JP3272130B2 - Energy absorbing member and method of manufacturing the same - Google Patents
Energy absorbing member and method of manufacturing the sameInfo
- Publication number
- JP3272130B2 JP3272130B2 JP32734593A JP32734593A JP3272130B2 JP 3272130 B2 JP3272130 B2 JP 3272130B2 JP 32734593 A JP32734593 A JP 32734593A JP 32734593 A JP32734593 A JP 32734593A JP 3272130 B2 JP3272130 B2 JP 3272130B2
- Authority
- JP
- Japan
- Prior art keywords
- energy absorbing
- absorbing member
- heat
- alloy
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は、自動車等の輸送機器の
衝突時における乗車人員に対する衝撃を低減するエネル
ギー吸収部材の溶接後の熱処理方法に関し、特にAl−
Zn−Mg系合金押出材により構成されたエネルギー吸
収部材及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heat treatment after welding of an energy absorbing member for reducing the impact on passengers in the event of collision of transportation equipment such as automobiles.
The present invention relates to an energy absorbing member made of a Zn-Mg based alloy extruded material and a method for manufacturing the same.
【0002】[0002]
【従来の技術】自動車等の輸送機器には乗員に対する安
全性が求められる。特に自動車においては、衝突した際
の乗員に対する安全性を確保するための構造及び装備が
必要とされている。具体的には、衝突の際に、前方のエ
ンジン部分又は後方のトランク部分で構造材がアコーデ
ィオン状に座屈変形し、これにより衝突のエネルギーが
吸収されてキャビン内の乗員に加わる衝撃を緩和する構
造となっている。従来、これらの構造材には、冷間圧延
鋼板が使用されていた。2. Description of the Related Art Transportation equipment such as automobiles is required to be safe for passengers. Particularly in automobiles, structures and equipment for ensuring safety for occupants in the event of a collision are required. Specifically, in the event of a collision, the structural material buckles and deforms in an accordion-like manner in the front engine portion or the rear trunk portion, thereby absorbing the energy of the collision and mitigating the impact applied to the occupant in the cabin. It has a structure. Conventionally, cold rolled steel sheets have been used for these structural materials.
【0003】近年、環境問題及び急停車時の制動距離の
短縮等の観点から、車輌重量の軽減が要望されている。
このため、自動車においては、バンパー及びその他の部
品に、比重が鋼板の約1/3と小さいAl又はAl合金
材が使用されるようになってきた。特に、板材に比して
複雑な形を簡単に製造できることから、Al合金押出材
の使用が検討されている。また、従来、冷間圧延鋼板に
より構成されていたエネルギー吸収部材にも、Al合金
材の使用が検討されている(特開昭64−67482
号)。[0003] In recent years, there has been a demand for reduction of vehicle weight from the viewpoint of environmental problems and shortening of braking distance at the time of sudden stop.
For this reason, in automobiles, Al or an Al alloy material having a specific gravity as small as about 1/3 of a steel plate has been used for bumpers and other parts. Particularly, the use of an extruded aluminum alloy is being studied because a complicated shape can be easily manufactured as compared with a plate material. Also, the use of Al alloy materials for energy absorbing members conventionally formed of cold-rolled steel sheets has been studied (JP-A-64-67482).
issue).
【0004】図1は、Al合金製バンパーに溶接された
エネルギー吸収部材を示す斜視図である。このエネルギ
ー吸収部材2は中空角パイプ状の部材であり、その一端
側がAl合金製バンパー1に溶接され、他端側がFe製
メンバー(図示せず)に取り付けられる。軽い衝突のと
きにはバンパー1のみで衝撃を吸収するが、比較的大き
い衝突の場合は、エネルギー吸収部材1がアコーディオ
ン状に座屈変形して、衝突時のエネルギーを吸収する。
これにより、衝突時の衝撃が緩和され、キャビン内の乗
員の安全を確保することができる。FIG. 1 is a perspective view showing an energy absorbing member welded to an aluminum alloy bumper. The energy absorbing member 2 is a hollow square pipe-shaped member, one end of which is welded to an Al alloy bumper 1 and the other end of which is attached to a Fe member (not shown). In the case of a light collision, only the bumper 1 absorbs the impact, but in the case of a relatively large collision, the energy absorbing member 1 buckles and deforms in an accordion shape to absorb the energy at the time of the collision.
Thereby, the impact at the time of the collision is reduced, and the safety of the occupant in the cabin can be ensured.
【0005】図2は、エネルギー吸収部材の変位と荷重
との関係の一例を示すグラフ図である。この図2に示す
ように、圧縮荷重は変位と共に変動する。つまり、圧縮
荷重は先ず最初に極大値まで上昇し、その後この極大値
よりも低い値(平均荷重)を中心として変動する。この
最初の極大値を示す荷重を初期荷重という。初期荷重は
変形に要する荷重として考えることができ、圧縮荷重が
印加されると、初回の変形が生じた後、座屈変形が繰り
返される。FIG. 2 is a graph showing an example of the relationship between the displacement of the energy absorbing member and the load. As shown in FIG. 2, the compression load fluctuates with the displacement. That is, the compression load first rises to a maximum value, and then fluctuates around a value (average load) lower than the maximum value. The load showing the first maximum value is called an initial load. The initial load can be considered as a load required for deformation, and when a compressive load is applied, buckling deformation is repeated after initial deformation occurs.
【0006】ところで、このエネルギー吸収部材の変形
荷重は、バンパーの変形荷重よりも大きく、Fe製メン
バーの変形荷重よりも小さいことが必要である。また、
エネルギー吸収部材のエネルギー吸収量は荷重と変位と
の積(荷重×変位)で示されるので、エネルギー吸収量
を多くするためには、エネルギー吸収部材の強度はFe
製メンバーの強度に近いことが好ましい。Incidentally, the deformation load of the energy absorbing member needs to be larger than the deformation load of the bumper and smaller than the deformation load of the Fe member. Also,
Since the amount of energy absorption of the energy absorbing member is represented by the product of the load and the displacement (load × displacement), in order to increase the amount of energy absorption, the strength of the energy absorbing member must be Fe
It is preferable that the strength is close to the strength of the member.
【0007】エネルギー吸収部材の材料としては、Al
−Zn−Mg系合金が注目されている。即ち、純Al及
び他のAl合金の場合は、いずれもエネルギー吸収部材
として使用するには欠点がある。例えば、純Al及びA
l−Mg系合金は、いずれも強度が低いため、衝突時の
衝撃を緩和する効果が十分でない。また、Al−Mg系
合金及びAl−Cu系合金は、いずれもポートホールダ
イス等による中空押出が困難であるため、吸収エネルギ
ーを高めるような複雑な形状に押出することができな
い。更に、Al−Mg−Si系合金の場合は、強度及び
生産性のバランスがAl−Zn−Mg系合金よりも劣
る。一方、Al−Zn−Mg系合金は、軽量且つ高強度
であると共に、薄肉押出及び溶接が可能であるという利
点があり、エネルギー吸収部材の材料として好適であ
る。As a material of the energy absorbing member, Al is used.
-Zn-Mg based alloys are receiving attention. That is, in the case of pure Al and other Al alloys, there is a drawback in using them as energy absorbing members. For example, pure Al and A
Since all the l-Mg alloys have low strength, the effect of alleviating the impact at the time of collision is not sufficient. In addition, it is difficult to extrude hollow Al-Mg-based alloys and Al-Cu-based alloys with a porthole die or the like. Furthermore, in the case of an Al-Mg-Si alloy, the balance between strength and productivity is inferior to that of an Al-Zn-Mg alloy. On the other hand, an Al—Zn—Mg-based alloy has the advantages of being lightweight and high-strength and capable of being thinly extruded and welded, and is suitable as a material for an energy absorbing member.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、Al−
Zn−Mg系合金押出材には以下に示す問題点がある。
即ち、Al−Zn−Mg系合金押出材を溶接すると、溶
接により軟化した熱影響部が自然時効により硬化し、座
屈変形時に割れが生じて、衝撃を緩和する効果が減少し
てしまう。また、熱影響部の自然時効により、初期荷重
も経時的に変化してしまう。従って、Al−Zn−Mg
系合金押出材を単にAl合金製バンパーに溶接しただけ
では、新車時には良好なエネルギー吸収特性を示すもの
の、数年後にはエネルギー吸収特性が劣化してしまうこ
ととなり、好ましくない。However, Al-
The extruded Zn-Mg alloy has the following problems.
That is, when the Al-Zn-Mg based alloy extruded material is welded, the heat-affected zone softened by welding hardens due to natural aging, cracks occur during buckling deformation, and the effect of reducing impact is reduced. Also, due to natural aging of the heat-affected zone, the initial load also changes with time. Therefore, Al-Zn-Mg
Simply welding a system alloy extruded material to an Al alloy bumper, although exhibiting good energy absorption characteristics in a new vehicle, will deteriorate the energy absorption characteristics several years later, which is not preferable.
【0009】本発明はかかる問題点に鑑みてなされたも
のであって、溶接による熱影響部の初期荷重の変化及び
変形性能の経時的変化を抑制できるエネルギー吸収部材
及びその製造方法を提供することを目的とする。The present invention has been made in view of the above problems, and an object of the present invention is to provide an energy absorbing member capable of suppressing a change in initial load and a change in deformation performance of a heat-affected zone due to welding with time, and a method of manufacturing the same. With the goal.
【0010】[0010]
【課題を解決するための手段】本発明に係るエネルギー
吸収部材は、Al−Zn−Mg系合金押出材により構成
され他の部材に溶接されて前記他の部材に加えられた衝
撃エネルギーを座屈により吸収するエネルギー吸収部材
において、溶接部及び母材が100乃至250℃の温度
で熱処理されていることを特徴とする。An energy absorbing member according to the present invention is made of an extruded Al-Zn-Mg alloy and is buckled by impact energy applied to the other member by being welded to the other member. In the energy absorbing member, the weld and the base material are heat-treated at a temperature of 100 to 250 ° C.
【0011】本発明に係るエネルギー吸収部材の製造方
法は、Al−Zn−Mg系合金押出材を他の部材に溶接
する工程と、前記押出材の溶接部及び母材を100乃至
250℃の温度で熱処理する工程とを有することを特徴
とする。The method of manufacturing an energy absorbing member according to the present invention includes the steps of welding an extruded material of an Al-Zn-Mg alloy to another member, and heating a welded portion of the extruded material and a base material at a temperature of 100 to 250 ° C. And performing a heat treatment.
【0012】[0012]
【作用】本願発明者等は、Al−Zn−Mg系合金押出
材の溶接後の自然時効による時効硬化及び初期荷重の変
化を抑制すべく、種々実験研究を行った。その結果、溶
接後に、適切な条件で熱処理を行うことにより、溶接に
よる熱影響部の割れ及び初期荷重の経時的変化を抑制で
きることが判明した。即ち、本発明においては、Al−
Zn−Mg系合金押出材の溶接部及び母材が100乃至
250℃の温度で熱処理されている。これにより、熱影
響部の割れ及び初期荷重の経時的変化を抑制することが
できて、良好なエネルギー吸収特性を長期間に亘って維
持することができる。しかし、前記熱処理温度が100
℃未満の場合は、GP(ギニエ−プレストン)ゾーンの
析出となり、自然時効と同様の組織となるため、割れを
抑制する効果がない。また、熱処理温度が250℃を超
えると、熱影響部にη´の析出物が生じるため溶接熱影
響部の割れ及び変形時の初期荷重の経時変化を抑制する
ことはできるものの、母材が過時効となり、η´析出物
が粗大化して強度が著しく低下する。従って、熱処理温
度は、100乃至250℃とする。The present inventors conducted various experimental studies in order to suppress the age hardening and the change in initial load due to natural aging after welding of an extruded Al-Zn-Mg alloy. As a result, it was found that by performing heat treatment under appropriate conditions after welding, it is possible to suppress cracking of the heat-affected zone due to welding and temporal changes in the initial load. That is, in the present invention, Al-
The weld portion and the base material of the extruded Zn—Mg alloy are heat-treated at a temperature of 100 to 250 ° C. As a result, cracks in the heat-affected zone and changes over time in the initial load can be suppressed, and good energy absorption characteristics can be maintained over a long period of time. However, when the heat treatment temperature is 100
If the temperature is lower than 0 ° C., precipitation of a GP (Guinier-Preston) zone occurs and the structure becomes the same as that of natural aging, so that there is no effect of suppressing cracking. If the heat treatment temperature exceeds 250 ° C., precipitates of η ′ are formed in the heat-affected zone, so that cracks in the heat-affected zone and changes with time in the initial load during deformation can be suppressed, but the base material is excessively heated. Aging occurs, and the η ′ precipitate becomes coarse, resulting in a significant decrease in strength. Therefore, the heat treatment temperature is set to 100 to 250 ° C.
【0013】なお、溶接による熱影響軟化部の上記熱処
理後の硬度(Hv)を母材の硬度の90%以下とする
と、衝突時にはこの熱影響部が優先的に変形して初期荷
重が小さくなる。その結果、初期荷重とそれ以後に生じ
る荷重との差が小さくなり、衝撃を緩和する効果がより
一層増大する。このため、例えば溶接条件及びその後の
熱処理条件を適宜設定することにより、熱影響軟化部の
硬度を母材の硬度の90%以下とすることが好ましい。If the hardness (Hv) of the heat-affected softened portion due to welding after the heat treatment is set to 90% or less of the hardness of the base material, the heat-affected portion is preferentially deformed at the time of collision, and the initial load is reduced. . As a result, the difference between the initial load and the load generated thereafter becomes smaller, and the effect of alleviating the impact further increases. For this reason, it is preferable that the hardness of the heat-affected softened portion be 90% or less of the hardness of the base material, for example, by appropriately setting welding conditions and subsequent heat treatment conditions.
【0014】[0014]
【実施例】以下、本発明の実施例について、その特許請
求の範囲から外れる比較例と比較して説明する。EXAMPLES Examples of the present invention will be described below in comparison with comparative examples that depart from the scope of the claims.
【0015】先ず、下記表1に示す組成(単位:重量
%)のAl−Zn−Mg系合金を溶解鋳造して、直径が
155mmのビレットを得た。このビレットを470℃
の温度で6時間の条件で均質化処理した後、縦が70m
m、横が50mm、肉厚が2mmの中空角パイプ状に押
出し、押出直後の押出材をファンで約300℃/分の冷
却速度で冷却して焼入れした。First, an Al—Zn—Mg alloy having a composition (unit:% by weight) shown in Table 1 below was melt-cast to obtain a billet having a diameter of 155 mm. 470 ° C
After homogenizing at the temperature of 6 hours for 6 hours, the height is 70 m
The extruded material was extruded into a hollow square pipe having a width of 50 mm, a width of 50 mm, and a thickness of 2 mm, and the extruded material immediately after the extrusion was cooled by a fan at a cooling rate of about 300 ° C./min and quenched.
【0016】[0016]
【表1】 [Table 1]
【0017】次に、この押出材を170℃の温度で6時
間の条件で熱処理をしてT5調質材とした後、長さが1
20mmに切断した。そして、図3に示すように、この
押出材3の両端部に、縦が150mm、横が150m
m、板厚が3mmのAl合金(5083合金)板4a,
4bをすみ肉溶接して試験体とした。Next, the extruded material was heat-treated at a temperature of 170 ° C. for 6 hours to obtain a T5 heat-treated material, and the length of the extruded material was 1 mm.
It was cut to 20 mm. Then, as shown in FIG. 3, both ends of the extruded material 3 are 150 mm long and 150 m wide.
m, an Al alloy (5083 alloy) plate 4a having a plate thickness of 3 mm
4b was fillet welded into a test body.
【0018】このようにして得た試験体に対し、下記表
2の時効条件の欄に示す温度及び時間で時効熱処理を施
した。そして、熱処理直後(比較例1については溶接直
後)の試験体の熱影響部及び母材の硬度(Hv)を測定
すると共に、圧縮変形試験を実施して初期荷重及び割れ
の有無を調べた。また、熱処理後(比較例1については
溶接後)の試験体を室温にて30日間放置し、同様に試
験体の熱影響部の硬度を測定すると共に、圧縮変形試験
を実施して初期荷重及び割れの有無を調べた。これらの
結果を、下記表2,3にまとめて示す。但し、熱影響部
の硬度は、図4に示すように、試験体を縦割りして断面
における熱影響軟化部(溶接ビード部5から約10〜3
0mm離れた部分)の硬度を測定し、熱処理前の母材の
硬度との比率(即ち、比硬度)で示した。また、熱処理
後の比硬度は、熱処理後の母材の硬度と熱処理前の母材
の硬度との比率である。更に、圧縮変形試験は、アムス
ラー型万能試験機を使用し、図3に白抜矢印で示す方向
から圧力を加え、試験体を10〜20mm/分の圧縮速
度で圧縮し座屈変形させることにより行った。そして、
初期荷重を測定すると共に、初期荷重を平均荷重で除し
た値(荷重比=初期荷重÷平均荷重)を求めた。また、
圧縮変形試験後に、割れの有無を目視にて調べた。The specimen thus obtained was subjected to aging heat treatment at the temperature and time shown in the column of aging conditions in Table 2 below. Then, the hardness (Hv) of the heat-affected zone and the base metal of the test specimen immediately after the heat treatment (immediately after welding in Comparative Example 1) was measured, and a compression deformation test was performed to examine the initial load and the presence or absence of cracks. The specimen after the heat treatment (after welding in Comparative Example 1) was left at room temperature for 30 days, and the hardness of the heat-affected zone of the specimen was measured in the same manner. The presence or absence of cracks was examined. These results are summarized in Tables 2 and 3 below. However, the hardness of the heat-affected zone is, as shown in FIG.
The hardness at a portion separated by 0 mm) was measured and shown as a ratio to the hardness of the base material before the heat treatment (that is, the specific hardness). The specific hardness after the heat treatment is a ratio between the hardness of the base material after the heat treatment and the hardness of the base material before the heat treatment. Further, the compressive deformation test is performed by using an Amsler universal testing machine, applying pressure from the direction shown by the white arrow in FIG. went. And
The initial load was measured, and a value obtained by dividing the initial load by the average load (load ratio = initial load / average load) was obtained. Also,
After the compression deformation test, the presence or absence of cracks was visually inspected.
【0019】[0019]
【表2】 [Table 2]
【0020】[0020]
【表3】 [Table 3]
【0021】この表2,3から明らかなように、溶接後
に熱処理をしなかった比較例1は、溶接直後の比硬度に
比して30日後の比硬度が極めて高く、圧壊割れが発生
した。熱処理温度が70℃と低い比較例2は、荷重比が
3.2と大きいため、衝突時の衝撃を緩和する効果が十
分でない。また、この比較例2においては、熱処理直後
の圧縮変形試験においても圧壊割れが発生した。熱処理
温度が300℃と高い比較例3は、初期荷重が小さく比
硬度の経時的変化も小さいものの、熱処理後の母材強度
が低いため、エネルギー吸収量が小さい。一方、実施例
1〜6は、いずれも溶接部の硬度の経時変化が小さく、
圧壊割れも発生せず、更に、荷重比も小さいため、良好
なエネルギー吸収特性を長期間に亘って維持することが
できる。As is clear from Tables 2 and 3, Comparative Example 1 in which no heat treatment was performed after welding had a very high specific hardness after 30 days compared to the specific hardness immediately after welding, and crush cracking occurred. In Comparative Example 2 in which the heat treatment temperature was as low as 70 ° C., the load ratio was as large as 3.2, so that the effect of reducing the impact at the time of collision was not sufficient. In Comparative Example 2, crush cracking also occurred in the compression deformation test immediately after the heat treatment. In Comparative Example 3, in which the heat treatment temperature was as high as 300 ° C., although the initial load was small and the change in specific hardness with time was small, the base material strength after the heat treatment was low, so that the amount of energy absorption was small. On the other hand, in Examples 1 to 6, the change with time of the hardness of the welded portion was small,
Since no crush cracking occurs and the load ratio is small, good energy absorption characteristics can be maintained over a long period of time.
【0022】[0022]
【発明の効果】以上説明したように本発明によれば、A
l−Zn−Mg系合金押出材の溶接部及び母材が所定の
温度で熱処理されているから、溶接による熱影響部の硬
度の経時的変化を抑制できる。従って、本発明に係るエ
ネルギー吸収部材は、長期間に亘って良好なエネルギー
吸収特性を維持できるという効果を奏する。As described above, according to the present invention, A
Since the welded part and the base material of the extruded l-Zn-Mg alloy are heat-treated at a predetermined temperature, it is possible to suppress the temporal change of the hardness of the heat-affected zone due to welding. Therefore, the energy absorbing member according to the present invention has an effect that good energy absorbing characteristics can be maintained for a long period of time.
【0023】また、本発明方法によれば、Al−Zn−
Mg系合金押出材をAl合金製バンパー等に溶接した
後、溶接部及び母材を所定の温度で熱処理するから、軽
量であると共に長期間に亘って良好なエネルギー吸収特
性を維持できるエネルギー吸収部材を得ることができ
る。According to the method of the present invention, Al-Zn-
Since an extruded Mg-based alloy is welded to an Al-alloy bumper or the like, the weld and the base metal are heat-treated at a predetermined temperature, so that the energy absorbing member is lightweight and can maintain good energy absorption characteristics over a long period of time. Can be obtained.
【図1】Al合金製バンパーに溶接されたエネルギー吸
収部材を示す斜視図である。FIG. 1 is a perspective view showing an energy absorbing member welded to an Al alloy bumper.
【図2】エネルギー吸収部材の変位と荷重との関係の一
例を示すグラフ図である。FIG. 2 is a graph showing an example of a relationship between a displacement of an energy absorbing member and a load.
【図3】試験体の形状を示す斜視図である。FIG. 3 is a perspective view showing a shape of a test body.
【図4】熱影響軟化部の硬度の測定方法を示す斜視図で
ある。FIG. 4 is a perspective view showing a method for measuring the hardness of the heat-affected softening portion.
1;バンパー 2;エネルギー吸収部材 3;押出材 4a,4b;Al合金板 5;ビード部 DESCRIPTION OF SYMBOLS 1; Bumper 2; Energy absorption member 3; Extruded material 4a, 4b; Al alloy plate 5; Bead part
フロントページの続き (72)発明者 藤井 孝人 山口県下関市長府港町14番1号 株式会 社神戸製鋼所長府製造所内 (56)参考文献 特開 平6−227333(JP,A) 実公 平5−47003(JP,Y2) 実公 平5−47004(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) C22F 1/04 - 1/057 B60R 19/00 - 19/56 Continued on the front page (72) Inventor Takato Fujii 14-1, Chofu Minato-cho, Shimonoseki-shi, Yamaguchi Prefecture Kobe Steel, Ltd. Chofu Works (56) References JP-A-6-227333 (JP, A) 5-47003 (JP, Y2) Jikken Hei 5-47004 (JP, Y2) (58) Fields investigated (Int. Cl. 7 , DB name) C22F 1/04-1/057 B60R 19/00-19 / 56
Claims (3)
成され他の部材に溶接されて前記他の部材に加えられた
衝撃エネルギーを座屈により吸収するエネルギー吸収部
材において、溶接部及び母材が100乃至250℃の温
度で熱処理されていることを特徴とするエネルギー吸収
部材。1. An energy absorbing member made of extruded Al-Zn-Mg based alloy, which is welded to another member and absorbs impact energy applied to the other member by buckling. Characterized by being heat-treated at a temperature of 100 to 250 ° C.
90%以下であることを特徴とする請求項1に記載のエ
ネルギー吸収部材。2. The energy absorbing member according to claim 1, wherein the hardness of the weld heat affected softening portion is 90% or less of the hardness of the base material.
材に溶接する工程と、前記押出材の溶接部及び母材を1
00乃至250℃の温度で熱処理する工程とを有するこ
とを特徴とするエネルギー吸収部材の製造方法。3. A step of welding an extruded material of an Al—Zn—Mg alloy to another member, and a step of welding a welded portion and a base material of the extruded material to one another.
Heat treating at a temperature of 00 to 250 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32734593A JP3272130B2 (en) | 1993-12-24 | 1993-12-24 | Energy absorbing member and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32734593A JP3272130B2 (en) | 1993-12-24 | 1993-12-24 | Energy absorbing member and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07180010A JPH07180010A (en) | 1995-07-18 |
JP3272130B2 true JP3272130B2 (en) | 2002-04-08 |
Family
ID=18198105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32734593A Expired - Lifetime JP3272130B2 (en) | 1993-12-24 | 1993-12-24 | Energy absorbing member and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3272130B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07310156A (en) * | 1994-05-12 | 1995-11-28 | Mitsubishi Alum Co Ltd | Automobile frame structure its manufacture |
JP3574304B2 (en) * | 1997-08-14 | 2004-10-06 | 日野自動車株式会社 | Vehicle rear energy absorption structure |
JP5344855B2 (en) * | 2008-06-05 | 2013-11-20 | 株式会社神戸製鋼所 | Aluminum alloy extruded material with excellent crushing properties |
JP6979991B2 (en) * | 2019-10-09 | 2021-12-15 | 株式会社Uacj | Welded structural members with excellent stress corrosion cracking resistance and their manufacturing methods |
CN113500330A (en) * | 2021-07-27 | 2021-10-15 | 南京越然汽车用品有限公司 | Welding device for automobile bumper |
-
1993
- 1993-12-24 JP JP32734593A patent/JP3272130B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07180010A (en) | 1995-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9085328B2 (en) | Automobile body part | |
CN109844160B (en) | Thermomechanical aging of 6XXX extrusions | |
US5527404A (en) | Vehicle frame components exhibiting enhanced energy absorption, an alloy and a method for their manufacture | |
JP5473718B2 (en) | Aluminum alloy extruded material with excellent bending crushability and corrosion resistance | |
JP3944865B2 (en) | Precipitation hardened aluminum alloys for application in automotive structures. | |
JP2017534762A (en) | Aluminum alloy product and preparation method | |
KR100481231B1 (en) | STRUCTURAL COMPONENT MADE OF AN ALUMINUM ALLOY OF THE AlMgSi TYEP | |
JP3272130B2 (en) | Energy absorbing member and method of manufacturing the same | |
JP3772962B2 (en) | Automotive bumper reinforcement | |
JP5946425B2 (en) | Method for producing aluminum alloy extruded material | |
EP0805219B1 (en) | Vehicle frame components exhibiting enhanced energy absorption, an alloy and a method for their manufacture | |
JP2003034834A (en) | Al-Mg-Si ALUMINUM ALLOY EXTRUSION MATERIAL SUPERIOR IN ENERGY IMPACT ABSORPTIVITY, AND MANUFACTURING METHOD THEREFOR | |
JP3539980B2 (en) | Aluminum alloy automobile side door impact beam | |
JPH11264044A (en) | Door beam made of aluminum alloy and its production | |
JP2009197269A (en) | Composite extruded material of aluminum alloy for weld structure | |
JP2910920B2 (en) | Aluminum alloy door beam material | |
JP2000054049A (en) | Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic and its production | |
JP2001207232A (en) | Energy absorptive member made of aluminum alloy | |
JP2001026834A (en) | Impact absorbing member | |
JP3594823B2 (en) | Processing method of extruded aluminum alloy | |
JPH07118782A (en) | Energy absorption member made of aluminum alloy | |
JP2001303220A (en) | Energy absorbing member made of aluminum alloy | |
JP4611543B2 (en) | Energy absorbing member in automobile frame structure | |
JP2002155333A (en) | Al-Mg-Si BASED ALUMINUM ALLOY HOLLOW EXTRUSION MATERIAL HAVING EXCELLENT BULGING PROPERTY | |
JPH06278645A (en) | Aluminum extrusion material superior in pressure fracture characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080125 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090125 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100125 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110125 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120125 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130125 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130125 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |