[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3249006B2 - Structural steel plate with excellent surface properties and method of manufacturing the same - Google Patents

Structural steel plate with excellent surface properties and method of manufacturing the same

Info

Publication number
JP3249006B2
JP3249006B2 JP04013594A JP4013594A JP3249006B2 JP 3249006 B2 JP3249006 B2 JP 3249006B2 JP 04013594 A JP04013594 A JP 04013594A JP 4013594 A JP4013594 A JP 4013594A JP 3249006 B2 JP3249006 B2 JP 3249006B2
Authority
JP
Japan
Prior art keywords
rolling
steel plate
scale
steel
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04013594A
Other languages
Japanese (ja)
Other versions
JPH07252593A (en
Inventor
裕治 野見山
忠 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP04013594A priority Critical patent/JP3249006B2/en
Publication of JPH07252593A publication Critical patent/JPH07252593A/en
Application granted granted Critical
Publication of JP3249006B2 publication Critical patent/JP3249006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、種々の用途の構造用厚
鋼板を経済的にかつ生産性よく製造する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for economically and efficiently producing structural steel sheets for various uses.

【0002】[0002]

【従来の技術】近年、厚鋼板の使用環境での要求は高ま
る一方で、鋼板の塗装性や美観、特に成形作業の多い産
業機械分野では作業環境の面から剥離しやすく、粉末状
になりやすい赤スケールが少ない鋼板に対する要望が高
まり、良好なスケール性状を兼ね備えた鋼材が望まれて
いる。また、鋼材の使用性能の観点から鋼板のスケール
の特性として、曲げ加工部材等で、そのまま塗布する場
合の塗装ムラ防止やスケールの密着性に対する要望の厳
しさが増している。スケール密着性を改善する方法とし
て、熱間圧延された線材の分野において、例えば「鉄と
鋼」65(1979),S390に記載のようにスケー
ル厚みを薄くする方法が提案されている。
2. Description of the Related Art In recent years, while the demand for thick steel plates in the use environment has been increasing, the paintability and aesthetics of steel plates, especially in the industrial machinery field where molding work is frequent, are easy to peel off from the work environment and tend to be powdery. There is an increasing demand for a steel sheet with less red scale, and a steel material having good scale properties has been desired. Further, as the characteristics of the scale of the steel sheet from the viewpoint of the use performance of the steel material, demands for prevention of coating unevenness and adhesion of the scale when the material is directly applied to a bent member are increasing. As a method for improving the scale adhesion, in the field of hot-rolled wire rods, for example, a method of reducing the scale thickness as described in “Iron and Steel” 65 (1979), S390 has been proposed.

【0003】また、熱延鋼帯の分野においても、スケー
ル厚みを薄くする例として、例えば特開昭58−157
517号公報記載のように仕上げ圧延機と水冷装置間を
ラミナー水冷で覆い大気と遮断する方法、特開昭60−
24320号公報、特開昭60−77922号公報記載
のように圧延終了後の低炭素アルミキルド鋼を非酸性雰
囲気で低温まで冷却する方法、特開昭61−12340
3号公報記載のように仕上げ圧延直後に不活性ガスある
いは還元性ガス雰囲気で低温まで冷却する方法、あるい
は特開昭61−195702号公報記載のようにCrを
添加した低炭素アルミキルド鋼の圧延直後に冷却する方
法等が提案されている。しかしながら、この方法では、
いずれも高速で通板する鋼帯または線材を大気と遮断す
るための設備、あるいはこれらの鋼帯等を圧延直後に低
温まで急冷する設備等を必要とするものであり、多大な
設備コストを招く欠点を有する。
In the field of hot-rolled steel strip, as an example of reducing the thickness of a scale, for example, Japanese Patent Laid-Open No. 58-157
No. 517, a method of covering the gap between a finishing mill and a water-cooling device with a laminar water-cooling and isolating it from the atmosphere.
JP-A No. 24320 and JP-A-60-77922, a method of cooling a low-carbon aluminum killed steel after rolling to a low temperature in a non-acidic atmosphere.
No. 3, a method of cooling to a low temperature in an inert gas or reducing gas atmosphere immediately after finish rolling, or immediately after rolling of a low-carbon aluminum killed steel to which Cr is added as described in JP-A-61-195702. And the like have been proposed. However, in this method,
All of these require equipment for isolating the steel strip or wire rod passing at high speed from the atmosphere, or equipment for rapidly cooling these steel strips to a low temperature immediately after rolling, resulting in large equipment costs. Has disadvantages.

【0004】尚、前記した連続圧延工程で製造される熱
延鋼帯は、厚鋼板に比較して高温滞留時間が大幅に短い
ので、スケールを薄スケール化する上で極めて有利であ
る。しかし、厚鋼板の製造には通常スラブを加熱炉に装
入して1200〜1250℃の温度範囲で加熱した後デ
スケーリングデバイスへ送り、加熱中に発生したスケー
ルを除去した後、1基または2基の可逆式圧延機で幅出
し圧延や所定の製品厚まで圧延する仕上げ圧延が行われ
ている。そのために仕上げ圧延後の厚鋼板はホットレベ
ラーへ送られ熱間矯正ののち鋼板表面が所定の温度以下
になるように空冷または制御冷却される。
[0004] The hot-rolled steel strip produced in the continuous rolling process described above is extremely advantageous in reducing the scale of the scale because the high-temperature residence time is much shorter than that of a thick steel plate. However, for the production of steel plates, usually, a slab is charged into a heating furnace, heated in a temperature range of 1200 to 1250 ° C., and then sent to a descaling device to remove scale generated during heating. Width rolling and finish rolling for rolling to a predetermined product thickness are performed by a base reversible rolling mill. For this purpose, the thick steel plate after the finish rolling is sent to a hot leveler, and after hot straightening, air-cooled or controlled-cooled so that the surface of the steel plate becomes a predetermined temperature or less.

【0005】かかる従来法では可逆式圧延機で圧延され
るスラブが高温であるとともに圧延時間が比較的長いた
めに、仕上げ圧延終了時に厚手のスケールがしかも不均
一に発生する。これが次のホットレベラーを通板時また
は製品になった段階でプレス成形される時に、スケール
が剥離して塗装のムラになったり、また、かかる厚鋼板
を曲げ加工部材に成形してそのまま塗装する場合、スケ
ールの不均一性から塗装ムラが発生する等、厚鋼板表面
に生成するスケールは色々な面で多くの問題を引き起こ
している。
In such a conventional method, since the slab to be rolled by the reversible rolling mill is at a high temperature and the rolling time is relatively long, a thick scale is generated nonuniformly at the end of the finish rolling. When this is pressed at the next hot leveler at the time of passing or becoming a product, the scale will peel off and the coating will become uneven, or this thick steel plate will be formed into a bent member and painted as it is In this case, the scale formed on the surface of the steel plate causes many problems in various aspects, such as uneven coating of the scale due to unevenness of the scale.

【0006】表面の酸化スケールの変色機構については
材料とプロセス CAMP−ISIJ VOL.6(199
3)−357に開示されている。すなわち鋼板表面に微
細なヘマタイト(Fe2 3 )粉末が存在するために鋼
板が赤褐色に見え、その色は2μm以下のヘマタイト粉
末量に支配されることが明らかになっている。しかしな
がら、その発生機構は概ね明らかになったものの厚板の
圧延工程での制御方法については不明である。以上述べ
たように、厚鋼板の場合は内容熱容量が大きくかつリバ
ース圧延での圧延時間が比較的長いことから、厚鋼板の
スケール厚みや色の制御方法に関して有益な方法は殆ど
開示されていない。
The discoloration mechanism of the oxide scale on the surface is described in Materials and Processes CAMP-ISIJ VOL.6 (199).
3) -357. That is, it is clear that the steel sheet looks reddish brown because of the presence of fine hematite (Fe 2 O 3 ) powder on the surface of the steel sheet, and its color is controlled by the amount of hematite powder of 2 μm or less. However, although the mechanism of its generation has been largely clarified, the control method in the rolling process of the thick plate is unknown. As described above, since a thick steel plate has a large content heat capacity and a relatively long rolling time in reverse rolling, almost no useful method is disclosed regarding a method of controlling the scale thickness and color of the thick steel plate.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記した従来
の製造方法の欠点を解消して、種々の用途に適応し、表
面性状が優れた構造用厚鋼板を生産性よく、かつ経済的
に製造する方法を提供することを課題とするものであ
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional production method, and provides a structural steel plate having excellent surface properties, which is suitable for various uses, with good productivity and economical efficiency. It is an object to provide a method for manufacturing.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は次の通り
である。 ()重量%で、 C :0.01〜0.20%、 Si:0.03〜1.00%、 Mn:0.30〜2.00%、 Al:0.005〜0.10%、 N :0.001〜0.01% を含有し、残部がFe及び不可避的成分からなる鋼
で、鋼板表面のスケールの中心線平均粗さが3.0μm
以下でかつ厚み5.0μm以下として、該スケール
表面のヘマタイト粉末の残存を抑制することを特徴とす
表面性状の優れた構造用鋼板。
The gist of the present invention is as follows.
It is. (1) By weight%, C: 0.01 to 0.20%, Si: 0.03 to 1.00%, Mn: 0.30 to 2.00%, Al: 0.005 to 0.10%, N : Steel containing 0.001 to 0.01%, with the balance being Fe and unavoidable componentsBoard
In the steel plate surfaceScaleCenter line average roughness 3.0 μm
Below,And thicknessTo5.0 μm or lessAs the scale
Suppress residual hematite powder on the surfaceCharacterized by
ToSurface propertiesFor excellent structureThicksteel sheet.

【0009】() 重量%更に、 Ti:0.003〜0.10%、 Cr:0.01〜0.50%、 Ni:0.01〜3.00%、 Mo:0.01〜0.50%、 Cu:0.01〜1.50%、 V :0.005〜0.20%、 Nb:0.003〜0.05%、 B :0.0003〜0.0020%の1種または2種以上を含有する ことを特徴とする前記
(1)記載の表面性状の優れた構造用鋼板。
[0009] (2) Further, by weight%, Ti: 0.003~0.10%, Cr : 0.01~0.50%, Ni: 0.01~3.00%, Mo: 0.01~ 0.50%, Cu: 0.01~1.50%, V: 0.005~0.20%, Nb: 0.003~0.05%, B: 0.0003~0.0020% 1 The above-mentioned , characterized in that it contains a species or two or more species
(1) steel plate for superior structure surface texture according.

【0010】() 重量%で、 C :0.01〜0.20%、 Si:0.03〜1.00%、 Mn:0.30〜2.00%、 Al:0.005〜0.10%、 N :0.001〜0.01%、 残部がFe及び不可避的成分からなり、凝固後Ac3
上に加熱した構造用鋼の鋳片を用い、可逆式熱間圧延機
で厚鋼板を製造するに際し、該熱間圧延機の噛込側近傍
で被圧延鋼板に衝突圧1.2kg/cm2 以上のデスケーリ
ングを実施し、その後直ちに前記熱間圧延機で圧延し、
次いで圧延された鋼板を該熱間圧延機の噛出側近傍にお
いて圧延直後に冷却能力500kcal/m2 ・hr・℃以上
で冷却を行い、かかる圧延において950℃以下の圧延
パスを10パス未満とし、圧延終了後、該鋼板表面の6
50℃までの高温滞留時間を30秒以内にすることを特
徴とする表面性状の優れた構造用厚鋼板の製造方法。
( 3 ) C: 0.01 to 0.20%, Si: 0.03 to 1.00%, Mn: 0.30 to 2.00%, Al: 0.005 to 0% by weight .10%, N: 0.001 to 0.01%, the balance being Fe and unavoidable components, using a slab of structural steel heated to Ac 3 or more after solidification, using a reversible hot rolling mill In producing the steel sheet, the steel plate to be rolled is subjected to a descaling of an impact pressure of 1.2 kg / cm 2 or more in the vicinity of the meshing side of the hot rolling mill, and immediately thereafter, is rolled by the hot rolling mill,
Next, the rolled steel sheet is cooled at a cooling capacity of 500 kcal / m 2 · hr · ° C or more immediately after rolling in the vicinity of the meshing side of the hot rolling mill, and the rolling pass of 950 ° C or less is reduced to less than 10 passes in such rolling. After rolling, 6
A method for producing a structural steel plate having excellent surface properties , wherein a high-temperature residence time up to 50 ° C. is within 30 seconds.

【0011】(前記熱間圧延終了後において、前
記可逆式熱間圧延機内を往復で複数回空パスで冷却し、
該鋼板表面の650℃までの高温滞留時間を30秒以内
にすることを特徴とする前記(3)記載の表面性状の優
れた構造用厚鋼板の製造方法。
( 4 ) After completion of the hot rolling ,
The reversible hot rolling mill is cooled by reciprocating multiple times with an empty pass,
The method for producing a structural steel sheet having excellent surface properties according to the above (3), wherein the high-temperature residence time of the steel sheet surface up to 650 ° C. is within 30 seconds.

【0012】() 重量%更に、 Ti:0.003〜0.10%、 Cr:0.01〜0.50%、 Ni:0.01〜3.00%、 Mo:0.01〜0.50%、 Cu:0.01〜1.50%、 V :0.005〜0.20%、 Nb:0.003〜0.05%、 B :0.0003〜0.0020% の1種または2種以上を含有することを特徴とする前記
(3)または(4)記載の表面性状の優れた構造用厚鋼
板の製造方法。
[0012] (5) Further in weight%, Ti: 0.003~0.10%, Cr : 0.01~0.50%, Ni: 0.01~3.00%, Mo: 0.01~ 0.50%, Cu: 0.01 to 1.50%, V: 0.005 to 0.20%, Nb: 0.003 to 0.05%, B: 0.0003 to 0.0020% The above-mentioned , characterized in that it contains a species or two or more species
(3) or (4) The manufacturing method of the structural steel plate which was excellent in surface property .

【0013】[0013]

【発明の実施の形態】また、本発明が対象としている構
造用圧延鋼材は、次記するように、通常の溶接構造用鋼
が所要の材質を得るために、従来から当業分野での活用
で確認されている作用・効果の関係を基に定めている添
加元素の種類と量を同様に使用して、同等の作用と効果
が得られる。従って、これ等を含む鋼を本発明は対象鋼
とするものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described below, a rolled structural steel material to which the present invention is directed has been conventionally utilized in the field of the art in order to obtain a required material from ordinary welded structural steel. The same operation and effect can be obtained by using the type and amount of the additional element determined based on the relation between the operation and effect confirmed in the above. Therefore, the present invention is intended to include steels including these.

【0014】これ等の各成分元素につきその添加理由と
量を以下に示す。Cは、鋼の強度を向上する有効な成分
として0.01%は添加するものであるが、0.20%
を超える過剰な含有量では、HAZ(eat ffected
one)に島状マルテンサイトが析出し、HAZ靭性を著
しく劣化させるので、0.20%以下に規制する。Si
は溶鋼の脱酸元素として必要であり、また強度増加元素
として添加するが、0.03%未満では脱酸効果が不十
分であり、1.0%を超えて添加すると、鋼の加工性が
低下し、HAZの靭性が低下するため、添加量は0.0
3〜1.0%に規制する。
The reasons and amounts of these components are shown below. C is 0.01% added as an effective component for improving the strength of steel, but 0.20%
The excess amount of more than, HAZ (H eat A ffected
Z one) to precipitate island martensite, since significantly degrade the HAZ toughness, restricted to 0.20% or less. Si
Is necessary as a deoxidizing element in molten steel and is added as a strength increasing element. If it is less than 0.03 %, the deoxidizing effect is insufficient, and if it exceeds 1.0%, the workability of the steel increases. And the toughness of HAZ decreases, the amount of addition is 0.0
Restrict to 3 to 1.0%.

【0015】Mnも脱酸成分元素として必要であり、
0.3%未満では鋼の清浄度を低下し、加工性を害す
る。また鋼材の強度を向上する成分として0.3%以上
の添加が必要である。しかし、Mnは、過剰の添加によ
り溶接性を著しく劣化させるので、2.0%を上限とす
る。AlはAl窒化物による鋼の結晶粒径が微細化でき
るので必要である。しかし、添加量が少ない時にはその
効果がなく、過剰の場合には鋼の靭性を劣化させるの
で、添加量は0.005〜0.10%に規制する。Nは
AlやTiと結びついてオーステナイト粒の微細化に有
効に働くが、その効果が明確になるためには0.001
%以上含有する必要があるが、0.01%を超えて過剰
に添加すると固溶Nが増加して靭性に悪影響を及ぼすの
で、0.010%を上限とする。
Mn is also required as a deoxidizing component element,
If it is less than 0.3%, the cleanliness of the steel is reduced and the workability is impaired. Further, it is necessary to add 0.3% or more as a component for improving the strength of the steel material. However, Mn significantly deteriorates the weldability by an excessive addition, so the upper limit is 2.0%. Al is necessary because the grain size of steel by Al nitride can be reduced. However, when the addition amount is small, the effect is not obtained, and when the addition amount is excessive, the toughness of the steel is deteriorated. Therefore, the addition amount is restricted to 0.005 to 0.10 %. N works effectively with the refining of austenite grains in combination with Al and Ti, but 0.001
%, But if added in excess of 0.01 %, solute N will increase and adversely affect toughness, so the upper limit is 0.010%.

【0016】本発明が対象とする構造用鋼の基本成分は
以上である。これを基本に母材強度の上昇域は、継手靭
性の向上を目的として要求される性質に応じてTi,C
r,Ni,Mo,Cu,Ti,V,Nb,Bの1種また
は2種以上を含有することができる。まず、Tiは析出
強化により母材強度向上に寄与すると共に、TiNの形
成によりγ粒を微細化し、溶接部の継手靭性にきわめて
有効な元素であるが、効果を発揮できるためには0.0
03%以上の添加が必要である。一方、0.1%を超え
るTi炭化物を形成して靭性や延性を劣化させるため、
上限を0.10%とする。Cr及びMoはいずれも母材
の強度上昇に有効な元素であるが、明瞭な効果を生じる
ためには0.01%以上必要であり、一方0.50%を
超えて添加すると、靭性が劣化する傾向を有するため、
0.01〜0.5%の範囲とする。
The basic components of the structural steel to which the present invention is directed are as described above. On the basis of this, the region where the strength of the base metal is increased depends on the properties required for the purpose of improving the joint toughness.
One or more of r, Ni, Mo, Cu, Ti, V, Nb, and B can be contained. First, Ti contributes to the improvement of the base metal strength by precipitation strengthening, and at the same time, is a very effective element for the joint toughness of the welded portion by forming γ grains by forming TiN.
Addition of at least 03% is required. On the other hand, to form Ti carbides exceeding 0.1% to deteriorate toughness and ductility,
The upper limit is set to 0.10%. Both Cr and Mo are effective elements for increasing the strength of the base material. However, in order to produce a clear effect, 0.01% or more is required. On the other hand, if added over 0.50%, the toughness deteriorates. Have a tendency to
The range is 0.01 to 0.5%.

【0017】また、Niは母材の強度と靭性を同時に向
上させることができ、非常に有効な元素であるが、効果
を発揮させるためには0.01%以上含有させる必要が
ある。含有量が多くなると強度、靭性は向上するが3.
0%を超えて添加すると、変態挙動が変化して適正製造
条件が変化するので、本発明範囲では3.0%を上限と
する。次に、CuもほぼNiと同様の効果を有するが、
1.5%超の添加では析出硬化の問題が生じるため、
0.01〜1.5%の範囲に限定する。V及びNbはい
ずれも主として析出強化により母材の強度向上に寄与す
るが、過剰の添加でHAZ靭性が劣化する。従って、靭
性の劣化を招かずに、効果が発揮できる範囲として、V
は0.005〜0.20%、Nbは0.003〜0.0
5%とする。
Further, Ni is a very effective element that can simultaneously improve the strength and toughness of the base material, but must be contained at 0.01% or more in order to exert its effect. As the content increases, the strength and toughness improve, but 3.
If added in excess of 0%, the transformation behavior changes and the appropriate manufacturing conditions change, so the upper limit is 3.0% in the range of the present invention. Next, Cu has almost the same effect as Ni,
If the addition exceeds 1.5%, a problem of precipitation hardening occurs.
It is limited to the range of 0.01 to 1.5%. Both V and Nb mainly contribute to the improvement of the strength of the base material by precipitation strengthening, but HAZ toughness is deteriorated by excessive addition. Therefore, as a range in which the effect can be exhibited without deteriorating toughness, V
Is 0.005 to 0.20%, and Nb is 0.003 to 0.0%.
5%.

【0018】Bは0.0003%以上の極微量添加で鋼
材の焼入れ性を高めて強度上昇に非常に有効であるが、
過剰に添加すると靭性を大きく劣化させるため、上限を
0.0020%とする。本発明における鋳片の加熱温度
はオーステナイトの粗大化防止のため1200℃を上限
とし、下限温度は圧延の作業を考慮すると900℃以上
が望ましい。また、Nb元素を含む鋼材は、Nbを完全
固溶させるために1100℃以上の加熱が必要となる。
B is very effective in increasing the strength by increasing the hardenability of steel by adding a trace amount of 0.0003% or more.
If added excessively, the toughness is greatly deteriorated, so the upper limit is made 0.0020%. In the present invention, the upper limit of the heating temperature of the slab is 1200 ° C. in order to prevent austenite coarsening, and the lower limit temperature is desirably 900 ° C. or higher in consideration of the rolling operation. Further, a steel material containing an Nb element requires heating at 1100 ° C. or higher in order to completely dissolve Nb.

【0019】[0019]

【作用】本発明者等は、前記従来技術が有する問題を解
決すると共に、本発明の課題を達成するため、下記の化
学成分を有する一般的な構造用鋼を用いて種々実験検討
を繰り返した。 C :0.05〜0.15%、 Si:0.15〜0.25%、 Mn:0.8〜1.6%、 Al:0.01〜0.05%、 N :0.0020〜0.0050% まず、スケールの色と表面の状態について検討を行っ
た。スケールの色が赤く見える鋼板と黒く見える鋼板の
表面を走査型電子顕微鏡で観察した結果、赤く見える鋼
板の表面はスケールがえぐられているような段差が見
え、そのえぐられたように見える部分の中に粉末状のヘ
マタイト(Fe2 3 )が存在しており、黒く見える鋼
板はスケール表面が平滑である。更にえぐられ壊れたス
ケールの面積が多いほど、粉末状のヘマタイトの量が増
え、結果的に鋼板としては赤く見えることが判明した。
In order to solve the problems of the prior art and to achieve the object of the present invention, the present inventors have repeated various experimental studies using general structural steels having the following chemical components. . C: 0.05 to 0.15%, Si: 0.15 to 0.25%, Mn: 0.8 to 1.6%, Al: 0.01 to 0.05%, N: 0.0020 to 0.0050% First, the color of the scale and the state of the surface were examined. As a result of observing the surface of the steel plate that looks red and the steel plate that looks black with a scanning electron microscope, the surface of the steel plate that looks red shows a step as if the scale was cut off. Powdery hematite (Fe 2 O 3 ) is present therein, and the steel plate that looks black has a smooth scale surface. Further, it was found that the larger the area of the scale that was cut and broken, the more the amount of powdery hematite increased, and as a result, the steel sheet appeared red.

【0020】スケールがえぐられたように観察できる部
分は、平滑な部分とは段差がついているので、その存在
箇所を走査型電子顕微鏡で詳細に調査、解析した結果、
鋼板表面の粗さと粉末状のヘマタイトの残存の有無に密
接な関係があることが判明した。すなわち粉末状のヘマ
タイトが存在するのは、スケールがえぐられたように見
える領域であるため、スケール表面に凹凸があった場
合、粉末状のヘマタイトが残存する可能性がある領域は
平坦である部分との段差により支配されることが判明し
た。従って、段差を調査すれば、粉末状のヘマタイトが
残存可能領域を限定することができる。更にその残存す
る領域が小さいと赤く識別できないことが判明した。
The part where the scale can be observed as if it was cut off has a level difference from the smooth part, and the existence of the part is examined and analyzed in detail by a scanning electron microscope.
It was found that there was a close relationship between the roughness of the steel sheet surface and the presence or absence of powdered hematite. In other words, the presence of powdery hematite is in the area where the scale appears to be hollowed out, so if there is unevenness on the scale surface, the area where powdery hematite may remain is a flat part It was found to be dominated by the steps. Therefore, if the step is investigated, the region where the powdery hematite can remain can be limited. Further, it was found that if the remaining area was small, it could not be identified in red.

【0021】そこで、この残存する領域と表面の粗さと
の関係を調査した結果を図1に示す。鋼板表面の中心線
平均粗さ(Ra)が3.0μm以下になると、粉末状の
ヘマタイトが残存する領域の面積率が20%未満とな
り、鋼板表面の色が赤く識別できないことがわかった。
尚、鋼板表面の平均粗さは製品となった鋼板の長手方向
1000mmピッチで幅方向に5分割した各位置よりサン
プリングし、平均粗さの測定値の平均値を求め、評価し
ている。また、鋼板の色は目視により判定した。中心線
粗さについてはJIS(日本工業規格)B0601を準
拠して測定した。
FIG. 1 shows the result of investigation of the relationship between the remaining area and the surface roughness. When the center line average roughness (Ra) of the steel sheet surface was 3.0 μm or less, the area ratio of the region where the powdery hematite remained was less than 20%, and it was found that the color of the steel sheet surface could not be identified as red.
The average roughness of the surface of the steel sheet is sampled from each position divided into five parts in the width direction at a pitch of 1000 mm in the longitudinal direction of the product steel sheet, and the average value of the measured values of the average roughness is obtained and evaluated. The color of the steel sheet was visually determined. The center line roughness was measured according to JIS (Japanese Industrial Standard) B0601.

【0022】次に、スケールの密着性に大きく影響を及
ぼす限界スケール厚みについて検討した。実験にはスケ
ールの厚みが異なる鋼板を種々試作し、下記に示す方法
で評価した。すなわちスケール密着性は目視判定等によ
る感応試験が多く、定量性に欠ける。そこで、今回は、
曲げ半径r=1.5×t(t:板厚)の90度曲げ試験
後、表面から10サンプルを採取し、走査型電子顕微鏡
でスケールの剥離をして、地鉄が露出した面積率(10
個の平均値)を測定し、表1に示す地鉄露出面積率にて
評価した。尚、評点ランク1,2を合格とし、密着性良
好とした。
Next, the critical scale thickness which greatly affects the adhesion of the scale was examined. In the experiment, various prototypes of steel plates having different scale thicknesses were manufactured and evaluated by the following method. That is, there are many sensitivity tests based on visual judgment and the like, and the scale adhesion is lacking in quantitativeness. So, this time,
After a 90-degree bending test with a bending radius r = 1.5 × t (t: plate thickness), 10 samples were taken from the surface, the scale was peeled off with a scanning electron microscope, and the area ratio at which the ground iron was exposed ( 10
(Mean value of each piece) was measured and evaluated by the base iron exposed area ratio shown in Table 1. In addition, the evaluation ranks 1 and 2 were accepted, and the adhesiveness was good.

【0023】[0023]

【表1】 [Table 1]

【0024】スケール厚みと評点ランクの関係を図2に
示す。図2からスケール厚みが5.0μm以下になると
密着性が良好になることがわかった。そこで、スケール
厚みを5.0μm以下とするための圧延、冷却条件及び
圧延終了後の冷却条件を種々変化させて検討を実施し
た。その検討結果を図3に示す。尚、スケール厚みは、
製品となった鋼板の長手方向1000mmピッチで幅方向
に5分割した各位置よりサンプリングし、光学顕微鏡写
真から測定した値の平均値より求めた平均スケール厚み
である。
FIG. 2 shows the relationship between the scale thickness and the rating rank. From FIG. 2, it was found that when the scale thickness was 5.0 μm or less, the adhesion was good. Therefore, the study was carried out by changing variously the rolling, cooling conditions and cooling conditions after the completion of the rolling in order to reduce the scale thickness to 5.0 μm or less. The result of the study is shown in FIG. The scale thickness is
This is the average scale thickness obtained from the average value of the values measured from optical micrographs, sampled from each of five positions in the width direction at a pitch of 1000 mm in the longitudinal direction of the steel plate as the product.

【0025】図3からスケール厚みを5.0μm以下に
するにはデスケーリング衝突圧が1.2kg/cm2 以上必
要で、更に、圧延終了後鋼板表面の650℃までの高温
滞留時間が30秒以内である必要があり、圧延終了後の
冷却は高温滞留中のスケールの成長を抑制する上で有効
であることがわかった。尚、650℃以下になるとスケ
ールは殆ど成長しないことが、別途実施した実験結果か
らわかっている。尚、図3中の圧延中の条件に関して
は、表2にケース別の冷却条件を示す。
As shown in FIG. 3, a descaling collision pressure of 1.2 kg / cm 2 or more is required to reduce the thickness of the scale to 5.0 μm or less, and a high-temperature residence time of 650 ° C. on the steel sheet surface after rolling is 30 seconds. It was found that cooling after the end of rolling was effective in suppressing scale growth during high-temperature residence. It is known from the results of experiments conducted separately that the scale hardly grows at 650 ° C. or lower. Table 2 shows the cooling conditions for each case with regard to the conditions during rolling in FIG.

【0026】[0026]

【表2】 [Table 2]

【0027】ケース1〜4は本発明例であり、ケース
5,6は比較例である。ケース5はパスNo.2及びNo.
3においてデスケーリングしただけで、残るパスはすべ
て冷却水を噴射せず、ケース6は水圧デスケーリングヘ
ッダーの衝突圧力を1.2kg/cm2 未満にした例であ
る。また、表2中の式及びは下記によって求めた値
である。 式 衝突圧力p=68×(P0.5 ×Q(90−θ2)/(h2 ×θ1)) P :噴射圧力 kg/cm2 Q :噴射水量 L/min h :ノズル高さ mm θ1:ノズル噴射角度 θ2:ノズル迎え角 式 冷却能力 Logh=2.358+0.663 LogW−0.00147×Ts W :水量密度 L/m2 ・min Ts :鋼板表面温度 ℃(800℃を使用) 出典:日本鉄鋼協会発行の特別報告書No.29「鋼材の
強制冷却」16頁による。
Cases 1 to 4 are examples of the present invention, and cases 5 and 6 are comparative examples. Case 5 is the pass No. 2 and No.
Only the de-scaling in 3, the remaining passes did not spray any cooling water, and Case 6 is an example where the impingement pressure of the hydraulic descaling header was less than 1.2 kg / cm 2 . The expressions in Table 2 are the values obtained as follows. Formula Impact pressure p = 68 × (P 0.5 × Q (90−θ2) / (h 2 × θ1)) P: Injection pressure kg / cm 2 Q: Injection water amount L / min h: Nozzle height mm θ1: Nozzle injection Angle θ2: Nozzle angle of attack formula Cooling capacity Logh = 2.358 + 0.663 LogW−0.00147 × T s W: Water density L / m 2 · min T s : Steel plate surface temperature ℃ (use 800 ℃) Source: Japan Special Report No. issued by the Iron and Steel Institute. 29 "Forced cooling of steel" on page 16.

【0028】更に圧延後の冷却方法とスケールの厚み、
スケールの密着性について検討を実施した。冷却方法は
650℃以下の温度になるまでにスプレー冷却した場合
と圧延機内を空パス冷却した場合の2水準について検討
を実施した。その結果を図4に示す。圧延機内を通過さ
せ、デスケーリングの効果をとり入れた方がより薄スケ
ール化に有効であり、5.0μm以下のスケール厚を得
やすいことが判明した。
Further, the cooling method after rolling and the thickness of the scale,
A study was conducted on the adhesion of the scale. The cooling method was examined for two levels, that is, the case where spray cooling was performed until the temperature reached 650 ° C. or lower and the case where the inside of the rolling mill was cooled in an empty path. FIG. 4 shows the results. It was found that passing through the rolling mill and incorporating the effect of descaling is more effective for thinning the scale, and it is easy to obtain a scale thickness of 5.0 μm or less.

【0029】冷却前のスケール厚みを薄くする圧延方法
について述べる。まず本発明のために使用する設備の一
例を図5により説明する。可逆式熱間圧延機1のハウジ
ング8内に、上ワークロール2と該ロールに接する上下
圧延補強ロール4及び下ワークロール3と該ロールに接
する下圧延補強ロール5をそれぞれ配設する。前記圧延
機の噛込側(または噛出側)及び噛出側(または噛込
側)にトップガイド9,9−1を設け、該トップガイド
の孔部分にのぞませて、鋼板表面上に水を噴射するデス
ケーリングノズル14,14−1及び冷却噴射ノズル1
2,12−1を設ける。
A rolling method for reducing the thickness of the scale before cooling will be described. First, an example of equipment used for the present invention will be described with reference to FIG. In a housing 8 of the reversible hot rolling mill 1, an upper work roll 2, an upper and lower rolling reinforcing roll 4 in contact with the roll, a lower work roll 3, and a lower rolling reinforcing roll 5 in contact with the roll are arranged. Top guides 9 and 9-1 are provided on the meshing side (or meshing side) and the meshing side (or meshing side) of the rolling mill. Descaling nozzles 14, 14-1 for injecting water and cooling injection nozzle 1
2, 12-1 are provided.

【0030】デスケーリングノズル14,14−1は上
ワークロール2に最も近接して設けられ、かつ移動する
鋼板表面への迎え角を有するように水圧デスケーリング
ヘッダー13,13−1に連結されている。
The descaling nozzles 14 and 14-1 are provided closest to the upper work roll 2, and are connected to the hydraulic descaling headers 13 and 13-1 so as to have an angle of attack on the moving steel sheet surface. I have.

【0031】冷却水噴射ノズル12,12−1はデスケ
ーリングノズル14,14−1の隣接位置に設置され、
かつ鋼板表面にほぼ直角に噴射するよう冷却ヘッダー1
1,11−1に設けられている。ノズル12,12−1
の噴射方向は水切りをよりよくするため圧延方向に向け
られてもよい。また、下ワークロール3の送り面と同一
送り面を有するローラーテーブル10,10−1が前記
圧延機の噛込側(または噛出側)と噛出側(または噛込
側)に配設されており、該下ワークロール3と前記ロー
ラーテーブルのローラーとの間にデスケーリングノズル
20,20−1が鋼板表面に対する迎え角を有するよう
ノズルホルダー19,19−1を介してデスケーリング
ーヘッダー18,18−1に設けられ、また前記ローラ
ーテーブルのローラー間に冷却水噴射ノズル17,17
−1が鋼板表面にほぼ直角に噴射するようノズルホルダ
ー16,16−1を介して冷却ヘッダー15,15−1
に設けられている。図中6,6−1は圧延機上ガイド、
7,7−1は圧延機下ガイドである。
The cooling water injection nozzles 12 and 12-1 are installed at positions adjacent to the descaling nozzles 14 and 14-1,
Cooling header 1 so that it is sprayed almost perpendicularly to the steel plate surface
1, 11-1. Nozzles 12, 12-1
May be directed to the rolling direction for better drainage. Further, roller tables 10, 10-1 having the same feed surface as the feed surface of the lower work roll 3 are disposed on the meshing side (or meshing side) and the meshing side (or meshing side) of the rolling mill. And a descaling header 18 via nozzle holders 19, 19-1 between the lower work roll 3 and the rollers of the roller table so that the descaling nozzles 20, 20-1 have an angle of attack with respect to the steel plate surface. , 18-1 and cooling water injection nozzles 17, 17 between the rollers of the roller table.
Headers 15 and 15-1 via the nozzle holders 16 and 16-1 so that -1 is sprayed substantially perpendicularly to the surface of the steel sheet.
It is provided in. 6, 6-1 in the figure are guides on the rolling mill,
Reference numerals 7 and 7-1 denote rolling machine lower guides.

【0032】以上の装置において、高温の厚鋼板Sを圧
延する場合、1パス目として圧延機1の前面Aにある被
圧延鋼板をワークロール2,3に噛込ませる直前にデス
ケーリングノズル14,20からの高圧噴射冷却水で上
下表面酸化物を除去し、圧延されて後面Bに噛出されて
きた被圧延鋼板上下面を冷却水噴射ノズル12−1,1
7−1から冷却水で冷却する。次に2パス目として、圧
延機1の後面Bにある被圧延鋼板をワークロール2,3
に噛込ませる直前にデスケーリングノズル14−1,2
0−1からの高圧噴射水で鋼板の上下表面に生成したス
ケールを除去し、圧延されて圧延機前面Aに噛出されて
きた被圧延鋼板上下表面を冷却水噴射ノズル12,17
からの冷却水で冷却する。そして該往復圧延を所望の板
厚になるまで複数回繰り返す。また、スケールを薄くす
る方法として前記した圧延条件にて圧延後に、ホットレ
ベラー前のデスケーリング等を併用しても構わない。本
発明は上記知見により成立するものである。
In the above apparatus, when rolling a high-temperature steel plate S, as the first pass, the descaling nozzles 14, 14 immediately before the rolled steel plate on the front surface A of the rolling mill 1 are bitten by the work rolls 2, 3. The upper and lower surface oxides are removed by the high-pressure injection cooling water from No. 20 and the upper and lower surfaces of the rolled steel sheet rolled and bitten on the rear surface B are cooled by the cooling water injection nozzles 12-1 and 12-1.
Cool with cooling water from 7-1. Next, as a second pass, the steel plate to be rolled on the rear surface B of the rolling mill 1 is moved to work rolls 2 and 3.
Immediately before biting into the descaling nozzles 14-1,
The scale formed on the upper and lower surfaces of the steel sheet is removed by the high-pressure jet water from 0-1 and the upper and lower surfaces of the steel sheet to be rolled and bitten on the front face A of the rolling mill are cooled water jet nozzles 12 and 17.
Cool with cooling water from The reciprocating rolling is repeated a plurality of times until a desired thickness is obtained. As a method of thinning the scale, after rolling under the above-mentioned rolling conditions, descaling before a hot leveler or the like may be used in combination. The present invention is achieved based on the above findings.

【0033】また、スケール表面の粗さを調整するため
の条件として、950℃以下の圧延パス条件を規定した
理由は、950℃以下ではデスケーリングによる剥離効
果が著しく低下し、スケールを圧延により破壊し、10
パス以上実施すると平均粗さが3.0μmを超えるため
に圧延条件を規定した。以上により得た鋼板の強度を向
上するには、圧延終了後、水、水蒸気、気水混合体等の
いずれかの冷却剤を用いても本発明の効果を損なうもの
ではない。
The reason why the rolling pass condition of 950 ° C. or less is specified as a condition for adjusting the roughness of the scale surface is that at 950 ° C. or less, the peeling effect by descaling is significantly reduced, and the scale is broken by rolling. And 10
Rolling conditions were specified because the average roughness exceeded 3.0 μm when the number of passes exceeded that of the pass. In order to improve the strength of the steel sheet obtained as described above, the use of any one of coolants such as water, steam, and a steam-water mixture after the completion of rolling does not impair the effects of the present invention.

【0034】[0034]

【実施例】本発明の供試鋼の成分は、前記した元素と添
加量であればいずれの組合せでもよく、強度レベルが異
なる代表的な構造用鋼として本実施例に用いた鋼の化学
成分を表a−1に示す。
EXAMPLES The components of the test steel of the present invention may be any combination as long as they are the above-mentioned elements and the amounts added, and the chemical composition of the steel used in this example as a typical structural steel having a different strength level. Is shown in Table a-1.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】尚、ケース1〜4は本発明例であり、ケー
ス5,6は比較例である。ケース5はパスNo.2及びN
o.3においてデスケーリングしただけで、残るパスは
すべて冷却水を噴射せず、ケース6は水圧デスケーリン
グヘッダーの衝突圧力を1.2kg/cm2 未満にした例で
ある。また、表a−3中の式及びは下記によって求
めた値である。 式 衝突圧力p=68×(P0.5 ×Q(90−θ2)/(h2 ×θ1)) P :噴射圧力 kg/cm2 Q :噴射水量 L/min h :ノズル高さ mm θ1:ノズル噴射角度 θ2:ノズル迎え角 式 冷却能力 Logh=2.358+0.663 LogW−0.00147×Ts W :水量密度 L/m2 ・min Ts :鋼板表面温度 ℃(800℃を使用) 出典:日本鉄鋼協会発行の特別報告書No.29「鋼材の
強制冷却」16頁による。
Cases 1 to 4 are examples of the present invention, and cases 5 and 6 are comparative examples. Case 5 is the pass No. 2 and N
o. Only the de-scaling in 3, the remaining passes did not spray any cooling water, and Case 6 is an example where the impingement pressure of the hydraulic descaling header was less than 1.2 kg / cm 2 . Further, the expressions in Table a-3 are the values obtained as follows. Formula Impact pressure p = 68 × (P 0.5 × Q (90−θ2) / (h 2 × θ1)) P: Injection pressure kg / cm 2 Q: Injection water amount L / min h: Nozzle height mm θ1: Nozzle injection Angle θ2: Nozzle angle of attack formula Cooling capacity Logh = 2.358 + 0.663 LogW−0.00147 × T s W: Water density L / m 2 · min T s : Steel plate surface temperature ℃ (use 800 ℃) Source: Japan Special Report No. issued by the Iron and Steel Institute. 29 "Forced cooling of steel" on page 16.

【0040】[0040]

【表7】 [Table 7]

【0041】表a−1に示す供試鋼は、強度レベルが異
なる7種の鋼種を選択し、必要に応じてV,Nb,N
i,Ti,Cu,Ni,Cr,Mo等の合金元素を添加
している。
For the test steels shown in Table a-1, seven steel grades having different strength levels were selected, and V, Nb, N
Alloy elements such as i, Ti, Cu, Ni, Cr, and Mo are added.

【0042】製造条件及び得られた材質、スケールの厚
み、色、密着性及び表面の平均粗さを表a−2に示す。
表a−2中のNo.A1〜A7の本発明例は、いずれも黒
色で材質、スケールの密着性が優れた構造用鋼板が得ら
れた。これに対し、圧延中に十分な冷却を行わなかった
比較例中、鋼種2,4,5,7を使用したNo.B1〜B
4は、スケール厚み、組成ともに所定の特性を満足せ
ず、密着性が不良であった。尚、表a−2中の冷却条件
の適用ケースは表a−3に示した。
Table a-2 shows the manufacturing conditions and the obtained materials, scale thickness, color, adhesion, and average surface roughness.
No. in Table a-2. In all of the inventive examples A1 to A7, structural steel sheets which were black and had excellent material and scale adhesion were obtained. On the other hand, in Comparative Examples in which sufficient cooling was not performed during rolling, No. 2 using steel types 2, 4, 5, and 7 was used. B1-B
In No. 4, neither the scale thickness nor the composition satisfied the predetermined characteristics, and the adhesion was poor. The cases where the cooling conditions in Table a-2 are applied are shown in Table a-3.

【0043】[0043]

【発明の効果】本発明は圧延中の冷却条件と圧延後の冷
却条件を制御することにより、高い生産性のもとで円滑
に安定して、種々の用途に適応した構造用鋼板を製造す
ることを可能としたもので、この種の分野を中心に、産
業界にもたらす効果は極めて大きい。
The present invention controls the cooling conditions during rolling and the cooling conditions after rolling to produce structural steel plates suitable for various uses smoothly and stably under high productivity. This has made it possible to achieve a great effect on industry, especially in this type of field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板表面の粗さと鋼板の色との関係を示す図
表。
FIG. 1 is a table showing the relationship between the surface roughness of a steel sheet and the color of the steel sheet.

【図2】スケール厚みとスケールの密着性(評点ラン
ク)の関係を示す図表。
FIG. 2 is a chart showing the relationship between scale thickness and scale adhesion (gradation rank).

【図3】冷却ケース別の圧延−冷却条件、圧延終了後の
高温滞留時間とスケール厚みとの関係を示す図表。
FIG. 3 is a table showing the relationship between rolling-cooling conditions for each cooling case, high-temperature residence time after rolling and scale thickness.

【図4】圧延終了後の冷却方式とスケール厚みとの関係
を示す図表。
FIG. 4 is a table showing a relationship between a cooling method after rolling and a scale thickness.

【図5】本発明の圧延方法を示す概略正面図。FIG. 5 is a schematic front view showing the rolling method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/54 C22C 38/54 (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 B21B 1/38 B21B 3/00 C21D 8/02 C22C 38/06 C22C 38/54 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 identification code FI C22C 38/54 C22C 38/54 (58) Field surveyed (Int.Cl. 7 , DB name) C22C 38/00 B21B 1/38 B21B 3/00 C21D 8/02 C22C 38/06 C22C 38/54

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.01〜0.20%、 Si:0.03〜1.00%、 Mn:0.30〜2.00%、 Al:0.005〜0.10%、 N :0.001〜0.01%、 残部がFe及び不可避的成分からなる鋼で、鋼板表面
スケールの中心線平均粗さが3.0μm以下でかつ
厚み5.0μm以下として、該スケール表面のヘマタ
イト粉末の残存を抑制することを特徴とする表面性状
優れた構造用鋼板。
C: 0.01 to 0.20%, Si: 0.03 to 1.00%, Mn: 0.30 to 2.00%, Al: 0.005 to 0. 10%, N: 0.001~0.01%, a steel plate and the balance of Fe and inevitable components, the center line average roughness of the scale of the steel sheet surface at 3.0μm or less, and the thickness 5.0μm The hemata on the scale surface is as follows.
Excellent structural steel plate surface texture, characterized in that suppress residual byte powder.
【請求項2】 重量%更に、 Ti:0.003〜0.10%、 Cr:0.01〜0.50%、 Ni:0.01〜3.00%、 Mo:0.01〜0.50%、 Cu:0.01〜1.50%、 V :0.005〜0.20%、 Nb:0.003〜0.05%、 B :0.0003〜0.0020%の1種または2種以上を含有する ことを特徴とする請求
項1記載の表面性状の優れた構造用鋼板。
2. In% by weight, Ti: 0.003 to 0.10%, Cr: 0.01 to 0.50%, Ni: 0.01 to 3.00%, Mo: 0.01 to 0% .50%, Cu: 0.01~1.50%, V: 0.005~0.20%, Nb: 0.003~0.05%, B: 0.0003~0.0020% of one or Or claim containing two or more kinds
Excellent structural steel plate in the surface properties of claim 1, wherein.
【請求項3】 重量%で、 C :0.01〜0.20%、 Si:0.03〜1.00%、 Mn:0.30〜2.00%、 Al:0.005〜0.10%、 N :0.001〜0.01%、 残部がFe及び不可避的成分からなり、凝固後Ac3
上に加熱した構造用鋼の鋳片を用い、可逆式熱間圧延機
で厚鋼板を製造するに際し、該熱間圧延機の噛込側近傍
で被圧延鋼板に衝突圧1.2kg/cm2 以上のデスケーリ
ングを実施し、その後直ちに前記熱間圧延機で圧延し、
次いで圧延された鋼板を該熱間圧延機の噛出側近傍にお
いて圧延直後に冷却能力500kcal/m2 ・hr・℃以上
で冷却を行い、かかる圧延において950℃以下の圧延
パスを10パス未満とし、圧延終了後、該鋼板表面の6
50℃までの高温滞留時間を30秒以内にすることを特
徴とする表面性状の優れた構造用厚鋼板の製造方法。
3. C: 0.01 to 0.20%, Si: 0.03 to 1.00%, Mn: 0.30 to 2.00%, Al: 0.005 to 0. 10%, N: 0.001 to 0.01%, balance being Fe and unavoidable components, using a slab of structural steel heated to Ac 3 or more after solidification, using a reversible hot rolling mill In producing, the steel plate to be rolled is subjected to a descaling at an impact pressure of 1.2 kg / cm 2 or more in the vicinity of the meshing side of the hot rolling mill, and immediately thereafter, is rolled by the hot rolling mill,
Next, the rolled steel sheet is cooled at a cooling capacity of 500 kcal / m 2 · hr · ° C or more immediately after rolling in the vicinity of the meshing side of the hot rolling mill, and the rolling pass of 950 ° C or less is reduced to less than 10 passes in such rolling. After rolling, 6
A method for producing a structural steel plate having excellent surface properties , wherein a high-temperature residence time up to 50 ° C. is within 30 seconds.
【請求項4】 前記熱間圧延終了後において、前記可逆
式熱間圧延機内を往復で複数回空パスで冷却し、該鋼板
表面の650℃までの高温滞留時間を30秒以内にする
ことを特徴とする請求項3記載の表面性状の優れた構造
用厚鋼板の製造方法。
4. After the completion of the hot rolling , the reversible
4. The structure having excellent surface texture according to claim 3, wherein the inside of the hot-rolling mill is cooled in a reciprocating manner a plurality of times by an empty pass, and the high-temperature residence time of the steel sheet surface up to 650 ° C. is within 30 seconds. A method for manufacturing thick steel plates.
【請求項5】 重量%更に、 Ti:0.003〜0.10%、 Cr:0.01〜0.50%、 Ni:0.01〜3.00%、 Mo:0.01〜0.50%、 Cu:0.01〜1.50%、 V :0.005〜0.20%、 Nb:0.003〜0.05%、 B :0.0003〜0.0020% の1種または2種以上を含有することを特徴とする請求
項3または4記載の表面性状の優れた構造用厚鋼板の製
造方法。
5. In% by weight, Ti: 0.003 to 0.10%, Cr: 0.01 to 0.50%, Ni: 0.01 to 3.00%, Mo: 0.01 to 0% .50%, Cu: 0.01 to 1.50%, V: 0.005 to 0.20%, Nb: 0.003 to 0.05%, B: 0.0003 to 0.0020% or claims, characterized in that it contains two or more
Item 3. The method for producing a structural steel plate having excellent surface properties according to item 3 or 4 .
JP04013594A 1994-03-10 1994-03-10 Structural steel plate with excellent surface properties and method of manufacturing the same Expired - Fee Related JP3249006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04013594A JP3249006B2 (en) 1994-03-10 1994-03-10 Structural steel plate with excellent surface properties and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04013594A JP3249006B2 (en) 1994-03-10 1994-03-10 Structural steel plate with excellent surface properties and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07252593A JPH07252593A (en) 1995-10-03
JP3249006B2 true JP3249006B2 (en) 2002-01-21

Family

ID=12572356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04013594A Expired - Fee Related JP3249006B2 (en) 1994-03-10 1994-03-10 Structural steel plate with excellent surface properties and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3249006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278655A (en) * 1994-04-15 1995-10-24 Nippon Steel Corp Production of structural thick steel plate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3444117B2 (en) * 1996-12-06 2003-09-08 Jfeスチール株式会社 Manufacturing method of hot-dip hot-rolled steel sheet
JP4507946B2 (en) * 2005-03-30 2010-07-21 住友金属工業株式会社 Manufacturing method and apparatus for manufacturing thick steel plate
JP4890336B2 (en) * 2007-04-16 2012-03-07 新日本製鐵株式会社 Thick steel plate manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278655A (en) * 1994-04-15 1995-10-24 Nippon Steel Corp Production of structural thick steel plate

Also Published As

Publication number Publication date
JPH07252593A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
EP1846584B1 (en) Austenitic steel having high strength and formability method of producing said steel and use thereof
US6663725B2 (en) High strength steel sheet and method for manufacturing the same
JP4738735B2 (en) Ultra high strength steel sheet, method for producing ultra high strength steel sheet, and ultra high strength steel sheet obtained by the method
EP2042616B1 (en) ROLLED AUSTENITE STAINLESS STEEL PLATE HAVING THICHKESS OF 100 mm OR MORE AND METHOD FOR PRODUCTION THEREOF
EP0789090B1 (en) Process for producing a hot-rollled steel sheet
CN100500914C (en) Method for rolling thick specification low-alloy structure steel plate by using middle and thin plate blank
DE112020004462T9 (en) REFRACTORY AND WEATHERING RESISTANT STEEL SHEET/STRIP AND METHOD OF MAKING THE SAME
EP3587610B1 (en) Hot-rolled and annealed ferritic stainless steel sheet, and method for manufacturing same
JP4887818B2 (en) Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet
JP3249006B2 (en) Structural steel plate with excellent surface properties and method of manufacturing the same
CN111295458A (en) Ferritic stainless steel sheet and method for producing same
DE112020004399T5 (en) High-strength, high-hole-expansion Nb-microalloyed steel and manufacturing process therefor
JP3212436B2 (en) Manufacturing method of structural steel plate
EP0609556B1 (en) Method for producing low carbon-equivalent rolled steel shapes by controlled rolling
KR102075222B1 (en) High strength cold rolled steel sheet having low mechanical properties deviation, good stretch flangeability and high recovery rate
JP4273646B2 (en) High-strength thin steel sheet with excellent workability and manufacturing method thereof
JP3528688B2 (en) Tapered steel plate manufacturing method
JP3374757B2 (en) Manufacturing method of steel sheet with excellent surface properties
JPH07268537A (en) Steel plate for structure
JP3169453B2 (en) Manufacturing method of structural steel plate with good scale adhesion
JPH1177142A (en) Production of hot rolled stainless steel plate
JPH07278655A (en) Production of structural thick steel plate
JP3009750B2 (en) Method for producing structural steel sheet with excellent low-temperature toughness
JP3238217B2 (en) Structural steel plate with good scale adhesion and high Young's modulus and method for producing the same
JP3021071B2 (en) Method of manufacturing high strength and high toughness structural steel plate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees