JP3248263B2 - Al-Mn alloy for cryogenic forming - Google Patents
Al-Mn alloy for cryogenic formingInfo
- Publication number
- JP3248263B2 JP3248263B2 JP26189592A JP26189592A JP3248263B2 JP 3248263 B2 JP3248263 B2 JP 3248263B2 JP 26189592 A JP26189592 A JP 26189592A JP 26189592 A JP26189592 A JP 26189592A JP 3248263 B2 JP3248263 B2 JP 3248263B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy material
- alloy
- cryogenic
- weight
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、AlやAl合金の新し
い成形加工法として注目されている極低温成形加工法を
適用するに際し、優れた成形加工性を有するAl−Mn
系合金材に関するものである。BACKGROUND OF THE INVENTION The present invention relates to an Al-Mn alloy having excellent moldability when applied to a cryogenic molding method, which has attracted attention as a new molding method for Al and Al alloys.
It relates to a series alloy material.
【0002】[0002]
【従来の技術】AlやAl合金は、家庭用品を始めとし
て、自動車,航空機,鉄道車両,船舶,建築等の様々な
分野での部品材料として広範囲に使用されている。Al
やAl合金は、金属材料として優れた性質を有している
ものの、通常のプレス成形を適用するには、その成形性
に限界があり、従ってプレス成形によって複雑な形状に
成形を行うことは困難であるという欠点があった。2. Description of the Related Art Al and Al alloys are widely used as component materials in various fields such as household goods, automobiles, aircrafts, railway vehicles, ships, and buildings. Al
And Al alloys have excellent properties as metal materials, but there is a limit to the formability of applying normal press forming, and it is difficult to form into complex shapes by press forming. There was a disadvantage that it was.
【0003】こうしたことから、プレス成形性の優れた
Al合金材料の開発と共に、成形加工技術の改良も進め
られている。まず材料開発面では、従来のAl合金材料
が、強度30kgf/cm2 ,伸び30%であったのが、最近
では強度30kgf/cm2 ,伸び35%強のAl合金材料が
開発されており、成形性の向上が認められている。一
方、成形加工技術に関しても、液圧対向成形や温間成形
等の技術が開発されており、成形能の向上が認められて
いる。[0003] Under these circumstances, along with the development of an Al alloy material having excellent press formability, improvement of the forming technique has been promoted. First, in terms of material development, the conventional Al alloy material had a strength of 30 kgf / cm 2 and an elongation of 30%, but recently an Al alloy material having a strength of 30 kgf / cm 2 and an elongation of more than 35% has been developed. Improvements in moldability have been observed. On the other hand, with respect to molding technology, technologies such as hydraulic facing molding and warm molding have been developed, and improvement in molding ability has been recognized.
【0004】本出願人は、かねてより成形加工技術の研
究を進めており、その研究の一環として、極低温成形加
工法を開発した。この極低温成形加工方法は、AlやA
l合金が極低温において引張強度および伸び等に優れた
機械的性質を示すという、新し知見が得られたことによ
り開発された加工方法であり、その技術的意義が認めら
れたので先に出願している(特願平2−416279
号)。即ち、上記極低温成形加工法は、AlやAl合金
板にプレス潤滑油を塗布した後、液体窒素中に浸漬し、
極低温においてプレス成形加工を行うものであり、従来
において成形が不可能であった複雑な形状の部品の成形
ができるようになった。これは、−40℃以下の極低温
に冷却されると潤滑油が劣化して、潤滑性が損なわれる
とされてきたのが、実際には潤滑油が極低温下ではワッ
クス状となり、潤滑性が却って向上することを知見した
ことによるものである。[0004] The present applicant has been studying molding technology for some time, and has developed a cryogenic molding method as a part of the research. This cryogenic forming method uses Al or A
This is a processing method developed based on new findings that the alloy exhibits excellent mechanical properties such as tensile strength and elongation at extremely low temperatures, and its technical significance was recognized. (Japanese Patent Application No. 2-416279)
issue). That is, the cryogenic forming method described above involves applying a press lubricating oil to an Al or Al alloy plate, and then immersing the plate in liquid nitrogen.
Press forming is carried out at extremely low temperatures, and it has become possible to form parts having complicated shapes that could not be formed conventionally. This is because lubricating oil deteriorates when lubricating oil is cooled down to -40 ° C or lower, and lubricity is impaired. This is due to the fact that it has been found that it is rather improved.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記極
低温加工法に使用するAl合金材料として、従来のもの
をそのまま使用したのでは、複雑な形状への成形ができ
るとはいっても未だ充分とはいえず、極低温成形加工に
適したAl合金材料の開発が望まれていた。本発明はこ
うした状況の下になされたものであって、その目的は、
極低温において優れた成形加工性を示すAl合金材を提
供することにある。However, if a conventional Al alloy material is used as it is in the cryogenic processing method, it is not sufficient even if it can be formed into a complicated shape. However, development of an Al alloy material suitable for cryogenic forming has been desired. The present invention has been made under such circumstances, and its purpose is to
An object of the present invention is to provide an Al alloy material having excellent formability at extremely low temperatures.
【0006】[0006]
【課題を解決する為の手段】上記目的を達成し得た本発
明とは、プレス潤滑油を塗布した後に−40℃以下の極
低温でプレス成形加工されるAl−Mn系合金材であっ
て、Mn:0.2〜2重量%を含有し、残部Alおよび
不可避不純物からなり、且つ平均結晶粒径が150μm
以下である点に要旨を有する極低温成形加工用Al−M
n系合金材である。Means for Solving the Problems The present invention which has achieved the above object is an Al-Mn alloy material which is press-formed at an extremely low temperature of -40 ° C or less after applying a press lubricating oil. , Mn: 0.2 to 2% by weight, the balance being Al and unavoidable impurities, and having an average crystal grain size of 150 μm
Al-M for cryogenic molding having the gist of the following points
It is an n-based alloy material.
【0007】[0007]
【作用】本発明者らは、極低温成形加工法を適用するに
際し、最適なAl合金板について様々な角度から検討し
てきた。そしてまず極低温において粒界破壊を起こしに
くい材料が、極低温における加工性を著しく向上させる
ことを見出し、Al合金の含有成分および成分割合並び
に結晶粒を厳密に調整したAl−Mg系合金圧延板につ
いて提案した(特願平3−98291号)。しかしなが
らこのAl合金圧延材は、耐食性にも優れているという
ものの、Al−2.5〜8.5重量%Mg系をベースと
した高Mg含有Al合金であり、将来的にAl合金が溶
解用スクラップとしてリサイクルされる場合、Mgが高
いため他の合金に転用しにくく、リサイクル性において
不利になるという課題を有していた。The present inventors have studied the optimum Al alloy sheet from various angles when applying the cryogenic forming method. First, it has been found that a material that is unlikely to cause grain boundary fracture at cryogenic temperatures significantly improves the workability at cryogenic temperatures, and the Al-Mg alloy rolled sheet in which the content and proportion of the Al alloy and the crystal grains are strictly adjusted. (Japanese Patent Application No. 3-98291). However, although this rolled Al alloy is excellent in corrosion resistance, it is a high Mg-containing Al alloy based on Al-2.5 to 8.5 wt% Mg, and the Al alloy will be used for melting in the future. When recycled as scrap, there is a problem that it is difficult to convert it to other alloys because Mg is high, which is disadvantageous in recyclability.
【0008】そこで本発明者らは、リサイクル性等をも
考慮し、極低温成形加工法に適したAl合金材について
更に検討を進めてきた。その結果、Mnを所定量含有し
たAl−Mn系では、純Alと同等の耐食性を有すると
共にリサイクル性も良好であり、且つ該Al合金材中の
Mn含有量および結晶粒を厳密に調整することによっ
て、極低温において優れた成形加工性が得られるAl合
金が実現できることを見出し、本発明を完成した。まず
本発明の極低温成形加工用Al−Mn合金材の成分範囲
限定理由は下記の通りである。Accordingly, the present inventors have further studied an Al alloy material suitable for a cryogenic forming method in consideration of recyclability and the like. As a result, the Al-Mn system containing a predetermined amount of Mn has the same corrosion resistance as pure Al and good recyclability, and strictly adjusts the Mn content and crystal grains in the Al alloy material. As a result, the present inventors have found that an Al alloy capable of obtaining excellent formability at an extremely low temperature can be realized, and completed the present invention. First, the reasons for limiting the component range of the Al-Mn alloy material for cryogenic forming of the present invention are as follows.
【0009】Mn:0.2〜2重量% Mnは、成形性の低下なくして、強度を向上させる効果
を有する。Mn含有量が0.2重量%未満では上記効果
が得られず、一方含有量が2重量%を超えると、粗大化
合物が生成し、成形性が低下する。本発明のAl合金材
は、Mnを基本成分とし、残部Alおよび不可避不純物
よりなるものであるが、必要によってMg,Cu,Z
n,Cr,Zr等の元素を所定量含有させても良い。こ
れらの元素を含有させるときの成分範囲限定理由は下記
の通りである。Mn: 0.2 to 2% by weight Mn has the effect of improving the strength without lowering the moldability. If the Mn content is less than 0.2% by weight, the above effects cannot be obtained, while if the Mn content exceeds 2% by weight, a coarse compound is formed, and the moldability decreases. The Al alloy material of the present invention is composed of Mn as a basic component and the balance of Al and unavoidable impurities.
Elements such as n, Cr, and Zr may be contained in a predetermined amount. The reasons for limiting the component ranges when these elements are contained are as follows.
【0010】Mg:0.2〜2.5重量%,Cu:1.
5重量%以下およびZn:2重量%以下よりなる群から
選択される1種以上 これらの元素は、いずれも強度向上に有効である。Mg
は含有量の増加と共に、Al合金の加工硬化能を増加さ
せる為、強度向上と共に延性をも向上させる。この効果
を発揮させる為には、Mg含有量は0.2重量%以上と
する必要がある。またCuはMgと同様に強度および延
性を向上させる他、時効によっても微細析出物の生成を
助長して強度を向上させる。一方Znは時効硬化を促進
させるのにも有効である。しかしながら、Mgの含有量
が2.5重量%を超えると、Mnの固溶度が急激に減少
し、粗大化合物が生成して成形性が低下すると共に、リ
サイクル性も不利になる。またCuの含有量が1.5重
量%を超えると、Mnの固溶度が減少し、成形性が低下
する。更に、Znの含有量が2重量%を超えると、極低
温において粒界破壊を起こし易くなり、成形性が低下す
る。Mg: 0.2-2.5% by weight, Cu: 1.
One or more elements selected from the group consisting of 5% by weight or less and Zn: 2% by weight or less. All of these elements are effective in improving strength. Mg
Increases the work hardening ability of the Al alloy as the content increases, so that the ductility and the strength are improved. In order to exhibit this effect, the Mg content needs to be 0.2% by weight or more. Cu improves the strength and ductility similarly to Mg, and also promotes the formation of fine precipitates by aging to improve the strength. On the other hand, Zn is also effective in promoting age hardening. However, when the content of Mg exceeds 2.5% by weight, the solid solubility of Mn is sharply reduced, a coarse compound is formed, the moldability is reduced, and the recyclability is disadvantageous. If the Cu content exceeds 1.5% by weight, the solid solubility of Mn decreases, and the moldability decreases. Further, when the content of Zn exceeds 2% by weight, grain boundary destruction is apt to occur at an extremely low temperature, and the formability is reduced.
【0011】Cr:0.5重量%以下および/またはZ
r:0.5重量%以下 これらの元素は結晶粒を微細化して粒界破壊を阻止し、
極低温成形加工性を向上させる元素である。しかしなが
ら含有量が過剰になると、Al−Cr系やAl−Zr系
の化合物が多量に生成し、成形時の破壊の起点となり、
極低温成形加工性を低下させる。よって含有量はいずれ
も0.5重量%以下とする必要がある。尚本発明のAl
合金には、不可避的にFeやSi等の不純物元素が含ま
れることがあるが、FeおよびSiは合計で1重量%以
下に抑えるのが好ましい。即ち、これらの元素は不溶性
不純物であり、これらの含有量が合計で1重量%を超え
ると、溶解鋳造時に不溶性の化合物が生成し、これが成
形加工時の破壊の起点となって成形加工性を極端に低下
させる。また本発明のAl合金材には、鋳造組織を微細
化という観点から、TiやBを0.2重量%以下の範囲
で添加することも有効である。Cr: 0.5% by weight or less and / or Z
r: 0.5% by weight or less These elements refine crystal grains to prevent grain boundary destruction,
It is an element that improves cryogenic molding workability. However, when the content is excessive, a large amount of Al-Cr-based or Al-Zr-based compounds is generated, which becomes a starting point of destruction during molding,
Decreases cryogenic formability. Therefore, the content must be 0.5% by weight or less. The Al of the present invention
The alloy may inevitably contain impurity elements such as Fe and Si, but it is preferable that the total content of Fe and Si is suppressed to 1% by weight or less. That is, these elements are insoluble impurities, and when their content exceeds 1% by weight in total, an insoluble compound is generated at the time of melting and casting, and this becomes a starting point of destruction at the time of forming and improves the formability. Extremely low. It is also effective to add Ti or B to the Al alloy material of the present invention in a range of 0.2% by weight or less from the viewpoint of refining the cast structure.
【0012】一方本発明に係る極低温成形加工用Al−
Mn系合金材の平均結晶粒径が150μmを超えると、
粒界破壊が発生し、極低温における成形加工性を極端に
劣化させる。よって本発明のAl−Mn系合金材の平均
結晶粒径は150μm以下とする必要がある。On the other hand, the Al-
When the average crystal grain size of the Mn-based alloy material exceeds 150 μm,
Grain boundary fracture occurs and extremely deteriorates moldability at extremely low temperatures. Therefore, the average crystal grain size of the Al—Mn alloy material of the present invention needs to be 150 μm or less.
【0013】ところで本発明のAl合金材を製造するに
当たっては、通常の鋳造、均質化処理した後、熱間圧延
するだけでも良いが、通常の製造方法では結晶粒が粗大
化する恐れがある。例えば、発明協会公開技報89−1
5623号に開示された、極低温加工用のJIS110
0合金やJIS5182合金では、通常の製造方法によ
り製造されており、このため、1100合金、5182
合金とも平均結晶粒径が150μmを超えている可能性
があり、この場合極低温における成形加工性向上効果を
十分達成できない。従って、本発明のAl合金材を製造
するに際しては、鋳造、均質化処理および熱間圧延の各
段階で、結晶粒を細かくする(粗大化させない)様に注
意する必要がある。また圧延後にMgやCuの固溶硬化
による強度・延性の向上効果を一層発揮させる為には、
前記均質化処理後熱間圧延および/または冷間圧延し、
引き続き焼鈍によってこれらの元素を充分に固溶させる
ことが有効である。焼鈍によるこうした効果を発揮させ
る為には、その温度は300℃以上とするのが良く、3
00℃未満では前記各元素が充分に固溶されない。By the way, in producing the Al alloy material of the present invention, it is only necessary to perform normal casting and homogenizing treatments and then to perform hot rolling, but there is a possibility that crystal grains become coarse in a usual production method. For example, Invention Association Open Technical Report 89-1
No. 5623, JIS110 for cryogenic processing
Alloy No. 0 and JIS 5182 alloy are manufactured by a normal manufacturing method.
All alloys may have an average crystal grain size exceeding 150 μm, in which case the effect of improving the formability at extremely low temperatures cannot be sufficiently achieved. Therefore, in producing the Al alloy material of the present invention, care must be taken to make the crystal grains fine (not coarse) in each of the steps of casting, homogenization, and hot rolling. In order to further exhibit the effect of improving the strength and ductility due to solid solution hardening of Mg or Cu after rolling,
Hot rolling and / or cold rolling after the homogenization treatment,
It is effective that these elements are sufficiently dissolved by annealing. In order to exert such an effect by annealing, the temperature is preferably set to 300 ° C. or more.
If the temperature is lower than 00 ° C., the above-mentioned elements are not sufficiently dissolved.
【0014】[0014]
【実施例】表1に示す化学成分組成のAl−Mn系合金
を通常の溶製法により溶解した後、造塊、均熱処理、熱
間圧延および冷間圧延を行って、厚さ1mmの板材を製
作した。これらの板材を連続焼鈍炉またはバッチ式炉を
使用して焼鈍を行ない、結晶粒度を調整した。表1にそ
の結果(平均結晶粒径)を併記する。EXAMPLE An Al-Mn alloy having the chemical composition shown in Table 1 was melted by an ordinary smelting method, and then subjected to ingot forming, soaking, hot rolling and cold rolling to obtain a 1 mm thick plate. Made. These sheet materials were annealed using a continuous annealing furnace or a batch furnace to adjust the grain size. Table 1 also shows the results (average crystal grain size).
【0015】[0015]
【表1】 [Table 1]
【0016】これらの板材を用い、液体窒素中(−19
6℃)において、引張試験を行なうと共に、液体窒素中
で冷却したものから、順次−196℃および−100℃
でエリクセン試験を行った。これらの試験結果を表2に
示す。Using these plate materials, liquid nitrogen (−19)
6 ° C.), a tensile test is carried out, and after cooling in liquid nitrogen, -196 ° C. and -100 ° C.
The Erichsen test was carried out. Table 2 shows the test results.
【0017】[0017]
【表2】 [Table 2]
【0018】No.1〜No.10は、本発明の要件を
満足する実施例であり、いずれも優れた極低温成形加工
性を示していることがわかる。これに対し、No.11
〜19のものは、本発明で規定する要件のいずれかを欠
く比較例であり、実施例に比べて劣っている。即ち、比
較例のNo.11は結晶粒が大きいため成形性が低下
し、比較例のNo.11〜17は、添加元素の含有量が
多いことによる不溶性化合物に起因して成形性が低下し
ており、比較例のNo.18および19は、不純物の含
有量が多いので、これが不溶性化合物となって成形性が
低下している。No. 1 to No. Sample No. 10 satisfies the requirements of the present invention, and it can be seen that all of them show excellent cryogenic molding workability. On the other hand, no. 11
-19 are comparative examples lacking any of the requirements defined in the present invention, and are inferior to the examples. That is, No. of the comparative example. No. 11 has a large crystal grain and thus has low moldability. In Nos. 11 to 17, the moldability was reduced due to the insoluble compound due to the large content of the additional element. Since Nos. 18 and 19 contain a large amount of impurities, they are insoluble compounds and the moldability is reduced.
【0019】[0019]
【発明の効果】本発明は以上の様に構成されており、極
低温成形加工性に優れたAl−Mn系合金材が得られ
た。The present invention is constituted as described above, and an Al-Mn alloy material excellent in cryogenic workability is obtained.
フロントページの続き (56)参考文献 特開 昭58−224141(JP,A) 特開 平4−300032(JP,A) 特開 平4−308055(JP,A) 特開 平5−339668(JP,A) 発明協会公開技報公枝89−15623号 柳川ら”AI−Mg合金の延性を支配 する因子”神戸製鋼技報,Vol.42, No.1,P.28−33,(1992) 宮木ら”極低温におけるアルミニウム 合金の諸特性と応用”神戸製鋼技報,V ol.34,No.3,P.67−71, (1984) (58)調査した分野(Int.Cl.7,DB名) C22C 21/00 - 21/18 C22F 1/04 - 1/057 Continuation of front page (56) References JP-A-58-224141 (JP, A) JP-A-4-300032 (JP, A) JP-A-4-308055 (JP, A) JP-A-5-339668 (JP) Yanagawa et al., "Factors Governing the Ductility of AI-Mg Alloy", Kobe Steel Engineering Reports, Vol. 42, No. 1, P. 28-33, (1992) Miyagi et al. “Characteristics and applications of aluminum alloys at cryogenic temperatures” Kobe Steel Engineering Reports, Vol. 34, no. 3, p. 67-71, (1984) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 21/00-21/18 C22F 1/04-1/057
Claims (4)
下の極低温でプレス成形加工されるAl−Mn系合金材
であって、Mn:0.2〜2重量%を含有し、残部Al
および不可避不純物からなり、且つ平均結晶粒径が15
0μm以下であることを特徴とする極低温成形加工用A
l−Mn系合金材。(1) After applying a press lubricating oil, the temperature is -40 ° C or less.
Al-Mn-based alloy material press-formed at extremely low temperature below
And containing Mn: 0.2 to 2% by weight, with the balance being Al
And an unavoidable impurity having an average crystal grain size of 15
A for cryogenic molding, characterized in that it is not more than 0 μm.
l-Mn alloy material.
u:1.5重量%以下およびZn:2重量%以下よりな
る群から選択される1種以上を含有するものである請求
項1に記載の極低温成形加工用Al−Mn系合金材。2. Mg: 0.2-2.5% by weight, C
The Al-Mn alloy material for cryogenic forming according to claim 1, wherein the Al-Mn alloy material contains at least one selected from the group consisting of u: 1.5 wt% or less and Zn: 2 wt% or less.
またはZr:0.5重量%以下を含有するものである請
求項1または2に記載の極低温成形加工用Al−Mn系
合金材。3. The composition according to claim 1, further comprising:
3. The Al-Mn alloy material for cryogenic forming according to claim 1, wherein the Al-Mn alloy material contains Zr: 0.5% by weight or less.
iを、合計で1重量%以下に抑えてなる請求項1〜3の
いずれかに記載の極低温成形加工用Al−Mn系合金
材。4. Fe and S contained in unavoidable impurities
The Al-Mn alloy material for cryogenic forming according to any one of claims 1 to 3, wherein i is suppressed to 1% by weight or less in total.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26189592A JP3248263B2 (en) | 1992-09-30 | 1992-09-30 | Al-Mn alloy for cryogenic forming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26189592A JP3248263B2 (en) | 1992-09-30 | 1992-09-30 | Al-Mn alloy for cryogenic forming |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06108191A JPH06108191A (en) | 1994-04-19 |
JP3248263B2 true JP3248263B2 (en) | 2002-01-21 |
Family
ID=17368255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26189592A Expired - Fee Related JP3248263B2 (en) | 1992-09-30 | 1992-09-30 | Al-Mn alloy for cryogenic forming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3248263B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6458224B1 (en) * | 1999-12-23 | 2002-10-01 | Reynolds Metals Company | Aluminum alloys with optimum combinations of formability, corrosion resistance, and hot workability, and methods of use |
JP4539913B2 (en) * | 2004-12-15 | 2010-09-08 | 三菱アルミニウム株式会社 | Aluminum alloy plate for secondary battery case and manufacturing method thereof |
EP2929061B1 (en) * | 2012-12-06 | 2017-02-22 | National University of Science and Technology MISiS | Heat resistant aluminium base alloy and fabrication method |
CN105316533B (en) * | 2014-08-27 | 2017-09-08 | 深圳市欣茂鑫精密五金制品有限公司 | A kind of aluminium alloy |
-
1992
- 1992-09-30 JP JP26189592A patent/JP3248263B2/en not_active Expired - Fee Related
Non-Patent Citations (3)
Title |
---|
宮木ら"極低温におけるアルミニウム合金の諸特性と応用"神戸製鋼技報,Vol.34,No.3,P.67−71,(1984) |
柳川ら"AI−Mg合金の延性を支配する因子"神戸製鋼技報,Vol.42,No.1,P.28−33,(1992) |
発明協会公開技報公枝89−15623号 |
Also Published As
Publication number | Publication date |
---|---|
JPH06108191A (en) | 1994-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100509648B1 (en) | High formability the Magnesium alloy and manufacture method of the Magnesium alloy product thereof | |
EP0480402B1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
JP2997156B2 (en) | Method for producing aluminum alloy sheet at room temperature with slow aging excellent in formability and paint bake hardenability | |
JP2790383B2 (en) | Al-Mg alloy rolled sheet for cryogenic forming | |
JP3248263B2 (en) | Al-Mn alloy for cryogenic forming | |
EP1260600B1 (en) | Aluminum alloy sheet material and method for producing the same | |
JP3248255B2 (en) | Al-Mg-Si alloy material for cryogenic forming | |
JPH06340940A (en) | Aluminum alloy sheet excellent in press formability and baking hardenability and its production | |
JPS6050864B2 (en) | Aluminum alloy material for forming with excellent bending workability and its manufacturing method | |
KR20210037108A (en) | Aluminum alloy and method of manufacturing the same | |
KR102012952B1 (en) | Aluminium alloy and manufacturing method thereof | |
JPH05306440A (en) | Manufacture of aluminum alloy sheet for forming excellent baking hardenability | |
JP3248254B2 (en) | Method for producing Al-Mg based alloy rolled sheet for cryogenic forming | |
JPH10259464A (en) | Production of aluminum alloy sheet for forming | |
JPH06212336A (en) | Al alloy extruded material excellent in strength and bendability | |
JPH10259441A (en) | Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production | |
JPH0565587A (en) | Aluminum alloy rolled sheet for forming and its production | |
JP3208234B2 (en) | Aluminum alloy sheet for forming process excellent in formability and method for producing the same | |
JPH0565586A (en) | Aluminum alloy rooled sheet for forming and its production | |
KR960007633B1 (en) | High Formability High Strength Aluminum-Magnesium-Based Alloy and Manufacturing Method Thereof | |
JPH09202933A (en) | High-strength aluminum alloy with excellent hardenability | |
JPH05230605A (en) | Manufacture of aluminum alloy for baking and hardening formation | |
RU2829404C1 (en) | Secondary wrought aluminium alloy with calcium addition | |
KR102566343B1 (en) | 6xxx series aluminium alloy extruded material with excellent tensile properties and its manufacturing method | |
JPS5932538B2 (en) | Medium strength AI alloy for extrusion with excellent toughness and press hardenability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011009 |
|
LAPS | Cancellation because of no payment of annual fees |