited film or a Cr-based Co
An in-plane anisotropic magnetic film such as a system alloy film is used.
【0012】このように、電極には硬質磁性体を用いる
ことが出来るが、特に垂直磁化媒体−面内磁化電極の組
合せの場合には、電極材としてパーマロイ、センダスト
等軟質磁性材を用いて、これにバイアス磁界を加えるこ
とにより、面内一方向磁化とすることで硬質磁性材と同
様の効果が得られる。ところで、電極には、硬質磁性体
を用いる為、これによる媒体への磁化の影響を考慮しな
ければならない。磁気記録媒体は自らの反磁界に対する
保持能力は備えており、磁気記録媒体−電極間の磁気特
性における差異も少ないことから、磁気記録媒体と同程
度(2000オングストローム以下)の厚みを有する電
極ならば、電極が媒体へ磁化の影響を与えることはな
い。As described above, a hard magnetic material can be used for the electrode. Particularly, in the case of a combination of a perpendicular magnetization medium and an in-plane magnetization electrode, a soft magnetic material such as Permalloy or Sendust is used as an electrode material. When a bias magnetic field is applied to the magnetic field, an in-plane unidirectional magnetization is obtained, and the same effect as that of the hard magnetic material can be obtained. By the way, since a hard magnetic material is used for the electrode, it is necessary to consider the influence of magnetization on the medium due to this. Since the magnetic recording medium has its own demagnetizing ability and there is little difference in the magnetic characteristics between the magnetic recording medium and the electrode, if the electrode has the same thickness as the magnetic recording medium (2000 Å or less), In addition, the electrodes do not influence the magnetization of the medium.
【0013】また、磁気記録媒体の磁性層の下地層とし
て、Cu,Ag,Au等電気抵抗の低い材料からなる層
を設置することにより、磁気記録媒体の電気抵抗を低下
させ、磁気記録媒体−電極間の電気抵抗の変化を相対的
に大きくすることが可能である。さらに、デジタルオー
ディオテープレコーダ(いわゆるS−DATやDCC
等)やデータ記録システム(いわゆるQICシステム
等)等においては、マルチトラック固定ヘッドが用いら
れているが、MR素子の電極等、トラック幅を狭くする
にあたっては問題が残されている。本発明の信号再生方
法は、電極を設置するのみであり、他の素子は必要とし
ないため、トラックピッチを大幅に狭くすることが可能
であり、マルチトラック型システムには特に好適であ
る。Further, by providing a layer made of a material having a low electric resistance such as Cu, Ag, or Au as a base layer of the magnetic layer of the magnetic recording medium, the electric resistance of the magnetic recording medium is reduced, and It is possible to make the change in the electric resistance between the electrodes relatively large. Furthermore, digital audio tape recorders (so-called S-DAT and DCC)
) And a data recording system (so-called QIC system) use a multi-track fixed head. However, there remains a problem in reducing the track width such as the electrodes of the MR element. The signal reproducing method of the present invention only requires the installation of electrodes and does not require other elements, so that the track pitch can be significantly reduced, and is particularly suitable for a multi-track system.
【0014】[0014]
【作用】近年、巨大磁気抵抗素子(GMR材)の研究に
より、磁化の方向が異なった磁性体を通した場合の電気
抵抗が、磁化の方向が揃った場合よりも高いことが明白
になってきている。(日本応用磁気学会誌 Vol16 No4 1
992 P615〜635 参照) GMRヘッドの場合、磁気記録媒体からの磁場によりG
MR材内部の磁化状態が変化することにより、GMR材
を流れる電流電圧が変化するが、この電流電圧の変化か
ら再生信号を得る。In recent years, research on giant magnetoresistive elements (GMR materials) has revealed that the electric resistance when passing through a magnetic material having a different magnetization direction is higher than when the magnetization directions are aligned. ing. (Journal of the Japan Society of Applied Magnetics Vol16 No4 1
992 See pages 615 to 635) In the case of a GMR head, the G
When the magnetization state inside the MR material changes, the current voltage flowing through the GMR material changes. A reproduction signal is obtained from the change in the current voltage.
