[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3254771B2 - X-ray reduction projection exposure apparatus and method - Google Patents

X-ray reduction projection exposure apparatus and method

Info

Publication number
JP3254771B2
JP3254771B2 JP33075392A JP33075392A JP3254771B2 JP 3254771 B2 JP3254771 B2 JP 3254771B2 JP 33075392 A JP33075392 A JP 33075392A JP 33075392 A JP33075392 A JP 33075392A JP 3254771 B2 JP3254771 B2 JP 3254771B2
Authority
JP
Japan
Prior art keywords
optical system
ray
reduction projection
wafer
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33075392A
Other languages
Japanese (ja)
Other versions
JPH06177014A (en
Inventor
勝彦 村上
元英 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP33075392A priority Critical patent/JP3254771B2/en
Publication of JPH06177014A publication Critical patent/JPH06177014A/en
Application granted granted Critical
Publication of JP3254771B2 publication Critical patent/JP3254771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、X線リソグラフィーに
使用するX線縮小投影露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray reduction projection exposure apparatus used for X-ray lithography.

【0002】[0002]

【従来の技術】近年、半導体集積回路素子の微細化にと
もない、回折限界によって制限される光学系の解像力を
向上させるために、従来の紫外線の代りに、紫外線より
波長の短いX線を使用した縮小投影リソグラフィー技術
が開発されている。この技術に使用される露光装置は、
図2に示すように、X線源1、照明光学系2、反射マス
ク3、縮小投影光学系4、およびウェハ5から構成され
るものである。X線の光源1には、放射光またはレーザ
ープラズマX線源が使用される。照明光学系2は、斜入
射ミラーまたは多層膜ミラーおよびフィルターなどから
なり、光源1で発生したX線の中から所望の波長のX線
を取り出して反射マスク3上の必要な範囲を照明するも
のである。
2. Description of the Related Art In recent years, with the miniaturization of semiconductor integrated circuit elements, X-rays having a shorter wavelength than ultraviolet rays have been used instead of conventional ultraviolet rays in order to improve the resolution of an optical system limited by the diffraction limit. Reduction projection lithography techniques have been developed. The exposure equipment used for this technology is
As shown in FIG. 2, the apparatus comprises an X-ray source 1, an illumination optical system 2, a reflection mask 3, a reduction projection optical system 4, and a wafer 5. A radiation light or a laser plasma X-ray source is used as the X-ray light source 1. The illumination optical system 2 includes a grazing incidence mirror or a multilayer mirror, a filter, and the like, and extracts X-rays of a desired wavelength from X-rays generated by the light source 1 and illuminates a necessary range on the reflection mask 3. It is.

【0003】X線縮小投影リソグラフィーでは、X線を
反射する多層膜上に反射率の低い部分を設けてパターン
を形成した反射マスクが使用される。X線の波長域では
透明な物質が存在しないので、従来と同様の透過型のマ
スクを作製するためには、窒化シリコンなどのX線の吸
収の小さい物質からなる自立膜(メンブレン)の上に微
細なパターンを形成しなければならない。メンブレンに
よるX線の吸収を抑えるためにその厚さを0.1μm程
度以下にしなければならないので、この構造で大面積の
マスクを作製することは困難である。一方、反射マスク
の場合は、厚い基板上にパターンを形成するので大面積
化は容易である。これらの理由により、X線縮小投影露
光装置では透過型ではなく反射型のマスクが用いられて
いる。
[0003] In X-ray reduction projection lithography, a reflection mask is used in which a pattern is formed by providing a low-reflectance portion on a multilayer film that reflects X-rays. Since there is no transparent substance in the wavelength region of X-rays, in order to fabricate a transmission type mask similar to the conventional one, a self-standing film (membrane) made of a substance having a small absorption of X-rays such as silicon nitride is used. A fine pattern must be formed. In order to suppress the absorption of X-rays by the membrane, its thickness must be about 0.1 μm or less, so that it is difficult to manufacture a large-area mask with this structure. On the other hand, in the case of a reflective mask, a pattern is formed on a thick substrate, so that the area can be easily increased. For these reasons, the X-ray reduction projection exposure apparatus uses a reflection type mask instead of a transmission type mask.

【0004】図2において、反射マスク3で反射したX
線は、複数の多層膜ミラーで構成された縮小投影光学系
4によりウェハ5上に結像し、ウェハ5に塗布されたフ
ォトレジスト上にマスクパターンが縮小転写される。こ
のようなX線縮小投影露光装置で使用されるX線は、多
層膜反射鏡によって高い反射率の得られる、波長10〜
200オングストロームの、いわゆる軟X線である。軟
X線は大気中では吸収されて減衰するため、X線縮小投
影露光装置の光路は全て真空に保たれている。
In FIG. 2, X reflected by a reflection mask 3 is shown.
The lines are imaged on the wafer 5 by the reduction projection optical system 4 including a plurality of multilayer mirrors, and the mask pattern is reduced and transferred onto the photoresist applied to the wafer 5. X-rays used in such an X-ray reduction projection exposure apparatus have wavelengths of 10 to 10 at which high reflectivity is obtained by a multilayer reflector.
This is a so-called soft X-ray of 200 angstroms. Since soft X-rays are absorbed and attenuated in the atmosphere, all optical paths of the X-ray reduction projection exposure apparatus are kept in a vacuum.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述した従
来のX線縮小投影露光装置では、反射マスクへ入射した
X線は入射角と反射角とが等しくなるように鏡面反射す
るので、照明光学系と縮小投影光学系とが互いに干渉し
ないようにするために、反射マスクを照明する光線は反
射マスクに対して垂直ではなく必ず斜めに入射させなけ
ればならない。従って、反射マスクで反射した光線も反
射マスクの法線方向へ進行することはできず、反射マス
クの法線に対してある角度だけ傾いた方向へ進行する。
In the above-described conventional X-ray reduction projection exposure apparatus, the X-rays incident on the reflection mask are specularly reflected such that the incident angle and the reflection angle are equal to each other. In order to prevent interference between the projection optical system and the reduction projection optical system, the light beam illuminating the reflection mask must be incident not obliquely but obliquely on the reflection mask. Therefore, the light beam reflected by the reflection mask cannot travel in the normal direction of the reflection mask, but travels in a direction inclined by a certain angle with respect to the normal of the reflection mask.

【0006】一方、縮小投影露光装置には、焦点合わせ
を行うための、反射マスクとウェハの両方を縮小投影光
学系の光軸方向へ平行移動させる機構が必要である。
On the other hand, the reduction projection exposure apparatus needs a mechanism for performing parallel movement of both the reflection mask and the wafer in the optical axis direction of the reduction projection optical system for focusing.

【0007】しかしながら、従来のX線縮小投影露光装
置では、図2に示すように、焦点合せを行うために、反
射マスク3を縮小投影光学系4の光軸と平行に位置Aか
ら位置A’へ移動すると、反射マスク3で反射したX線
の主光線7は位置Bから破線で示す位置B’へ平行移動
するので、反射マスク3上の照明される領域が変化して
しまうという問題がある。さらに、縮小投影光学系4へ
入射するX線の主光線7が縮小投影光学系4の光軸から
ずれるので、解像力が低下してしまうという問題があ
る。
However, in the conventional X-ray reduction projection exposure apparatus, as shown in FIG. 2, in order to perform focusing, the reflection mask 3 is moved from position A to position A ′ in parallel with the optical axis of the reduction projection optical system 4. In this case, the principal ray 7 of the X-rays reflected by the reflection mask 3 moves in parallel from the position B to the position B 'indicated by the broken line, and thus there is a problem that the illuminated area on the reflection mask 3 changes. . Furthermore, since the principal ray 7 of the X-ray incident on the reduction projection optical system 4 is shifted from the optical axis of the reduction projection optical system 4, there is a problem that the resolving power is reduced.

【0008】本発明の目的は、焦点合せのために反射マ
スクを移動しても反射されたX線の主光線が不動となる
X線縮小投影露光装置を提供することにある。
It is an object of the present invention to provide an X-ray reduction projection exposure apparatus in which a reflected X-ray principal ray does not move even when a reflection mask is moved for focusing.

【0009】[0009]

【課題を解決するための手段】一実施例の構成を示す図
1に対応づけて本発明を説明すると、請求項1の発明
は、X線源1と、このX線源1から発するX線を反射マ
スク3上に照射する照明光学系2と、反射マスク3上に
形成されたパターンの像をウェハ5上に投影結像する縮
小投影光学系4と、X線源1、照明光学系2、反射マス
ク3、縮小投影光学系4およびウェハ5を真空空間中に
保持する真空容器とを備えたX線縮小投影露光装置に適
用される。そして、X線の光路上の反射マスク3の直前
または直後に、反射マスク3と平行に対向する折曲げミ
ラー8と、反射マスク3と折曲げミラー8とを保持して
縮小投影光学系4の光軸と平行に移動可能なステージ9
とを備え、これにより、上記目的を達成する。また、請
求項2のX線縮小投影露光装置は、縮小投影光学系4へ
入射するX線の主光線と縮小投影光学系4の光軸とを一
致させるようにしたものである。 請求項3の発明は、X
線源1から発せられたX線を照明光学系2に入射させ、
この照明光学系2から出射したX線を反射マスク3上に
照射し、この反射マスク3上に形成されたパターンの像
で反射されたX線を投影光学系4に入射させ、この投影
光学系4から出射したX線をウェハ5上に投影結像する
露光工程を有する、パターンが露光されたウェハの製造
方法に適用される。 そして、投影光学系4に入射させる
X線の主光線を投影光学系4の光軸に一致させる工程を
有する。 請求項4の発明は、X線源1から発せられたX
線を照明光学系2を介してパターンが形成された反射マ
スク3上に照射し、反射マスク3で反射されたX線を縮
小投影光学系4を介してウェハ5上に投影結像し、ウェ
ハ5を露光するX線縮小投影露光方法に適用される。
して、ウェハ5上にパターンの像を投影結像する際、縮
小投影光学系4に入射するX線の主光線と縮小投影光学
系4の光軸とが不一致の場合に、両者を一致させて投影
結像させる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIG. 1 showing the configuration of an embodiment. The invention of claim 1 is directed to an X-ray source 1 and an X-ray emitted from the X-ray source 1. Optical system 2 for irradiating light onto reflection mask 3, reduction projection optical system 4 for projecting and forming an image of a pattern formed on reflection mask 3 on wafer 5, X-ray source 1, illumination optical system 2 , A reflection mask 3, a reduction projection optical system 4, and a vacuum container for holding the wafer 5 in a vacuum space. Immediately before or immediately after the reflection mask 3 on the optical path of the X-ray, the bending mirror 8 facing in parallel with the reflection mask 3, and holding the reflection mask 3 and the bending mirror 8 to hold the reduction projection optical system 4 Stage 9 movable parallel to the optical axis
To achieve the above object. In addition,
The X-ray reduction projection exposure apparatus according to claim 2 is connected to the reduction projection optical system 4.
When the principal ray of the incident X-ray and the optical axis of the reduction projection optical system 4 are
It is made to match. The invention according to claim 3 is based on X
X-rays emitted from the radiation source 1 are made incident on the illumination optical system 2,
The X-rays emitted from the illumination optical system 2 are projected onto a reflection mask 3.
Irradiates the image of the pattern formed on the reflection mask 3
The X-rays reflected by the projection optical system 4 are incident on the projection optical system 4,
X-rays emitted from the optical system 4 are projected and imaged on the wafer 5
Manufacture of a wafer with an exposed pattern, including an exposure process
Apply to the method. Then, the light enters the projection optical system 4.
A step of matching the principal ray of the X-ray to the optical axis of the projection optical system 4
Have. According to the invention of claim 4, X-rays emitted from the X-ray source 1
A line is used as a reflection mask having a pattern formed through the illumination optical system 2.
Irradiates the disk 3 and reduces the X-rays reflected by the reflective mask 3
Projection image is formed on the wafer 5 via the small projection optical system 4, and the wafer
The method is applied to an X-ray reduction projection exposure method for exposing C5. So
When the image of the pattern is projected and formed on the wafer 5,
Principal ray of X-ray incident on small projection optical system 4 and reduction projection optics
When the optical axis of the system 4 does not match, the two are matched and projected.
Make an image.

【0010】[0010]

【作用】本発明のX線縮小投影露光装置では、照明光学
系2から出射した主光線は、互いに平行に対向して設置
された折曲げミラー8と反射マスク3とで反射されて縮
小投影光学系4へ入射する。従って、照明光学系2から
出射する主光線と縮小投影光学系4へ入射する主光線と
は互いに平行である。また、折曲げミラー8と反射マス
ク3とは同一のステージ9上に設置されており、このス
テージ9は縮小投影光学系4の光軸と平行に移動するの
で、このステージ9を動かして反射マスク3と縮小投影
光学系4との距離を変えても縮小投影光学系4へ入射す
る主光線は不動である。
In the X-ray reduction projection exposure apparatus according to the present invention, the chief ray emitted from the illumination optical system 2 is reflected by the bending mirror 8 and the reflection mask 3 which are installed in parallel and opposed to each other to reduce the projection light. The light enters the system 4. Therefore, the principal ray emitted from the illumination optical system 2 and the principal ray incident on the reduction projection optical system 4 are parallel to each other. The bending mirror 8 and the reflection mask 3 are set on the same stage 9, and the stage 9 moves parallel to the optical axis of the reduction projection optical system 4. Even if the distance between the projection optical system 3 and the reduction projection optical system 4 is changed, the principal ray incident on the reduction projection optical system 4 does not move.

【0011】なお、本発明の構成を説明する上記課題を
解決するための手段および作用の項では、本発明を分り
やすくするために実施例の図を用いたが、これにより本
発明が実施例に限定されるものではない。
In the means and means for solving the above-mentioned problems which explain the constitution of the present invention, the drawings of the embodiments are used to make it easier to understand the present invention. However, the present invention is not limited to this.

【0012】[0012]

【実施例】図1は一実施例の概略構成を示す図である。
なお、図2に示す従来の装置と同様な機器に対しては同
一の符号を付して相違点を中心に説明する。この実施例
では、反射マスク3と対向する位置に、反射マスク3と
平行に光線の方向を変えるための折曲げミラー8を設け
るとともに、反射マスク3と折曲げミラー8を並進ステ
ージ9上に設置する。なお、並進ステージ9は不図示の
機構により縮小投影光学系4の光軸と平行に移動可能で
ある。また、光源1、照明光学系2、反射マスク3、縮
小投影光学系4、ウェハ5、折曲げミラー8および並進
ステージ9は不図示の真空容器内に収納されている。
FIG. 1 is a diagram showing a schematic configuration of an embodiment.
It should be noted that the same devices as those in the conventional device shown in FIG. In this embodiment, a bending mirror 8 for changing the direction of light rays in parallel with the reflection mask 3 is provided at a position facing the reflection mask 3, and the reflection mask 3 and the bending mirror 8 are installed on a translation stage 9. I do. The translation stage 9 can be moved in parallel with the optical axis of the reduction projection optical system 4 by a mechanism (not shown). The light source 1, the illumination optical system 2, the reflection mask 3, the reduction projection optical system 4, the wafer 5, the bending mirror 8, and the translation stage 9 are housed in a vacuum vessel (not shown).

【0013】光源1から発したX線は、照明光学系2を
介して折曲げミラー8へ入射する。折曲げミラー8で反
射した光線は反射マスク3で反射した後、縮小投影光学
系4へ入射する。このとき、折曲げミラー8と反射マス
ク3は互いに平行に対向して設置されているので、照明
光学系2から出射したX線の主光線6の方向と、折曲げ
ミラー8および反射マスク3で反射して縮小投影光学系
4へ入射するX線の主光線7の方向とは互いに平行であ
る。ここで、縮小投影光学系4へ入射するX線の主光線
7は、縮小投影光学系4の光軸と一致するように予め調
整しておく。
X-rays emitted from the light source 1 enter the bending mirror 8 via the illumination optical system 2. The light beam reflected by the bending mirror 8 is reflected by the reflection mask 3 and then enters the reduction projection optical system 4. At this time, since the bending mirror 8 and the reflection mask 3 are installed in parallel and opposed to each other, the direction of the principal ray 6 of the X-ray emitted from the illumination optical system 2 and the direction of the bending mirror 8 and the reflection mask 3 are different. The directions of the principal rays 7 of the X-rays that are reflected and enter the reduction projection optical system 4 are parallel to each other. Here, the principal ray 7 of the X-ray incident on the reduction projection optical system 4 is adjusted in advance so as to coincide with the optical axis of the reduction projection optical system 4.

【0014】このX線縮小投影露光装置において、焦点
位置調整を行うために反射マスク3と縮小投影光学系4
の距離を変える場合には、並進ステージ9を例えば図中
の位置Aから位置A’へ移動させる。この並進ステージ
9は縮小投影光学系4の光軸と平行に移動するので、位
置A’へ移動しても縮小投影光学系4へ入射する主光線
7は不動である。
In this X-ray reduction projection exposure apparatus, the reflection mask 3 and the reduction projection optical system 4 are used to adjust the focal position.
Is changed, the translation stage 9 is moved, for example, from position A in the figure to position A '. Since the translation stage 9 moves in parallel with the optical axis of the reduction projection optical system 4, even if the translation stage 9 moves to the position A ', the principal ray 7 incident on the reduction projection optical system 4 does not move.

【0015】なお、本実施例では折曲げミラー8のあと
に反射マスク3を配置したが、この順序を逆にしてもよ
い。
In this embodiment, the reflection mask 3 is arranged after the bending mirror 8, but this order may be reversed.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、X
線の光路上の反射マスクの直前または直後に反射マスク
と平行に対向する折曲げミラーと、反射マスクおよび折
曲げミラーを保持して縮小投影光学系の光軸と平行に移
動可能なステージとを設けたので、反射マスクを光軸方
向に移動させても縮小投影光学系へ入射するX線の主光
線が不動となり、常に反射マスク上の一定の領域が照明
できるとともに、常に安定な解像力が得られる。また、
X線縮小投影露光装置では、一般にマスク上での照明光
強度の均一性を確保するために、照明光学系による光源
の像を縮小投影光学系の入射瞳面に結像させる、いわゆ
るケーラー照明が用いられる。本発明によれば、図1か
ら明らかなように、並進ステージ9を動かしても照明光
学系2の出射瞳から縮小投影光学系4までの距離が変わ
らないので、ケーラー照明の条件が変化しないという効
果がある。さらに、図2に示す従来のX線縮小投影露光
装置では、光源1、照明光学系2および縮小投影光学系
4がすべて反射マスク3に対して同じ側に配置されるの
で、これらが互いに干渉し、配置上の制約が多くなって
広い設置スペースが必要となる。これに対して本発明に
よれば、図1に示すように光学系全体を一本の細長いラ
イン状に配置できるため、設置スペースを小さくでき
る。特に、放射光を光源とする場合には、放射光リング
には放射状に何本ものビームラインが設置され、それぞ
れのビームラインに各一台づつX線縮小投影露光装置が
取り付けられることになるので、本発明のように装置を
細長いライン状に構成できるということは、一台の放射
光リングに多数のX線縮小投影露光装置を設置できると
いうことになり、光源の利用効率が高まり、その結果、
光源にかかるコストを相対的に低減させることができ
る。
As described above, according to the present invention, X
A folding mirror that faces parallel to the reflection mask immediately before or immediately after the reflection mask on the optical path of the line, and a stage that can hold the reflection mask and the folding mirror and move parallel to the optical axis of the reduction projection optical system. With this arrangement, even if the reflection mask is moved in the direction of the optical axis, the principal ray of the X-ray incident on the reduction projection optical system becomes immobile, so that a certain area on the reflection mask can always be illuminated and a stable resolving power can always be obtained. Can be Also,
An X-ray reduction projection exposure apparatus generally employs a so-called Koehler illumination in which an image of a light source by an illumination optical system is formed on an entrance pupil plane of the reduction projection optical system in order to ensure uniformity of illumination light intensity on a mask. Used. According to the present invention, as is apparent from FIG. 1, even if the translation stage 9 is moved, the distance from the exit pupil of the illumination optical system 2 to the reduction projection optical system 4 does not change, so that the Koehler illumination condition does not change. effective. Further, in the conventional X-ray reduction projection exposure apparatus shown in FIG. 2, since the light source 1, the illumination optical system 2, and the reduction projection optical system 4 are all disposed on the same side with respect to the reflection mask 3, they interfere with each other. However, there are many restrictions on arrangement and a large installation space is required. On the other hand, according to the present invention, as shown in FIG. 1, the entire optical system can be arranged in one elongated line, so that the installation space can be reduced. In particular, when using radiated light as a light source, a number of beam lines are radially installed on the radiated light ring, and each beam line is equipped with one X-ray reduction projection exposure apparatus. The fact that the apparatus can be configured in an elongated line shape as in the present invention means that a large number of X-ray reduction projection exposure apparatuses can be installed in one radiation light ring, and the utilization efficiency of the light source is increased, and as a result, ,
The cost of the light source can be relatively reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の構成を示す図。FIG. 1 is a diagram showing a configuration of one embodiment.

【図2】従来のX線縮小投影露光装置の構成を示す図。FIG. 2 is a diagram showing a configuration of a conventional X-ray reduction projection exposure apparatus.

【符号の説明】[Explanation of symbols]

1 X線源 2 照明光学系 3 反射マスク 4 縮小投影光学系 5 ウェハ 6,7 主光線 8 折曲げミラー 9 並進ステージ DESCRIPTION OF SYMBOLS 1 X-ray source 2 Illumination optical system 3 Reflection mask 4 Reduction projection optical system 5 Wafer 6,7 Principal ray 8 Bending mirror 9 Translation stage

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−62231(JP,A) 特開 平2−174111(JP,A) 特開 平3−4200(JP,A) 特開 平5−343283(JP,A) 特開 昭63−219125(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/30 531 A G03F 7/20 503 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-63-62231 (JP, A) JP-A-2-174111 (JP, A) JP-A-3-4200 (JP, A) JP-A-5-205 343283 (JP, A) JP-A-63-219125 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/30 531 A G03F 7/20 503

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】X線源と、 このX線源から発するX線を反射マスク上に照射する照
明光学系と、 前記反射マスク上に形成されたパターンの像をウェハ上
に投影結像する縮小投影光学系と、 前記X線源、前記照明光学系、前記反射マスク、前記縮
小投影光学系および前記ウェハを真空空間中に保持する
真空容器とを備えたX線縮小投影露光装置において、 X線の光路上の前記反射マスクの直前または直後に、前
記反射マスクと平行に対向する折曲げミラーと、 前記反射マスクと前記折曲げミラーとを保持して前記縮
小投影光学系の光軸と平行に移動可能なステージとを備
えることを特徴とするX線縮小投影露光装置。
1. An X-ray source, an illumination optical system for irradiating an X-ray emitted from the X-ray source onto a reflective mask, and a reduction image for projecting an image of a pattern formed on the reflective mask onto a wafer An X-ray reduction projection exposure apparatus comprising: a projection optical system; and an X-ray source, the illumination optical system, the reflection mask, the reduction projection optical system, and a vacuum container that holds the wafer in a vacuum space. Immediately before or immediately after the reflection mask on the optical path, a bending mirror facing in parallel with the reflection mask, and holding the reflection mask and the bending mirror in parallel with the optical axis of the reduction projection optical system. An X-ray reduction projection exposure apparatus, comprising: a movable stage.
【請求項2】(2) 請求項1に記載のX線縮小投影露光装置に2. The X-ray reduction projection exposure apparatus according to claim 1,
おいて、And 前記縮小投影光学系へ入射するX線の主光線と前記縮小The principal ray of X-rays incident on the reduction projection optical system and the reduction
投影光学系の光軸とを一致させることを特徴とするX線X-rays having the same optical axis as the projection optical system
縮小投影露光装置。Reduction projection exposure equipment.
【請求項3】(3) X線源から発せられたX線を照明光学系にX-rays emitted from X-ray source to illumination optics
入射させ、この照明光学系から出射したX線を反射マスX-rays emitted from this illumination optical system
ク上に照射し、この反射マスク上に形成されたパターンPattern on the reflective mask
の像で反射されたX線を投影光学系に入射させ、この投The X-rays reflected by the image of
影光学系から出射したX線をウェハ上に投影結像する露A dew that projects and forms X-rays emitted from the shadow optical system on the wafer.
光工程を有する、パターンが露光されたウェハの製造方Manufacturing method of exposed wafer with patterning process
法において、In the law, 前記投影光学系に入射させるX線の主光線を前記投影光The X-ray principal ray incident on the projection optical system is the projection light
学系の光軸に一致させる工程を有することを特徴とするCharacterized by having a process to match the optical axis of the academic system
ウェハの製造方法。Wafer manufacturing method.
【請求項4】(4) X線源から発せられたX線を照明光学系をX-rays emitted from an X-ray source can
介してパターンが形成された反射マスク上に照射し、前Illuminate the patterned mask through the reflective mask
記反射マスクで反射されたX線を縮小投影光学系を介しX-rays reflected by the reflection mask are transmitted through a reduction projection optical system.
てウェハ上に投影結像し、前記ウェハを露光するX線縮X-ray reduction for projecting an image on a wafer and exposing the wafer
小投影露光方法において、In the small projection exposure method, 前記ウェハ上にパターンの像を投影結像する際、前記縮When projecting an image of a pattern on the wafer,
小投影光学系に入射するX線の主光線と前記縮小投影光X-ray chief ray incident on the small projection optical system and the reduced projection light
学系の光軸とが不一致の場合に、両者を一致させて投影When the optical axis of the academic system does not match, the two are matched and projected.
結像させることを特徴とするX線縮小投影露光方法。An X-ray reduction projection exposure method comprising forming an image.
JP33075392A 1992-12-10 1992-12-10 X-ray reduction projection exposure apparatus and method Expired - Fee Related JP3254771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33075392A JP3254771B2 (en) 1992-12-10 1992-12-10 X-ray reduction projection exposure apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33075392A JP3254771B2 (en) 1992-12-10 1992-12-10 X-ray reduction projection exposure apparatus and method

Publications (2)

Publication Number Publication Date
JPH06177014A JPH06177014A (en) 1994-06-24
JP3254771B2 true JP3254771B2 (en) 2002-02-12

Family

ID=18236170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33075392A Expired - Fee Related JP3254771B2 (en) 1992-12-10 1992-12-10 X-ray reduction projection exposure apparatus and method

Country Status (1)

Country Link
JP (1) JP3254771B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3706691B2 (en) * 1996-08-26 2005-10-12 キヤノン株式会社 X-ray reduction projection exposure apparatus and semiconductor device manufacturing method using the same

Also Published As

Publication number Publication date
JPH06177014A (en) 1994-06-24

Similar Documents

Publication Publication Date Title
JP4563986B2 (en) Substrate with mark on substantially transparent process layer, device manufacturing method
JP3652296B2 (en) Optical device
KR101572930B1 (en) Radiation system, radiation collector, radiation beam conditioning system, spectral purity filter for a radiation system and method of forming a spectral purity filter
JPH11249313A (en) Annular surface reduction projection optical system
JPH09330878A (en) X-ray reduction aligner and method for manufacturing device using the same
JP2005086148A (en) Extreme ultraviolet ray optical system and exposure device
JP2001284240A (en) Illuminating optical system, projection exposure system equipped therewith, method of manufacturing device by use of projection exposure system
US6225027B1 (en) Extreme-UV lithography system
JPH11251226A (en) X-ray projection aligner
JP3605055B2 (en) Illumination optical system, exposure apparatus and device manufacturing method
JP2004343082A (en) Lithographic projection apparatus with condenser including concave face and convex face
US6441885B2 (en) Low thermal distortion extreme-UV lithography reticle
TW201017345A (en) Collector assembly, radiation source, lithographic apparatus, and device manufacturing method
JP3605053B2 (en) Illumination optical system, exposure apparatus and device manufacturing method
JP3336361B2 (en) Inspection apparatus and inspection method for reflection type X-ray mask for reduction projection exposure
US7295327B2 (en) Measuring apparatus and exposure apparatus having the same
US6927887B2 (en) Holographic illuminator for synchrotron-based projection lithography systems
JPH11219891A (en) Mask check method and device
JP3392034B2 (en) Illumination device and projection exposure apparatus using the same
JP3254771B2 (en) X-ray reduction projection exposure apparatus and method
JP4424748B2 (en) Lithographic apparatus, device manufacturing method and radiation system
JP2001110713A (en) Reflection optical element, lighting optical device having the same, projection aligner, and device manufacturing method
JP3371510B2 (en) Illumination device and exposure device
JP3189528B2 (en) X-ray projection exposure equipment
JP3521506B2 (en) Illumination device and exposure device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees