[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3138958B2 - High speed tool steel - Google Patents

High speed tool steel

Info

Publication number
JP3138958B2
JP3138958B2 JP08199596A JP19959696A JP3138958B2 JP 3138958 B2 JP3138958 B2 JP 3138958B2 JP 08199596 A JP08199596 A JP 08199596A JP 19959696 A JP19959696 A JP 19959696A JP 3138958 B2 JP3138958 B2 JP 3138958B2
Authority
JP
Japan
Prior art keywords
tool steel
speed tool
type carbide
carbide
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08199596A
Other languages
Japanese (ja)
Other versions
JPH1025546A (en
Inventor
野 公 亜 矢
田 有 治 町
高 根 正 昭 小
田 正 弘 町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koshuha Steel Co Ltd
Original Assignee
Nippon Koshuha Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koshuha Steel Co Ltd filed Critical Nippon Koshuha Steel Co Ltd
Priority to JP08199596A priority Critical patent/JP3138958B2/en
Publication of JPH1025546A publication Critical patent/JPH1025546A/en
Application granted granted Critical
Publication of JP3138958B2 publication Critical patent/JP3138958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、塑性加工用工
具,ロール,切削工具、特に切削が困難な硬い材料を加
工したり、従来切削可能な材料をさらに高能率で加工す
る工具を作るのに用いられる高速度工具鋼に関する。
The present invention relates to a plastic working tool, a roll, and a cutting tool, especially for processing a hard material which is difficult to cut, and a tool for processing a material which can be conventionally cut with higher efficiency. It relates to the high speed tool steel used.

【0002】[0002]

【従来の技術】高速度工具鋼には難加工材の加工に対処
するため、より高い耐摩耗性が求められ、一般的には、
この耐摩耗性向上のために、以下の方法が用いられてい
る。 合金元素の増量により熱処理後の室温硬さを高め、耐
摩耗性の向上を図る。 CとW等量(2Mo+W )を高めることにより、W,Mo
を主体とするM6C 型炭化物量を増加させ、炭化物量の富
化により耐摩耗性の向上を図る。 CとV量を高めることにより、炭化物の中でも高硬度
なMC型炭化物を増加させ、耐摩耗性の向上を図る。 このように、合金元素を高め、室温硬さや炭化物量を増
加させることにより、耐摩耗性を向上させる方法が主に
行われている。
2. Description of the Related Art High-speed tool steels are required to have higher wear resistance in order to cope with difficult-to-machine materials.
The following method is used to improve the wear resistance. By increasing the amount of alloying elements, the room temperature hardness after the heat treatment is increased, and the wear resistance is improved. By increasing the equivalent amount of C and W (2Mo + W), W, Mo
Increase the amount of M 6 C-type carbides mainly composed of steel, and improve the wear resistance by enriching the amount of carbides. By increasing the amounts of C and V, MC carbide having high hardness among carbides is increased, and the wear resistance is improved. As described above, a method of improving wear resistance by increasing the alloying element and increasing the room temperature hardness and the amount of carbide is mainly performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
溶製法により上記〜の方法を実施する場合には、下
記のような課題があった。 方法の課題: 工具の使用部は摩擦熱などにより 600
℃以上にまで上昇し、熱処理後の室温硬さが高硬度であ
っても、工具使用部は摩擦熱などにより600℃以上の
高温まで上昇し、硬度低下が起こるため室温硬さでは評
価できない。さらに、高温下での使用が続くと時間と共
に軟化が進む。 方法の課題: 鋳造状態で網目状の巨大なM6C 型炭化
物を晶出し、熱間加工性と靭性を著しく低下させる。 方法の課題: MC型炭化物の巨大化をもたらし、熱間
加工性、靭性の低下と共に工具形状への研削加工が不可
能となる。
However, when the above methods (1) to (3) are carried out by the conventional melting method, there are the following problems. Method challenge: The tool uses 600 parts due to frictional heat
° C or higher, and even if the room temperature hardness after the heat treatment is high, the tool-used portion rises to a high temperature of 600 ° C or higher due to frictional heat and the like, and the hardness decreases. Further, if the use at a high temperature is continued, the softening proceeds with time. Challenge method: crystallized reticulated huge M 6 C type carbide cast state, significantly reduces the hot workability and toughness. Problems of method: MC type carbides become huge, and hot workability and toughness are reduced, and grinding to tool shape becomes impossible.

【0004】これらの理由により、溶製法による高速度
工具鋼の高合金化は困難とされ、高合金高速度工具鋼の
製造は粉末冶金法によって実施されている。
[0004] For these reasons, it is considered difficult to form a high alloy of high speed tool steel by the smelting method, and the production of high alloy high speed tool steel is carried out by powder metallurgy.

【0005】この従来の粉末冶金法による高速度工具鋼
として、例えば特公昭57−2142号公報に記載のも
のが知られている。これは、重量比で0.8〜3.95
%の炭素、タングステンと2倍のモリブデンの総量が3
0〜50%、クロムが3.0〜5.0%、バナジウムが
1.0〜10.0%、コバルトが5〜15%を含み、残
部が鉄および不可避的不純物からなり、粉末冶金法によ
り作られているが、コスト高になるという課題があっ
た。
As a conventional high-speed tool steel produced by the powder metallurgy method, for example, a steel disclosed in Japanese Patent Publication No. 57-2142 is known. This is 0.8 to 3.95 by weight.
% Carbon, tungsten and twice as much molybdenum
0 to 50%, chromium is 3.0 to 5.0%, vanadium is 1.0 to 10.0%, cobalt is 5 to 15%, and the balance is composed of iron and unavoidable impurities. Although it was made, there was a problem that the cost would be high.

【0006】この発明は上記のような課題を解決するも
のであり、高温下でも高温硬さを維持する上、MC型
炭化物の粒径と面積率を制限することにより溶製法でも
C型炭化物形成元素(Mo,W)を高め、粉末高速
度工具鋼以上の耐摩耗性が得られ、かつ被研削性に優れ
る安価な高速度工具鋼を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems. In addition to maintaining high-temperature hardness even at a high temperature, the present invention restricts the particle size and area ratio of M 6 C-type carbide so that M 6 can be used even in a melting process. It is an object of the present invention to provide an inexpensive high-speed tool steel which increases the C-type carbide forming element (Mo, W), provides wear resistance higher than that of powder high-speed tool steel, and is excellent in grindability.

【0007】[0007]

【課題を解決するための手段】請求項1の発明にかかる
高速度工具鋼は、重量%で、C:0.8〜1.5%、S
i:0.4%以下、Mn:1%以下、Cr:3〜5%、
Mo:0.5〜15%、W:2.5〜12%、V:1〜
2%、Co:5〜10%を含有し、残部がFeからなる
合金で、以下の(イ)及び(ロ)の関係を満たす溶解法
によって作られたものである。 (イ)10≦S≦15、 ただし、 S=0.92(2.0[Mo%]+2.5[W%])−
17.81 (ロ)840≦A≦1020、 ただし、 A=(S/100×2300)+((1−S/100)
×H) S=0.92(2.0[Mo%]+2.5[W%])−
17.81 H=26.14X+531 X=−2.33[Ceq]+5.73[Ceq]+4
0.00[ΔC%]−4.09[ΔC%]−0.02
[Co%]+0.29[Co%] Ceq=0.19+0.017([W%]+2[Mo
%])+0.22[V%] ΔC%=[C%]−Ceq但し、以下の(ハ)又は(ニ)の関係が成り立つ範囲を
除く。 (ハ)F≧7.30 ただし、 F=-0.90[Mo%][C%]−0.45[W%]
[C%] +2.4[C%]+0.84[Mo%]+0.92[W
%] +2[V%−1] 1/2 +5.45[Si%]+32.7
[N%] (ニ)2Mo+W:12.0〜22.0%であり、かつ
2Mo+Wに対する2Moの比が0.45〜0.60の
範囲内にある。
The high-speed tool steel according to the first aspect of the present invention has a C content of 0.8 to 1.5% by weight,
i: 0.4% or less, Mn: 1% or less, Cr: 3 to 5%,
Mo: 0.5 to 15%, W: 2.5 to 12%, V: 1 to 1
2% Co: contains 5-10%, the balance being Fe
An alloy made by a melting method that satisfies the following relationships (a) and (b) . (B) 10 ≦ S ≦ 15, where S = 0.92 (2.0 [Mo%] + 2.5 [W%]) −
17.81 (b) 840 ≦ A ≦ 1020, where A = (S / 100 × 2300) + ((1−S / 100)
× H) S = 0.92 (2.0 [Mo%] + 2.5 [W%]) −
17.81 H = 26.14X + 531 X = −2.33 [Ceq] 2 +5.73 [Ceq] +4
0.00 [ΔC%] 2 −4.09 [ΔC%] − 0.02
[Co%] 2 +0.29 [Co%] Ceq = 0.19 + 0.017 ([W%] + 2 [Mo
%]) + 0.22 [V%] ΔC% = [C%] − Ceq However, the range where the following relationship (c) or (d) is satisfied is
except. (C) F ≧ 7.30 where F = −0.90 [Mo%] [C%] − 0.45 [W%]
[C%] + 2.4 [C%] + 0.84 [Mo%] + 0.92 [W
%] + 2 [V% -1] 1/2 +5.45 [Si%] + 32.7
[N%] (d) 2Mo + W: 12.0 to 22.0%, and
The ratio of 2Mo to 2Mo + W is 0.45 to 0.60.
In range.

【0008】また、請求項2の発明にかかる高速度工具
鋼は、Mo,W を主体とするM6C 型炭化物の面積率を10〜
15%としたものである。
In the high-speed tool steel according to the second aspect of the present invention, the area ratio of M 6 C-type carbide mainly composed of Mo and W is 10 to 10%.
It is 15%.

【0009】また、請求項3の発明にかかる高速度工具
鋼は、Mo,W を主体とするM6C 型炭化物の平均粒径を1.
4 〜2.0 μm としたものである。
The high-speed tool steel according to the third aspect of the present invention has an M 6 C type carbide mainly composed of Mo and W having an average particle size of 1.
It is 4 to 2.0 μm.

【0010】[0010]

【0011】以下、この発明の実施の一形態について説
明する。
Hereinafter, an embodiment of the present invention will be described.

【0012】一般的に、高速度工具鋼が適用される用途
では工具使用部の温度は摩擦熱などにより600℃以上
の高温までに達する。したがって、高速度工具鋼は高温
下での耐摩耗性が重要であり、高温下での素材の硬さ
(強度)、焼戻し軟化抵抗、一次炭化物の大きさなどの
因子が大きく影響する。この発明は、耐摩耗性に寄与す
るこれらの因子を最適なバランスで満足する素材を提供
する。
Generally, in applications to which high-speed tool steel is applied, the temperature of the tool-using portion reaches a high temperature of 600 ° C. or more due to frictional heat or the like. Therefore, high-speed tool steel is important in wear resistance at high temperatures, and factors such as the hardness (strength) of the material at high temperatures, temper softening resistance, and the size of primary carbides greatly affect the high-speed tool steel. The present invention provides a material that satisfies these factors contributing to wear resistance in an optimal balance.

【0013】第一の因子である高温下での素材の硬さ
(強度)は、分布する一次炭化物と母材が占める割合
と、高温下でのそれらの硬さが大きく寄与する。これら
の関係を式で表すと、高温強度∝(一次炭化物面積率×
炭化物の硬さ)+(母材面積率×母材の高温硬さ)とな
る。
The hardness (strength) of the raw material at high temperature, which is the first factor, largely depends on the proportion of the distributed primary carbide and the base material and their hardness at high temperature. When these relationships are expressed by an equation, high-temperature strength ∝ (primary carbide area ratio ×
(Hardness of carbide) + (base metal area ratio × high-temperature hardness of base metal).

【0014】高速度工具鋼の一次炭化物はMC>M6C,M2C型
炭化物の順に耐摩耗性への寄与が大きい。しかしなが
ら、MC型炭化物は素材の被研削性を著しく低下させるこ
とと、M6C 型炭化物は高温下での硬さ低下が緩やかであ
るという特徴に着目し、M6C 型炭化物の生成量(面積
率)と母材の高温硬度、合金バランスの関係について検
討すると、前述のとおり、一次炭化物(M6C) の生成量
(面積率)は素材の耐摩耗性に大きく寄与し、図1に示
すようになる。
The primary carbide of high speed tool steel contributes to wear resistance in the order of MC> M 6 C, M 2 C type carbide. However, MC-type carbide and significantly reduce the grindability of the material, M 6 C type carbide has focused on feature that hardness decreases at high temperatures is slow, the amount of M 6 C type carbide ( Examining the relationship between the area ratio), the high-temperature hardness of the base metal, and the alloy balance, as described above, the amount of primary carbide (M 6 C) generated (area ratio) greatly contributes to the wear resistance of the material. As shown.

【0015】このM6C 型炭化物の面積率(生成量)Sと
合金成分との相関性を求めた結果、M6C 型炭化物の面積
率は合金成分によって、S=0.92(2.0[Mo%]+2.5[W%])-17.
81の式で表されることが見い出された。この相関は図2
に示す通りである。
[0015] The M 6 area ratio of C-type carbides (generation amount) result of obtaining correlation between the S and the alloy component, the area ratio of the alloy components of the M 6 C type carbide, S = 0.92 (2.0 [Mo % ] +2.5 [W%])-17.
It was found to be represented by equation 81. This correlation is shown in FIG.
It is as shown in FIG.

【0016】従来の高速度工具鋼のM6C 型炭化物の面積
率は6〜7%前後であり、著しい耐摩耗性の向上には少
なくとも10%以上は必要である。しかしながら、15
%を越えると熱間加工が困難となるため、上限を15%
とする。したがって、パラメータSで整理すると、10≦
S≦15(前述条件イ)となる。
The area ratio of the M 6 C type carbide in the conventional high speed tool steel is about 6 to 7%, and at least 10% or more is required for remarkable improvement in wear resistance. However, 15
%, Hot working becomes difficult, so the upper limit is 15%.
And Therefore, when organized by parameter S, 10 ≦
S ≦ 15 (condition a).

【0017】母材の高温(600℃)硬さHもまた合金
成分によって決定されH=26.14X+531ここで、 X=-2.33Ce
q2+5.73Ceq+40.00ΔC2-4.09 ΔC-0.02Co2+ 0.29Co の式
が見い出された。このH及びXの相関は図3に示す通り
である。
The high temperature (600 ° C.) hardness H of the base metal is also determined by the alloy composition, H = 26.14X + 531, where X = −2.33 Ce
The formula q 2 + 5.73Ceq + 40.00ΔC 2 -4.09 ΔC-0.02Co 2 + 0.29Co was found. The correlation between H and X is as shown in FIG.

【0018】M6C 型炭化物の既知の硬さは1600〜2300HV
と言われており(日本金属学会会報Vol.7より引用)、
高温強度(A)を表す関係式は前述のパラメータとM6C
型炭化物の硬さ(2300 HV)を代入すると、A=(S/100×23
00)+((1-S/100)×H)と整理される。
The known hardness of M 6 C type carbide is 1600-2300 HV
(Quoted from JIM Vol.7),
The relational expression that expresses the high temperature strength (A) is the above parameter and M 6 C
Substituting the hardness of type carbide (2300 HV), A = (S / 100 × 23
00) + ((1-S / 100) × H).

【0019】本発明者らは、この高温強度と耐摩耗性と
の間に図4に示す相関性を見い出した。比摩耗量が0.45
×10-4mm3 /kgfm以下のとき工具として使用した場合、
非常に優れた耐摩耗性を示すことがこれまでの知見とし
て得られており、これを実現するにはA ≧840 を満たす
ことが必要である。また、Aが1020を越えると靭性や熱
間加工性を著しく阻害するというデメリットの方が大き
いため、上限を1020とする(前述条件ロ)。
The present inventors have found a correlation between the high-temperature strength and the wear resistance shown in FIG. 0.45 specific wear
When used as a tool at × 10 -4 mm 3 / kgfm or less,
Very good wear resistance has been obtained so far, and it is necessary to satisfy A ≧ 840 in order to realize this. Further, if A exceeds 1020, the toughness and hot workability will be significantly impaired, so the upper limit is set to 1020 (condition B).

【0020】第二の因子である焼戻し軟化抵抗にはCoが
大きく寄与し、Co添加により耐摩耗性が付与されること
は図1の通りである。Coの効果は少なくとも5%以上添
加することによって顕著に認められるが、多量に添加す
ると靭性が低下するため、上限を10%とする。
As shown in FIG. 1, Co greatly contributes to the tempering softening resistance, which is the second factor, and the addition of Co imparts wear resistance. The effect of Co is remarkably recognized by adding at least 5% or more, but if added in a large amount, the toughness decreases, so the upper limit is made 10%.

【0021】第三の因子である一次炭化物の大きさにつ
いては、図5に示す通り、M6C 型炭化物粒径と素材の耐
摩耗性には比例関係がある。前述の通り、比摩耗量が0.
45×10-4mm3/Kgfm以下のとき、工具としては非常に優れ
た耐摩耗性を示すことから、M6C 型炭化物の平均粒径は
1.4 μm 以上であることが望ましい。しかしながら、粒
径が2.0 μm を越えると耐摩耗性の著しい向上は認めら
れず、かえって靭性および熱間加工性を阻害することか
ら、上限を2.0 μm とする。
Regarding the size of the primary carbide, which is the third factor, as shown in FIG. 5, there is a proportional relationship between the M 6 C type carbide particle size and the wear resistance of the material. As described above, the specific wear amount is 0.
When it is 45 × 10 -4 mm 3 / Kgfm or less, since the tool shows extremely excellent wear resistance, the average particle size of the M 6 C type carbide is
It is desirable that the thickness be 1.4 μm or more. However, when the grain size exceeds 2.0 μm, no remarkable improvement in wear resistance is observed, and rather the toughness and hot workability are impaired, so the upper limit is set to 2.0 μm.

【0022】Vは前述の条件ロを満たすために必要であ
るが、含有量が多くなると粗大なMC型炭化物を晶出し、
著しく被研削性を落とすため、2%を限度とする。
V is necessary to satisfy the above condition (b), but when the content is large, coarse MC-type carbide is crystallized,
To significantly reduce the grindability, the upper limit is 2%.

【0023】Siは、少ないほど靭性に優れるが、脱酸剤
として使用する製造上の都合から、少なすぎると精錬が
困難となるため、0.4 %以下とする。
The smaller the content of Si, the better the toughness. However, the refining is difficult if the content is too small because of the manufacturing convenience of use as a deoxidizing agent.

【0024】CrはCと結合して複炭化物を形成し、耐摩
耗性に寄与するとともに、焼入性を向上させる。このた
めに少なくとも3%以上添加させる必要があるが、5%
を越えると著しい効果がみとめられないことから上限を
5%とする。
Cr combines with C to form double carbides, which contributes to wear resistance and improves hardenability. For this purpose, it is necessary to add at least 3% or more.
If no, a significant effect is not observed, so the upper limit is made 5%.

【0025】Mnは、脱酸,脱硫剤として添加する。しか
しながら、多量に入れすぎると靭性が低下するため、1
%以下とする。
Mn is added as a deoxidizing and desulfurizing agent. However, if too much is added, the toughness is reduced.
% Or less.

【0026】さらに、本発明の高速度工具鋼は、溶製条
件により炭化物の分布状態が大きく左右されるため、エ
レクトロスラグ溶解法で130 〜170Kg/Hrの低速で溶製す
る。これにより、炭化物粒径および分布を均一にコント
ロールすることが可能であり、偏摩耗の少ない安定した
工具品質を維持させることが可能となる。
Furthermore, the high-speed tool steel of the present invention is melted at a low speed of 130 to 170 kg / Hr by the electroslag melting method because the distribution of carbides is greatly affected by the melting conditions. This makes it possible to uniformly control the carbide particle size and distribution, and to maintain stable tool quality with less uneven wear.

【0027】[0027]

【発明の実施の形態】表1には、この発明の高速度工具
鋼の代表例と比較鋼(公知の溶解鋼および粉末鋼)の化
学成分を示し、番号を付したこれらの各素材の摩耗特性
は図4,図5に示す通りである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Table 1 shows the chemical composition of a typical example of the high-speed tool steel of the present invention and comparative steels (known molten steel and powdered steel). The characteristics are as shown in FIGS.

【0028】[0028]

【表1】 [Table 1]

【0029】摩耗試験は大越式摩耗試験により摩擦速度
1.37m/sec,摩擦距離200m, 最終荷重18.9Kgの条件で実施
し、相手材にはSCr420(149 HB)を使用した。また、M6C
型炭化物の粒径は、試料を10%シュウ酸水溶液を用いて
電解腐食し、M6C 型炭化物について画像解析し、平均を
求めた。これらの結果により、本発明鋼は高合金である
粉末ハイス以上の優れた耐摩耗性を示すことが認められ
る。
The wear test is based on the friction speed obtained by the Ogoshi-type wear test.
The test was performed under the conditions of 1.37 m / sec, friction distance of 200 m, and final load of 18.9 kg, and SCr420 (149 HB) was used as the mating material. Also, M 6 C
The average particle size of the type carbide was determined by subjecting a sample to electrolytic corrosion using a 10% oxalic acid aqueous solution, performing image analysis on the M 6 C type carbide, and calculating the average. From these results, it is recognized that the steel of the present invention exhibits excellent wear resistance more than powdered high-speed steel, which is a high alloy.

【0030】さらに、エレクトロスラグ溶解法により13
8Kg/Hrの溶解速度で溶解した本発明鋼のミクロ組織写真
を図6に示す。ここで白色粒はM6C 型炭化物であり、均
一に分布していることが認められる。
Furthermore, 13
FIG. 6 shows a microstructure photograph of the steel of the present invention dissolved at a dissolution rate of 8 kg / Hr. Here, it is recognized that the white grains are M 6 C-type carbides and are uniformly distributed.

【0031】[0031]

【発明の効果】以上のように、この発明によれば合金量
と高温硬さ、M6C 型炭化物面積率および M6C型炭化物の
関係が明らかになり、合金バランスによって要求する高
温硬さ、 M6C型炭化物の面積率、および粒径が得られ
る。
As is evident from the foregoing description, according to the present invention the alloy content and high-temperature hardness, the relationship of M 6 C type carbide area ratio and M 6 C type carbide revealed, high-temperature hardness of requesting an alloy balance , M 6 C type carbide area ratio, and particle size are obtained.

【0032】これにより、被研削性を著しく損なうMC型
炭化物ではなく、M6C 型炭化物を富化しながらその晶出
量の上限と粒径を制限することにより、溶解法において
製造可能な範囲内で、最大限の凝着摩耗特性が得られる
高合金ハイスの製造方法となる。
[0032] Accordingly, the upper limit of the amount of crystallization and the grain size are limited while enriching the M 6 C-type carbide, not the MC-type carbide, which significantly impairs the grindability, so that it can be produced within the range that can be produced by the melting method. Thus, a method for producing a high alloy high-speed steel with which the maximum adhesive wear characteristics can be obtained.

【0033】これらの凝着摩耗特性は粉末ハイス以上の
性能を示し、従来、粉末ハイスを用いて使用していた分
野へ適用することにより、安価となるコストメリットが
ある。さらに、被研削性を著しく低減させるMC型炭化物
形成元素であるVの添加量を最低限に押さえているた
め、被研削性にも優れる。従って、この発明の高速度工
具鋼は、切削工具,塑性加工用工具,ロールなど種々の
工具に好適である。
These adhesive wear characteristics show a performance higher than that of powdered high-speed steel, and there is a merit of a lower cost when applied to a field where powdered high-speed steel has been used conventionally. Furthermore, since the addition amount of V, which is an MC type carbide forming element that significantly reduces the grindability, is minimized, the grindability is excellent. Therefore, the high-speed tool steel of the present invention is suitable for various tools such as cutting tools, plastic working tools, and rolls.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の高速度工具鋼の一次炭化物の面積率
に対する比摩擦量との関係を示す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between an area ratio of a primary carbide of a high-speed tool steel according to the present invention and an amount of specific friction.

【図2】この発明の合金成分に対するM6C 型炭化物の面
積率との関係を示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between an alloy component of the present invention and an area ratio of M 6 C-type carbide.

【図3】この発明のパラメータXに対する母材の高温硬
さの関係を示す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between a parameter X of the present invention and a high-temperature hardness of a base material.

【図4】この発明のパラメータAに対する比摩耗量の関
係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a specific wear amount and a parameter A according to the present invention.

【図5】この発明のM6C 型炭化物粒径に対する比摩耗量
の関係を示す特性図である。
FIG. 5 is a characteristic diagram showing the relationship between the specific wear amount and the M 6 C-type carbide particle size of the present invention.

【図6】この発明の実施例による高速度工具鋼のミクロ
組織を示す写真図である。
FIG. 6 is a photograph showing a microstructure of a high-speed tool steel according to an embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 町 田 有 治 富山県新湊市八幡町3−10−15 日本高 周波鋼業株式会社 富山製造所内 (72)発明者 小 高 根 正 昭 富山県新湊市八幡町3−10−15 日本高 周波鋼業株式会社 富山製造所内 (72)発明者 町 田 正 弘 兵庫県明石市魚住町金ヶ崎西大池179番 地1 神鋼コベルコツール株式会社内 (56)参考文献 特開 平5−33102(JP,A) 特開 平1−165748(JP,A) 特開 昭60−12211(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 302 C22B 9/18 B22P 23/10 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yuji Machida 3-10-15, Yawatacho, Shinminato-shi, Toyama Japan High Frequency Steel Industry Co., Ltd. 3-10-15, Yawata-cho, Japan Toyama Works, Japan High Frequency Steel Industry Co., Ltd. (72) Inventor Masahiro Machida 179 Kanegasaki Nishi-Oike, Uozumi-cho, Akashi-shi, Hyogo Pref. Document JP-A-5-33102 (JP, A) JP-A-1-165748 (JP, A) JP-A-60-12211 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00 302 C22B 9/18 B22P 23/10

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:0.8〜1.5%、S
i:0.4%以下、Mn:1%以下、Cr:3〜5%、
Mo:0.5〜15%、W:2.5〜12%、V:1〜
2%、Co:5〜10%を含有し、残部がFeからなる
合金で、以下の(イ)及び(ロ)の関係を満たす溶解法
によって作られたことを特徴とする高速度工具鋼。 (イ)10≦S≦15、 ただし、 S=0.92(2.0[Mo%]+2.5[W%])−
17.81 (ロ)840 ≦A≦1020、 ただし、 A=(S/100×2300)+((1−S/100)
×H) S=0.92(2.0[Mo%]+2.5[W%])−
17.81 H=26.14X+531 X=−2.33[Ceq]+5.73[Ceq]+4
0.00[ΔC%]−4.09[ΔC%]−0.02
[Co%]+0.29[Co%] Ceq=0.19+0.017([W%]+2[Mo
%])+0.22[V%] ΔC%=[C%]−Ceq但し、以下の(ハ)又は(ニ)の関係が成り立つ範囲を
除く。 (ハ)F≧7.30 ただし、 F=-0.90[Mo%][C%]−0.45[W%]
[C%] +2.4[C%]+0.84[Mo%]+0.92[W
%] +2[V%−1] 1/2 +5.45[Si%]+32.7
[N%] (ニ)2Mo+W:12.0〜22.0%であり、かつ
2Mo+Wに対する2Moの比が0.45〜0.60の
範囲内にある。
C. 0.8% to 1.5% by weight of S
i: 0.4% or less, Mn: 1% or less, Cr: 3 to 5%,
Mo: 0.5 to 15%, W: 2.5 to 12%, V: 1 to 1
2% Co: contains 5-10%, the balance being Fe
A high-speed tool steel made of an alloy by a melting method satisfying the following relations (a) and (b) . (B) 10 ≦ S ≦ 15, where S = 0.92 (2.0 [Mo%] + 2.5 [W%]) −
17.81 (b) 840 ≦ A ≦ 1020, where A = (S / 100 × 2300) + ((1−S / 100)
× H) S = 0.92 (2.0 [Mo%] + 2.5 [W%]) −
17.81 H = 26.14X + 531 X = −2.33 [Ceq] 2 +5.73 [Ceq] +4
0.00 [ΔC%] 2 −4.09 [ΔC%] − 0.02
[Co%] 2 +0.29 [Co%] Ceq = 0.19 + 0.017 ([W%] + 2 [Mo
%]) + 0.22 [V%] ΔC% = [C%] − Ceq However, the range where the following relationship (c) or (d) is satisfied is
except. (C) F ≧ 7.30 where F = −0.90 [Mo%] [C%] − 0.45 [W%]
[C%] + 2.4 [C%] + 0.84 [Mo%] + 0.92 [W
%] + 2 [V% -1] 1/2 +5.45 [Si%] + 32.7
[N%] (d) 2Mo + W: 12.0 to 22.0%, and
When the ratio of 2Mo to 2Mo + W is 0.45 to 0.60
In range.
【請求項2】 Mo,Wを主体とするMC型炭化物の
面積率が10〜15%であることを特徴とする請求項1
記載の高速度工具鋼。
2. The M 6 C-type carbide mainly composed of Mo and W has an area ratio of 10 to 15%.
High speed tool steel as described.
【請求項3】 Mo,Wを主体とするMC型炭化物の
平均粒径が1.4〜2.0μmであることを特徴とする
請求項1または2に記載の高速度工具鋼。
3. The high-speed tool steel according to claim 1, wherein the M 6 C-type carbide mainly composed of Mo and W has an average particle diameter of 1.4 to 2.0 μm.
JP08199596A 1996-07-11 1996-07-11 High speed tool steel Expired - Lifetime JP3138958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08199596A JP3138958B2 (en) 1996-07-11 1996-07-11 High speed tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08199596A JP3138958B2 (en) 1996-07-11 1996-07-11 High speed tool steel

Publications (2)

Publication Number Publication Date
JPH1025546A JPH1025546A (en) 1998-01-27
JP3138958B2 true JP3138958B2 (en) 2001-02-26

Family

ID=16410491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08199596A Expired - Lifetime JP3138958B2 (en) 1996-07-11 1996-07-11 High speed tool steel

Country Status (1)

Country Link
JP (1) JP3138958B2 (en)

Also Published As

Publication number Publication date
JPH1025546A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
JPH06322482A (en) High toughness high-speed steel member and its production
JPH116041A (en) Wear resistant powder metallurgy cold working tool steel body having high shock toughness and its production
JP2017155306A (en) Hot tool steel having excellent high temperature strength and toughness
JPS6121299B2 (en)
JP2725333B2 (en) Powder high speed tool steel
JP2636816B2 (en) Alloy tool steel
JP2007224418A (en) Hot tool steel having excellent toughness
JP6710484B2 (en) Powder high speed tool steel
JP3138958B2 (en) High speed tool steel
JP2960496B2 (en) Cold tool steel
JP2684736B2 (en) Powder cold work tool steel
JPH10330894A (en) Low alloy high speed tool steel and its production
JP2003313635A (en) Hot work tool steel with high toughness
JP2999655B2 (en) High toughness powder HSS
JPH05171373A (en) Powder high speed tool steel
JPH07116550B2 (en) Low alloy high speed tool steel and manufacturing method thereof
WO2024024407A1 (en) Alloy steel
JPH05163551A (en) Powder high-speed tool steel
JP4441907B2 (en) Hot tool steel with excellent toughness and method for producing the same
JP3748131B2 (en) Powdered high-speed tool steel with excellent toughness and wear resistance
JP2755974B2 (en) Powder high speed tool steel
JPH0539552A (en) Powdery steel for high speed tool and its production
JPH07316739A (en) Cold tool steel
KR100502193B1 (en) High speed tool steel having superior hardness and method for manufacturing the same
JP4368032B2 (en) Powder for high speed tool steel and powder high speed tool steel

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term