【0015】本発明者はこの現象についてさらに鋭意検
討した結果、より直接的に媒体の磁化パターンを再生信
号として取り出す手法を案出するに到った。すなわち、
上記磁化方向の不連続性により電気抵抗が増大するとい
う現象は、GMR材、スピンバルブ材の様な多層膜系の
内部に限ったものではなく、磁気記録媒体と磁化を持つ
電極の間でも起こり、これらの磁化の方向により、媒体
の磁化を軟磁性体内部へ誘導する必要なく、直接的に電
気抵抗として取り出すことが可能になる。As a result of further intensive studies on this phenomenon, the present inventor has come up with a method of more directly extracting a magnetization pattern of a medium as a reproduction signal. That is,
The phenomenon that the electric resistance increases due to the discontinuity of the magnetization direction is not limited to the inside of a multilayer film system such as a GMR material or a spin valve material, but also occurs between a magnetic recording medium and a magnetized electrode. According to these magnetization directions, it is possible to directly extract the magnetization of the medium as an electric resistance without having to guide the magnetization of the medium into the soft magnetic material.
【0016】したがって、この現象を利用することによ
り、軟磁性体を全く必要としない全く新しい磁気信号の
再生が可能となる。ここで、本発明においては、従来の
ように磁気回路を必要としないため、ヘッド効率及びこ
れに影響を与えていた磁気ギャップデプス等のヘッド設
計上の困難から完全に開放され、また、電極は長くても
かまわないため、ヘッドが削れる部分の長さを長くとる
ことができる。すなわち、ヘッド寿命も、ギャップデプ
スの制限が無くなり、大幅に長くすることが可能であ
る。Therefore, by utilizing this phenomenon, it is possible to reproduce a completely new magnetic signal which does not require any soft magnetic material. Here, in the present invention, since a magnetic circuit is not required unlike the related art, it is completely relieved of the head efficiency and the difficulty in designing the head such as the magnetic gap depth which had an influence on the head efficiency, and the electrodes are not required. Since the length can be long, the length of the portion where the head can be cut can be increased. In other words, the life of the head can be greatly increased without the limitation of the gap depth.
【0017】さらに、電極は細くて十分であるため、マ
ルチトラック化は従来のインダクティブ、MRヘッド等
に比べて極めて容易となる。Furthermore, since the electrodes are thin and sufficient, multi-tracking is extremely easy as compared with conventional inductive and MR heads.
【0018】[0018]
【実施例】以下、本発明を適用した具体的な実施例につ
いて、図面を参照しながら詳細に説明する。実施例1 本実施例は、面内磁気記録媒体と垂直磁化膜からなる電
極とを組み合わせた例である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below in detail with reference to the drawings. Embodiment 1 This embodiment is an example in which an in-plane magnetic recording medium and an electrode made of a perpendicular magnetization film are combined.
【0019】図1に示すように、磁気記録媒体1には、
非磁性支持体11上にCu下地層12(膜厚1000オ
ングストローム)を成膜し、この上に斜方蒸着でCo−
Ni合金からなる蒸着膜13を成膜した蒸着テープ(M
Eテープ)を用いた。この蒸着テープに対する信号の書
込みは、通常の磁気ヘッド(ここでは、いわゆるMIG
ヘッド)により行った。As shown in FIG. 1, the magnetic recording medium 1 includes:
A Cu underlayer 12 (thickness 1000 Å) is formed on the nonmagnetic support 11, and a Co-layer is formed thereon by oblique evaporation.
An evaporation tape (M) on which an evaporation film 13 made of a Ni alloy is formed.
E tape). A signal is written on this vapor deposition tape by a normal magnetic head (here, so-called MIG).
Head).
【0020】また、図2及び図3に示すように、再生ヘ
ッド2には、非磁性絶縁体21上にCoPtBO垂直磁
化磁性体(膜厚200オングストローム)を電極22と
して成膜したものを用いた。この再生ヘッド2は、前記
電極22の他、この電極22上に絶縁膜23(膜厚20
00オングストローム)を介して成膜される補助電極2
4を有し、これらが前記非磁性絶縁体21と別の非磁性
絶縁体25で挟持された構造とされている。As shown in FIGS. 2 and 3, the reproducing head 2 was formed by forming a CoPtBO perpendicular magnetized magnetic material (200 angstrom thick) on the nonmagnetic insulator 21 as the electrode 22. . The reproducing head 2 has an insulating film 23 (film thickness 20) on the electrode 22 in addition to the electrode 22.
Auxiliary electrode 2 formed through the film
4, which are sandwiched between the non-magnetic insulator 21 and another non-magnetic insulator 25.
【0021】前記補助電極24は、Cuからなるもの
で、その膜厚は4000オングストロームである。ま
た、前記電極22及び補助電極24には、それぞれ外部
回路と接続するための端子部26、27が接続されてお
り、これら端子部26、27間にセンス電流を供給する
ことで、補助電極24→磁気記録媒体1→電極22の順
でこのセンス電流が流れるようにようになっている。The auxiliary electrode 24 is made of Cu and has a thickness of 4000 angstroms. Terminal portions 26 and 27 for connecting to an external circuit are connected to the electrode 22 and the auxiliary electrode 24, respectively. By supplying a sense current between these terminal portions 26 and 27, the auxiliary electrode 24 The sense current flows in the order of → the magnetic recording medium 1 → the electrode 22.
【0022】再生の際には、図1に示すように、補助電
極24、磁気記録媒体1(蒸着膜13及びCu下地層1
2)、電極22を通るが、ここで、電極22と蒸着膜1
3の磁化の方向が一致する場合には電気抵抗は低く、反
対の方向を向く場合には電気抵抗は高くなる。このこと
により、従来のように磁気記録媒体からの漏れ磁束を利
用することなく、直接的に磁化パターンの再生が可能と
なった。At the time of reproduction, as shown in FIG. 1, the auxiliary electrode 24, the magnetic recording medium 1 (the deposited film 13 and the Cu underlayer 1) are used.
2) passing through the electrode 22, where the electrode 22 and the deposited film 1
The electrical resistance is low when the directions of magnetization of No. 3 coincide with each other, and the electrical resistance increases when they face in opposite directions. This makes it possible to directly reproduce the magnetization pattern without using the leakage magnetic flux from the magnetic recording medium as in the related art.
【0023】実際、トラック幅を20μmとし、磁気テ
ープ(磁気記録媒体1)を移動させながら電極間電気抵
抗を測定したところ、磁化の方向が一致した場合と反対
方向を向いた場合で5%の電気抵抗の相異が見られた。実施例2 本実施例は、垂直磁化記録媒体と面内磁化膜とを組み合
わせた例である。In practice, when the track width was set to 20 μm and the electric resistance between the electrodes was measured while moving the magnetic tape (magnetic recording medium 1), 5% was obtained when the magnetization directions were the same and opposite. Differences in electrical resistance were observed. Embodiment 2 This embodiment is an example in which a perpendicular magnetization recording medium and an in-plane magnetization film are combined.
【0024】磁気記録媒体や再生ヘッドの構造は、先の
実施例と同様であるが、Cu下地層12の上に蒸着膜1
3としてCo−Cr垂直磁化膜を成膜したものを媒体と
し、CoPtPO面内磁化膜を電極22として用いた。
図4に概念図を示す。実施例1の場合と同様に、電極−
媒体間の磁化の向きの一致、不一致により5%の電気抵
抗の相異が観察された。一般のMR素子では媒体磁化に
よる電気抵抗変化は1%以下である。The structures of the magnetic recording medium and the reproducing head are the same as those of the previous embodiment, except that the deposited film 1 is formed on the Cu underlayer 12.
As No. 3, a medium in which a Co—Cr perpendicular magnetization film was formed was used as a medium, and a CoPtPO in-plane magnetization film was used as an electrode 22.
FIG. 4 shows a conceptual diagram . As in Example 1, electrodes -
A difference of 5% in electric resistance was observed due to coincidence and inconsistency of the magnetization directions between the media. In a general MR element, a change in electric resistance due to medium magnetization is 1% or less.
【0025】CoPtPO面内磁化媒体では一般的に角
型比1の磁気特性は得られないが、本例の場合には、長
手方向に細く長い形状異方性と組み合わせたことで、電
極材としては磁化の存在しない角型比1の材料が得られ
た。また電極22にパーマロイを用いこれにバイアス磁
界を印加した場合でも同様であった。実施例3 先の実施例1と同様の構造の磁気記録媒体、再生ヘッド
の組み合わせとし、トラックピッチ40μm、トラック
幅20μm、トラック数20のマルチトラックヘッドを
試作した。ここで、トラック間のクロストークは全く観
察されず、極めて簡単な電極のみで、マルチトラックヘ
ッドが作製可能であることが判明した。各トラックの電
気抵抗変化はそれぞれ5%であった。Although magnetic properties with a squareness ratio of 1 cannot generally be obtained with a CoPtPO in-plane magnetized medium, in the case of this example, the combination with a shape anisotropy that is thin and long in the longitudinal direction allows the electrode material to be used. As a result, a material having a squareness ratio of 1 without magnetization was obtained. The same applies when permalloy is used for the electrode 22 and a bias magnetic field is applied thereto. Example 3 A multi-track head having a track pitch of 40 μm, a track width of 20 μm and a track number of 20 was experimentally manufactured by using a combination of a magnetic recording medium and a reproducing head having the same structures as those of the previous Example 1. Here, it was found that crosstalk between tracks was not observed at all, and that a multitrack head could be manufactured using only extremely simple electrodes. The change in electric resistance of each track was 5%.
【0026】[0026]
【発明の効果】以上の説明からも明らかなように、本発
明の信号再生方法では、電極のみの極めて単純な構造の
みで高感度の再生が可能である。しかも、MRヘッドの
ように、磁化制御、バイアス、電極の方向、バルクハウ
ゼンノイズ等の問題がなく、クロストークも極めて少な
い。As is apparent from the above description, the signal reproducing method of the present invention enables high-sensitivity reproduction with only a very simple structure using only electrodes. Moreover, unlike the MR head, there are no problems such as magnetization control, bias, electrode direction, Barkhausen noise, etc., and crosstalk is extremely small.
【0027】また、磁気回路を構成しなくても良いた
め、デプスによるヘッド寿命の問題も解消され、しかも
簡単な構造であることから特にマルチトラックヘッドに
好適である。Further, since there is no need to form a magnetic circuit, the problem of the head life due to the depth is solved, and the simple structure is particularly suitable for a multi-track head.
【図1】面内磁気記録媒体と垂直磁化膜からなる電極を
組み合わせた場合の再生原理を説明するための模式図で
ある。FIG. 1 is a schematic diagram for explaining the principle of reproduction when an in-plane magnetic recording medium and an electrode composed of a perpendicular magnetization film are combined.
【図2】再生ヘッドの一構成例を示す概略斜視図であ
る。FIG. 2 is a schematic perspective view showing a configuration example of a reproducing head.
【図3】図2に示す再生ヘッドの概略断面図である。FIG. 3 is a schematic sectional view of the reproducing head shown in FIG.
【図4】垂直磁化記録媒体と面内磁化膜からなる電極を
組み合わせた場合の再生原理を説明するための模式図で
ある。FIG. 4 is a schematic diagram for explaining the principle of reproduction when a perpendicular magnetization recording medium and an electrode composed of an in-plane magnetization film are combined.
1 磁気記録媒体 2 再生ヘッド 12 Cu下地層 13 蒸着膜 22 電極 24 補助電極 DESCRIPTION OF SYMBOLS 1 Magnetic recording medium 2 Reproducing head 12 Cu underlayer 13 Vapor deposition film 22 Electrode 24 Auxiliary electrode
Claims (8)
た磁気記録媒体に対して磁性体よりなる電極を接触或は
近接させるとともに、前記電極を構成する磁性体の磁化
の向きを前記磁性層の反転磁化のいずれか一方の向きと
略同一とし、 磁気記録媒体と電極との間の電気抵抗を測定して再生信
号とすることを特徴とする信号再生方法。An electrode made of a magnetic material is brought into contact with or close to a magnetic recording medium in which a signal is recorded on the magnetic layer by magnetization reversal, and the direction of magnetization of the magnetic material constituting the electrode is changed to the magnetic layer. A signal reproducing method which has substantially the same direction as one of the reversal magnetizations, and measures an electric resistance between the magnetic recording medium and the electrode to obtain a reproduction signal.
非磁性補助電極を絶縁層を介して設置することを特徴と
する請求項1記載の信号再生方法。2. The signal reproducing method according to claim 1, wherein a conductive non-magnetic auxiliary electrode is provided adjacent to the electrode made of a magnetic material via an insulating layer.
る磁気記録媒体とし、電極を垂直磁化膜とすることを特
徴とする請求項1記載の信号再生方法。3. The signal reproducing method according to claim 1, wherein the magnetic recording medium is a magnetic recording medium having an in-plane magnetization film as a recording layer, and the electrodes are perpendicular magnetization films.
る磁気記録媒体とし、電極を面内磁化膜とすることを特
徴とする請求項1記載の信号再生方法。4. The signal reproducing method according to claim 1, wherein the magnetic recording medium is a magnetic recording medium having a perpendicular magnetization film as a recording layer, and the electrodes are in-plane magnetization films.
以下とすることを特徴とする請求項1記載の信号再生方
法。5. The signal reproducing method according to claim 1, wherein the thickness of the electrode is less than 2000 Å.
ることを特徴とする請求項1記載の信号再生方法。6. The signal reproducing method according to claim 1, wherein a magnetic layer is formed on the conductive underlayer.
ルチトラック再生することを特徴とする請求項1記載の
信号再生方法。7. The signal reproducing method according to claim 1, wherein a plurality of electrodes are arranged in a track width direction to perform multi-track reproduction.
軟磁性薄膜として、これにバイアス磁界を印加し面内一
方向磁化膜とすることを特徴とする請求項1記載の信号
再生方法。8. The signal reproducing method according to claim 1, wherein the magnetic recording medium is a perpendicular magnetization film, the electrode is a soft magnetic thin film, and a bias magnetic field is applied to the soft magnetic thin film to form an in-plane unidirectional magnetization film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17821394A JP3279081B2 (en) | 1994-07-29 | 1994-07-29 | Signal playback method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17821394A JP3279081B2 (en) | 1994-07-29 | 1994-07-29 | Signal playback method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0845002A JPH0845002A (en) | 1996-02-16 |
JP3279081B2 true JP3279081B2 (en) | 2002-04-30 |
Family
ID=16044566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17821394A Expired - Fee Related JP3279081B2 (en) | 1994-07-29 | 1994-07-29 | Signal playback method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3279081B2 (en) |
-
1994
- 1994-07-29 JP JP17821394A patent/JP3279081B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0845002A (en) | 1996-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6141190A (en) | Magnetoresistive effect head | |
US5218497A (en) | Magnetic recording-reproducing apparatus and magnetoresistive head having two or more magnetoresistive films for use therewith | |
US4575777A (en) | Magnetic recording and reproducing head | |
US6934128B2 (en) | Magnetic head and magnetic disk drive | |
KR100331413B1 (en) | Magnetoresistive effect type reproducing head and magnetic disk apparatus equipped with the reproducing head | |
US5922456A (en) | Longitudal magnetic recording medium having a multi-layered underlayer and magnetic storage apparatus using such magnetic recording medium | |
US6351357B1 (en) | Laminated hard magnet in MR sensor | |
US20050213244A1 (en) | Magnetic head for perpendicular recording and magnetic disk storage apparatus mounting the head | |
US5406433A (en) | Dual magnetoresistive head for reproducing very narrow track width short wavelength data | |
JP3377710B2 (en) | Magnetoresistive device and magnetic sensor | |
US6369992B1 (en) | Yoke-type head with magneto-resistance effect film recessed from medium facing surface and extending across magnetic gap | |
US7433163B2 (en) | Seedlayer for high hard bias layer coercivity | |
US7317596B2 (en) | Magnetic recording disk drive having read head with high cross-track resolution and disk with low bit-aspect-ratio | |
JPH07296340A (en) | Magnetoresistance effect device and thin film magnetic head utilizing the device | |
JPH09282618A (en) | Magneto-resistive head and magnetic recording and reproducing device | |
US6731478B2 (en) | Magnetoresistive effect head | |
JP3279081B2 (en) | Signal playback method | |
JPH10241125A (en) | Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same | |
Valstyn et al. | Performance of single-turn film heads | |
JP3443971B2 (en) | Magnetic recording signal reproduction method | |
US6529352B1 (en) | Magnetoresistive sensing element and magnetic head using the magnetoresistive sensing element | |
JP2814741B2 (en) | Perpendicular magnetization type magnetoresistance element and magnetoresistance effect type magnetic head using the same | |
JPH0922509A (en) | Magneto-resistance effect type head and magnetic recording and reproducing device | |
JPH0256713A (en) | Magneto-resistance effect type reproducing head | |
JP2861714B2 (en) | Magnetoresistive head and magnetic disk drive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020122 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090222 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |