[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3249493B2 - Cutting tools - Google Patents

Cutting tools

Info

Publication number
JP3249493B2
JP3249493B2 JP19725499A JP19725499A JP3249493B2 JP 3249493 B2 JP3249493 B2 JP 3249493B2 JP 19725499 A JP19725499 A JP 19725499A JP 19725499 A JP19725499 A JP 19725499A JP 3249493 B2 JP3249493 B2 JP 3249493B2
Authority
JP
Japan
Prior art keywords
steel
equivalent circular
circular diameter
type carbide
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19725499A
Other languages
Japanese (ja)
Other versions
JP2000084704A (en
Inventor
宏地 天野
祐司 島谷
清 中河
俊一 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27327355&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3249493(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP19725499A priority Critical patent/JP3249493B2/en
Publication of JP2000084704A publication Critical patent/JP2000084704A/en
Application granted granted Critical
Publication of JP3249493B2 publication Critical patent/JP3249493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】硬質のMC型炭化物を含む高
速度工具鋼を刃先部に用いたホブ、エンドミル等の切削
工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tool such as a hob and an end mill using a high-speed tool steel containing hard MC type carbide for a cutting edge.

【0002】[0002]

【従来の技術】ホブ、エンドミルに代表される切削工具
用材料としては、高速度工具鋼及び超硬合金が一般的で
ある。切削工具用の高速度工具鋼として、高硬度、耐摩
耗性、耐熱性を持たせるため、Vを2%以上含有させた
ものが開発されている。一方、超硬合金は非常に硬質で
はあるが反面脆いため、高速度工具鋼に比較し、耐摩耗
性や耐熱性は非常に優れるが、被研削性や耐衝撃性は劣
り、さらに材料費、加工費とも高価なため、品質の信頼
性、経済性の面で実際の使用範囲は限定される。そこ
で、断続切削を行うホブは、ほとんどのものが高速度工
具鋼製であり、一部のみが超硬合金製となっている。
2. Description of the Related Art High-speed tool steels and cemented carbides are generally used as cutting tool materials such as hobbs and end mills. As high-speed tool steel for cutting tools, those containing V in an amount of 2% or more have been developed in order to impart high hardness, wear resistance and heat resistance. On the other hand, cemented carbide is very hard but brittle, so it has very good wear resistance and heat resistance compared to high speed tool steel, but has poor grindability and impact resistance. Since the processing cost is high, the actual range of use is limited in terms of quality reliability and economy. Therefore, most of the hobbs that perform intermittent cutting are made of high-speed tool steel, and only some of them are made of cemented carbide.

【0003】[0003]

【発明が解決しようとする課題】かかる切削工具用とし
て、高速度工具鋼は、Vを主成分とする硬質のMC型炭
化物を富化するため、Vを通常2%以上含有している。
しかし、Vが3%以上ではこのMC型炭化物は従来の溶
製高速度工具鋼では、V含有量が多いほど粗大化や細長
い角形化をし易く、被研削性が悪化するばかりでなく、
靱性が低下し、MC型炭化物を破壊起点とした刃先部の
チッピング、破損を生じ易いという問題があった。
For such cutting tools, high-speed tool steels usually contain 2% or more of V in order to enrich hard MC-type carbides mainly containing V.
However, when the V content is 3% or more, this MC type carbide is more likely to be coarsened and elongated square as the V content is larger in the conventional ingot-melted high-speed tool steel, and not only is the grindability deteriorated,
There has been a problem that the toughness is reduced and chipping and breakage of the cutting edge portion, which originates from MC type carbide, is likely to occur.

【0004】また、粉末高速度工具鋼では、MC型炭化
物が微細になり過ぎ、耐摩耗性が不足し、刃先の大きな
摩耗を生じ易く、材料が高価な割に工具寿命が短かいと
いう問題があった。
[0004] Further, in the powdered high-speed tool steel, there is a problem that the MC type carbide is too fine, wear resistance is insufficient, large wear of the cutting edge is liable to occur, and the tool life is short for the expensive material. there were.

【0005】また、湿式加工用ホブの場合は、初期は刃
先部の全面がPVDによるチタン系もしくはチタン−合
金系セラミックコーティングを施されているが、再研削
後はすくい面のコーティングは完全に除去された状態と
なるため、高速度工具鋼自体の耐熱性、耐摩耗性が要求
される。
In the case of a hob for wet processing, the entire cutting edge is initially coated with a titanium-based or titanium-alloy-based ceramic coating by PVD, but after re-grinding, the coating on the rake face is completely removed. Therefore, the high-speed tool steel itself is required to have heat resistance and wear resistance.

【0006】さらに、切削油不要の乾式加工用ホブで
は、摩耗、チッピング、破損を防止するためには、硬質
で、断続切削の衝撃に耐え得る靱性、さらに耐熱性に優
れた材料と、耐摩耗性、耐熱性、耐酸化性および潤滑性
に優れたコーティング膜が必要であり、尚かつ、コーテ
ィング膜との相性の良い材料が要求されている。
Further, in the hob for dry machining which does not require cutting oil, in order to prevent abrasion, chipping and breakage, a material which is hard, tough enough to withstand the impact of intermittent cutting, and excellent in heat resistance, and There is a need for a coating film having excellent heat resistance, heat resistance, oxidation resistance, and lubricity, and a material having good compatibility with the coating film is required.

【0007】本発明の課題は上記問題点に鑑みて、湿
式、乾式に限らず刃先部の摩耗、チッピングの少ない材
料を用いた切削工具、さらには耐熱性に優れ、コーティ
ング膜との相性のよい材料を用いた切削工具を提供する
ことである。
SUMMARY OF THE INVENTION In view of the above problems, the object of the present invention is not limited to a wet type and a dry type, but also a cutting tool using a material with less wear of the cutting edge and less chipping, and further, has excellent heat resistance and good compatibility with a coating film. An object of the present invention is to provide a cutting tool using a material.

【0008】[0008]

【課題を解決するための手段】本発明者等は、種々の高
速度工具鋼を用いたソリッドホブ、エンドミルを対象に
実験を行った結果、刃先部の被研削性、靱性、耐チッピ
ング性、耐摩耗性を兼ね備えた切削工具を得るために
は、硬質のMC型炭化物の面積率を適正範囲に限定し、
かつ、MC型炭化物の形状を球形に近づけるよう長径短
径比をできる限り大きな値に限定することが重要である
ことを知得した。即ち、Vが2〜4%かつCoが7〜1
0%、又はVが4〜6%かつCoが4〜9%を含む高速
度工具鋼中のMC型炭化物の最大等価円直径が5〜14
μmであり、さらに、等価円直径が5〜14μmのMC
型炭化物の鍛造、圧延軸と平行する断面での面積率が3
〜8%であり、かつ、MC型炭化物の長径短径比を0.
3以上にすることが必要であることを知得した。また、
この切削工具用鋼は、PVDによるチタン−合金系セラ
ミックコーティングの複合膜との相性が良く、湿式加工
よりも乾式加工において、さらに優れた性能を発揮する
ことを知得した。なお、MC型炭化物の等価円直径と
は、MC型炭化物の粒子断面の面積を円の面積として置
き換えた場合の円の直径をいう。また、MC型炭化物の
最大等価円直径とは、MC型炭化物のうち最大の炭化物
の等価円直径をいう。
The present inventors have conducted experiments on solid hobs and end mills using various high-speed tool steels. As a result, the grindability, toughness, chipping resistance, and chipping resistance of the cutting edge are improved. In order to obtain a cutting tool that also has wear properties, the area ratio of hard MC type carbide is limited to an appropriate range,
In addition, it has been found that it is important to limit the ratio of the major axis to the minor axis to a value as large as possible so that the shape of the MC type carbide approaches a spherical shape. That is, V is 2-4% and Co is 7-1.
0% or the maximum equivalent circular diameter of MC type carbide in high speed tool steel containing 4 to 6% V and 4 to 9% Co is 5 to 14%.
MC having an equivalent circular diameter of 5 to 14 μm
Area ratio of cross section parallel to forging and rolling axis of die carbide is 3
-8%, and the ratio of the major axis to the minor axis of the MC type carbide is 0.1%.
I learned that it is necessary to make it 3 or more. Also,
It has been found that this cutting tool steel has good compatibility with the composite film of the titanium-alloy-based ceramic coating by PVD, and exhibits more excellent performance in dry processing than in wet processing. The equivalent circular diameter of the MC type carbide refers to the diameter of the circle when the area of the cross section of the particle of the MC type carbide is replaced by the area of the circle. The maximum equivalent circular diameter of the MC type carbide refers to the equivalent circular diameter of the largest carbide among the MC type carbides.

【0009】かかる知得に基づいて本発明の第1発明に
おいては、高速度工具鋼製の切刃を有する切削工具にお
いて、前記高速度工具鋼は、重量%で、C:0.6 〜1.8
%, Si:1.2%以下, Mn:0.5%以下, Cr:3.5〜5.0 %, M
o:10 %以下, W:21%以下, を含み、さらに重量%で、
V:2 〜4 %, Co:7〜10%を含み、残余がFe及び不可避不
純物よりなり、刃先部鋼中のMC型炭化物粒のうち最大
の炭化物粒の粒子断面の面積を円の面積として置き換え
た場合の円の直径である等価円直径のうちの最大の等価
円直径である最大等価円直径が 5〜14μmであって、か
つ、等価円直径が5〜14μmの前記MC型炭化物粒の
粒子断面の長径短径比が0.3 以上であることを特徴とす
る切削工具を提供することによって上記課題を解決し
た。
[0009] Based on this knowledge, in the first invention of the present invention, in a cutting tool having a cutting edge made of high-speed tool steel, the high-speed tool steel is C: 0.6 to 1.8 by weight%.
%, Si: 1.2% or less, Mn: 0.5% or less, Cr: 3.5 to 5.0%, M
o: 10% or less, W: 21% or less, and by weight%
V: 2 to 4%, Co: 7 to 10%, with the balance being Fe and unavoidable impurities, the area of the cross section of the largest carbide grain among the MC type carbide grains in the cutting edge steel is defined as the area of a circle. The maximum equivalent circular diameter of the equivalent circular diameter, which is the diameter of the circle in the case of replacement, is the maximum equivalent circular diameter of 5 to 14 μm, and the equivalent circular diameter of the MC type carbide particles of 5 to 14 μm. The above problem has been solved by providing a cutting tool characterized in that the ratio of the major axis to the minor axis of the particle cross section is 0.3 or more.

【0010】また、高速度工具鋼製の切刃を有する切削
工具において、前記高速度工具鋼は、重量%で、C:0.6
〜1.8 %, Si:1.2%以下, Mn:0.5%以下, Cr:3.5〜5.0
%,Mo:10 %以下, W:21%以下, を含み、さらに重量%
で、V:4 〜6 %, Co:4〜9 %を含み、残余がFe及び不可
避不純物よりなり、刃先部鋼中のMC型炭化物粒のうち
最大の炭化物粒の粒子断面の面積を円の面積として置き
換えた場合の円の直径である等価円直径のうちの最大の
等価円直径である最大等価円直径が 5〜14μmであっ
て、かつ、等価円直径が5〜14μmの前記MC型炭化
物粒の粒子断面の長径短径比、即ち前記MC型炭化物粒
のいずれか一の粒子断面の短径を長径で割った比率、が
0.3 以上であることを特徴とする切削工具としてもよ
い。
[0010] In a cutting tool having a cutting edge made of high-speed tool steel, the high-speed tool steel has a weight percentage of C: 0.6.
~ 1.8%, Si: 1.2% or less, Mn: 0.5% or less, Cr: 3.5 ~ 5.0
%, Mo: 10% or less, W: 21% or less, and further weight%
V: 4 to 6%, Co: 4 to 9%, with the balance being Fe and unavoidable impurities, the area of the cross section of the largest carbide grain among MC type carbide grains in the steel at the cutting edge is defined as a circle. The MC type carbide having a maximum equivalent circular diameter of 5 to 14 μm, which is the largest equivalent circular diameter among equivalent circular diameters which are the diameters of circles when replaced as an area, and an equivalent circular diameter of 5 to 14 μm. The ratio of the major axis to the minor axis of the particle cross section of the grains, that is, the ratio obtained by dividing the minor axis of the particle section of any one of the MC-type carbide grains by the major axis,
It is good also as a cutting tool characterized by being 0.3 or more.

【0011】好ましくは、等価円直径が 5〜14μmのM
C型炭化物粒の鍛造、圧延軸と平行する粒子断面での面
積率が 3〜8 %であることを特徴とする切削工具として
もよい。尚、MC型炭化物粒の鍛造、圧延軸と平行する
粒子断面とは、例えば高速度工具鋼の丸鋼又は角鋼につ
いていえば、丸鋼又は角鋼の軸方向即ち長手方向に沿っ
て切断した粒子断面である。実際の光学画像測定マイク
ロスコープでは、面積率は、マイクロスコープのスクリ
ーンに現れる、等価円直径が5〜14μmの各MC型炭
化物粒の粒子断面の面積を全部加算した価を、スクリー
ン自身の面積で割った価となる。さらに、切削工具の少
なくとも刃先表面に、PVDによるチタン系もしくはチ
タン−合金系セラミックコーティングの一種または二種
以上の複合膜を施すことにより、より耐摩耗性、耐チッ
ピング性が向上する。又、かかる切削工具は乾式加工に
より適している。
Preferably, M having an equivalent circular diameter of 5 to 14 μm
The cutting tool may be characterized in that the area ratio of the C-type carbide grains in the cross section of the grains parallel to the forging and rolling axes is 3 to 8%. In addition, forging of MC type carbide grains, the grain cross section parallel to the rolling axis is, for example, a grain cross section cut along the axial direction of the round steel or square steel, that is, the longitudinal direction of a round steel or a square steel of high-speed tool steel. It is. In an actual optical image measurement microscope, the area ratio is the sum of the area of the particle cross section of each MC type carbide particle having an equivalent circular diameter of 5 to 14 μm, which appears on the screen of the microscope, and the area of the screen itself. It will be divided. Furthermore, by applying one or more composite films of titanium-based or titanium-alloy-based ceramic coating by PVD to at least the cutting edge surface of the cutting tool, wear resistance and chipping resistance are further improved. Such cutting tools are also more suitable for dry machining.

【0012】さらに好ましくは、前記高速度工具鋼は、
エレクトロスラグ再溶解法により、不活性雰囲気による
2 、N2 を含むガス成分の溶鋼への侵入を防止し、か
つ溶解条件:溶解速度;400 〜800 kg/h、鋼塊外径を電
極外径で割った比率を 1.2〜1.7 、に保持し、前記MC
型炭化物粒のサイズを制御して製造される。
More preferably, the high-speed tool steel comprises:
The electroslag remelting method prevents gas components including O 2 and N 2 from entering the molten steel due to an inert atmosphere, and dissolution conditions: dissolution rate: 400 to 800 kg / h, and the outer diameter of the steel ingot is set outside the electrode. The ratio divided by the diameter is kept at 1.2 to 1.7, and the MC
It is manufactured by controlling the size of the type carbide grains.

【0013】(作用)以下に、本発明切削工具の刃先部
における高速度工具鋼中のMC型炭化物の最大等価円直
径、鍛造、圧延軸と平行する断面でのMC型炭化物の面
積率および長径短径比を上記に限定した理由を述べる。
刃先部鋼中のMC型炭化物の最大等価円直径が5μm未
満の粉末高速度工具鋼を用いた切削工具では、凝着摩耗
や酸化摩耗によりMC型炭化物が素地と共に除去され易
いため、摩耗し易く工具寿命が短い。
(Action) The maximum equivalent circular diameter of the MC type carbide in the high-speed tool steel at the cutting edge of the cutting tool of the present invention, the area ratio and the major axis of the MC type carbide in a cross section parallel to the forging and rolling axes are described below. The reason for limiting the minor axis ratio to the above will be described.
In cutting tools using powdered high-speed tool steel with a maximum equivalent circular diameter of MC type carbide in the cutting edge steel of less than 5 μm, the MC type carbide is easily removed together with the base material by cohesive wear or oxidative wear. Short tool life.

【0014】一方、刃先部鋼中のMC型炭化物の最大等
価円直径が14μmを超え、また、刃先部鋼中の等価円
直径が5〜14μmのMC型炭化物の面積率が8%を超
えると、非常に脆くなり、MC型炭化物を破壊起点とし
たチッピングを起こし易くなる。特に、MC型炭化物の
形状が長径短径比で0.3未満の粗大で細長い角形を呈
する場合は、研削加工し難い上に、さらにチッピングを
起こし易くなり、工具破損の原因となる。一方、MC型
炭化物の面積率が3%未満の場合は非常に摩耗し易くな
り、工具寿命が短くなる。したがって、刃先部鋼中のM
C型炭化物の最大等価円直径を5〜14μmとし、等価
円直径が5〜14μmのMC型炭化物の鍛造、圧延軸と
平行する断面での面積率を3〜8%に限定し、かつ、長
径短径比を0.3以上に限定した。この作用について
は、溶製高速度工具鋼、粉末高速度工具鋼を問わず全て
の高速度工具鋼で同様に得られる。
On the other hand, when the maximum equivalent circular diameter of the MC type carbide in the cutting edge steel exceeds 14 μm, and the area ratio of the MC type carbide having the equivalent circular diameter of 5 to 14 μm in the cutting edge steel exceeds 8%. , And become very brittle, and easily cause chipping with the MC type carbide as a fracture starting point. In particular, when the MC type carbide has a coarse and long rectangular shape with a ratio of major axis to minor axis of less than 0.3, it is difficult to grind and chipping is more likely to occur, causing tool breakage. On the other hand, when the area ratio of the MC type carbide is less than 3%, the wear becomes extremely easy, and the tool life is shortened. Therefore, M in the steel at the cutting edge
The maximum equivalent circular diameter of the C-type carbide is set to 5 to 14 μm, and the area ratio of the MC type carbide having an equivalent circular diameter of 5 to 14 μm in a cross section parallel to the forging and rolling axis is limited to 3 to 8%, and the long diameter is set. The minor axis ratio was limited to 0.3 or more. This effect can be similarly obtained for all high-speed tool steels, regardless of whether they are smelted high-speed tool steel or powdered high-speed tool steel.

【0015】尚、Co重量比を4〜10%に限定した理
由は、Coが多いほど鋼の耐熱性は向上し、切削工具材
料としての耐熱性を持たせるためにはCoが最低4%必
要であるが、10%を超えると靱性が低下し、チッピン
グや割れ等の工具破損を起こし易くなるためである。ま
た、Vが2〜4%では靭性への影響が少ないため、Co
重量比を7〜10%に限定した。また、Vが4〜6%で
は靭性が下がるため、Co重量比を4〜9%に限定し
た。CはMC型炭化物を形成し、耐磨耗性を改善する。
しかしCの量があまりに多いと靱性が低下する。そこ
で、Cの重量比を0.6 〜1.8 %に限定した。Si 及びM
n は脱酸剤として添加するが、Si 及びMn の量があま
りに多いと靱性が低下する。そこで、Si 及びMn の重
量比をSi :1.2%以下, Mn :0.5%以下に限定した。C
r は焼き入れ性を高めるため 3.5〜5.0 %添加される。
Cr が 3.5%より少ないと上記効果がないし、5.0 %を
超えると全体の靭性を低下させる。Mo :10 %以下、W
21%以下としたが、Mo 及びWはM6 C型炭化物を形成
し耐磨耗性を改善する。しかしMo 及びWの量があまり
に多いと靱性が低下する。
The reason that the Co weight ratio is limited to 4 to 10% is that the more Co is, the more the heat resistance of the steel is improved, and at least 4% of Co is required to have heat resistance as a cutting tool material. However, if it exceeds 10%, the toughness is reduced, and tool breakage such as chipping and cracking is likely to occur. When V is 2 to 4%, the effect on toughness is small.
The weight ratio was limited to 7-10%. Further, since the toughness decreases when V is 4 to 6%, the Co weight ratio is limited to 4 to 9%. C forms MC type carbides and improves abrasion resistance.
However, if the amount of C is too large, the toughness decreases. Therefore, the weight ratio of C is limited to 0.6 to 1.8%. Si and M
n is added as a deoxidizing agent, but if the amounts of Si and Mn are too large, the toughness decreases. Therefore, the weight ratio of Si and Mn was limited to Si: 1.2% or less and Mn: 0.5% or less. C
r is added at 3.5 to 5.0% to enhance hardenability.
If the Cr content is less than 3.5%, the above effect is not obtained, and if it exceeds 5.0%, the overall toughness is reduced. Mo: 10% or less, W
Although not more than 21%, Mo and W form M 6 C-type carbides and improve wear resistance. However, if the amounts of Mo and W are too large, the toughness is reduced.

【0016】[0016]

【実施例】次に本発明の実施例について説明する。表1
は本発明鋼7乃至10、比較鋼1乃至6にて製作したソ
リッドホブ、ラフィングエンドミルの化学成分及びMC
型炭化物の、最大等価円直径(μm)、等価円直径5〜
14μmの面積率(鍛造、圧延軸と平行する断面での面
積率%)、等価円直径が5〜14μmのMC型炭化物の
最小長径短径比を示したものである。実際の光学画像測
定マイクロスコープでは、MC型炭化物の、最大等価円
直径(μm)、面積率及び 最小長径短径比を顕微鏡画
像で測定した。また本発明高速度工具鋼は、エレクトロ
スラグ再溶解法により、不活性雰囲気によるO2 、N2
を含むガス成分の溶鋼への侵入を防止し、かつ溶解条
件:溶解速度;400 〜800 kg/h、鋼塊外径を電極外径で
割った比率を 1.2〜1.7 、に保持し、前記MC型炭化物
粒のサイズを制御して製造した。表2は表1の材料を用
いた切削工具の切削試験結果を最大摩耗量で示したもの
である。実施例1は湿式ホブ切削試験結果、実施例2は
乾式ホブ切削試験結果、実施例3はラフィングエンドミ
ル切削試験結果(乾式)である。
Next, an embodiment of the present invention will be described. Table 1
Is the chemical composition of solid hob, roughing end mill, and MC manufactured from inventive steels 7 to 10 and comparative steels 1 to 6.
Equivalent circular diameter (μm), equivalent circular diameter of 5-type carbide
It shows an area ratio of 14 μm (area ratio% in a cross section parallel to the forging and rolling axes) and a minimum major axis to minor axis ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm. In an actual optical image measurement microscope, the maximum equivalent circular diameter (μm), the area ratio, and the minimum major axis / minor axis ratio of the MC type carbide were measured with a microscope image. Further, the high-speed tool steel of the present invention can be prepared by using an electro-slag remelting method in the presence of O 2 and N 2 in an inert atmosphere.
To prevent the intrusion of gas components containing molten steel into the molten steel, and dissolution conditions: the dissolution rate: 400 to 800 kg / h, the ratio obtained by dividing the outer diameter of the steel ingot by the outer diameter of the electrode to 1.2 to 1.7, and maintaining the MC It was manufactured by controlling the size of the type carbide grains. Table 2 shows the cutting test results of the cutting tools using the materials of Table 1 in terms of the maximum wear amount. Example 1 shows the results of a wet hob cutting test, Example 2 shows the results of a dry hob cutting test, and Example 3 shows the results of a roughing end mill cutting test (dry).

【0017】[0017]

【表1】 [Table 1]

【0018】(実施例1)第一の実施例においては、表
1の7乃至10に示す本発明鋼及び、1乃至3に示す比
較鋼にてソリッドホブを製作し、湿式加工による切削試
験を下記条件にて行った後、刃先部の摩耗量を計測し
た。 ・工具形状:ソリッドホブ(外径:φ70、条数:1、
コーティング:チタン系膜(すくい面は除去)) ・被削材 :S45C(硬さ:HB175) ・切削速度:115m/min ・切込深さ:6.75mm ・送り :3.14mm/rev ・切削長 :25m ・湿式
(Example 1) In the first example, solid hobs were manufactured from the steels of the present invention shown in Tables 7 to 10 and the comparative steels shown in Tables 1 to 3, and a cutting test by wet machining was performed as follows. After performing under the conditions, the wear amount of the cutting edge was measured.・ Tool shape: Solid hob (outer diameter: φ70, number of strips: 1,
Coating: Titanium-based film (removal of rake face))-Work material: S45C (hardness: HB175)-Cutting speed: 115 m / min-Cutting depth: 6.75 mm-Feed: 3.14 mm / rev-Cutting Length: 25m ・ Wet

【0019】結果を表2の左欄の実施例1、図1および
図2に示す。図1はソリッドホブの湿式加工における刃
先部の最大逃げ面摩耗量(A)及び最大クレータ摩耗量
(B)を等価円直径5〜14μmのMC型炭化物の面積
率(%)をパラメータとして示したものである。図2は
同刃先部の最大逃げ面摩耗量(A)及び最大クレータ摩
耗量(B)を等価円直径5〜14μmのMC型炭化物の
最小長径短径比をパラメータとして示したものである。
なお、湿式加工用ホブのすくい面は再研削後のコーティ
ングなしの状況と同じとするため、最初からすくい面の
コーティングを除去した。
The results are shown in Example 1 in the left column of Table 2, FIGS. 1 and 2. FIG. 1 shows the maximum flank wear (A) and the maximum crater wear (B) of the cutting edge in wet machining of a solid hob using the area ratio (%) of MC type carbide having an equivalent circular diameter of 5 to 14 μm as a parameter. It is. FIG. 2 shows the maximum flank wear amount (A) and the maximum crater wear amount (B) of the cutting edge using the minimum major axis and minor axis ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm as a parameter.
The rake face of the hob for wet processing was removed from the beginning in order to make the rake face the same as that without coating after regrinding.

【0020】[0020]

【表2】 [Table 2]

【0021】図1の(A)は、最大逃げ面摩耗量を各鋼
中の等価円直径5〜14μmのMC型炭化物の面積率と
の関係として示したものであるが、その関係線図は6%
を底としたU字型形状であり、3〜8%の間ではほぼ安
定して摩耗量が少ない。本発明鋼7,8,9および10
は4.6〜6.1%の最も摩耗量の少ない底部に位置
し、例えば、本発明鋼8は同成分の従来の溶製高速度工
具鋼である比較鋼2に比べ2.7倍、同成分の粉末高速
度工具鋼である比較鋼3に比べ1.8倍、従来のホブ用
溶製高速度工具鋼である比較鋼1に比べ1.6倍優れて
いる。尚、比較鋼1および2の摩耗のほとんどは、チッ
ピングによるものであった。
FIG. 1 (A) shows the relationship between the maximum flank wear amount and the area ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel. 6%
The bottom is a U-shape, and between 3 and 8%, the wear amount is almost stable and the amount of wear is small. Invention Steels 7, 8, 9 and 10
Is located at the bottom where the amount of wear is the least of 4.6 to 6.1%. For example, the steel 8 of the present invention is 2.7 times as large as the comparative steel 2 which is a conventional high speed tool steel of the same composition, It is 1.8 times superior to Comparative Steel 3 which is a powdered high-speed tool steel of the same composition, and 1.6 times superior to Comparative Steel 1 which is a conventional high-speed tool steel for hob. Most of the wear of the comparative steels 1 and 2 was caused by chipping.

【0022】図1の(B)は、最大クレータ摩耗量を各
鋼中の等価円直径5〜14μmのMC型炭化物の面積率
との関係として示したものであるが、その関係線図もま
た6%を底としたU字型形状であり、3〜8%の間では
ほぼ安定して摩耗量が少ない。本発明鋼7,8,9およ
び10は4.6〜6.1%の最も摩耗量の少ない底部に
位置し、例えば、本発明鋼8は同成分の溶製高速度工具
鋼である比較鋼2に比べ2.2倍、同成分の粉末高速度
工具鋼である比較鋼3に比べ1.3倍、従来のホブ用溶
製高速度工具鋼である比較鋼1に比べ1.5倍優れてい
る。尚、比較鋼1および2の摩耗は、耐熱性不足による
凝着摩耗およびチッピングによるものであった。
FIG. 1B shows the relationship between the maximum crater wear and the area ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel. The relationship diagram is also shown in FIG. It has a U-shape with a bottom of 6%, and between 3 and 8%, the amount of wear is almost stable and the amount of wear is small. Inventive steels 7, 8, 9 and 10 are located at the bottom with the least amount of wear of 4.6 to 6.1%, for example, Inventive steel 8 is a comparative steel which is a smelted high speed tool steel of the same component. 2.2 times better than 2, 1.3 times better than comparative steel 3 which is a powdered high speed tool steel of the same composition, and 1.5 times better than comparative steel 1 which is a conventional high speed tool steel for hob. ing. The wear of Comparative Steels 1 and 2 was due to adhesive wear and chipping due to insufficient heat resistance.

【0023】図2(A)は、最大逃げ面摩耗量を各鋼中
の等価円直径5〜14μmのMC型炭化物の最小長径短
径比との関係として示したものであるが、比較鋼1、2
に対して最小長径短径比が0.3以上である本発明鋼
7,8,9および10は安定しており摩耗量も少ない。
FIG. 2A shows the relationship between the maximum flank wear amount and the minimum ratio of the major axis to the minor axis of the MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel. , 2
In contrast, the steels 7, 8, 9 and 10 of the present invention having a minimum major axis / minor axis ratio of 0.3 or more are stable and have a small wear amount.

【0024】また、図2(B)は、最大クレータ摩耗量
を各鋼中の等価円直径5〜14μmのMC型炭化物の最
小長径短径比との関係として示したものであるが、最大
逃げ面摩耗量の場合と同様に、比較鋼1、2に対して、
最小長径短径比が0.3以上である本発明鋼7、8、9
および10は安定しており摩耗量も少ない。
FIG. 2B shows the relationship between the maximum crater wear and the minimum major axis / minor axis ratio of the MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel. As in the case of surface wear, comparative steels 1 and 2
Invention steels 7, 8, and 9 having a minimum major axis / minor axis ratio of 0.3 or more.
And 10 are stable and have low wear.

【0025】(実施例2)第二の実施例においては、表
1に示す本発明鋼7乃至10、比較鋼1、2および5を
加工、熱処理、研削後、PVDによるチタン−合金系複
合多層膜を施してソリッドホブを製作し、乾式加工によ
る切削試験を下記条件にて行った後、刃先部の摩耗量を
計測した。 ・工具形状:ソリッドホブ(外径:φ75、条数:4、
コーティング:チタン−合金系複合多層膜(すくい面は
除去)) ・被削材 :SCr420(硬さ:HB180) ・切削速度:200m/min ・切込深さ:4.05mm ・送り :2.5mm/rev ・切削長 :250m ・乾式
(Example 2) In the second example, after the inventive steels 7 to 10 and comparative steels 1, 2 and 5 shown in Table 1 were worked, heat-treated and ground, the titanium-alloy composite multilayer by PVD was used. A solid hob was manufactured by applying the film, and a cutting test by dry machining was performed under the following conditions, and then the wear amount of the cutting edge was measured.・ Tool shape: Solid hob (outer diameter: φ75, number of strips: 4,
Coating: Titanium-alloy composite multilayer film (removing rake face)) Work material: SCr420 (Hardness: HB180) Cutting speed: 200 m / min Cutting depth: 4.05 mm Feed: 2.5 mm / Rev ・ Cutting length: 250m ・ Dry type

【0026】結果を表2の中欄の実施例2、図3および
図4に示す。図3はソリッドホブの乾式加工における刃
先部の最大逃げ面摩耗量(A)及び最大クレータ摩耗量
(B)を等価円直径5〜14μmのMC型炭化物の面積
率(%)をパラメータとして示したものである。図4は
同刃先部の最大逃げ面摩耗量(A)及び最大クレータ摩
耗量(B)を等価円直径5〜14μmのMC型炭化物の
最小長径短径比をパラメータとして示したものである。
なお、湿式加工用ホブのすくい面は再研削後のコーティ
ングなしの状況と同じとするため、最初からすくい面の
コーティングを除去した。
The results are shown in Example 2 in the middle column of Table 2, and in FIGS. 3 and 4. FIG. 3 shows the maximum flank wear amount (A) and the maximum crater wear amount (B) of the cutting edge portion in dry machining of a solid hob using the area ratio (%) of MC type carbide having an equivalent circular diameter of 5 to 14 μm as a parameter. It is. FIG. 4 shows the maximum flank wear amount (A) and the maximum crater wear amount (B) of the cutting edge using the minimum major axis and minor axis ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm as a parameter.
The rake face of the hob for wet processing was removed from the beginning in order to make the rake face the same as that without coating after regrinding.

【0027】図3(A)は、最大逃げ面摩耗量を各鋼中
の等価円直径5〜14μmのMC型炭化物の面積率との
関係として示したものであるが、その関係線図もまた6
%を底としたU字型形状であり、3〜8%の間ではほぼ
安定して摩耗量が少ない。本発明鋼7,8,9および1
0は4.6〜6.1%の最も摩耗量の少ない底部に位置
し、例えば、本発明鋼8は同成分の溶製高速度工具鋼で
ある比較鋼2に比べ2.8倍、高合金の粉末高速度工具
鋼である比較鋼5に比べ1.9倍、従来のホブ用溶製高
速度工具鋼である比較鋼1に比べ1.7倍優れている。
さらに、実施例1の図1(A)と比較すると、乾式加工
の方がより効果が大きい。
FIG. 3 (A) shows the relationship between the maximum flank wear amount and the area ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel. 6
% Is a U-shape with a bottom, and between 3 and 8%, the wear amount is almost stable and the amount of wear is small. Invention Steels 7, 8, 9 and 1
0 is located at the bottom of 4.6 to 6.1% with the least amount of wear. For example, Steel 8 of the present invention is 2.8 times higher than Comparative Steel 2 which is a smelted high-speed tool steel of the same composition. It is 1.9 times better than the comparative steel 5 which is an alloy powder high speed tool steel, and 1.7 times better than the comparative steel 1 which is a conventional high speed tool steel for hob.
Furthermore, as compared with FIG. 1A of the first embodiment, the dry processing is more effective.

【0028】図3(B)は、最大クレータ摩耗量を各鋼
中の等価円直径5〜14μmのMC型炭化物の面積率と
の関係として示したものであるが、その関係線図もまた
6%を底としたU字型形状であり、3〜8%の間ではほ
ぼ安定して摩耗量が少ない。本発明鋼7,8,9および
10は4.6〜6.1%の最も摩耗量の少ない底部に位
置し、例えば、本開発鋼8は同成分の溶製高速度工具鋼
である比較鋼2に比べ6.1倍、高合金の粉末高速度工
具鋼である比較鋼5に比べ3.1倍、従来のホブ用溶製
高速度工具鋼である比較鋼1に比べ3.6倍優れてい
る。さらに、実施例1の図1(B)と比較すると、乾式
加工の方がより効果が大きい。
FIG. 3B shows the relationship between the maximum crater wear and the area ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel. % Is a U-shape with a bottom, and between 3 and 8%, the wear amount is almost stable and the amount of wear is small. Inventive steels 7, 8, 9 and 10 are located at the bottom with the least wear of 4.6 to 6.1%, for example, the developed steel 8 is a comparative high-speed tool steel of the same composition as a smelted high-speed tool steel. 6.1 times higher than No. 2, 3.1 times higher than comparative steel 5 which is a high alloy powder high speed tool steel, and 3.6 times better than comparative steel 1 which is a conventional high speed tool steel for hob. ing. Furthermore, compared to FIG. 1B of the first embodiment, the dry processing is more effective.

【0029】図4(A)は、最大逃げ面摩耗量を各鋼中
の等価円直径5〜14μmのMC型炭化物最小長径短径
比との関係として示したものであるが、最小長径短径比
が0.3以上である本発明鋼7,8,9および10は安
定しており、摩耗量も少ない
FIG. 4 (A) shows the relationship between the maximum flank wear amount and the ratio of the minimum major axis to the minor axis of the MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel. Invention steels 7, 8, 9 and 10 having a ratio of 0.3 or more are stable and have a small amount of wear.

【0030】図4(B)は、最大クレータ摩耗量を各鋼
中の等価円直径5〜14μmのMC型炭化物の最大クレ
ータ摩耗量を各鋼中の等価円直径5μm以上のMC型炭
化物の最小長径短径比との関係として示したものである
が、最小長径短径比が0.3以上である本開発鋼7、
8、9および10は安定しており、摩耗量も少ない。
FIG. 4 (B) shows the maximum crater abrasion amount and the maximum crater abrasion amount of MC type carbide having an equivalent circular diameter of 5 μm or more in each steel. It is shown as a relationship with the major axis / minor axis ratio, and the developed steel 7 having a minimum major axis / minor axis ratio of 0.3 or more,
8, 9 and 10 are stable and have low wear.

【0031】(実施例3)第三の実施例においては、表
1に示す本発明鋼7乃至10、比較鋼1、2、3、4お
よび6にてエンドミルを製作し、乾式加工による切削試
験を下記条件にて行った後、刃先部の摩耗幅を計測し
た。 ・工具形状:ラフイングエンドミル(外径:φ20、コ
ーティング:チタン系複合膜) ・被削材 :S50C(硬さ:HB180) ・切削速度:60m/min ・送り :0.067mm/刃 ・切削長 :6m ・乾式
(Embodiment 3) In the third embodiment, end mills were manufactured from inventive steels 7 to 10 and comparative steels 1, 2, 3, 4 and 6 shown in Table 1, and cutting tests were performed by dry machining. Was performed under the following conditions, and the wear width of the cutting edge was measured.・ Tool shape: Roughing end mill (outer diameter: φ20, coating: titanium-based composite film) ・ Work material: S50C (hardness: HB180) ・ Cutting speed: 60m / min ・ Feed: 0.067mm / tooth ・ Cutting length : 6m ・ Dry type

【0032】結果を表2の右欄の実施例3、図5および
図6に示す。図5はラフィングエンドミルの乾式加工に
おける刃先部の最大摩耗幅を等価円直径5〜14μmの
MC型炭化物の面積率(%)をパラメータとして示した
ものである。図6は同刃先部の最大摩耗幅を等価円直径
5〜14μmのMC型炭化物の最小長径短径比をパラメ
ータとして示したものである。なお、本実施例では刃先
部全面コーティングの状態で切削試験を行った。
The results are shown in Example 3, FIGS. 5 and 6 in the right column of Table 2. FIG. 5 shows the maximum wear width of the cutting edge in dry machining of a roughing end mill, using the area ratio (%) of MC type carbide having an equivalent circular diameter of 5 to 14 μm as a parameter. FIG. 6 shows the maximum wear width of the cutting edge as a parameter with the minimum major axis / minor axis ratio of the MC type carbide having an equivalent circular diameter of 5 to 14 μm. In this example, a cutting test was performed in a state where the cutting edge portion was entirely coated.

【0033】図5は、最大摩耗幅を各鋼中の等価円直径
5〜14μmのMC型炭化物の面積比との関係として示
したものであるが、その関係線図もまた6%を底とした
U字型形状であり、3〜8%の間ではほぼ安定して摩耗
量が少ない。本発明鋼7、8、9および10は4.6〜
6.1%の最も摩耗量の少ない底部に位置し、例えば、
本発明鋼8は同成分の溶製高速度工具鋼である比較鋼2
に比べ9.2倍、高合金の粉末高速度工具鋼である比較
鋼6に比べ2.2倍優れている。
FIG. 5 shows the relationship between the maximum wear width and the area ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel. U-shaped, and between 3% and 8%, the amount of wear is almost stable and the amount of wear is small. Invention steels 7, 8, 9 and 10 have 4.6 to
Located at the bottom with the lowest wear of 6.1%, for example,
Invention steel 8 is comparative steel 2 which is a smelted high-speed tool steel of the same composition.
9.2 times better than that of Comparative Steel 6, which is a powdery high-speed tool steel of a high alloy.

【0034】図6は、最大摩耗幅を各鋼中の等価円直径
5〜14μmのMC型炭化物の最小長径短径比との関係
として示したものであるが、最小長径短径比が0.3以
上である本発明鋼7、8、9および10は安定しており
摩耗幅も少ない。
FIG. 6 shows the relationship between the maximum wear width and the minimum major axis / minor axis ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel. Inventive steels 7, 8, 9 and 10, which are 3 or more, are stable and have a small wear width.

【0035】[0035]

【発明の効果】以上述べた通り、本発明においては、材
料である高速度工具鋼が重量比でVが2〜4%、Coが
7〜10%、あるいはVが4〜6%、Coが4〜9%を
含み、刃先部鋼中のMC型炭化物の最大等価円直径が5
〜14μmであって、かつMC型炭化物の長径短径比が
0.3以上の切削工具としたので、高速度工具切削工具
は刃先部の摩耗、チッピングに対し、非常に優れたもの
となった。
As described above, in the present invention, the high-speed tool steel, which is a material, has a weight ratio of 2 to 4% of V, 7 to 10% of Co, or 4 to 6% of V, and The maximum equivalent circular diameter of MC type carbide in the steel at the cutting edge is 5 to 9%.
1414 μm, and the cutting tool with a long diameter and short diameter ratio of MC type carbide of 0.3 or more, the high-speed cutting tool became very excellent against abrasion and chipping of the cutting edge. .

【0036】好ましくは、等価円直径が5〜14μmの
MC型炭化物粒の鍛造、圧延軸と平行する粒子断面での
面積率が 3〜8 %とし、さらに高速度工具切削工具は刃
先部の摩耗、チッピングを改善した。さらに、乾式加工
にも耐え得る耐熱性を有し、PVDによるチタン−合金
系セラミックコーティング複合膜との相性も良く、刃先
表面に、PVDによるチタン系もしくはチタン−合金系
セラミックコーティングの一種または二種以上の複合膜
を施すことにより、より耐摩耗性、耐チッピング性が向
上し、乾式加工にあってより適したものとなった。
Preferably, the area ratio of the MC type carbide grains having an equivalent circular diameter of 5 to 14 μm in the cross section of the grains parallel to the forging and rolling axes is 3 to 8%. , Improved chipping. Furthermore, it has heat resistance enough to withstand dry processing, and has good compatibility with the titanium-alloy-based ceramic coating composite film by PVD, and one or two types of titanium-based or titanium-alloy-based ceramic coating by PVD on the cutting edge surface. By applying the above composite film, abrasion resistance and chipping resistance were further improved, and it became more suitable for dry processing.

【0037】したがって、ホブに代表される歯切工具全
般の寿命改善、品質改善には非常に有効であり、特に、
今後利用量増大が予想される乾式加工に優れた性能を発
揮するものと期待される。
Therefore, it is very effective in improving the service life and quality of the hobbing tools represented by the hob.
It is expected to exhibit excellent performance in dry processing, which is expected to increase the usage in the future.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例の切削試験結果を示す。
(A)は、本発明鋼7乃至10、比較鋼1乃至3にて製
作したソリッドホブの湿式加工における刃先部の最大逃
げ面摩耗量と各鋼中の等価円直径5〜14μmのMC型
炭化物の面積率との関係を示したものであり、(B)は
刃先部の最大クレータ摩耗量と各鋼中の等価円直径5〜
14μmのMC型炭化物の面積率との関係示したもので
ある。
FIG. 1 shows a cutting test result of a first embodiment of the present invention.
(A) shows the maximum flank wear of the cutting edge portion in the wet machining of solid hobbs made of inventive steels 7 to 10 and comparative steels 1 to 3 and MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel. (B) shows the maximum amount of crater wear at the cutting edge and the equivalent circular diameter in each steel of 5 to 5%.
It shows the relationship with the area ratio of MC-type carbide of 14 μm.

【図2】図1と同じく本発明の第一の実施例の切削試験
結果であり、(A)は、刃先部の最大逃げ面摩耗量と各
鋼中の等価円直径5〜14μmのMC型炭化物の最小長
径短径比との関係を示したものであり、(B)は刃先部
の最大クレータ摩耗量と各鋼中の等価円直径5〜14μ
mのMC型炭化物の最小長径短径比との関係を示したも
のである。
2A and 2B are cutting test results of the first embodiment of the present invention, as in FIG. 1. FIG. 2A shows the maximum flank wear of the cutting edge and the MC type having an equivalent circular diameter of 5 to 14 μm in each steel. (B) shows the maximum crater wear at the cutting edge and the equivalent circular diameter of each steel of 5 to 14 μm.
3 shows the relationship between m and the minimum major axis / minor axis ratio of MC type carbide.

【図3】本発明の第二の実施例の切削試験結果を示す。
(A)は、本発明鋼7乃至10、比較鋼1、2および5
にて製作したソリッドホブの乾式加工における刃先部の
最大逃げ面摩耗量と各鋼中の等価円直径5〜14μmの
MC型炭化物の面積率との関係を示したものであり、
(B)は刃先部の最大クレータ摩耗量と各鋼中の等価円
直径5〜14μmのMC型炭化物の面積率との関係を示
したものである。
FIG. 3 shows a cutting test result of a second embodiment of the present invention.
(A) shows inventive steels 7 to 10, comparative steels 1, 2, and 5.
It shows the relationship between the maximum flank wear of the cutting edge and the area ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel in dry machining of the solid hob manufactured in the above,
(B) shows the relationship between the maximum crater wear at the cutting edge and the area ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel.

【図4】図2と同じく本発明の第二の実施例の切削試験
結果であり、(A)は、刃先部の最大逃げ面摩耗量と各
鋼中の等価円直径5〜14μmのMC型炭化物の最小長
径短径比との関係を示したものであり、(B)は刃先部
の最大クレータ摩耗量と各鋼中の等価円直径5〜14μ
mのMC型炭化物の最小長径短径比との関係を示したも
のである。
4A and 4B are cutting test results of the second embodiment of the present invention, as in FIG. 2; FIG. 4A shows the maximum flank wear of the cutting edge and the MC type having an equivalent circular diameter of 5 to 14 μm in each steel; (B) shows the maximum crater wear at the cutting edge and the equivalent circular diameter of each steel of 5 to 14 μm.
3 shows the relationship between m and the minimum major axis / minor axis ratio of MC type carbide.

【図5】本発明の第三の実施例の切削試験結果を示す。
本発明鋼7乃至10、比較鋼1乃至4および6にて製作
したラフイングエンドミルの乾式加工における刃先部の
最大摩耗幅と各鋼種の等価円直径5〜14μmのMC型
炭化物の面積率との関係を示したものである。
FIG. 5 shows a cutting test result of a third embodiment of the present invention.
The relationship between the maximum wear width of the cutting edge portion and the area ratio of MC type carbide having an equivalent circular diameter of 5 to 14 μm of each steel type in dry machining of roughing end mills manufactured using inventive steels 7 to 10 and comparative steels 1 to 4 and 6 It shows the relationship.

【図6】図5と同じく本発明の第三の実施例の切削試験
結果であり、刃先部の最大摩耗幅と各鋼中の等価円直径
5〜14μmのMC型炭化物の最小長径短径比との関係
を示したものである。
FIG. 6 is a cutting test result of the third embodiment of the present invention, similarly to FIG. 5, showing the maximum wear width of the cutting edge portion and the ratio of the minimum major axis to the minor axis of MC type carbide having an equivalent circular diameter of 5 to 14 μm in each steel. It shows the relationship with.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝倉 俊一 富山県富山市不二越本町一丁目1番1号 株式会社不二越内 (56)参考文献 特開 平6−256915(JP,A) 特開 平2−15845(JP,A) 特開 平4−180540(JP,A) 特開 平4−358046(JP,A) 特開 平6−145888(JP,A) 特開 平6−322482(JP,A) 特開 平9−296256(JP,A) 特開 平5−33102(JP,A) 特開 平10−25546(JP,A) (58)調査した分野(Int.Cl.7,DB名) B23B 27/14 C22C 38/00 302 C22C 38/12 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shunichi Asakura 1-1-1 Fujikoshi Honcho, Toyama City, Toyama Prefecture Fujikoshi, Inc. (56) References JP-A-6-256915 (JP, A) JP-A-2 -15845 (JP, A) JP-A-4-180540 (JP, A) JP-A-4-358046 (JP, A) JP-A-6-145888 (JP, A) JP-A-6-322482 (JP, A) JP-A-9-296256 (JP, A) JP-A-5-33102 (JP, A) JP-A-10-25546 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B23B 27/14 C22C 38/00 302 C22C 38/12

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高速度工具鋼製の切刃を有する切削工具
において、前記高速度工具鋼は、重量%で、C:0.6 〜1.
8 %, Si:1.2%以下, Mn:0.5%以下, Cr:3.5〜5.0 %,
Mo:10 %以下, W:21%以下, を含み、さらに重量%で、
V:2 〜4 %, Co:7〜10%を含み、残余がFe及び不可避不
純物よりなり、刃先部鋼中のMC型炭化物粒のうち最大
の炭化物粒の粒子断面の面積を円の面積として置き換え
た場合の円の直径である等価円直径のうちの最大の等価
円直径である最大等価円直径が 5〜14μmであって、か
つ、等価円直径が5〜14μmの前記MC型炭化物粒の
粒子断面の長径短径比が0.3 以上であることを特徴とす
る切削工具。
1. A cutting tool having a cutting edge made of high-speed tool steel, wherein the high-speed tool steel has a weight percentage of C: 0.6 to 1.
8%, Si: 1.2% or less, Mn: 0.5% or less, Cr: 3.5-5.0%,
Mo: less than 10%, W: less than 21%, and by weight,
V: 2 to 4%, Co: 7 to 10%, with the balance being Fe and unavoidable impurities, the area of the cross section of the largest carbide grain among the MC type carbide grains in the cutting edge steel is defined as the area of a circle. The maximum equivalent circular diameter of the equivalent circular diameter, which is the diameter of the circle in the case of replacement, is the maximum equivalent circular diameter of 5 to 14 μm, and the equivalent circular diameter of the MC type carbide particles of 5 to 14 μm. A cutting tool, wherein the ratio of the major axis to the minor axis of the particle cross section is 0.3 or more.
【請求項2】 高速度工具鋼製の切刃を有する切削工具
において、前記高速度工具鋼は、重量%で、C:0.6 〜1.
8 %, Si:1.2%以下, Mn:0.5%以下, Cr:3.5〜5.0 %,
Mo:10 %以下, W:21%以下, を含み、さらに重量%で、
V:4 〜6 %, Co:4〜9 %を含み、残余がFe及び不可避不
純物よりなり、刃先部鋼中のMC型炭化物粒のうち最大
の炭化物粒の粒子断断面の面積を円の面積として置き換
えた場合の円の直径である等価円直径のうちの最大の等
価円直径である最大等価円直径が 5〜14μmであって、
かつ、等価円直径が5〜14μmの前記MC型炭化物粒
の粒子断面の長径短径比、即ち前記MC型炭化物粒のい
ずれか一の粒子断面の短径を長径で割った比率、が0.3
以上であることを特徴とする切削工具。
2. A cutting tool having a cutting edge made of high-speed tool steel, wherein the high-speed tool steel has a weight percentage of C: 0.6 to 1.
8%, Si: 1.2% or less, Mn: 0.5% or less, Cr: 3.5-5.0%,
Mo: less than 10%, W: less than 21%, and by weight,
V: 4 to 6%, Co: 4 to 9%, the balance is Fe and unavoidable impurities, and the area of the cross section of the largest carbide grain among MC type carbide grains in the steel at the cutting edge is the area of a circle. The maximum equivalent circular diameter which is the largest equivalent circular diameter of the equivalent circular diameter which is the diameter of the circle when replaced as
And, the equivalent circular diameter is 5 to 14 μm the ratio of the major axis to the minor axis of the particle cross section of the MC-type carbide grains, that is, the ratio of the minor axis of any one of the particle cross sections of the MC-type carbide grains divided by the major axis is 0.3
A cutting tool characterized by the above.
【請求項3】 等価円直径が5〜14μmの前記MC型
炭化物粒の鍛造、圧延軸と平行する粒子断面での面積率
が 3〜8 %であることを特徴とする請求項1又は2に記
載の切削工具。
3. The method according to claim 1, wherein the MC type carbide grains having an equivalent circular diameter of 5 to 14 μm have an area ratio of 3 to 8% in a grain cross section parallel to a forging and rolling axis. The described cutting tool.
【請求項4】 前記切削工具の少なくとも刃先表面に、
PVDによるチタン系もしくはチタン−合金系セラミッ
クコーティングの一種または二種以上の複合膜が施され
ていることを特徴とする請求項1乃至3のいずれか一に
記載の切削工具。
4. At least on the cutting edge surface of the cutting tool,
The cutting tool according to any one of claims 1 to 3, wherein one or two or more composite films of titanium-based or titanium-alloy-based ceramic coating by PVD are applied.
【請求項5】 前記高速度工具鋼は、エレクトロスラグ
再溶解法により、不活性雰囲気によるO2 、N2 を含む
ガス成分の溶鋼への侵入を防止し、かつ溶解条件:溶解
速度;400 〜800 kg/h、鋼塊外径を電極外径で割った比
率を 1.2〜1.7 、に保持し、前記MC型炭化物粒のサイ
ズを制御して製造したことを特徴とする請求項1乃至3
のいずれか一に記載の切削工具。
5. The high-speed tool steel according to claim 1, wherein a gas component containing O 2 and N 2 is prevented from entering the molten steel due to an inert atmosphere by an electroslag remelting method, and melting conditions: melting speed; 4. The method according to claim 1, wherein the ratio of the outer diameter of the steel ingot divided by the outer diameter of the electrode is maintained at 1.2 to 1.7, and the size of the MC type carbide grains is controlled.
The cutting tool according to any one of the above.
【請求項6】 前記切削工具は乾式加工に使用されるこ
とを特徴とする請求項1乃至3のいずれか一に記載の切
削工具。
6. The cutting tool according to claim 1, wherein the cutting tool is used for dry machining.
JP19725499A 1998-07-15 1999-07-12 Cutting tools Expired - Lifetime JP3249493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19725499A JP3249493B2 (en) 1998-07-15 1999-07-12 Cutting tools

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP10-199401 1998-07-15
JP10-199400 1998-07-15
JP19940098 1998-07-15
JP19940198 1998-07-15
JP19725499A JP3249493B2 (en) 1998-07-15 1999-07-12 Cutting tools

Publications (2)

Publication Number Publication Date
JP2000084704A JP2000084704A (en) 2000-03-28
JP3249493B2 true JP3249493B2 (en) 2002-01-21

Family

ID=27327355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19725499A Expired - Lifetime JP3249493B2 (en) 1998-07-15 1999-07-12 Cutting tools

Country Status (1)

Country Link
JP (1) JP3249493B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029136B2 (en) 2018-01-16 2022-03-03 太平洋マテリアル株式会社 Construction method of filler in the underground pipe structure and underground pipe structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6096040B2 (en) * 2013-04-17 2017-03-15 山陽特殊製鋼株式会社 Powdered high-speed tool steel with excellent high-temperature tempering hardness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029136B2 (en) 2018-01-16 2022-03-03 太平洋マテリアル株式会社 Construction method of filler in the underground pipe structure and underground pipe structure

Also Published As

Publication number Publication date
JP2000084704A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
JP2010523355A (en) tool
JP2007203450A (en) Chipping and wear resistant cemented carbide insert demanded for turning of heat-resistant superalloy (hrsa) and stainless steel
JP4991111B2 (en) Cemented carbide tools and their cemented carbide
JP3249493B2 (en) Cutting tools
JP2000514500A (en) How to use steel for cutting tool holders
JP3698656B2 (en) Cutting tools
US6180266B1 (en) Cutting tool
JP2006328477A (en) Wc based cemented carbide member, and coated wc based cemented carbide member
JP4023196B2 (en) Machine structural steel with excellent machinability
JPS6256943B2 (en)
JP2007092090A (en) Wc-based cemented carbide member
JPS6256944B2 (en)
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JP6516440B2 (en) Powdered high speed tool steel
JP3206972B2 (en) Fine-grain cemented carbide
JP3901582B2 (en) Free cutting steel for mold
JP2996148B2 (en) Work roll for cold rolling and its manufacturing method
JPS61147841A (en) Hyperfine-grained sintered hard alloy
TWI251029B (en) Steel for metal-cutting tools
JP2001020029A (en) Cemented carbide material for hob
JPH09207008A (en) Wc group cemented carbide alloy tip for cutting ultra heat resistant alloy
JP4747493B2 (en) Shaft cutting tool capable of high-speed cutting of difficult-to-cut materials
JPS5942067B2 (en) Tough tungsten carbide-based cemented carbide for cutting tools
JP2006089823A (en) Die made of high-speed tool steel
JP2005314718A (en) Tool for hot working

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011030

R150 Certificate of patent or registration of utility model

Ref document number: 3249493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term