[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3265941B2 - Sodium sulfur battery and battery system using the same - Google Patents

Sodium sulfur battery and battery system using the same

Info

Publication number
JP3265941B2
JP3265941B2 JP24575995A JP24575995A JP3265941B2 JP 3265941 B2 JP3265941 B2 JP 3265941B2 JP 24575995 A JP24575995 A JP 24575995A JP 24575995 A JP24575995 A JP 24575995A JP 3265941 B2 JP3265941 B2 JP 3265941B2
Authority
JP
Japan
Prior art keywords
positive electrode
sodium
weight
content
electrode container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24575995A
Other languages
Japanese (ja)
Other versions
JPH0992327A (en
Inventor
忠彦 三吉
哲雄 小山
久光 波東
間所  学
成興 西村
勝彦 塩田
清 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24575995A priority Critical patent/JP3265941B2/en
Priority to US08/680,851 priority patent/US5962160A/en
Publication of JPH0992327A publication Critical patent/JPH0992327A/en
Priority to US09/270,678 priority patent/US6329099B1/en
Application granted granted Critical
Publication of JP3265941B2 publication Critical patent/JP3265941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力貯蔵装置,電
気自動車,非常用電源,無停電電源,電力系統のピーク
カット装置,周波数・電圧安定化装置などの電池システ
ムに用いるに好適な、信頼性の高いナトリウム硫黄電
池、及び、それを用いた電池システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reliable and suitable battery system for an electric power storage device, an electric vehicle, an emergency power source, an uninterruptible power source, a power system peak cut device, and a frequency / voltage stabilizing device. TECHNICAL FIELD The present invention relates to a high-performance sodium-sulfur battery and a battery system using the same.

【0002】[0002]

【従来の技術】負極にナトリウム,正極に硫黄などを用
いたナトリウム硫黄電池は、その効率やエネルギー密度
が大きいことから注目され、電力貯蔵装置や電気自動車
などへの利用が期待されている。しかしながら、腐食性
の大きい硫黄や多硫化ナトリウムが正極容器を腐食し
て、電池の特性が劣化するという問題点があり、これが
実用上のネックとなっている。この問題点に対処するた
め、正極容器の内面にCr,Mo,Ti,Al,Cなど
を主成分とする耐食性コーティングを設ける方法が多数
提案されているが、昇降温サイクルによる剥離やコーテ
ィング層の欠陥などの理由で、正極容器としてバルク材
を用いる場合に比べて、信頼性は十分とは言えない。一
方、正極容器としてバルク金属材を用いた例としては、
特開昭59−165378号公報,特開昭57−57861号公報や特
開昭56−130071 号公報などに見られる様に、Crを多
量に含有するFe合金が提案されている。これらの材料
を用いて正極容器を作成する場合、正極容器を最終的に
溶接法で封止するのが信頼性上,操作上最も好ましい
が、従来の方法では溶接部の耐食性が母材よりも悪くな
るために、硫黄や多硫化ナトリウムによる腐食速度が試
験片の耐食性試験から予想される値よりも大きくなると
いう問題があった。この結果、電池の信頼性が不十分に
なったり、溶接条件の違いによって耐食性が変化して寿
命予測が困難になったりするという、信頼性上の問題点
が残されていた。なお、Fe系の正極容器に溶接法を使
用した例としては特開平2−144858号公報や特開昭61−1
0881号公報,特開昭48−43129 号公報が知られている
が、特開平2−144858 号公報では正極容器材料として耐
食性コーティング材が用いられており、溶接時のコーテ
ィング層の溶け込みによって溶接部の耐食性が著しく低
下するために、電池の信頼性が低いという問題がある。
一方、特開昭61−10881 号公報では陽極蓋としてステン
レス,Fe−Cr−Al合金,Al被覆されたFeを、
陽極補助蓋としてステンレス,Fe−Cr−Al合金,
Fe−Cr−Al−Y合金を用いることが記載されてい
るが、正極容器材料の本体である電槽の材料についての
記載はなく、また、電槽以外の正極容器材料である陽極
蓋,陽極補助蓋を構成するFe合金についてもCr量,
C量の記載はない。さらに、特開昭48−43129 号公報に
おいては、正極容器材料としてSUS304(Cr18〜20
重量%,Ni8〜10.5 重量%,Fe残り)が用いら
れている。SUS304は溶接性にすぐれる反面、耐硫黄性に
劣り、充分な信頼性は得られない。Fe合金の場合,C
o基合金,Ni基合金に比べて溶接部の残留歪が大きく
て、耐食性が劣ること、腐食生成物である硫化鉄の抵抗
率が硫化コバルトや硫化ニッケルに比べて高いことの理
由で、信頼性の高い正極容器を溶接法で作成するために
は、用いるFe合金の組成を適正な範囲に限定する必要
があるが、このような配慮は従来はなされていなかっ
た。
2. Description of the Related Art A sodium-sulfur battery using sodium as a negative electrode and sulfur or the like as a positive electrode has attracted attention because of its high efficiency and energy density, and is expected to be used in power storage devices and electric vehicles. However, there is a problem that highly corrosive sulfur and sodium polysulfide corrode the positive electrode container and deteriorate the characteristics of the battery, which is a practical bottleneck. In order to address this problem, many methods have been proposed for providing a corrosion-resistant coating mainly composed of Cr, Mo, Ti, Al, C, etc. on the inner surface of the positive electrode container. Due to defects and the like, the reliability is not sufficient compared to the case where a bulk material is used as the positive electrode container. On the other hand, as an example using a bulk metal material as the positive electrode container,
As disclosed in JP-A-59-165378, JP-A-57-57861 and JP-A-56-130071, Fe alloys containing a large amount of Cr have been proposed. When making a positive electrode container using these materials, it is most preferable in terms of reliability and operation that the positive electrode container is finally sealed by a welding method, but in the conventional method, the corrosion resistance of the welded portion is more than that of the base material. As a result, there is a problem that the corrosion rate due to sulfur or sodium polysulfide becomes larger than the value expected from the corrosion resistance test of the test piece. As a result, there remains a reliability problem that the reliability of the battery becomes insufficient, and the corrosion resistance changes due to the difference in welding conditions, and the life prediction becomes difficult. Examples of using the welding method for the Fe-based positive electrode container include JP-A-2-144858 and JP-A-61-1.
JP-A-0881 and JP-A-48-43129 are known. In JP-A-2-144858, a corrosion-resistant coating material is used as a positive electrode container material. Has a problem that the reliability of the battery is low because the corrosion resistance of the battery is significantly reduced.
On the other hand, in JP-A-61-10881, stainless steel, Fe-Cr-Al alloy, and Al-coated Fe are used as an anode lid.
Stainless steel, Fe-Cr-Al alloy as anode auxiliary lid,
Although the use of an Fe—Cr—Al—Y alloy is described, there is no description about the material of the battery case which is the main body of the cathode container material. Regarding the Fe alloy constituting the auxiliary lid, the amount of Cr,
There is no description of the amount of C. Further, in Japanese Patent Application Laid-Open No. 48-43129, SUS304 (Cr18-20
Wt%, 8-10,5 wt% Ni, Fe remaining). SUS304 is excellent in weldability, but inferior in sulfur resistance, and cannot provide sufficient reliability. In case of Fe alloy, C
O-based alloys and Ni-based alloys have higher residual strain and lower corrosion resistance than Ni-based alloys, and have a higher resistance to corrosion products, iron sulfide, than cobalt sulfide and nickel sulfide. In order to produce a highly positive electrode container by a welding method, it is necessary to limit the composition of the Fe alloy to be used to an appropriate range, but such considerations have not been made conventionally.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の欠点を除き、正極容器腐食による特性劣化の
起こりにくい、信頼性の高いナトリウム硫黄電池を提供
するにある。本発明の他の一つの目的は、上記ナトリウ
ム硫黄電池を用いた、信頼性の高い電力貯蔵装置,電気
自動車,非常用電源,無停電電源、電力系統のピークカ
ット装置,周波数・電圧安定化装置などの電池システム
を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable sodium-sulfur battery which is free from the above-mentioned drawbacks of the prior art and is less likely to cause deterioration in characteristics due to corrosion of the positive electrode container. Another object of the present invention is to provide a highly reliable power storage device, an electric vehicle, an emergency power source, an uninterruptible power source, a power system peak cut device, and a frequency / voltage stabilizing device using the sodium-sulfur battery. And other battery systems.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、本発明のナトリウム硫黄電池は、ナトリウムを収納
した負極容器と、硫黄または多硫化ナトリウムから成る
正極モールドを収納した正極容器と、前記負極,正極間
を分離したナトリウムイオン導電性固体電解質、及び、
前記固体電解質に接続され、前記負極容器,正極容器に
接合された絶縁部材、から成るナトリウム硫黄電池にお
いて、前記正極容器が、Crを含有する高耐食性のCo
基、又はNi基合金材料から成る複数の部品を溶接して
一体化されるとともに、前記溶接部へ加わる前記正極モ
ールドからの応力を低減する機構が設けられており、
つ、前記正極容器を構成する材料が、Co含有量30重
量%以上,Cr含有量18〜32重量%,C含有量0.
2 重量%以下のCo基合金、または、Ni含有量40
重量%以上,Cr含有量18〜32重量%,C含有量
0.2 重量%以下のNi基合金であることを特徴として
いる。
In order to achieve the above object, a sodium-sulfur battery of the present invention comprises a negative electrode container containing sodium, a positive electrode container containing a positive electrode mold made of sulfur or sodium polysulfide, and , A sodium ion conductive solid electrolyte separated between positive electrodes, and
Is connected to the solid electrolyte, before SL negative electrode container, Seikyokuyo device to <br/> joined insulated member, the sodium-sulfur cell comprising the positive electrode container, the high corrosion resistance containing Cr Co
Group, or are integrated by welding a plurality of components made of Ni-based alloy material Rutotomoni, the Seikyokumo applied to the weld
A mechanism for reducing the stress from the solder is provided, and the material constituting the positive electrode container has a Co content of 30% by weight or more, a Cr content of 18 to 32% by weight, and a C content of 0.1%.
2 wt% or less Co-based alloy or Ni content 40
The alloy is characterized by being a Ni-based alloy having a Cr content of 18% to 32% by weight and a C content of 0.2% by weight or less.

【0005】[0005]

【0006】[0006]

【0007】また、前記正極容器を構成する材料とし
て、Co基合金またはNi基合金の代わりに、Cr含有
量22〜32重量%,C含有量0.2 重量%以下のFe
を主成分とする合金を用いることも出来る。この合金は
さらに14〜24重量%のNiを含有することが好まし
く、さらに、Crの含有量は23〜30重量%であるこ
とが特に望ましい。
[0007] Further, as a material constituting the positive electrode container, instead of a Co-based alloy or a Ni-based alloy, Fe having a Cr content of 22 to 32% by weight and a C content of 0.2% by weight or less is used.
May be used. The alloy preferably further contains 14 to 24% by weight of Ni, and more preferably the content of Cr is 23 to 30% by weight.

【0008】また、Fe合金として、オーステナイトと
フェライトから成る二相ステンレスやCr含有量の多い
フェライト系ステンレスを用いることもできる。また、
これらのFe合金が1〜10重量%のMoを含むことが
特に望ましい。
As the Fe alloy, a duplex stainless steel comprising austenite and ferrite or a ferritic stainless steel having a high Cr content can be used. Also,
It is particularly desirable that these Fe alloys contain 1 to 10% by weight of Mo.

【0009】さらに、本発明の電池システムは、本発明
のナトリウム硫黄電池を用いた電力貯蔵装置,電気自動
車,非常用電源,無停電電源,電力系統のピークカット
装置または周波数・電圧安定化装置であることを特徴と
している。
Furthermore, the battery system of the present invention is a power storage device, an electric vehicle, an emergency power source, an uninterruptible power source, a power system peak cut device or a frequency / voltage stabilizing device using the sodium sulfur battery of the present invention. It is characterized by having.

【0010】本発明者逹が種々検討した結果、溶接部の
腐食が進むと、溶接部が正極モールドと直接接触してい
なくても、正極容器の金属成分が正極モールド内へ混入
して、電池の効率や容量を損なうこと、および、ナトリ
ウム硫黄電池において正極容器の腐食を防止するには、
正極容器を構成する材料中のCr量を多くして耐食性を
高めると共に、容器へ加わる応力を小さくすることが有
効なことが判った。これは、Cr量が多いと表面に安定
な硫化クロム層が形成されて、その後の腐食が抑制され
ること、応力が小さいと形成された硫化クロム層に剥離
などが生ずることはなく、安定な表面に保持されるため
と考えられる。
As a result of various studies by the present inventors, as the corrosion of the weld progresses, even if the weld does not come into direct contact with the positive mold, the metal component of the positive container mixes into the positive mold, and To reduce the efficiency and capacity of the battery and to prevent corrosion of the cathode vessel in sodium-sulfur batteries,
It has been found that it is effective to increase the amount of Cr in the material constituting the positive electrode container to increase the corrosion resistance and to reduce the stress applied to the container. This is because, when the amount of Cr is large, a stable chromium sulfide layer is formed on the surface and the subsequent corrosion is suppressed, and when the stress is small, the formed chromium sulfide layer does not peel off and is stable. It is considered to be held on the surface.

【0011】また、正極容器は内部に正極モールドを収
納して封止する必要があり、高温では硫黄や多硫化ナト
リウムの蒸気圧が高いことを考えると、信頼性,操作性
の面から、複数の部品を溶接により一体化して封止する
のが最も望ましいと考えられる。しかしながら、正極材
料としてCr含有量の多い金属材料を用いた場合、金属
材料中に添加したC、または、不可避的に含まれるCが
溶接時にCrと反応し、炭化物として析出して溶接部に
残留応力をもたらし、これが耐食性に悪影響をもたらす
ことが判った。すなわち、溶接時に金属は局部的に加熱
され、溶接界面からの距離によって異なった熱処理を受
ける。この結果、場所によってクロム炭化物の析出状態
や金属組織が変化し、これが残留応力をもたらすものと
考えられる。このような残留応力をもった正極容器を用
いて昇降温を行うと、温度変化による正極モールドから
の応力と残留応力が加わって、表面に形成された硫化ク
ロム層が破損しやすくなり、耐食性が低下することが判
明した。一般の溶接の場合、溶接前や溶接後に熱処理し
て残留応力を軽減することが出来るが、ナトリウム硫黄
電池の場合、封止溶接前後の熱処理温度は硫黄や多硫化
ナトリウムの蒸気圧や腐食性のために制限され、十分に
残留応力を取り除くことは困難である。
Also, the positive electrode container needs to contain a positive electrode mold inside and seal it. Considering that the vapor pressure of sulfur or sodium polysulfide is high at high temperatures, from the viewpoint of reliability and operability, a plurality of positive electrode containers are required. It is considered that it is most desirable to integrally seal the parts by welding. However, when a metal material having a high Cr content is used as the positive electrode material, C added to the metal material or C unavoidably contained therein reacts with Cr at the time of welding, precipitates as carbide, and remains in the welded portion. Stress, which has been found to adversely affect corrosion resistance. That is, the metal is locally heated during welding and undergoes different heat treatments depending on the distance from the welding interface. As a result, the precipitation state and the metal structure of the chromium carbide change depending on the location, and this is considered to cause residual stress. When the temperature rises and falls using a positive electrode container having such residual stress, stress from the positive electrode mold and residual stress due to temperature change are applied, and the chromium sulfide layer formed on the surface is easily damaged, and the corrosion resistance is reduced. It was found to be lower. In the case of general welding, the residual stress can be reduced by heat treatment before and after welding, but in the case of a sodium-sulfur battery, the heat treatment temperature before and after sealing welding depends on the vapor pressure and corrosiveness of sulfur and sodium polysulfide. Therefore, it is difficult to sufficiently remove the residual stress.

【0012】本発明はこれらの知見を基に考案されたも
のであり、その内容を図1,図2を用いて説明する。
The present invention has been devised based on these findings, and its contents will be described with reference to FIGS.

【0013】図1は本発明のナトリウム硫黄電池の構造
図の一例である。図において、1はナトリウムイオン導
電性の固体電解質管であり、2は固体電解質管1と共に
負極室3を構成する負極容器、41,42は正極容器4
の構成部品で、固体電解質管1と共に正極室5を構成し
ている。61は部品41,42の溶接部である。7は負
極容器2と正極容器4とを絶縁し、かつ、これらと接合
された絶縁部材であり、絶縁部材7と固体電解質管1の
開口部とはガラス半田などによって接続されるのが一般
的である。また、8は負極室3に収納されたナトリウ
ム、9は硫黄や多硫化ナトリウムから成る正極モールド
で、普通、これらを炭素繊維などに含浸して正極室5内
に収納されている。
FIG. 1 is an example of a structural view of a sodium-sulfur battery of the present invention. In the figure, 1 is a solid electrolyte tube of sodium ion conductivity, 2 is a negative electrode container forming a negative electrode chamber 3 together with the solid electrolyte tube 1, 41 and 42 are positive electrode containers 4.
And the positive electrode chamber 5 together with the solid electrolyte tube 1. Reference numeral 61 denotes a welded part between the parts 41 and 42. Reference numeral 7 denotes an insulating member that insulates the negative electrode container 2 and the positive electrode container 4 and is joined thereto, and the insulating member 7 and the opening of the solid electrolyte tube 1 are generally connected by glass solder or the like. It is. Reference numeral 8 denotes a sodium housed in the negative electrode chamber 3, and 9 denotes a positive electrode mold made of sulfur or sodium polysulfide, which is usually impregnated with carbon fiber or the like and housed in the positive electrode chamber 5.

【0014】図2において、図1と同符号の部品は同じ
内容を示している。この図の43は正極容器4を構成す
る部品で、溶接部62で部品41と接続されている。4
0は正極容器4に設けた、例えばベローズのような易変
形部である。また、10は負極容器3内に設けたナトリ
ウム容器であり、貫通孔11を設けてナトリウム8を固
体電解質管1へ供給している。
In FIG. 2, parts having the same reference numerals as those in FIG. 1 have the same contents. Reference numeral 43 in this figure denotes a component constituting the positive electrode container 4, which is connected to the component 41 at a welded portion 62. 4
Reference numeral 0 denotes an easily deformable portion provided on the positive electrode container 4, such as a bellows. Reference numeral 10 denotes a sodium container provided in the negative electrode container 3, which is provided with a through hole 11 and supplies sodium 8 to the solid electrolyte tube 1.

【0015】これらの構造において、正極容器の構成部
品41,42,43はCrを高濃度に含有する高耐食性
金属材料から構成され、これらは溶接により一体化され
ている。また、部品42は部品41の内側にあって、昇
降温時の正極モールドの伸び縮みや硫黄,多硫化ナトリ
ウムの相変化に伴う体積変化の際、部品41の内側への
変形を拘束し、溶接部61へ加わる応力を低減してい
る。同様な効果は部品43でも達成され、部品41の内
側への変形を拘束することによって、溶接部62へ加わ
る応力を低減している。なお、図示されていないが、溶
接部61の下部または溶接部62の上部の正極容器の外
側に高剛性のリングを設けて、正極容器の外側への変形
を拘束し、溶接部61,62へ働く応力を低減すること
も出来る。
In these structures, the components 41, 42, and 43 of the positive electrode container are made of a highly corrosion-resistant metal material containing a high concentration of Cr, and these are integrated by welding. The component 42 is located inside the component 41 and restrains deformation inside the component 41 when the positive electrode mold expands and contracts at the time of temperature rise and fall or changes in volume due to a phase change of sulfur and sodium polysulfide. The stress applied to the portion 61 is reduced. A similar effect is achieved with the component 43, and the stress applied to the weld 62 is reduced by restricting the inward deformation of the component 41. Although not shown, a high-rigidity ring is provided outside the positive electrode container below the welded portion 61 or above the welded portion 62 to restrain deformation of the positive electrode container to the outside, and to the welded portions 61 and 62. Working stress can also be reduced.

【0016】さらに、部品42は断面がL字型であり、
容易に角度変形して、正極モールド固化後の固体電解質
管1と正極容器4との熱伸び差を吸収し、溶接部61へ
加わる昇降温時の応力の一層の低減が可能である。ま
た、同様な効果は正極容器に設けたベローズ40でも認
められ、ベローズの変形により、溶接部61に加わる応
力の大幅低減が可能となる。なお、これらのベローズ4
0や部品42は正極モールド9と接触しない位置に設け
るのが望ましい。正極モールドと接触していると、固化
した正極モールドによって変形が抑制され、変形による
応力低減の効果が低減する。
Further, the part 42 has an L-shaped cross section,
It easily undergoes angular deformation, absorbs the difference in thermal expansion between the solid electrolyte tube 1 after solidification of the positive electrode mold and the positive electrode container 4, and further reduces stress applied to the welded portion 61 during temperature rise and fall. A similar effect is also observed in the bellows 40 provided in the positive electrode container, and the deformation of the bellows can significantly reduce the stress applied to the welded portion 61. In addition, these bellows 4
It is desirable that the zeros and the parts 42 are provided at positions not in contact with the positive electrode mold 9. When in contact with the positive electrode mold, deformation is suppressed by the solidified positive electrode mold, and the effect of reducing stress due to deformation is reduced.

【0017】このように本発明においては、Crを高濃
度に含有する高耐食性金属材料からなる部品同志を溶接
した際、クロム炭化物が析出して残留応力が発生して
も、昇降温時に溶接部に加わる応力が小さいため、表面
に形成された硫化クロム層が安定に保たれる。この結果
として、正極容器の耐食性が高く維持でき、ナトリウム
硫黄電池の信頼性を大幅に高めることが出来る。なお、
正極容器を構成する材料としては、耐食性が優れている
とともに、加工性,溶接性に優れている必要があり、こ
れらの要件が満足されないと、信頼性に優れた電池は得
られない。例えば、正極管材料としてCr量の少ないF
e合金のように耐食性に劣る材料や、コーティング材を
用いたりした場合、材料自身の耐食性の不足や溶接部の
耐食性の不足によって、目的の効果は得られない。さら
に、溶接部に残留歪の残り易い材料も表面に形成される
硫化クロム層が安定に保持出来ないため好ましくない。
As described above, according to the present invention, when parts made of a highly corrosion-resistant metal material containing a high concentration of Cr are welded to each other, even if chromium carbide precipitates and residual stress is generated, the welded portion is not heated when the temperature rises or falls. Since the stress applied to the surface is small, the chromium sulfide layer formed on the surface is kept stable. As a result, the corrosion resistance of the positive electrode container can be maintained high, and the reliability of the sodium-sulfur battery can be greatly increased. In addition,
As a material constituting the positive electrode container, it is necessary to have not only excellent corrosion resistance, but also excellent workability and weldability. If these requirements are not satisfied, a battery having excellent reliability cannot be obtained. For example, as a cathode tube material, F with a small amount of Cr is used.
When a material having poor corrosion resistance such as an e-alloy or a coating material is used, the intended effect cannot be obtained due to a lack of corrosion resistance of the material itself or a lack of corrosion resistance of a welded portion. Further, a material in which a residual strain is apt to remain in the welded portion is not preferable because the chromium sulfide layer formed on the surface cannot be stably held.

【0018】本発明の正極容器を構成する材料として
は、Co基またはNi基の合金であることが望ましい。
これらの合金は普通用いられているFe合金に比べて、
溶接時の残留応力が小さく、耐食性が大きい利点があ
る。また、表面に形成される硫化物の抵抗がFe合金に
比べて小さいため、電池の特性が安定で、一層信頼性が
高くなるという利点もある。特に、Co基合金の場合、
形成される硫化コバルトの多硫化ナトリウム中への溶解
度が硫化ニッケルよりも小さいため、電池の信頼性が特
に高くできる。
The material constituting the positive electrode container of the present invention is preferably a Co-based or Ni-based alloy.
These alloys, compared to commonly used Fe alloys,
It has the advantages of low residual stress during welding and high corrosion resistance. Further, since the resistance of the sulfide formed on the surface is smaller than that of the Fe alloy, there is an advantage that the characteristics of the battery are stable and the reliability is further improved. In particular, in the case of a Co-based alloy,
Since the solubility of the formed cobalt sulfide in sodium polysulfide is smaller than that of nickel sulfide, the reliability of the battery can be particularly increased.

【0019】Co基,Ni基合金の好ましい組成範囲
は、それぞれ、Co含有量30重量%以上,Cr含有量
18〜32重量%,C含有量0.2 重量%以下、また
は、Ni含有量40重量%以上,Cr含有量18〜32
重量%,C含有量0.2 重量%以下である。Coまたは
Niの含有量がこれより少ないと、Co基合金またはN
i基合金としての効果が減少する。Crがこの範囲より
少なくなると耐食性が低下し、逆に多くなると正極容器
への加工が困難となる。C量がこれより多くなると、正
極容器への加工が困難となるばかりでなく、溶接時のク
ロム炭化物の析出量が増えて残留歪が増加し、耐食性が
損なわれ易い。また、これらの合金に3〜15重量%の
Wまたは1〜10重量%のMo、あるいは、0.2 〜4
重量%のAlが含まれていると、耐食性が一層向上して
特に望ましい。W,MoおよびAlがこの範囲よりも少
ないと添加効果が十分でなく、多いと正極容器への加工
が困難となる。
The preferred composition ranges of the Co-based and Ni-based alloys are Co content of 30% by weight or more, Cr content of 18 to 32% by weight, C content of 0.2% by weight or less, or Ni content of 40% or less. Weight% or more, Cr content 18 to 32
% By weight, C content is 0.2% by weight or less. If the content of Co or Ni is less than this, a Co-based alloy or N
The effect as an i-base alloy decreases. If the Cr content is less than this range, the corrosion resistance is reduced, and if the Cr content is too large, processing into a positive electrode container becomes difficult. If the C content is larger than this, not only becomes difficult to process into a positive electrode container, but also the amount of chromium carbide deposited during welding increases, the residual strain increases, and the corrosion resistance tends to be impaired. In addition, these alloys may contain 3 to 15% by weight of W or 1 to 10% by weight of Mo, or 0.2 to 4% by weight.
It is particularly desirable that the Al content by weight is further improved because the corrosion resistance is further improved. If the contents of W, Mo and Al are less than the above ranges, the effect of addition is not sufficient, and if the contents are too large, processing into a positive electrode container becomes difficult.

【0020】本発明の正極容器を構成する材料として、
Feを主成分とし、Cr含有量22〜32重量%,C含
有量0.2 重量%以下の合金を用いることも出来る。こ
の場合にも、Crがこの範囲より少ないと耐食性が低下
し、逆に多いと正極容器への加工が困難となる。また、
C量がこれより多くなると、正極容器への加工が困難と
なるばかりでなく、溶接時のクロム炭化物の析出量が増
えて残留歪が増加し、耐食性が損なわれ易い。Fe合金
がさらに14〜24重量%のNiを含有すれば、溶接時
の残留応力が低下して、耐食性が向上するという利点を
生ずる。また、Fe合金として、オーステナイトとフェ
ライトから成る二相ステンレスを用いることも、溶接部
の残留歪の低減と耐食性の向上に有効である。二相ステ
ンレスやフェライト系ステンレスを用いた場合、オース
テナイト系ステンレスを用いた場合に比べて熱膨張率が
小さく、溶接部に熱歪が加わりにくい利点がある。ま
た、Crの含有量としては23〜30重量%であること
が、耐食性,加工性を両立させるためには特に望まし
く、実用上特に好ましい。さらに、Fe合金が1〜10
重量%のMoを含むと加工性を損うことなく硫黄に対す
る耐食性が向上するという利点を有する。
As a material constituting the positive electrode container of the present invention,
An alloy containing Fe as a main component, a Cr content of 22 to 32% by weight, and a C content of 0.2% by weight or less can also be used. Also in this case, if the Cr content is less than this range, the corrosion resistance is reduced, and if it is too large, it becomes difficult to process the cathode container. Also,
If the C content is larger than this, not only becomes difficult to process into a positive electrode container, but also the amount of chromium carbide deposited during welding increases, the residual strain increases, and the corrosion resistance tends to be impaired. When the Fe alloy further contains 14 to 24% by weight of Ni, there is an advantage that the residual stress during welding is reduced and the corrosion resistance is improved. The use of a duplex stainless steel composed of austenite and ferrite as the Fe alloy is also effective in reducing the residual strain in the weld and improving the corrosion resistance. When duplex stainless steel or ferritic stainless steel is used, the coefficient of thermal expansion is smaller than when austenitic stainless steel is used, and there is an advantage that thermal strain is less likely to be applied to the welded portion. Further, the content of Cr is preferably from 23 to 30% by weight, in order to achieve both corrosion resistance and workability, and it is particularly preferable in practical use. Further, when the Fe alloy is 1 to 10
When Mo is contained by weight%, there is an advantage that corrosion resistance to sulfur is improved without impairing workability.

【0021】具体的にはSUS310S (Cr24〜26重量
%,Ni19〜22重量%,Fe残り)やSUS329J1(C
r23〜28重量%,Ni3〜6重量%,Mo3重量
%,Fe残り)SUS427J1(Cr28.5 〜32重量%,
Mo2重量%,Fe残り)などを用いると良い。
Specifically, SUS310S (24 to 26% by weight of Cr, 19 to 22% by weight of Ni, and Fe remaining) and SUS329J1 (C
r 23 to 28% by weight, Ni 3 to 6% by weight, Mo 3% by weight, Fe remaining) SUS427J1 (Cr 28.5 to 32% by weight,
Mo (2% by weight, Fe remaining) may be used.

【0022】さらに、本発明のナトリウム硫黄電池を用
いることにより、電池システムの信頼性が向上し、高信
頼性の電力貯蔵装置,電気自動車,非常用電源,無停電
電源,電力系統のピークカット装置、周波数・電圧安定
化装置などが実現出来る。
Furthermore, by using the sodium-sulfur battery of the present invention, the reliability of the battery system is improved, and a highly reliable power storage device, an electric vehicle, an emergency power source, an uninterruptible power source, and a power system peak cut device are provided. And a frequency / voltage stabilizing device.

【0023】[0023]

【発明の実施の形態】以下、本発明を実施例に従って説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0024】具体例として、図2に示すように、固体電
解質管としてリチュウムドープのβ″アルミナ焼結体か
らなる固体電解質管1を用いた。次に、絶縁部材7とし
てαアルミナリングを用い、固体電解質管とガラス接合
すると共に、アルミニウム−シリコン−マグネシウム系
の合金箔を用いて、絶縁部材と負極容器2および正極容
器の構成部品42とを熱圧接法によって接合した。な
お、負極容器及びナトリウム容器10の材料にはSUS304
材を用い、ナトリウム容器の内部にはナトリウム8と約
0.1 気圧の窒素ガスを充填して封止し、このガス圧で
ナトリウムがナトリウム容器下部の直径0.2mm の小孔
11から外へ出て、固体電解質管の内表面を覆うように
した。一方、正極容器を構成する部品41,42,43
には表1に示した材料を用い、これらをTIG溶接、ま
たは電子ビーム溶接して一体化した。なお、正極容器の
内部には硫黄と炭素繊維マットからなる正極モールド、
及び約0.1 気圧の窒素ガスを充填した後、底蓋(図2
の43)を減圧TIG溶接して封止し、第2の構造のナ
トリウム−硫黄電池を得た。正極容器の外形は約65m
m、肉厚は約1.5mm 、正極容器に設けたベローズ40
の軸方向の剛性は約10N/mmであった。
As a specific example, as shown in FIG. 2, a solid electrolyte tube 1 made of a lithium-doped β ″ alumina sintered body was used as a solid electrolyte tube. In addition to joining the solid electrolyte tube with the glass, the insulating member was joined to the negative electrode container 2 and the component 42 of the positive electrode container by a thermal pressure welding method using an aluminum-silicon-magnesium alloy foil. The material of the container 10 is SUS304
The inside of the sodium container is filled with sodium 8 and about 0.1 atm of nitrogen gas and sealed, and the gas pressure causes the sodium to go out of the small hole 11 having a diameter of 0.2 mm at the bottom of the sodium container. It came out and covered the inner surface of the solid electrolyte tube. On the other hand, the components 41, 42, 43 constituting the positive electrode container
The materials shown in Table 1 were used, and these were integrated by TIG welding or electron beam welding. In addition, inside the positive electrode container, a positive electrode mold made of sulfur and carbon fiber mat,
And after filling with about 0.1 atm of nitrogen gas,
43) was sealed by vacuum TIG welding to obtain a sodium-sulfur battery of the second structure. The outer shape of the positive electrode container is about 65m
m, thickness is about 1.5mm, bellows 40 provided on the positive electrode container
Had an axial rigidity of about 10 N / mm.

【0025】同様な方法により、図1の構造で負極内部
に図2と同様のナトリウム容器を設けた電池、および、
比較例として図3に示す構造の電池を作成した。なお、
ベローズを設けない図1の正極容器の軸方向の剛性は約
25N/mm,図3の正極容器の軸方向の剛性は約150
KN/mmであった。400℃において、固体電解質管の
通電面積当り約200mA/cm2 の電流密度で500回
充放電すると共に、途中で20回室温から400℃まで
昇降温した時の電池の効率および容量の変化率を表1に
示す。この表に見られるように、本発明のナトリウム硫
黄電池は特性が安定で、信頼性が高いことが判った。
In a similar manner, a battery having the structure of FIG. 1 and a sodium container similar to that of FIG. 2 provided inside the negative electrode, and
As a comparative example, a battery having the structure shown in FIG. 3 was prepared. In addition,
The axial rigidity of the positive electrode container of FIG. 1 without the bellows is about 25 N / mm, and the axial rigidity of the positive electrode container of FIG.
KN / mm. At 400 ° C., the battery was charged / discharged 500 times at a current density of about 200 mA / cm 2 per energized area of the solid electrolyte tube, and the rate of change of the efficiency and capacity of the battery when the temperature was raised and lowered from room temperature to 400 ° C. 20 times on the way. It is shown in Table 1. As can be seen from this table, the sodium-sulfur battery of the present invention was found to have stable characteristics and high reliability.

【0026】[0026]

【表1】 [Table 1]

【0027】この様に、電池の特性が安定で信頼性が高
いため、本発明のナトリウム硫黄電池を複数個組み合わ
せた電池システムの信頼性が高く、この電池システムを
用いて、高信頼性の電力貯蔵装置,電気自動車,非常用
電源,無停電電源,電力系統のピークカット装置,周波
数・電圧安定化装置などが実現できることが判明した。
As described above, since the characteristics of the battery are stable and high in reliability, the reliability of the battery system in which a plurality of the sodium-sulfur batteries of the present invention are combined is high. It has been found that storage devices, electric vehicles, emergency power supplies, uninterruptible power supplies, power system peak cut devices, frequency and voltage stabilization devices, etc. can be realized.

【0028】[0028]

【発明の効果】本発明によれば、正極容器の腐食による
特性劣化が起こりにくく、ナトリウム硫黄電池の信頼性
が大幅に向上する。
According to the present invention, characteristic deterioration due to corrosion of the positive electrode container hardly occurs, and the reliability of the sodium-sulfur battery is greatly improved.

【0029】さらに、本発明の電池を用いることによ
り、複数個の電池を用いた電池システムの信頼性が高く
出来、高信頼性の電力貯蔵装置,電気自動車,非常用電
源,無停電電源,電力系統のピークカット装置,周波数
・電圧安定化装置などが実現される。
Further, by using the battery of the present invention, the reliability of a battery system using a plurality of batteries can be increased, and a highly reliable power storage device, electric vehicle, emergency power source, uninterruptible power source, A system peak cut device, frequency / voltage stabilization device, etc. are realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電池構造の例を示す構造図。FIG. 1 is a structural diagram showing an example of a battery structure of the present invention.

【図2】本発明の電池構造の例を示す構造図。FIG. 2 is a structural view showing an example of a battery structure of the present invention.

【図3】比較例の電池構造を示す図。FIG. 3 is a diagram showing a battery structure of a comparative example.

【符号の説明】[Explanation of symbols]

1…固体電解質管、2…負極容器、3…負極室、4…正
極容器、5…正極室、7…絶縁部材、8…ナトリウム、
9…正極モールド、40…ベローズ、41,42,43
…正極容器の構成部品、61,62…溶接部。
DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte tube, 2 ... Negative electrode container, 3 ... Negative electrode chamber, 4 ... Positive electrode container, 5 ... Positive electrode chamber, 7 ... Insulating member, 8 ... Sodium,
9: Positive electrode mold, 40: Bellows, 41, 42, 43
... components of the positive electrode container, 61, 62 ... welded parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 間所 学 茨城県日立市幸町三丁目1番1号 株式 会社 日立製作所 日立工場内 (72)発明者 西村 成興 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 塩田 勝彦 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 大高 清 茨城県日立市弁天町三丁目10番2号 日 立協和工業株式会社内 (56)参考文献 特開 平2−144858(JP,A) 特開 平4−294070(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/39 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Manabu Gakusho 3-1-1, Sachimachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant (72) Inventor Shigeko Nishimura 7-chome Omika-cho, Hitachi City, Ibaraki Prefecture No. 1-1 Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Katsuhiko Shioda 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Kiyoshi Otaka Benten, Hitachi City, Ibaraki Prefecture 3-10-2, Machi Kachiwa Kogyo Co., Ltd. (56) References JP-A-2-144858 (JP, A) JP-A-4-294070 (JP, A) (58) Fields surveyed (Int. Cl. 7 , DB name) H01M 10/39

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ナトリウムを収納した負極容器と、硫黄ま
たは多硫化ナトリウムから成る正極モールドを収納した
正極容器と、前記負極,正極間を分離したナトリウムイ
オン導電性固体電解質、及び、前記固体電解質に接続さ
れ、前記負極容器,正極容器に接合された絶縁部材、か
ら成るナトリウム硫黄電池において、前記正極容器が、
Crを含有する高耐食性のCo基、又はNi基合金材料
から成る複数の部品を溶接して一体化されるとともに、
前記溶接部へ加わる前記正極モールドからの応力を低減
する機構が設けられており、 かつ、前記正極容器を構成する材料が、Co含有量30
重量%以上,Cr含有量18〜32重量%,C含有量
0.2 重量%以下のCo基合金、または、Ni含有量4
0重量%以上,Cr含有量18〜32重量%,C含有量
0.2 重量%以下のNi基合金であることを特徴とする
ナトリウム硫黄電池。
1. A negative electrode container containing sodium, a positive electrode container containing a positive electrode mold made of sulfur or sodium polysulfide, a sodium ion conductive solid electrolyte separated between the negative electrode and the positive electrode, and the solid electrolyte. Connected
It is, before SL negative electrode container, joined insulated member Seikyokuyo device, in the sodium sulfur cell comprising the positive electrode container,
High corrosion resistance of Co group containing Cr, or are integrated by welding a plurality of components made of Ni-based alloy material Rutotomoni,
Reduces stress from the positive mold applied to the weld
And a material constituting the positive electrode container has a Co content of 30.
Co-based alloy with a Cr content of 18% to 32% by weight, a C content of 0.2% by weight or less, or a Ni content of 4% by weight or more and a C content of 0.2% by weight or less.
A sodium-sulfur battery comprising a Ni-based alloy having a content of 0% by weight or more, a Cr content of 18 to 32% by weight, and a C content of 0.2% by weight or less.
【請求項2】請求項1において、前記Co基合金または
Ni基合金が3〜15重量%のWまたは1〜10重量%
のMo、あるいは、0.2 〜4重量%のAlを含有する
ことを特徴とするナトリウム硫黄電池。
2. The method according to claim 1, wherein said Co-based alloy or Ni-based alloy contains 3 to 15% by weight of W or 1 to 10% by weight.
Or a sodium-sulfur battery containing 0.2 to 4% by weight of Al.
【請求項3】ナトリウムを収納した負極容器と、硫黄ま
たは多硫化ナトリウムから成る正極モールドを収納した
正極容器と、前記負極,正極間を分離したナトリウムイ
オン導電性固体電解質、及び、前記固体電解質に接続さ
前記負極容器,正極容器接合された絶縁部材、か
ら成るナトリウム硫黄電池において、前記正極容器が、
Feを主成分とし、Cr含有量22〜32重量%,C含
有量0.2 重量%以下の合金材料から成る複数の部品を
溶接して一体化され、かつ、前記溶接部へ加わる前記正
極モールドからの応力を低減する機構を設けたことを特
徴とするナトリウム硫黄電池。
3. A negative electrode container containing sodium, a positive electrode container containing a positive electrode mold made of sulfur or sodium polysulfide, a sodium ion conductive solid electrolyte separated between the negative electrode and the positive electrode, and the solid electrolyte. connected, the negative electrode container, joined insulating member on the positive electrode container, the sodium-sulfur cell comprising the positive electrode container,
The positive electrode mold, wherein a plurality of parts made of an alloy material containing Fe as a main component and having a Cr content of 22 to 32% by weight and a C content of 0.2% by weight or less are welded and integrated, and are added to the welded portion. A sodium-sulfur battery provided with a mechanism for reducing stress from the battery.
【請求項4】ナトリウムを収納した負極容器と、硫黄ま
たは多硫化ナトリウムから成る正極モールドを収納した
正極容器と、前記負極,正極間を分離したナトリウムイ
オン導電性固体電解質、及び、前記固体電解質に接続さ
前記負極容器,正極容器接合された絶縁部材、か
ら成るナトリウム硫黄電池において、前記正極容器が、
Feを主成分とし、Cr含有量22〜32重量%,C含
有量0.2 重量%以下の合金材料から成る複数の部品を
溶接して一体化され、かつ、前記正極容器に易変形部が
設けられていることを特徴とするナトリウム硫黄電池。
4. A negative electrode container containing sodium, a positive electrode container containing a positive electrode mold made of sulfur or sodium polysulfide, a sodium ion conductive solid electrolyte separated between the negative electrode and the positive electrode, and a solid electrolyte. connected, the negative electrode container, joined insulating member on the positive electrode container, the sodium-sulfur cell comprising the positive electrode container,
A plurality of parts made of an alloy material containing Fe as a main component and having a Cr content of 22 to 32% by weight and a C content of 0.2% by weight or less are integrated by welding, and the positive electrode container has an easily deformable portion. A sodium-sulfur battery provided.
【請求項5】請求項4において、前記合金材料が、14
〜24重量%にNiを含有することを特徴とするナトリ
ウム硫黄電池。
5. The method according to claim 4, wherein the alloy material is 14%.
A sodium-sulfur battery characterized by containing Ni in an amount of up to 24% by weight.
【請求項6】請求項4又は5において、前記合金材料の
Cr含有量が、23〜30重量%であることを特徴とす
るナトリウム硫黄電池。
6. The method according to claim 4 or 5, Cr content of the alloy material, sodium sulfur battery, which is a 23 to 30% by weight.
【請求項7】請求項4,5又は6において、前記合金材
料が、1〜10重量%のMoを含有することを特徴とす
るナトリウム硫黄電池。
7. The sodium-sulfur battery according to claim 4, wherein the alloy material contains 1 to 10% by weight of Mo.
JP24575995A 1995-07-17 1995-09-25 Sodium sulfur battery and battery system using the same Expired - Fee Related JP3265941B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24575995A JP3265941B2 (en) 1995-09-25 1995-09-25 Sodium sulfur battery and battery system using the same
US08/680,851 US5962160A (en) 1995-07-17 1996-07-16 Sodium-sulfur battery, and a battery system using same
US09/270,678 US6329099B1 (en) 1995-07-17 1999-03-16 Sodium-sulfur battery, and a battery system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24575995A JP3265941B2 (en) 1995-09-25 1995-09-25 Sodium sulfur battery and battery system using the same

Publications (2)

Publication Number Publication Date
JPH0992327A JPH0992327A (en) 1997-04-04
JP3265941B2 true JP3265941B2 (en) 2002-03-18

Family

ID=17138382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24575995A Expired - Fee Related JP3265941B2 (en) 1995-07-17 1995-09-25 Sodium sulfur battery and battery system using the same

Country Status (1)

Country Link
JP (1) JP3265941B2 (en)

Also Published As

Publication number Publication date
JPH0992327A (en) 1997-04-04

Similar Documents

Publication Publication Date Title
US5962160A (en) Sodium-sulfur battery, and a battery system using same
US4770956A (en) Electrochemical storage cell
US3421945A (en) Fusion-sealed metal-enclosed rechargeable battery cell
JP3265941B2 (en) Sodium sulfur battery and battery system using the same
JP3193319B2 (en) Sodium-sulfur battery
JP3351186B2 (en) Sodium-sulfur battery
EP0984499B1 (en) Lithium secondary cell
JP3307235B2 (en) Cathode container material and cathode container for sodium-sulfur battery
JP2000106153A (en) Sealed battery
JP3550007B2 (en) Method for producing zinc or zinc alloy powder for alkaline batteries
JP4104692B2 (en) Oxyhalide-lithium battery
JPH0239065B2 (en)
JP3415106B2 (en) Sodium-sulfur battery
JP3146684B2 (en) Sealed secondary battery
JPH0837023A (en) Sodium-sulfur battery
JP2957822B2 (en) Method for producing anode container in sodium-sulfur battery
JPH11329488A (en) Sodium-sulfur battery
JPH0582162A (en) Sodium-sulfur battery
JPH0935745A (en) Sodium sulfur battery having positive container made of nickel base alloy
JPH07183046A (en) Sodium-sulfur battery and battery container
JP2000260491A (en) Recycle method of sodium-sulfur battery
JP2919163B2 (en) Anode container for sodium-sulfur battery
JPH11102725A (en) Sodium-sulfur battery
JPH0945367A (en) Sodium-sulfur battery
JPH0878048A (en) Sodium-sulfur cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees