JP3261288B2 - Dissolution supply device for sample used for ICP analysis - Google Patents
Dissolution supply device for sample used for ICP analysisInfo
- Publication number
- JP3261288B2 JP3261288B2 JP25685895A JP25685895A JP3261288B2 JP 3261288 B2 JP3261288 B2 JP 3261288B2 JP 25685895 A JP25685895 A JP 25685895A JP 25685895 A JP25685895 A JP 25685895A JP 3261288 B2 JP3261288 B2 JP 3261288B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- sample
- electrolysis
- gas
- icp analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Sampling And Sample Adjustment (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、誘導結合高周波
プラズマ発光分析(Inductively coup
led plasma atomic emissio
n spectrometry:以下、ICP分析とい
う)によって試料中の元素を分析する場合に用いられる
試料の溶解供給装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inductively coupled high frequency plasma emission spectrometry.
red plasma atomic emissio
n spectrometry: hereinafter Dissolution supply device sample used when analyzing element in the sample by that ICP analysis).
【0002】[0002]
【従来の技術】従来のICP分析に用いる試料溶液を電
気分解によって得る場合、試料と陰極との間に定電流の
直流電圧を印加する、いわゆる定電流法が採用されてい
る。これは、この定電流電解法によれば、試料間の主成
分の濃度を一定化(マトリックスマッチング)が良好に
行えるからである。2. Description of the Related Art When a sample solution used for conventional ICP analysis is obtained by electrolysis, a so-called constant current method in which a constant current DC voltage is applied between a sample and a cathode is employed. This is because according to this constant current electrolysis method, the concentration of the main component between samples can be made constant (matrix matching) satisfactorily.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記定
電流法によって、主成分であるFeを含む金属試料の電
気分解を行う場合、その試料中にTi、Nbの炭化物や
窒化物などのように難溶解性成分が含まれていると次の
ような不都合があった。However, when electrolysis of a metal sample containing Fe as a main component is performed by the above-mentioned constant current method, it is difficult to prepare a sample such as a carbide or nitride of Ti or Nb in the sample. When a soluble component is contained, there are the following inconveniences.
【0004】図3は、難分解性成分を含む試料を、塩酸
・硝酸水溶液を電解酸液として用い、定電流法によって
電気分解する場合における電解電圧の変化(AgCl比
較電極電位に対する大きさで表されている)並びにFe
とTiのイオン濃度の時間的変化を示したもので、Fe
は曲線Aで示すように、かなり順調に溶解するが、Ti
は曲線Bで示すように、かなりの時間が経過しても溶解
しない。FIG. 3 shows a change in electrolysis voltage when a sample containing a hardly decomposable component is electrolyzed using a hydrochloric acid / nitric acid aqueous solution as an electrolytic acid solution by a constant current method. And Fe
And shows the temporal change of the ion concentration of Ti and Ti.
Melts quite smoothly as shown by curve A, but Ti
Does not dissolve after a considerable amount of time, as shown by curve B.
【0005】そして、あるとき、曲線Cで示すように、
電解電圧が急激に上昇し、それまでに順調に溶解してい
たFeの溶解量が減り、Tiの溶解量が急激に増える
が、金属試料の電気分解・溶解が止まってしまう。At some point, as shown by curve C,
The electrolytic voltage rises sharply, the dissolved amount of Fe that has been dissolved smoothly up to that time decreases, and the dissolved amount of Ti increases rapidly, but the electrolysis and dissolution of the metal sample stops.
【0006】このように、難分解性成分を含む試料を、
塩酸・硝酸水溶液を電解酸液として用いて従来の定電流
法によって電気分解する手法では、Feの不動態化が生
じ、Tiなどの難溶解性成分を迅速に電気分解できない
ことがあった。Thus, a sample containing a hardly decomposable component is
In the conventional method of performing electrolysis by using a hydrochloric acid / nitric acid aqueous solution as an electrolytic acid solution by a constant current method, passivation of Fe occurs, so that a poorly soluble component such as Ti cannot be rapidly electrolyzed.
【0007】これに対して、塩酸水溶液を電解酸液とし
て定電流法で電気分解することが考えられるが、この場
合、電解電位の急激な上昇がないものの、Tiなどの難
溶解性成分を電気分解することができない。また、難溶
解性成分のみを別途溶解処理することが考えられるが、
この場合、ICP分析の前処理が煩わしく、したがっ
て、それだけICP分析に多くの時間がかかる。On the other hand, it is conceivable to perform electrolysis using a hydrochloric acid aqueous solution as an electrolytic acid solution by a galvanostatic method. Cannot be disassembled. In addition, it is conceivable to separately dissolve only the hardly soluble component,
In this case, the pre-processing of the ICP analysis is troublesome, and accordingly, the ICP analysis takes much time.
【0008】この発明は、上述の事柄に留意してなされ
たもので、その目的は、金属試料中に含まれる易溶解性
成分から難溶解性成分までの広い範囲の成分を迅速かつ
安定に電気分解できる試料の溶解供給装置を提供するこ
とである。The present invention has been made in consideration of the above-mentioned problems, and has as its object to quickly and stably conduct electric power control over a wide range of components from a readily soluble component to a poorly soluble component contained in a metal sample. An object of the present invention is to provide a dissolving and supplying device for a sample that can be decomposed.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、この発明では、試料を電解酸液を用いて電気分解
し、これによって発生したガスと溶液とを気液分離管に
よって分離して、この分離された溶液を試料溶液として
ICP分析計に送るようにしたICP分析に用いる試料
の溶解供給装置において、前記電気分解を行う際、電解
酸液として塩酸・硝酸水溶液を用い、試料と電解酸液と
の間に、0.8V〜2.8Vの範囲の定電圧を印加して
定電位電解するとともに、前記気液分離管の後段に、前
記電気分解によって得られた溶液を一旦貯留する溶液貯
留部を設けている。In order to achieve the above object, according to the present invention, a sample is electrolyzed using an electrolytic acid solution, and a gas and a solution generated thereby are separated by a gas-liquid separation tube. In the sample dissolving / supplying apparatus used for ICP analysis in which the separated solution is sent to an ICP analyzer as a sample solution, when performing the electrolysis, a hydrochloric acid / nitric acid aqueous solution is used as an electrolytic acid solution, and the sample and the electrolytic acid are used. between the liquid, by applying a constant voltage in the range of 0.8V~2.8V
Along with the constant potential electrolysis,
Solution storage for temporarily storing the solution obtained by the electrolysis
A retaining part is provided .
【0010】[0010]
【発明の実施の形態】以下、この発明の詳細を、図を参
照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings.
【0011】図1は、この発明のICP分析に用いる試
料の溶解供給装置(以下、単に試料の溶解供給装置とい
う)の一構成例を概略的に示すもので、この図1におい
て、1は金属試料2を電気分解するためのセルで、試料
抑え部材3によって抑えられた金属試料2と、この金属
試料2と適宜の隙間を有するようにして電極4が対向配
置されている。前記試料抑え部材3の先端側の金属試料
2を押圧する部分3aは電極に形成され、この電極3a
および前記電極4は、仮想線5,6で示すように、電気
分解用の直流電源7の正極端子7Pと負極端子7Nにそ
れぞれ接続されている。すなわち、金属試料2が正極
に、電極4が負極になるように構成されている。このよ
うに構成されたセル1においては、後述する電解酸液A
(またはB)が供給されることにより、電気分解が行わ
れ、ガスGと電解後の溶液Lとが発生する。FIG. 1 shows an apparatus for dissolving and supplying a sample used for ICP analysis according to the present invention (hereinafter simply referred to as an apparatus for dissolving and supplying a sample).
In FIG. 1, reference numeral 1 denotes a cell for electrolyzing a metal sample 2; a metal sample 2 held down by a sample holding member 3; And the electrodes 4 are arranged so as to have an appropriate gap. A portion 3a of the tip side of the sample holding member 3 which presses the metal sample 2 is formed on an electrode.
The electrodes 4 are connected to a positive terminal 7P and a negative terminal 7N of a DC power supply 7 for electrolysis, as indicated by virtual lines 5 and 6, respectively. That is, the metal sample 2 is configured as a positive electrode, and the electrode 4 is configured as a negative electrode. In the cell 1 configured as described above, an electrolytic acid solution A described later is used.
When (or B) is supplied, electrolysis is performed, and gas G and solution L after electrolysis are generated.
【0012】8,9はセル1のそれぞれ上流側および下
流側に接続される2つの流路で、まず、上流側の第1流
路8の端部には、電解酸液A,Bをそれぞれ収容した2
つのタンク10,11が第1バルブ12を介して接続さ
れ、この第1バルブ12の下流側(セル1に近い側)に
は隔液器13を介して第1ポンプ14が介装されてい
る。前記電解酸液A,Bは、塩酸・硝酸水溶液であり、
濃度が互いに異なっている。Reference numerals 8 and 9 denote two flow paths connected to the upstream and downstream sides of the cell 1, respectively. First, the electrolytic acid solutions A and B are respectively supplied to the ends of the first flow path 8 on the upstream side. 2 accommodated
The two tanks 10 and 11 are connected via a first valve 12, and a first pump 14 is provided downstream of the first valve 12 (closer to the cell 1) via a separator 13. . The electrolytic acid solutions A and B are aqueous solutions of hydrochloric acid and nitric acid,
The concentrations are different from each other.
【0013】そして、第1流路8には、第1ポンプ14
の下流側に、第2、第3のバルブ15,16が互いに直
列な状態で介装され、第2バルブ15には、第2ポンプ
17と洗浄水Wを収容したタンク18とを直列に接続し
た洗浄水供給路19が接続され、第3バルブ16にはド
レンポット20を備えた第1ドレン流路21が接続され
ている。なお、22,23は隔液器13にそれぞれ接続
される内部液容器、電極容器であり、この電極容器23
には、仮想線24で示すように、直流電源7の端子7C
に接続された参照電極25が設けられている。The first flow path 8 has a first pump 14
The second and third valves 15 and 16 are interposed in series with each other on the downstream side of the tank, and the second valve 15 is connected in series with a second pump 17 and a tank 18 containing cleaning water W. The washing water supply path 19 is connected, and a first drain flow path 21 having a drain pot 20 is connected to the third valve 16. Reference numerals 22 and 23 denote an internal liquid container and an electrode container connected to the liquid separator 13, respectively.
, The terminal 7C of the DC power supply 7
Is provided with a reference electrode 25 connected to the reference electrode 25.
【0014】また、下流側の第2流路9には、フィルタ
26が設けられ、このフィルタ26の下流側には、気液
分離管27が設けられている。そして、この気液分離管
27の上流側の入口には、セル1からのガスGと電解後
の溶液Lの混合流体Fが流れる第2流路9と、一端が洗
浄水供給路19の第2ポンプ17の下流側と接続され、
第4バルブ28を途中に有する洗浄水供給路29とが接
続されている。また、気液分離管27の下流側の出口に
は、第5バルブ30を備えた流路31が接続されてい
る。さらに、気液分離管27のドレン排出部32は、ド
レンポット20に接続されたドレン流路33に流路34
を介して接続されている。A filter 26 is provided in the second flow path 9 on the downstream side, and a gas-liquid separation pipe 27 is provided on the downstream side of the filter 26. At the inlet on the upstream side of the gas-liquid separation tube 27, a second flow path 9 through which a mixed fluid F of the gas G from the cell 1 and the solution L after electrolysis flows, and one end of the cleaning water supply path 19 at one end. 2 connected to the downstream side of the pump 17,
A washing water supply path 29 having a fourth valve 28 in the middle is connected. A flow path 31 provided with a fifth valve 30 is connected to an outlet on the downstream side of the gas-liquid separation pipe 27. Further, the drain discharge part 32 of the gas-liquid separation pipe 27 is connected to a drain flow path 33 connected to the drain pot 20 by a flow path 34.
Connected through.
【0015】前記気液分離管27に供給された混合流体
Fは、これを通過することにより、溶液Lとドレンとに
分離され、溶液Lは流路31を経て溶液貯留部35に供
給され、ドレンはドレン排出部32からドレン流路33
に至り、ドレンポット20に収容される。The mixed fluid F supplied to the gas-liquid separation pipe 27 passes therethrough and is separated into a solution L and a drain, and the solution L is supplied to a solution storage section 35 through a flow path 31. Drain is supplied from a drain discharge section 32 to a drain flow path 33.
And is stored in the drain pot 20.
【0016】35は前記気液分離管27の後段側、より
具体的には、気液分離管27の下流側の出口に連なる流
路31の下流側に接続される溶液貯留部で、この溶液貯
留部において溶液が少し淀む部分に、ICP分析計36
のネブライザの吸引管37が挿入接続されている。そし
て、溶液貯留部35の下流側の出口は、例えば二方電磁
弁よりなる第6バルブ38を介して前記ドレン流路33
に接続されている。また、溶液貯留部35の前記流路3
1の端部より下方位置で、前記吸引管37の挿入端部よ
り上方位置には、ドレン排出部39が開設され、この排
出部39の下流側はドレン流路33に接続されている。Reference numeral 35 denotes a solution storage section connected to the downstream side of the gas-liquid separation pipe 27, more specifically, to the downstream side of the flow path 31 connected to the downstream outlet of the gas-liquid separation pipe 27. In the part where the solution is slightly stagnant in the storage part, the ICP analyzer 36
The suction tube 37 of the nebulizer is inserted and connected. The outlet on the downstream side of the solution storage section 35 is connected to the drain flow path 33 through a sixth valve 38 composed of, for example, a two-way solenoid valve.
It is connected to the. Further, the flow path 3 of the solution storage section 35
A drain discharge section 39 is opened below the end of the first section and above the insertion end of the suction pipe 37, and the downstream side of the discharge section 39 is connected to the drain flow path 33.
【0017】なお、前記気液分離管27および溶液貯留
部35は、耐酸性および耐熱性に優れた材料〔例えばパ
イレックス(商標名)ガラス〕よりなり、内容量は1〜
20mlである。また、第1〜第3のバルブ12,1
5,16は例えば三方電磁弁よりなり、第4〜第6のバ
ルブ28,30,38は例えば二方電磁弁よりなる。そ
して、特に、第5、第6の電磁弁30,38はその弁部
が耐酸性が優れたフッ素樹脂で構成されている。また、
前記ポンプ14,17のオンオフやこれらの電磁弁1
2,15,16,28,30,38バルブの開閉などの
制御は、図示してない制御部によって適宜シーケンス制
御される。The gas-liquid separation tube 27 and the solution storage section 35 are made of a material having excellent acid resistance and heat resistance (for example, Pyrex (trade name) glass).
20 ml. In addition, the first to third valves 12, 1
5 and 16 are formed of, for example, three-way solenoid valves, and the fourth to sixth valves 28, 30, and 38 are formed of, for example, two-way solenoid valves. In particular, the fifth and sixth solenoid valves 30 and 38 have valve portions made of a fluorine resin having excellent acid resistance. Also,
ON / OFF of the pumps 14 and 17 and the solenoid valves 1
Control of opening and closing of the valves 2, 15, 16, 28, 30, and 38 is appropriately sequence-controlled by a control unit (not shown).
【0018】上記構成の試料の溶解供給装置の動作につ
いて説明する。 まず、セル1方向に洗浄水W、電解
酸液A(またはB)を流して、流路8,9や試料2の表
面(セル1に臨む部分)の洗浄を行う。このとき、第5
バルブ30は開いており、第6バルブ38は閉じてい
る。これにより、溶液貯留部35にはドレン排出部39
の高さまで、通常、1〜15ml程液の前洗浄液Wが溜
まり、この前洗浄液Wは吸引管37を介してICP分析
計36に供給される。The operation of the sample dissolving / supplying apparatus having the above configuration will be described. First, the cleaning water W and the electrolytic acid solution A (or B) are flowed in the direction of the cell 1 to clean the flow paths 8, 9 and the surface of the sample 2 (the portion facing the cell 1). At this time, the fifth
Valve 30 is Ri you open, not sixth valve 38 is closed
You. As a result, the solution storage section 35 has a drain discharge section 39
Usually, about 1 to 15 ml of the pre-cleaning liquid W accumulates up to the height, and this pre-cleaning liquid W is supplied to the ICP analyzer 36 via the suction pipe 37.
【0019】 次いで、電解酸液A(またはB)を2
〜10ml/min程度定流量で流し、電解用電源7が
投入される。この電解用電源7は定電圧/定電流となっ
ており、事前の実験で決定される。電解後の流体Fが気
液分離管27に到達するタイミングで、第5バルブ30
が閉じられる。前記流体Fのうち、溶液LはガスGと分
離され、気液分離管27内に溜められる。この間、IC
P分析計36は、溶液貯留部35の前洗浄液Wを吸引し
ている。Next, the electrolytic acid solution A (or B)
A constant flow rate of about 10 to 10 ml / min is supplied, and the power supply 7 for electrolysis is turned on. The electrolysis power supply 7 has a constant voltage / constant current, and is determined by a preliminary experiment. At the timing when the fluid F after electrolysis reaches the gas-liquid separation tube 27, the fifth valve 30
Is closed. The solution L of the fluid F is separated from the gas G and stored in the gas-liquid separation tube 27. During this time, IC
The P analyzer 36 sucks the pre-cleaning liquid W in the solution storage 35.
【0020】 次に、ICP分析に必要な溶液Lが溜
まると、第6バルブ38を開いて前洗浄液Wをドレンと
して排出する。Next, when the solution L required for the ICP analysis is accumulated, the sixth valve 38 is opened to discharge the pre-cleaning liquid W as drain.
【0021】 その後、第6バルブ38を閉じるとと
もに、第5バルブ30を開いて、気液分離管27に溜ま
った溶液Lを溶液貯留部35に移送する。溶液Lは、溶
液貯留部35に蓄えられることにより、そのイオン濃度
が平均化される。After that, the sixth valve 38 is closed and the fifth valve 30 is opened to transfer the solution L stored in the gas-liquid separation tube 27 to the solution storage section 35. The solution L is stored in the solution storage unit 35, so that its ion concentration is averaged.
【0022】 前記濃度の平均化された溶液Lは、ネ
ブライザの吸引管37によって吸引され、ICP分析計
36に試料溶液として送られ、所定のICP分析が行わ
れる。The solution L having the averaged concentration is sucked by the suction tube 37 of the nebulizer, sent to the ICP analyzer 36 as a sample solution, and subjected to a predetermined ICP analysis.
【0023】 その後、第5バルブ30を閉じ、セル
1方向に洗浄水W、電解酸液A(またはB)を流して、
流路8,9や試料2の表面の洗浄を行うとともに、この
ときの洗浄液Wを気液分離管27に溜める。このように
することにより、前記ICP分析中に、セル1方向から
洗浄液Wが気液分離管27に流れ込んできても、これが
溶液貯留部35に流れ込んで、濃度の平均化された溶液
Lと混じることが防止される。そして、前記ICP分析
が完了すると、第6バルブ38を開いて、溶液貯留部3
5内に残留する溶液Lを排出する。After that, the fifth valve 30 is closed, and the washing water W and the electrolytic acid solution A (or B) are flowed in the cell 1 direction,
The channels 8 and 9 and the surface of the sample 2 are washed, and the washing liquid W at this time is stored in the gas-liquid separation tube 27. By doing so, even if the cleaning liquid W flows into the gas-liquid separation tube 27 from the direction of the cell 1 during the ICP analysis, it flows into the solution storage unit 35 and mixes with the solution L having the averaged concentration. Is prevented. When the ICP analysis is completed, the sixth valve 38 is opened, and the solution storage unit 3 is opened.
The solution L remaining in 5 is discharged.
【0024】 そして、前記第6バルブ38を閉じる
とともに、第5バルブ30を開き、洗浄水Wを溶液貯留
部35に導入し、次の測定に待機する。Then, the sixth valve 38 is closed, and the fifth valve 30 is opened to introduce the washing water W into the solution storage section 35 and wait for the next measurement.
【0025】なお、金属試料2が試料抑え部材3から取
り外した後は、洗浄水Wが洗浄水供給路19、第2ポン
プ17、洗浄水供給路29、第4バルブ29を介して気
液分離管27に供給される。After the metal sample 2 has been removed from the sample holding member 3, the washing water W is supplied to the washing water supply passage 19, the second pump 17, the washing water supply passage 29, and the fourth valve 29 for gas-liquid separation. It is supplied to tube 27.
【0026】上述の説明から理解されるように、上記試
料の溶解供給装置によれば、イオン濃度が時間的に変化
している電気分解後の溶液Lを、気液分離管27の後段
に設けた溶液貯留部35において一旦貯留するようにし
ているので、イオン濃度が平均化された溶液が得られ
る。As will be understood from the above description, the above test
According to the dissolving and supplying apparatus for the raw material, the solution L after electrolysis whose ion concentration changes with time is temporarily stored in the solution storage section 35 provided at the subsequent stage of the gas-liquid separation tube 27. As a result, a solution having an averaged ion concentration is obtained.
【0027】そして、この発明の発明者は、従来の定電
流電解法において生じていた電解電位の上昇を避けるた
め、電解酸液として塩酸・硝酸水溶液(塩酸、硝酸、水
の混合割合が体積比で例えば1:1:2)を用いるとと
もに、定電位電解法を採用し、鋼(Fe)中に含まれる
Tiの量が既知である6つの試料a〜fを用い、試料2
と陰極4との間に印加する電解電圧を種々(0.5V,
0.8V,2.8V,3.0V)変化させて、電解後の
溶液Lを分析・測定したところ、下記表1に示すような
結果が得られた。The inventor of the present invention has proposed that an aqueous solution of hydrochloric acid / nitric acid (hydrochloric acid, nitric acid and water be mixed at a volume ratio of For example, 1: 1: 2) is used, and a constant potential electrolysis method is used, and six samples a to f in which the amount of Ti contained in steel (Fe) is known are used.
The electrolytic voltage applied between the anode and the cathode 4 is varied (0.5 V,
When the solution L after the electrolysis was analyzed and measured while changing the voltage at 0.8 V, 2.8 V, and 3.0 V), the results shown in Table 1 below were obtained.
【0028】[0028]
【表1】 [Table 1]
【0029】上記表1について少し説明を加えると、試
料a〜fにおいて( )内の数字は、Fe中に含まれる
Tiの量(%)で、予め判っている。電解電圧を0.5
V、0.8V、2.8V、3.0Vにそれぞれ変化させ
たときに得られた数値は、電解後の溶液Lを、前記図1
に示した装置を用いてICP分析した際得られた結果
で、具体的には、電解後の溶液Lにおける〔(LTi/L
Fe)×100〕(%)を示している。To give a brief explanation of the above Table 1, the numbers in parentheses in Samples a to f are known in advance by the amount (%) of Ti contained in Fe. Electrolysis voltage 0.5
V, 0.8 V, 2.8 V, and 3.0 V, the values obtained when the solution L after electrolysis was the same as those in FIG.
The results obtained when the ICP analysis was performed using the apparatus shown in FIG. 1 are specifically, [[L Ti / L
Fe ) × 100] (%).
【0030】上記表1から、電解電圧が0.5V〜2.
8Vである場合、試料a〜fのいずれにおいても正常な
Ti(%)が得られることが判る。From the above Table 1, it can be seen that the electrolysis voltage is 0.5V-2.
When the voltage is 8 V, it can be seen that normal Ti (%) can be obtained in any of the samples a to f.
【0031】そして、図2は、前記試料a〜fのうち
の、試料dを0.8Vの定電位で電気分解したときの電
位と電流の時間的変化を示すもので、時間が経過しても
電流値がほとんど変化せず、安定な状態で電気分解でき
ることが判る。FIG. 2 shows a temporal change of the potential and the current when the sample d among the samples a to f is electrolyzed at a constant potential of 0.8 V. Also, it can be seen that the current value hardly changes and electrolysis can be performed in a stable state.
【0032】これらの事柄から、塩酸・硝酸水溶液を電
解酸液として用い、定電位電解法によって、0.8〜
2.8V(対AgCl比較電極電位)の範囲における一
定の電解電圧を試料2と電解酸液との間に印加すること
により、易溶解性成分から難溶解性成分までを、同一の
電解後の溶液Lを用いてICP分析することができ、難
溶解性成分のみを別途溶解処理する必要がなくなる。From these facts, a hydrochloric acid / nitric acid aqueous solution was used as an electrolytic acid solution, and a potential of 0.8 to 0.8 was obtained by a potentiostatic electrolysis method.
By applying a constant electrolysis voltage in the range of 2.8 V (with respect to the AgCl reference electrode potential) between the sample 2 and the electrolytic acid solution, the components from the easily soluble component to the hardly soluble component can be subjected to the same electrolysis. can be analyzed by ICP by using a solution L, it is not necessary to separately dissolving process only sparingly soluble Ingredient.
【0033】[0033]
【発明の効果】以上説明したように、この発明の試料の
溶解供給装置によれば、試料中に含まれる易溶解性成分
は勿論のこと、難溶解性成分を容易に安定して溶解させ
ることができ、特に、試料が鉄鋼である場合、Feの不
動態化を起こすことなく、Tiなど難溶解性成分を容易
に溶解することができる。As described above, according to the apparatus for dissolving and supplying a sample of the present invention, it is possible to easily and stably dissolve easily soluble components contained in a sample as well as hardly soluble components. In particular, when the sample is steel, hardly soluble components such as Ti can be easily dissolved without causing passivation of Fe.
【0034】したがって、この発明の試料の溶解供給装
置によれば、易溶解性成分から難溶解性成分までを、同
一の電解後の溶液を用いてICP分析することができ、
難溶解性成分のみを別途溶解処理する必要がないので、
ICP分析を容易にしかも短時間で行わせることができ
る。Therefore, the sample dissolution supply apparatus of the present invention is provided.
According to the device, from the easily soluble component to the hardly soluble component, ICP analysis can be performed using the same solution after electrolysis,
Since there is no need to separately dissolution treatment only sparingly soluble Ingredients,
The ICP analysis can easily and that the cell 's row in a short period of time.
【0035】[0035]
そして、この発明の試料の溶解供給装置にThe sample dissolution supply device of the present invention
おいては、気液分離管の後段に、電気分解によって得らIn the latter stage of the gas-liquid separation tube,
れた溶液を一旦貯留する溶液貯留部を設けているので、Solution storage section for temporarily storing the solution
イオン濃度が時間的に変化している電気分解後の溶液のOf the solution after electrolysis where the ion concentration changes over time
イオン濃度を平均化することができ、このイオン濃度がThe ion concentration can be averaged, and this ion concentration
平均化された溶液をICP分析計に試料溶液として供給Supply the averaged solution to the ICP analyzer as a sample solution
することにより、所定のICP分析を行うことができBy doing so, the specified ICP analysis can be performed.
る。You.
【図1】この発明の試料の溶解方法を実施するための装
置の一構成例を概略的に示す図である。FIG. 1 is a diagram schematically showing one configuration example of an apparatus for carrying out a sample dissolving method of the present invention.
【図2】前記試料の溶解方法によって試料を溶解したと
きにおける電圧と電流の時間的変化の一例を示す図であ
る。FIG. 2 is a diagram showing an example of temporal changes in voltage and current when a sample is dissolved by the method for dissolving a sample.
【図3】従来技術を説明するための図である。FIG. 3 is a diagram for explaining a conventional technique.
2…試料、4…陰極、27…気液分離器、35…溶液貯
留部、A,B…電解酸液、G…ガス、L…溶液。2 ... sample, 4 ... cathode, 27 ... gas-liquid separator, 35 ... solution storage
Retaining portion, A, B: electrolytic acid solution, G: gas, L: solution.
フロントページの続き (72)発明者 植村 健 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 (72)発明者 南 孝明 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 (56)参考文献 特開 平2−216444(JP,A) 特開 昭63−151853(JP,A) 特開 平8−122323(JP,A) 特開 平8−233708(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 1/28 G01N 21/73 Continued on the front page (72) Inventor Takeshi Uemura 2nd Higashicho, Kichijoin-miya, Minami-ku, Kyoto, Kyoto Inside (72) Inventor Takaaki Minami 2nd Higashi-cho, Kichijoin-miya, Minami-ku, Kyoto, Kyoto (56) References JP-A-2-216444 (JP, A) JP-A-63-151853 (JP, A) JP-A-8-122323 (JP, A) JP-A-8-233708 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) G01N 1/28 G01N 21/73
Claims (1)
れによって発生したガスと溶液とを気液分離管によって
分離して、この分離された溶液を試料溶液としてICP
分析計に送るようにしたICP分析に用いる試料の溶解
供給装置において、前記電気分解を行う際、電解酸液と
して塩酸・硝酸水溶液を用い、試料と電解酸液との間
に、0.8V〜2.8Vの範囲の定電圧を印加して定電
位電解するとともに、前記気液分離管の後段に、前記電
気分解によって得られた溶液を一旦貯留する溶液貯留部
を設けたことを特徴とするICP分析に用いる試料の溶
解供給装置。1. A sample is electrolyzed using an electrolytic acid solution, and a gas and a solution generated by the electrolysis are separated by a gas-liquid separation tube, and the separated solution is used as a sample solution in an ICP.
In the sample dissolution supply device used for ICP analysis, which is sent to an analyzer, when performing the electrolysis, a hydrochloric acid / nitric acid aqueous solution is used as an electrolytic acid solution, and 0.8 V to Apply a constant voltage in the range of 2.8V
Electrolysis, and at the subsequent stage of the gas-liquid separation tube,
Solution storage section for temporarily storing the solution obtained by gas decomposition
An apparatus for dissolving and supplying a sample used for ICP analysis, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25685895A JP3261288B2 (en) | 1995-09-09 | 1995-09-09 | Dissolution supply device for sample used for ICP analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25685895A JP3261288B2 (en) | 1995-09-09 | 1995-09-09 | Dissolution supply device for sample used for ICP analysis |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0979958A JPH0979958A (en) | 1997-03-28 |
JP3261288B2 true JP3261288B2 (en) | 2002-02-25 |
Family
ID=17298402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25685895A Expired - Fee Related JP3261288B2 (en) | 1995-09-09 | 1995-09-09 | Dissolution supply device for sample used for ICP analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3261288B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102621129A (en) * | 2012-04-18 | 2012-08-01 | 上海市毛麻纺织科学技术研究所 | Method for qualitatively and quantitatively detecting silver in silver fiber textile |
CN103323398A (en) * | 2013-06-08 | 2013-09-25 | 首钢总公司 | Maintenance method of inductively coupled plasma emission spectrometer |
JP2018131660A (en) * | 2017-02-16 | 2018-08-23 | アークレイ株式会社 | Electrolysis device |
-
1995
- 1995-09-09 JP JP25685895A patent/JP3261288B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0979958A (en) | 1997-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3416956C2 (en) | Measuring device for determining the activity or the concentration of ions in solutions | |
US7144735B2 (en) | Electrodialysis method and apparatus for trace metal analysis | |
JP2017156089A (en) | Electrolyte analyzer | |
JP3261288B2 (en) | Dissolution supply device for sample used for ICP analysis | |
US20190210897A1 (en) | Electrochemical analysis device for reagentless detection | |
DE3605476A1 (en) | METHOD AND DEVICE OF A FLOW ANALYSIS | |
JP3263578B2 (en) | Dissolution supply device for sample used for ICP analysis | |
JP2003130846A (en) | Minute amount metal continuous measuring device and method for semiconductor chemical | |
JP3686198B2 (en) | Inductively coupled plasma mass spectrometer | |
US7387720B2 (en) | Electrolytic method and apparatus for trace metal analysis | |
TWI410287B (en) | Liquid processing device and processing liquid supply method | |
JP2798134B2 (en) | On-line decomposition apparatus and decomposition method for aqueous hydrogen peroxide in semiconductor manufacturing process | |
CN214767535U (en) | Portable pipeline disinfection washing unit | |
Tomčík et al. | Sonoelectrochemistry in acoustically emulsified media: The detection of lead | |
DE10043494A1 (en) | Process for automatically determining the content of free chlorine in drinking water comprises placing two electrodes directly in the water and cyclically applying a material-specific cleaning potential to the cathode | |
JP3242518B2 (en) | Method and apparatus for measuring solution sample | |
CN114270185A (en) | Method and apparatus for the determination of at least one analyte species in an analyte solution | |
RU2045056C1 (en) | Device for determination of concentration of ions of heavy and toxic elements | |
JP2001255320A (en) | High-precision analysis of trace components in steel | |
CN102539301B (en) | Blood measuring apparatus | |
JP3610111B2 (en) | Electrolyte solution analyzer and electrolyte solution analysis method | |
DE19950879A1 (en) | Combined flow titrator used for carrying out volumetric as well as coulometric titrations in the chemical, biotechnology, pharmaceutical and food industries comprises two controllable pumps connected to an electrolytic cell | |
TWI251673B (en) | Method and apparatus for analyzing multiple species | |
JPS60138451A (en) | Quantitative analysis method of impurity in plating liquid | |
JPS63132170A (en) | Method for co-cleaning of pipeline of analysis instrument of the like |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011204 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071214 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091214 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091214 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |