JP3133041B2 - Method for producing fiber-reinforced thermosetting resin molded product - Google Patents
Method for producing fiber-reinforced thermosetting resin molded productInfo
- Publication number
- JP3133041B2 JP3133041B2 JP01081400A JP8140089A JP3133041B2 JP 3133041 B2 JP3133041 B2 JP 3133041B2 JP 01081400 A JP01081400 A JP 01081400A JP 8140089 A JP8140089 A JP 8140089A JP 3133041 B2 JP3133041 B2 JP 3133041B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- acid
- epoxy
- unsaturated
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/06—Unsaturated polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/04—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyesters
- C08F299/0478—Copolymers from unsaturated polyesters and low molecular monomers characterised by the monomers used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/6705—Unsaturated polymers not provided for in the groups C08G18/671, C08G18/6795, C08G18/68 or C08G18/69
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/68—Unsaturated polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2120/00—Compositions for reaction injection moulding processes
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Reinforced Plastic Materials (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は繊維強化熱硬化性樹脂成形物の製造方法に関
する。The present invention relates to a method for producing a fiber-reinforced thermosetting resin molded product.
本発明の繊維強化熱硬化性樹脂成形物の製造方法は、
自動車工業分野や建築分野等の大型成形を必要とする分
野に利用することができる。The method for producing a fiber-reinforced thermosetting resin molded product of the present invention is,
It can be used in fields that require large-sized molding, such as the automotive industry and construction.
従来、繊維強化熱硬化性樹脂の成形の手段としてはハ
ンドレイアップ成形、プレス成形、引抜き成形、フィラ
メントワインディング成形、レジントランスファー成形
等がある。大型成形物を成形する場合、ハンドレイアッ
プ成形では型費が安く設備投資がかからない利点がある
ものの、成形サイクルが長いことや手でガラスマットを
積層する為、ガラスマットのスプリングバックの問題か
らガラス含量を高くすることが困難である。またプレス
成形では、成形サイクルは短いものの、ハンドリング可
能な状態まで増粘させたシート状のコンパウンド(SM
C)やバルク状のコンパウンド(BMC)をプレスする為高
いプレス圧力が必要となり、得ようとする製品が大型で
あるほど、プレス機や金型にかかる設備投資は高額とな
る。さらに引抜き成形やフィラメントワインディング成
形では成形物の形状の制限が大きい問題がある。これら
のなかで、レジントランスファー成形が最も大型成形に
適している。またウレタン分野で使用されている反応射
出成形機(RIMマシーン)を用いて、互いに反応性の二
液を予め強化材を充填した金型中に反応射出させて高強
度化をはかるStructural−RIM(S−RIM)成形と呼ばれ
る成形方法もあるが、この成形方法もその成形過程から
判断して、広義のレジントランスファー成形の範疇とい
える。従来のレジントランスファー成形とS−RIM成形
の違いは注入機の差にある。レジントランスファー成形
の場合、定圧力の注入機である為、型内に充填したガラ
ス繊維の充填度により注入時に発生する背圧がかわる
と、注入時間が変化する。従って、高強度の成形物を得
るためにガラス含量を高くすると注入時間がかなり長く
なるが、通常の不飽和ポリエステル樹脂のように、反応
速度が遅く禁止剤と触媒系により任意にゲルタイムを変
化できるものは問題ではない。しかし、より高強度、高
弾性の成形物を得るために不飽和ポリエステル樹脂とポ
リイソシアネート化合物を反応させるような樹脂系で
は、反応速度の速いウレタン化反応を伴なうので、注入
に長い時間を要すると注入途中で反応が進行して著しい
粘度上昇を生じ注入できなくなる。そこで、このような
樹脂系では金型内の背圧の程度に依らず一定時間で、そ
れも短時間で注入する必要がある。RIMマシーンは定速
度(流量流速)の注入機であるので背圧の影響による注
入時間の変動を起しにくく速い反応系に適している。し
かし、この場合でもガラス繊維を高充填した型内に高速
度で注入すると、かなりの高背圧が発生し、ポンプ能力
を上回ってマシーンが停止したり、RIMマシーンの計量
混合機(ミキシングヘッド)と金型との取り付け部より
液もれが生じることがある。このように高強度化するた
めにガラス含量を高くした成形物を成形する為には、レ
ジントランスファー成形の場合でもS−RIM成形の場合
でも発生する背圧が問題となる。即ち、短時間で成形を
行うにはこの背圧を低下させ樹脂をスムーズに注入し、
樹脂充填後速かに反応が完結し硬化に至る必要がありこ
の為特に、樹脂の低粘度化や注入途中の反応による粘度
上昇(初期増粘)を低レベルに抑制することが重要であ
る。しかし、これまでにこのような条件に適合する樹脂
系はない。Conventionally, as means for molding a fiber-reinforced thermosetting resin, there are hand lay-up molding, press molding, pultrusion molding, filament winding molding, resin transfer molding and the like. When molding large molded products, hand lay-up molding has the advantage of low mold cost and no capital investment.However, because the molding cycle is long and the glass mats are laminated by hand, the glass mats have the problem of springback of the glass mats. It is difficult to increase the content. In press molding, although the molding cycle is short, a sheet-like compound (SM
High pressure is required to press C) or bulk compound (BMC), and the larger the product to be obtained, the higher the capital investment in the press and the mold. Further, there is a problem that the shape of the molded product is greatly restricted in the drawing molding and the filament winding molding. Among these, resin transfer molding is most suitable for large-sized molding. In addition, using a reaction injection molding machine (RIM machine) used in the urethane field, Structural-RIM (RIM machine) is used to increase the strength by reacting two liquids that are reactive with each other into a mold filled with a reinforcing material in advance. There is also a molding method called S-RIM) molding, and this molding method can be said to be a broad category of resin transfer molding, judging from the molding process. The difference between conventional resin transfer molding and S-RIM molding lies in the difference in the injection machine. In the case of resin transfer molding, since the injection machine is a constant-pressure injection machine, the injection time changes when the back pressure generated at the time of injection changes depending on the degree of filling of the glass fiber in the mold. Therefore, when the glass content is increased to obtain a high-strength molded product, the pouring time is considerably long, but the gelling time can be arbitrarily changed by a slow reaction rate, such as an ordinary unsaturated polyester resin, by using an inhibitor and a catalyst system. Things don't matter. However, in a resin system in which an unsaturated polyester resin is reacted with a polyisocyanate compound to obtain a molded article having higher strength and high elasticity, a urethane-forming reaction with a high reaction rate is involved, so that a long time is required for injection. If necessary, the reaction proceeds during the injection, causing a significant increase in the viscosity, and the injection cannot be performed. Therefore, in such a resin system, it is necessary to inject the resin for a certain period of time irrespective of the degree of back pressure in the mold, and also for a short period of time. Since the RIM machine is a constant speed (flow rate) injector, it is suitable for a fast reaction system in which the injection time does not fluctuate due to the influence of the back pressure. However, even in this case, when injected into a mold filled with glass fiber at a high speed, a considerably high back pressure is generated, the machine stops due to exceeding the pump capacity, or a RIM machine's metering mixer (mixing head) Liquid may leak from the mounting portion between the mold and the mold. In order to form a molded article having a high glass content in order to increase the strength as described above, the back pressure generated in both the resin transfer molding and the S-RIM molding becomes a problem. That is, to perform molding in a short time, lower this back pressure and inject resin smoothly,
It is necessary that the reaction is completed immediately after filling the resin and the resin is cured. Therefore, it is particularly important to reduce the viscosity of the resin and to suppress the increase in viscosity (initial thickening) due to the reaction during the injection to a low level. However, there is no resin system that meets such conditions so far.
本発明者らは、樹脂の粘度および注入途中の反応によ
る粘度上昇(初期増粘)を抑制し、注入後速かに反応が
完結し硬化に至るような樹脂系に関し鋭意検討した結果
本発明に到達した。The present inventors have conducted intensive studies on a resin system in which the viscosity of the resin and the viscosity increase (initial thickening) due to the reaction during the injection are suppressed, and the reaction is completed promptly after the injection and leads to curing. Reached.
即ち本発明は、 活性水素化合物(A)と重合性ビニル単量体(B)と
を含む原料成分と、ポリイソシアネート化合物(C)を
含む原料成分を繊維(D)中に反応射出成形する繊維強
化熱硬化性樹脂成形物の製造方法において、 (A)は、不飽和ジカルボン酸もしくはその酸無水物
40〜100モル%を含むジカルボン酸もしくはその酸無水
物と一級ヒドロキシル基を有する多価アルコールとから
得られる、ヒドロキシル価が110〜280mgKOH/gであり酸
価が5mgKOH/g以下の不飽和ポリエステル(a1)に、エポ
キシ基を分子中に少なくとも1個を有するエポキシ当量
70〜200のエポキシ化合物と重合性不飽和一塩基酸とか
ら得られる不飽和エポキシエステル(a2)及び分子中に
アクリロイル基とヒドロキシル基とを有するアクリル化
合物(a3)からなる群から選ばれる少なくとも1種類の
化合物を配合してなり、a1、a2、a3の割合が (a2+a3)/(a1+a2+a3)×100=1〜15wt%の活性
水素化合物であり、 (B)はメタクリル酸メチルを5〜40wt%、好ましく
は10〜25wt%含む重合性ビニル単量体であり、 (C)は末端基が、 であり、25℃の粘度が10〜200cpsである液状ポリイソシ
アネート化合物であって、且つ、下記条件(i)(ii)
(iii) (i)(B)は(A)と(B)との合計量に対し20〜50
wt%は、 (ii)(C)のイソシアネート基は(A)のヒドロキシ
ル基に対して0.75〜1.2モル倍、 (iii)(D)は(A)(B)(C)及び(D)の合計
量に対して30〜75wt%、 を満足することを特徴とする繊維強化熱硬化性樹脂成形
物の製造方法である。That is, the present invention relates to a fiber in which a raw material component containing an active hydrogen compound (A) and a polymerizable vinyl monomer (B) and a raw material component containing a polyisocyanate compound (C) are reaction injection molded into a fiber (D). In the method for producing a reinforced thermosetting resin molded product, (A) is an unsaturated dicarboxylic acid or an acid anhydride thereof.
Unsaturated polyester having a hydroxyl value of 110 to 280 mgKOH / g and an acid value of 5 mgKOH / g or less obtained from a dicarboxylic acid or an acid anhydride thereof containing 40 to 100 mol% and a polyhydric alcohol having a primary hydroxyl group ( to a 1), an epoxy equivalent of having at least one epoxy group in the molecule
Selected from the group consisting of unsaturated epoxy esters (a 2 ) obtained from 70 to 200 epoxy compounds and a polymerizable unsaturated monobasic acid, and acrylic compounds (a 3 ) having an acryloyl group and a hydroxyl group in the molecule. An active hydrogen compound comprising at least one compound, wherein the ratio of a 1 , a 2 , and a 3 is (a 2 + a 3 ) / (a 1 + a 2 + a 3 ) × 100 = 1 to 15 wt%. (B) is a polymerizable vinyl monomer containing 5 to 40% by weight, preferably 10 to 25% by weight of methyl methacrylate; A liquid polyisocyanate compound having a viscosity at 25 ° C. of 10 to 200 cps, and the following conditions (i) and (ii):
(Iii) (i) (B) is 20 to 50 with respect to the total amount of (A) and (B).
wt% is (ii) the isocyanate group of (C) is 0.75 to 1.2 times the hydroxyl group of (A), and (iii) (D) is (A), (B), (C) and (D) A method for producing a fiber-reinforced thermosetting resin molded product, which satisfies 30 to 75 wt% with respect to the total amount.
本発明に用いる不飽和ポリエステル(a1)は、酸成分
として不飽和ジカルボン酸もしくはその酸無水物40〜10
0モル%と飽和ジカルボン酸もしくはその酸無水物60モ
ル%以下との混合物を用い、アルコール成分として一級
ヒドロキシル基を有する多価アルコールを用い、これら
をそれ自体公知の方法で脱水縮合反応させて得られる重
縮合物である。また、本発明の組成物に用いる不飽和ポ
リエステル(a1)は、酸価が5mgKOH/g以下であってヒド
ロキシル価が、110〜280mgKOH/gの範囲である。酸価が5
mgKOH/gを越える不飽和ポリエステルを使用して作製し
た繊維強化熱硬化性樹脂成形物は、成形時に発泡しやす
く強度の低下をもたらす。ヒドロキシル価が110mgKOH/g
よりも小さい場合、不飽和ポリエステル(a1)の分子量
は1000(末端基法による)よりも大きくなり、ガラス繊
維への含浸性の低下をもたらし、ヒドロキシル価が280m
gKOH/gよりも大きい場合、不飽和ポリエステルの分子量
は500(末端基法による)よりも小さくなりガラス繊維
への含浸性は良好であるが耐衝撃性の点で不十分とな
る。ここで、不飽和ジカルボン酸もしくはその酸無水物
としては、例えば、マレイン酸、無水マレイン酸、フマ
ル酸などを、そして飽和ジカルボン酸もしくはその酸無
水物としては例えばフタル酸、無水フタル酸、イソフタ
ル酸、テレフタル酸、ヘット酸、およびポリエステル樹
脂の技術分野において慣用的に飽和酸として取り扱われ
ている。テトラヒドロ無水フタル酸などを挙げることが
できる。また一級ヒドロキシル基を有する多価アルコー
ルとしてはエチレングリコール、ジエチレングリコー
ル、1,4−ブタンジオール、ネオペンチルグリコールな
どを挙げることができる。プロピレングリコール、ジプ
ロピレングリコール、ビスフノールA−プロピレンオキ
サイド付加物などの二級ヒドロキシル基を含有する多価
アルコール類も併用することが出来るが、5モル%以下
であることが好ましい。二級ヒドロキシル基を含有する
多価アルコール類を5モル%以上用いて製造した不飽和
ポリエステルを使用すると、耐衝撃性の低い組成物しか
得られない。本発明の不飽和ポリエステル(a1)には、
ハイドロキノン、パラベンゾキノン、メチルハイドロキ
ノンなどの如き慣用の重合禁止剤を使用することができ
る。The unsaturated polyester (a 1 ) used in the present invention contains 40 to 10 unsaturated dicarboxylic acids or acid anhydrides as an acid component.
A mixture of 0 mol% and a saturated dicarboxylic acid or 60 mol% or less of an acid anhydride thereof is used. A polyhydric alcohol having a primary hydroxyl group is used as an alcohol component, and these are subjected to a dehydration condensation reaction by a method known per se. Polycondensate. The unsaturated polyester used in the compositions of the present invention (a 1) has a hydroxyl number acid value is less than or equal 5 mgKOH / g is in the range of 110~280mgKOH / g. Acid number 5
A fiber-reinforced thermosetting resin molded product produced using an unsaturated polyester exceeding mgKOH / g easily foams at the time of molding and causes a decrease in strength. Hydroxyl value is 110mgKOH / g
If it is less than 1 , the molecular weight of the unsaturated polyester (a 1 ) will be greater than 1000 (by the end-group method), resulting in reduced impregnation of the glass fibers and a hydroxyl number of 280 m
When it is larger than gKOH / g, the molecular weight of the unsaturated polyester is smaller than 500 (by the end group method), so that the impregnation into the glass fiber is good but the impact resistance is insufficient. Here, unsaturated dicarboxylic acids or acid anhydrides thereof include, for example, maleic acid, maleic anhydride and fumaric acid, and saturated dicarboxylic acids or acid anhydrides thereof include, for example, phthalic acid, phthalic anhydride and isophthalic acid. , Terephthalic acid, heptic acid, and polyester resins are conventionally treated as saturated acids. Examples thereof include tetrahydrophthalic anhydride. Examples of the polyhydric alcohol having a primary hydroxyl group include ethylene glycol, diethylene glycol, 1,4-butanediol, and neopentyl glycol. Polyhydric alcohols containing a secondary hydroxyl group, such as propylene glycol, dipropylene glycol, and bisphenol A-propylene oxide adducts, can also be used in combination, but are preferably 5 mol% or less. When an unsaturated polyester produced using 5 mol% or more of a polyhydric alcohol containing a secondary hydroxyl group is used, only a composition having low impact resistance can be obtained. The unsaturated polyester (a 1 ) of the present invention includes:
Conventional polymerization inhibitors such as hydroquinone, parabenzoquinone, methylhydroquinone and the like can be used.
また、本発明に用いられる不飽和エポキシエステル
(a2)は、エポキシ基を分子中に少なくとも1個を有す
るエポキシ当量70〜200のエポキシ化合物と重合性不飽
和一塩基酸とから得られるものである。本発明におい
て、エポキシ当量が200より大きいエポキシ化合物と重
合性不飽和一塩基酸とから得られる不飽和エポキシエス
テルを使用した場合、本発明の目的としている樹脂の粘
度および注入途中の反応による粘度上昇(初期増粘)を
抑制することはできない。不飽和エポキシエステル
(a2)としては、例えばビスフェノール型エポキシやノ
ボラック型エポキシより得られるビニルエステル樹脂等
があげられる。The unsaturated epoxy ester (a 2 ) used in the present invention is obtained from an epoxy compound having an epoxy equivalent of 70 to 200 having at least one epoxy group in a molecule and a polymerizable unsaturated monobasic acid. is there. In the present invention, when an unsaturated epoxy ester obtained from an epoxy compound having an epoxy equivalent greater than 200 and a polymerizable unsaturated monobasic acid is used, the viscosity of the resin intended for the present invention and the viscosity increase due to a reaction during injection are increased. (Initial thickening) cannot be suppressed. Examples of the unsaturated epoxy ester (a 2 ) include a vinyl ester resin obtained from bisphenol type epoxy and novolak type epoxy.
またアクリル化合物(a3)は分子中にアクリロイル基
とヒドロキシ基とを有するものであり、アクリル化合物
としては例えば(メタ)アクリル酸−2−ヒドロキシエ
チルや(メタ)アクリル酸−2−ヒドロキシプロピル等
があげられる。The acrylic compound (a 3 ) has an acryloyl group and a hydroxy group in the molecule, and examples of the acrylic compound include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate. Is raised.
さらに、これらの混合割合は、 (a2+a3)/(a1+a2+a3)×100=1〜15wt%であ
り、この割合が15wt%を越える場合は成形を行う際、注
入時に急激なる粘度上昇が起こり、大型成形物を成形す
るときは注入時間を確保することが困難となる。Further, the mixing ratio of these is (a 2 + a 3 ) / (a 1 + a 2 + a 3 ) × 100 = 1 to 15 wt%. When a large molded product is molded, it becomes difficult to secure an injection time.
この不飽和ポリエステルと混合することのできる重合
性ビニル単量体(B)としては例えば、スチレン、クロ
ルスチレン、ビニルトルエン、(メタ)アクリル酸およ
びその誘導体などが挙げられる。Examples of the polymerizable vinyl monomer (B) that can be mixed with the unsaturated polyester include styrene, chlorostyrene, vinyl toluene, (meth) acrylic acid, and derivatives thereof.
本発明の方法によって活性水素化合物(A)と重合性
ビニル単量体(B)とを調合するにあたり、活性水素化
合物は50〜80重量%の範囲で、重合性ビニル単量体は20
〜50重量%の範囲で用いることができる。また重合性ビ
ニル単量体中にはメタクリル酸メチルが5〜40wt%、好
ましくは10〜25wt%の範囲で含まれる。メタクリル酸メ
チルの割合が40wt%を越えると硬化時間が長くなる。ま
たメタクリル酸メチルの割合が5wt%よりも少ない場
合、本発明の目的としている樹脂の粘度および注入途中
の反応による粘度上昇(初期増粘)を抑制することはで
きない。In preparing the active hydrogen compound (A) and the polymerizable vinyl monomer (B) by the method of the present invention, the amount of the active hydrogen compound is in the range of 50 to 80% by weight, and the amount of the polymerizable vinyl monomer is 20%.
It can be used in the range of 5050% by weight. The polymerizable vinyl monomer contains methyl methacrylate in an amount of 5 to 40% by weight, preferably 10 to 25% by weight. If the proportion of methyl methacrylate exceeds 40% by weight, the curing time becomes longer. When the proportion of methyl methacrylate is less than 5% by weight, it is impossible to suppress the increase in viscosity (initial thickening) due to the reaction of the resin and the reaction during the injection, which is the object of the present invention.
本発明の組成物において使用することのできるポリイ
ソシアネート化合物(C)は、末端基が であり、25℃における粘度が10〜2000cps、好ましくは3
0〜1500cpsである液状ポリイソシアネート化合物、すな
わち液状ジフェニルメタンジイソシアネート(例えばIs
onate 143Lという商品名で市販されている化合物)、4,
4−ジフェニルメタンジイソシアネートのポリエーテル
系プレポリマー(例えばIsonate 181という商品名で市
販されている化合物)、4,4′−ジフェニルメタンジイ
ソシアネートのポリエステル系プレポリマー(例えばIs
onate 240という商品名で市販されている化合物)など
を挙げることができる。これらポリイソシアネート化合
物(C)の使用量は、活性水素化合物(A)のヒドロキ
シル基に対しイソシアネート基が0.75〜1.20モル倍の範
囲に限定される。The polyisocyanate compound (C) that can be used in the composition of the present invention has a terminal group And a viscosity at 25 ° C. of 10 to 2000 cps, preferably 3
A liquid polyisocyanate compound having a viscosity of 0 to 1500 cps, that is, a liquid diphenylmethane diisocyanate (for example, Is
compound commercially available under the trade name onate 143L), 4,
Polyether prepolymers of 4-diphenylmethane diisocyanate (e.g., a compound commercially available under the trade name Isonate 181), polyester prepolymers of 4,4'-diphenylmethane diisocyanate (e.g., Is
compound commercially available under the trade name onate 240). The amount of the polyisocyanate compound (C) to be used is limited to the range of 0.75 to 1.20 mole times the isocyanate group with respect to the hydroxyl group of the active hydrogen compound (A).
繊維(D)としては、強度、樹脂との親和性、価格等
を考慮すれば、ガラス繊維、炭素繊維、アラミド繊維が
好ましく、ガラス繊維が特に好ましい。The fiber (D) is preferably glass fiber, carbon fiber, or aramid fiber in consideration of strength, affinity with resin, price, and the like, and glass fiber is particularly preferable.
本発明に用いられる樹脂は次の態様で使用し繊維強化
熱硬化性樹脂成形物を得ることができる。RIMマシーン
のポリオールサイドには、活性水素化合物(A)及び重
合性ビニル単量体(B)にジメチルアニリン、ナフテン
酸コバルトなどの如き慣用の硬化促進剤及び、オクテン
酸コバルト、ジラウリン酸ジ−n−ブチルスズなどの如
き慣用のウレタン化触媒を添加して使用する。またRIM
マシーンのイソシアネートサイドにはポリイソシアネー
ト化合物(C)に、t−ブチルパーベンゾエート、t−
ブチルパーオクトエート、ベンゾイルパーオキサイドな
どの如き活性水素を持たない慣用の硬化触媒を添加して
使用する。また金型内には繊維(D)を充填しておき、
上記の如く準備したRIMマシーンを用いて、2液の樹脂
を均一混合しつつ型内に注入しウレタン化反応とラジカ
ル反応とをほぼ同時に行わせ、繊維強化熱硬化性樹脂成
形物を得ることができる。The resin used in the present invention can be used in the following manner to obtain a fiber-reinforced thermosetting resin molded product. On the polyol side of the RIM machine, the active hydrogen compound (A) and the polymerizable vinyl monomer (B) are combined with a conventional curing accelerator such as dimethylaniline and cobalt naphthenate, and cobalt octenoate and di-laurate di-n. A conventional urethanizing catalyst such as butyltin is added and used. Also RIM
The polyisocyanate compound (C), t-butyl perbenzoate, t-
A conventional curing catalyst having no active hydrogen, such as butyl peroctoate or benzoyl peroxide, is added for use. The mold is filled with fiber (D),
Using the RIM machine prepared as described above, a two-component resin is uniformly mixed and injected into a mold to allow a urethanization reaction and a radical reaction to be performed almost simultaneously, thereby obtaining a fiber-reinforced thermosetting resin molded product. it can.
本発明に於いて特定の成分(A),(B),(C),
(D)を特定割合で配合することにより、混合後低粘度
であり、初期増粘が比較的緩やかで且つ短時間で硬化す
る反応が得られ、S−RIM成形による大型の繊維強化熱
硬化性樹脂成形物を得ることができる。In the present invention, specific components (A), (B), (C),
By mixing (D) in a specific ratio, a low viscosity after mixing, a relatively slow initial thickening and a curing reaction in a short time can be obtained, and a large fiber reinforced thermosetting by S-RIM molding. A resin molded product can be obtained.
次に、本発明を実施例により詳細に説明するが本発明
はこれら実施例のみに限定されるものではない。Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to only these examples.
合成例1 不飽和ポリエステルの合成、及び不飽和ポリ
エステル樹脂(イ)の調製 撹拌機、温度計、窒素ガス導入管および塔部に温度計
を付した部分還流器を備えた反応器にイソフタル酸1034
g、ネオペンチルグリコール1687g、エチレングリコール
1006gを仕込み、窒素ガスを流しながら加熱し、200℃ま
で昇温して常法にしたがって脱水縮合反応をおこなっ
た。部分還流器には100℃のスチームを流し、グリコー
ル類を還流させ、縮合水を反応器系外に留去させた。Synthesis Example 1 Synthesis of Unsaturated Polyester and Preparation of Unsaturated Polyester Resin (A) Isophthalic acid 1034 was placed in a reactor equipped with a stirrer, a thermometer, a nitrogen gas inlet tube, and a partial reflux unit equipped with a thermometer in the tower.
g, neopentyl glycol 1687g, ethylene glycol
1006 g was charged, heated while flowing nitrogen gas, heated to 200 ° C., and a dehydration condensation reaction was performed according to a conventional method. Steam at 100 ° C. was passed through the partial reflux unit to reflux glycols, and condensed water was distilled out of the reactor system.
反応混合物の酸価が4.5mgKOH/gになったところで加熱
を止め、120℃になるまで冷却したのち、フマール酸216
9gを仕込んだ。再び昇温を開始し反応温度が220℃を越
えないように注意しつつ脱水縮合反応をおこない、酸価
4.5mgKOH/g、ヒドロキシル価151.6mgKOH/gの不飽和ポリ
エステル5000gを得たのち170℃まで冷却し1.5gのハイド
ロキノンを添加し、よく混合した。When the acid value of the reaction mixture reached 4.5 mg KOH / g, heating was stopped, and the mixture was cooled to 120 ° C., and then fumaric acid 216
9g was charged. The temperature was started again, and the dehydration condensation reaction was carried out while taking care that the reaction temperature did not exceed 220 ° C.
After obtaining 5000 g of unsaturated polyester having 4.5 mg KOH / g and a hydroxyl value of 151.6 mg KOH / g, the mixture was cooled to 170 ° C., and 1.5 g of hydroquinone was added and mixed well.
この不飽和ポリエステルの一部をスチレンに溶解し、
35%のスチレンを含有する不飽和ポリエステル樹脂
(イ)を得た。Dissolve part of this unsaturated polyester in styrene,
An unsaturated polyester resin (A) containing 35% styrene was obtained.
合成例2 不飽和ポリエステルの合成、及び不飽和ポリ
エステル樹脂(ロ)の調製 合成例1と同様の反応器にイソフタル酸989g、ネオペ
ンチルグリコール1751g、エチレングリコール1044g、フ
マール酸2073gを仕込み、合成例1と同様の方法で反応
させ酸価2.3mgKOH/g、ヒドロキシル価232.3mgKOH/gを有
する不飽和ポリエステルを合成したのちスチレンで溶解
し35%のスチレンを含有する不飽和ポリエステル樹脂
(ロ)を得た。Synthesis Example 2 Synthesis of unsaturated polyester and preparation of unsaturated polyester resin (b) In the same reactor as in Synthesis Example 1, 989 g of isophthalic acid, 1751 g of neopentyl glycol, 1044 g of ethylene glycol, and 2073 g of fumaric acid were charged. To produce an unsaturated polyester having an acid value of 2.3 mg KOH / g and a hydroxyl value of 232.3 mg KOH / g, and then dissolving with styrene to obtain an unsaturated polyester resin containing 35% styrene (b). .
合成例3 不飽和エポキシエステル樹脂(ハ)の合成 還流器を備えた三つ口の反応器にDEN 438(ダウケミ
カル社製品,ノボラックタイプエポキシ樹脂,エポキシ
当量=179)700g、メタクリル酸340g、スチレン693g、
トリエチルアミン2.08g、ハイドロキノン0.4gを仕込
み、120℃まで撹拌しながら加熱し、120℃で酸価15mgKO
H/gまで反応させ不飽和エポキシエステル樹脂(ハ)を
得た。Synthesis Example 3 Synthesis of unsaturated epoxy ester resin (c) 700 g of DEN 438 (a product of Dow Chemical Co., Novolak type epoxy resin, epoxy equivalent = 179), 340 g of methacrylic acid, styrene in a three-necked reactor equipped with a reflux condenser 693g,
2.08 g of triethylamine and 0.4 g of hydroquinone were charged and heated with stirring to 120 ° C.
The reaction was continued up to H / g to obtain an unsaturated epoxy ester resin (C).
上記の不飽和ポリエステル樹脂(イ)、(ロ)および
不飽和エポキシエステル樹脂(ハ)の性状を第1表に示
した。The properties of the unsaturated polyester resins (a) and (b) and the unsaturated epoxy ester resin (c) are shown in Table 1.
実施例1 合成例1で得られた不飽和ポリエステル樹脂(イ)8.
5Kg、合成例3で得られた不飽和エポキシエステル樹脂
(ハ)0.5Kg、メタクリル酸メチル1.0Kgを混合したもの
にウレタン化触媒としてジラウリン酸ジ−n−ブチルス
ズ10g、ラジカル反応促進剤として6%−ナフテン酸コ
バルト80gを添加し、RIMマシーンのA側原料タンクに入
れる。ポリイソシアネート成分としてISONATE143L(MD
化成(株)製4,4−ジフェニルメタンジイソシアネート;
NCO当量=143)10Kgにラジカル反応触媒としてt−ブチ
ルパーオクトエイト200gを添加しRIMマシーンのB側原
料タンクに入れる。A側タンク内のヒドロキシル基に対
してB側タンク内イソシアネート基が0.93モル倍になる
ようにA側とB側の混合比を計算するとA側/B側=4.27
5[g/g]となる。この比が達成されるようにA側とB側
それぞれの射出速度(流量速度)を定めた。以上のよう
に条件設定をしたRIMマシーンを用いて、ポリカップ中
に1秒間射出し、射出終了時を0時としこの混合液を2c
cとりレオメータ(島津製作所(株)製、RM−1)で粘
度の変化を調べた。その結果、10秒後、60秒後の粘度は
それぞれ25cps、100cpsであった。この配合の樹脂はご
く初期から60秒間非常に低粘度であった。Example 1 Unsaturated polyester resin obtained in Synthesis Example 1 (a) 8.
5 kg, a mixture of 0.5 kg of the unsaturated epoxy ester resin (c) obtained in Synthesis Example 3 and 1.0 kg of methyl methacrylate, 10 g of di-n-butyltin dilaurate as a urethanization catalyst, and 6% as a radical reaction accelerator -Add 80 g of cobalt naphthenate and place in the A side feed tank of the RIM machine. ISONATE143L (MD
4,4-diphenylmethane diisocyanate manufactured by Kasei Co., Ltd .;
(NCO equivalent = 143) To 10 kg, 200 g of t-butyl peroctoate is added as a radical reaction catalyst, and the mixture is placed in a B-side raw material tank of a RIM machine. When the mixing ratio of the A side and the B side is calculated so that the isocyanate group in the B side tank becomes 0.93 mole times the hydroxyl group in the A side tank, A side / B side = 4.27
It becomes 5 [g / g]. The injection speed (flow rate) of each of the A side and the B side was determined so as to achieve this ratio. Using the RIM machine with the conditions set as above, inject into the polycup for 1 second, and set the injection end time to 0 o'clock,
c Change in viscosity was measured with a rheometer (RM-1 manufactured by Shimadzu Corporation). As a result, the viscosities after 10 seconds and 60 seconds were 25 cps and 100 cps, respectively. The resin of this formulation had a very low viscosity for 60 seconds from the very beginning.
次に、キャビティ寸法400×500×3[mm]で長方形の
一方の短辺にファンゲートを持ち、樹脂を注入すると他
方の短辺よりオーバーフローする金型を60℃に加熱し、
コンティニュアスストランドマットを充填し、型を閉じ
て垂直にし、下方より前述のように準備したRIMマシー
ンを用いて、上部より樹脂がオーバーフローするまで注
入し、その後2分間型を閉じたのち、型を開き脱型して
繊維強化熱硬化性樹脂成形物を得た。ガラス含量42wt
%、56wt%、69wt%のものを成形した結果、いずれもガ
ラス繊維への樹脂の含浸性は良好であり完全に充填した
ものが得られた。Next, a mold having a cavity size of 400 × 500 × 3 [mm] and having a fan gate on one short side of the rectangle and overflowing from the other short side when resin is injected is heated to 60 ° C.
Fill the continuous strand mat, close the mold vertically, inject it from below using the RIM machine prepared as above until the resin overflows from the top, close the mold for 2 minutes, then close the mold To remove the mold to obtain a fiber-reinforced thermosetting resin molded product. Glass content 42wt
%, 56% by weight, and 69% by weight, as a result, the impregnating property of the resin into the glass fiber was good and a completely filled one was obtained.
実施例2〜4 A側タンク内の活性水素化合物(A)成分の種類と
量、メタクリル酸メチルの量、スチレンの量およびA側
とB側の混合比を第2表に示す如く変更した以外は、実
施例1と同様にして、混合後の樹脂の粘度変化およびガ
ラス含量と成形性について評価した。得られた評価結果
を実施例1と併せて第2表に示した。Examples 2 to 4 Except that the type and amount of the active hydrogen compound (A) in the A-side tank, the amount of methyl methacrylate, the amount of styrene, and the mixing ratio of A-side and B-side were changed as shown in Table 2. Was evaluated for the change in viscosity of the resin after mixing, the glass content, and the moldability in the same manner as in Example 1. The obtained evaluation results are shown in Table 2 together with Example 1.
比較例1〜6 A側タンク内の活性水素化合物(A)成分の種類と
量、メタクリル酸メチルの量およびA側とB側の混合比
を第3表及び第4表に示す如く変更した以外は、実施例
1と同様にして、混合後の樹脂の粘度変化およびガラス
含量と成形性について評価した。得られた評価結果を併
せて第3表及び第4表に示した。比較例1〜6はいずれ
も混合後の粘度上昇が著しく、成形時にガラス含量が56
wt%より高いとき、背圧が著しく高くなり、RIM機のミ
キシングヘッドと金型との取り付け部より樹脂が漏れ、
完全に充填した成形物が得られなかった。Comparative Examples 1 to 6 Except that the type and amount of the active hydrogen compound (A) in the A side tank, the amount of methyl methacrylate, and the mixing ratio of the A side and the B side were changed as shown in Tables 3 and 4 Was evaluated for the change in viscosity of the resin after mixing, the glass content, and the moldability in the same manner as in Example 1. Tables 3 and 4 also show the obtained evaluation results. In all of Comparative Examples 1 to 6, the viscosity increased significantly after mixing, and the glass content during molding was 56%.
When it is higher than wt%, the back pressure becomes extremely high, and resin leaks from the mounting part between the mixing head and the mold of the RIM machine,
A completely filled molded article was not obtained.
フロントページの続き (72)発明者 谷酒 廣香 神奈川県平塚市東八幡5丁目6番2号 三菱瓦斯化学株式会社高分子研究所内 (56)参考文献 特開 平1−131230(JP,A) 特開 平2−84417(JP,A) 特開 昭61−209219(JP,A) 特開 昭57−139(JP,A) 特開 昭56−161418(JP,A) 特開 昭49−4798(JP,A) 特開 昭63−142018(JP,A) 特開 昭49−4799(JP,A) 特開 昭55−118912(JP,A) 特開 昭56−10424(JP,A) 特開 昭59−219324(JP,A) 特開 昭56−151718(JP,A) 特表 昭58−501508(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 18/00 - 18/87 C08L 75/00 - 75/16 C08G 63/52 - 63/58 C08L 67/06 - 67/07 C08F 290/06 C08F 290/14 C08F 299/06 Continuation of the front page (72) Inventor Hiroka Tanaka 5-6-1, Higashi-Hachiman, Hiratsuka-shi, Kanagawa Prefecture, Japan Polymer Research Laboratory Mitsubishi Gas Chemical Co., Ltd. (56) References JP-A-1-131230 (JP, A) JP-A-2-84417 (JP, A) JP-A-61-209219 (JP, A) JP-A-57-139 (JP, A) JP-A-56-161418 (JP, A) JP-A-49-4798 (JP JP, A) JP-A-63-142018 (JP, A) JP-A-49-4799 (JP, A) JP-A-55-118912 (JP, A) JP-A-56-10424 (JP, A) JP-A-59-219324 (JP, A) JP-A-56-151718 (JP, A) Special table 58-501508 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C08G 18 / 00-18/87 C08L 75/00-75/16 C08G 63/52-63/58 C08L 67/06-67/07 C08F 290/06 C08F 290/14 C08F 299/06
Claims (4)
体(B)とを含む原料成分と、ポリイソシアネート化合
物(C)を含む原料成分を繊維(D)中に反応射出成形
する繊維強化熱硬化性樹脂成形物の製造方法において、 (A)は、不飽和ジカルボン酸もしくはその酸無水物
40〜100モル%を含むジカルボン酸もしくはその酸無水
物と一級ヒドロキシル基を有する多価アルコールとから
得られる、ヒドロキシル価が110〜280mgKOH/gであり酸
価が5mgKOH/g以下の不飽和ポリエステル(a1)に、エポ
キシ基を分子中に少なくとも1個を有するエポキシ当量
70〜200のエポキシ化合物と重合性不飽和一塩基酸とか
ら得られる不飽和エポキシエステル(a2)及び分子中に
アクリロイル基とヒドロキシル基とを有するアクリル化
合物(a3)からなる群から選ばれる少なくとも1種類の
化合物を配合してなり、a1、a2、a3の割合が (a2+a3)/(a1+a2+a3)×100=1〜15wt%の活性
水素化合物であり、 (B)はメタクリル酸メチルを5〜40wt%含む重合性
ビニル単量体であり、 (C)は末端基が、 であり、25℃の粘度が10〜2000cpsである液状ポリイソ
シアネート化合物であって、且つ、下記条件(i)(i
i)(iii) (i)(B)は(A)と(B)との合計量に対し20〜50
wt%、 (ii)(C)のイソシアネート基は(A)のヒドロキシ
ル基に対して0.75〜1.2モル倍、 (iii)(D)は(A)(B)(C)及び(D)の合計
量に対して30〜75wt%、 を満足することを特徴とする繊維強化熱硬化性樹脂成形
物の製造方法。1. A fiber obtained by reaction injection molding a raw material component containing an active hydrogen compound (A) and a polymerizable vinyl monomer (B) and a raw material component containing a polyisocyanate compound (C) into a fiber (D). In the method for producing a reinforced thermosetting resin molded product, (A) is an unsaturated dicarboxylic acid or an acid anhydride thereof.
Unsaturated polyester having a hydroxyl value of 110 to 280 mgKOH / g and an acid value of 5 mgKOH / g or less obtained from a dicarboxylic acid or an acid anhydride thereof containing 40 to 100 mol% and a polyhydric alcohol having a primary hydroxyl group ( to a 1), an epoxy equivalent of having at least one epoxy group in the molecule
Selected from the group consisting of unsaturated epoxy esters (a 2 ) obtained from 70 to 200 epoxy compounds and a polymerizable unsaturated monobasic acid, and acrylic compounds (a 3 ) having an acryloyl group and a hydroxyl group in the molecule. An active hydrogen compound comprising at least one compound, wherein the ratio of a 1 , a 2 , and a 3 is (a 2 + a 3 ) / (a 1 + a 2 + a 3 ) × 100 = 1 to 15 wt%. (B) is a polymerizable vinyl monomer containing 5 to 40% by weight of methyl methacrylate, (C) is a terminal group having A liquid polyisocyanate compound having a viscosity at 25 ° C. of 10 to 2000 cps, and the following conditions (i) and (i)
i) (iii) (i) (B) is 20 to 50 with respect to the total amount of (A) and (B).
wt%, (ii) the isocyanate group of (C) is 0.75-1.2 mole times the hydroxyl group of (A), and (iii) (D) is the sum of (A), (B), (C) and (D). A method for producing a fiber-reinforced thermosetting resin molded product, which satisfies 30 to 75 wt% based on the amount.
40〜100モル%を含むジカルボン酸もしくはその酸無水
物と一級ヒドロキシル基を有する多価アルコールとから
得られる、ヒドロキシル価が110〜280mgKOH/gであり酸
価が5mgKOH/g以下の不飽和ポリエステル(a1)に、エポ
キシ基を分子中に少なくとも1個を有するエポキシ当量
70〜200のエポキシ化合物と重合性不飽和一塩基酸とか
ら得られる不飽和エポキシエステル(a2)及び分子中に
アクリロイル基とヒドロキシル基とを有するアクリル化
合物(a3)からなる群から選ばれる少なくとも1種類の
化合物を配合してなり、a1、a2、a3の割合が、 (a2+a3)/(a1+a2+a3)×100=1〜15wt%の活性
水素化合物(A)である繊維強化熱硬化性樹脂成形用原
料。2. An unsaturated dicarboxylic acid or its anhydride.
Unsaturated polyester having a hydroxyl value of 110 to 280 mgKOH / g and an acid value of 5 mgKOH / g or less obtained from a dicarboxylic acid or an acid anhydride thereof containing 40 to 100 mol% and a polyhydric alcohol having a primary hydroxyl group ( to a 1), an epoxy equivalent of having at least one epoxy group in the molecule
Selected from the group consisting of unsaturated epoxy esters (a 2 ) obtained from 70 to 200 epoxy compounds and a polymerizable unsaturated monobasic acid, and acrylic compounds (a 3 ) having an acryloyl group and a hydroxyl group in the molecule. At least one compound is blended, and the ratio of a 1 , a 2 , a 3 is (a 2 + a 3 ) / (a 1 + a 2 + a 3 ) × 100 = 1 to 15 wt% of an active hydrogen compound ( The raw material for molding a fiber-reinforced thermosetting resin which is A).
40〜100モル%を含むジカルボン酸もしくはその酸無水
物と一級ヒドロキシル基を有する多価アルコールとから
得られる、ヒドロキシル価が110〜280mgKOH/gであり酸
価が5mgKOH/g以下の不飽和ポリエステル(a1)に、エポ
キシ基を分子中に少なくとも1個を有するエポキシ当量
70〜200のエポキシ化合物と重合性不飽和一塩基酸とか
ら得られる不飽和エポキシエステル(a2)及び分子中に
アクリロイル基とヒドロキシル基とを有するアクリル化
合物(a3)からなる群から選ばれる少なくとも1種類の
化合物を配合してなり、a1、a2、a3の割合が、 (a2+a3)/(a1+a2+a3)×100=1〜15wt%の活性
水素化合物(A)とメタクリル酸メチルを5〜40wt%含
む重合性ビニル単量体(B)を含む繊維強化熱硬化性樹
脂成形用原料。3. An unsaturated dicarboxylic acid or its anhydride.
Unsaturated polyester having a hydroxyl value of 110 to 280 mgKOH / g and an acid value of 5 mgKOH / g or less obtained from a dicarboxylic acid or an acid anhydride thereof containing 40 to 100 mol% and a polyhydric alcohol having a primary hydroxyl group ( to a 1), an epoxy equivalent of having at least one epoxy group in the molecule
Selected from the group consisting of unsaturated epoxy esters (a 2 ) obtained from 70 to 200 epoxy compounds and a polymerizable unsaturated monobasic acid, and acrylic compounds (a 3 ) having an acryloyl group and a hydroxyl group in the molecule. At least one compound is blended, and the ratio of a 1 , a 2 , a 3 is (a 2 + a 3 ) / (a 1 + a 2 + a 3 ) × 100 = 1 to 15 wt% of an active hydrogen compound ( A raw material for molding a fiber-reinforced thermosetting resin containing A) and a polymerizable vinyl monomer (B) containing 5 to 40% by weight of methyl methacrylate.
40〜100モル%を含むジカルボン酸もしくはその酸無水
物と一級ヒドロキシル基を有する多価アルコールとから
得られる、ヒドロキシル価が110〜280mgKOH/gであり酸
価が5mgKOH/g以下の不飽和ポリエステル(a1)に、エポ
キシ基を分子中に少なくとも1個を有するエポキシ当量
70〜200のエポキシ化合物と重合性不飽和一塩基酸とか
ら得られる不飽和エポキシエステル(a2)及び分子中に
アクリロイル基とヒドロキシル基とを有するアクリル化
合物(a3)からなる群から選ばれる少なくとも1種類の
化合物を配合してなり、a1、a2、a3の割合が、 (a2+a3)/(a1+a2+a3)×100=1〜15wt%の活性
水素化合物(A)とメタクリル酸メチルを5〜40wt%含
む重合性ビニル単量体(B)を含む原料成分と、 末端基が であり、25℃の粘度が10〜2000cpsである液状ポリイソ
シアネート化合物(C)を含む原料成分からなる繊維強
化熱硬化性樹脂成形用組合せ原料。4. An unsaturated dicarboxylic acid or its anhydride.
Unsaturated polyester having a hydroxyl value of 110 to 280 mgKOH / g and an acid value of 5 mgKOH / g or less obtained from a dicarboxylic acid or an acid anhydride thereof containing 40 to 100 mol% and a polyhydric alcohol having a primary hydroxyl group ( to a 1), an epoxy equivalent of having at least one epoxy group in the molecule
Selected from the group consisting of unsaturated epoxy esters (a 2 ) obtained from 70 to 200 epoxy compounds and a polymerizable unsaturated monobasic acid, and acrylic compounds (a 3 ) having an acryloyl group and a hydroxyl group in the molecule. At least one compound is blended, and the ratio of a 1 , a 2 , a 3 is (a 2 + a 3 ) / (a 1 + a 2 + a 3 ) × 100 = 1 to 15 wt% of an active hydrogen compound ( A) and a raw material component containing a polymerizable vinyl monomer (B) containing 5 to 40% by weight of methyl methacrylate; And a raw material component containing a liquid polyisocyanate compound (C) having a viscosity at 25 ° C. of 10 to 2,000 cps.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01081400A JP3133041B2 (en) | 1989-04-03 | 1989-04-03 | Method for producing fiber-reinforced thermosetting resin molded product |
CA002013588A CA2013588A1 (en) | 1989-04-03 | 1990-04-02 | Process for the production of molded article of fiber-reinforced thermosetting resin, and materials therefor |
US07/504,137 US5068281A (en) | 1989-04-03 | 1990-04-03 | Process for the production of molded article of fiber-reinforced thermosetting resin, and materials therefor |
DE69028566T DE69028566T2 (en) | 1989-04-03 | 1990-04-03 | Process for the production of molded parts from fiber-reinforced, thermosetting resin and materials made therefrom |
EP90303563A EP0391668B1 (en) | 1989-04-03 | 1990-04-03 | Process for the production of molded article of fiber-reinforced thermosetting resin, and materials therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01081400A JP3133041B2 (en) | 1989-04-03 | 1989-04-03 | Method for producing fiber-reinforced thermosetting resin molded product |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02261821A JPH02261821A (en) | 1990-10-24 |
JP3133041B2 true JP3133041B2 (en) | 2001-02-05 |
Family
ID=13745264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01081400A Expired - Fee Related JP3133041B2 (en) | 1989-04-03 | 1989-04-03 | Method for producing fiber-reinforced thermosetting resin molded product |
Country Status (5)
Country | Link |
---|---|
US (1) | US5068281A (en) |
EP (1) | EP0391668B1 (en) |
JP (1) | JP3133041B2 (en) |
CA (1) | CA2013588A1 (en) |
DE (1) | DE69028566T2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3282182B2 (en) * | 1990-09-25 | 2002-05-13 | スズキ株式会社 | Method for painting polyolefin resin molded products |
IT1255279B (en) * | 1992-05-20 | 1995-10-26 | Sir Ind Spa | RETICULABLE POLYESTER / ISOCYANATE COMPOSITIONS SUITABLE FOR THE PREPARATION OF COMPOSITE MANUFACTURED PARTICULARLY WITH INJECTION PROCESSES, PROCEDURE FOR THEIR PREPARATION AND USE |
FR2723743B1 (en) * | 1994-08-16 | 1996-10-04 | Cray Valley Sa | POLYESTER-POLYURETHANE RESINS FOR A QUICKLY CROSSLINKED INJECTION-MOLDING PROCESS FOR OBTAINING COMPOSITE PARTS |
FR2730184B1 (en) * | 1995-02-07 | 1998-11-20 | Cray Valley Sa | RESIN FOR IMPREGNATE WITH FORMABLE ORIENTED REINFORCEMENT AND MOLDED PRODUCTS OBTAINED |
FR2730237B1 (en) * | 1995-12-07 | 1997-06-13 | Cray Valley Sa | RESIN FOR ORIENTED, FORMABLE REINFORCEMENT PREPREGNE AND MOLDED PRODUCTS OBTAINED |
US20050239955A1 (en) * | 2004-04-27 | 2005-10-27 | Basf Corporation. | Urethane acrylate composition structure |
US20050238884A1 (en) * | 2004-04-27 | 2005-10-27 | Peters David D | Urethane acrylate composition structure |
US20050239991A1 (en) * | 2004-04-27 | 2005-10-27 | Basf Corporation. | Method of producing a urethane acrylate |
US20060052524A1 (en) * | 2004-09-07 | 2006-03-09 | Peters David D | Urethane acrylate composition |
US20060051590A1 (en) * | 2004-09-07 | 2006-03-09 | Peters David D | Urethane acrylate composition |
US20060051593A1 (en) * | 2004-04-27 | 2006-03-09 | Peeler Calvin T | Urethane acrylate composite structure |
US20050238883A1 (en) * | 2004-04-27 | 2005-10-27 | Peeler Calvin T | Urethane acrylate composite structure |
KR102406434B1 (en) * | 2014-12-24 | 2022-06-08 | 디아이씨 가부시끼가이샤 | Active energy ray-curable resin composition, coating material, coating film, and film |
GB2606475B (en) | 2018-01-19 | 2023-03-22 | Karsten Mfg Corp | Mixed material golf club head |
US10806977B2 (en) * | 2018-01-19 | 2020-10-20 | Karsten Manufacturing Corporation | Golf club heads comprising a thermoplastic composite material |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3516955A (en) * | 1966-05-31 | 1970-06-23 | Ashland Oil Inc | Curable compositions containing an epoxy,an unsaturated polyester,and a polymerizable vinyl monomer |
JPS5617368B2 (en) * | 1972-04-26 | 1981-04-22 | ||
US4246391A (en) * | 1979-06-26 | 1981-01-20 | Union Carbide Corporation | Procedure for production of lower viscosity radiation-curable acrylated urethanes |
US4289684A (en) * | 1980-04-23 | 1981-09-15 | Freeman Chemical Corporation | Sheet molding compound |
US4293659A (en) * | 1980-05-01 | 1981-10-06 | Freeman Chemical Corporation | Composition for coating molded articles |
NL8403883A (en) * | 1984-12-21 | 1986-07-16 | Dsm Resins Bv | CRYSTALLINE UNSATURATED POLYESTER AND ITS PREPARATION. |
US4943607A (en) * | 1987-08-31 | 1990-07-24 | Mitsubishi Gas Chemical Company, Inc. | Fiber-reinforced unsaturated polyester |
-
1989
- 1989-04-03 JP JP01081400A patent/JP3133041B2/en not_active Expired - Fee Related
-
1990
- 1990-04-02 CA CA002013588A patent/CA2013588A1/en not_active Abandoned
- 1990-04-03 DE DE69028566T patent/DE69028566T2/en not_active Expired - Fee Related
- 1990-04-03 US US07/504,137 patent/US5068281A/en not_active Expired - Fee Related
- 1990-04-03 EP EP90303563A patent/EP0391668B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE69028566D1 (en) | 1996-10-24 |
CA2013588A1 (en) | 1990-10-03 |
EP0391668A2 (en) | 1990-10-10 |
EP0391668A3 (en) | 1992-01-15 |
JPH02261821A (en) | 1990-10-24 |
EP0391668B1 (en) | 1996-09-18 |
US5068281A (en) | 1991-11-26 |
DE69028566T2 (en) | 1997-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3133041B2 (en) | Method for producing fiber-reinforced thermosetting resin molded product | |
CA2049845C (en) | Chain-stopped unsaturated polyester resin | |
US3466259A (en) | Thickened thermosetting vinyl ester resins | |
US4289684A (en) | Sheet molding compound | |
EP0075954B1 (en) | Curable molding compositions | |
CN102781999B (en) | Resin composition comprising isosorbide containing saturated polymer | |
JPH02368B2 (en) | ||
EP0020945A1 (en) | Compositions containing half esters of organic polyols, a process for their production and use of the compositions in the production of moulded articles | |
US20030220035A1 (en) | Reinforced unsaturated polyester resin compositions | |
DE3888264T2 (en) | Unsaturated copolyesters reinforced with fibers. | |
NL9000659A (en) | METHOD AND RESIN COMPOSITION FOR THE MANUFACTURE OF CASTING, INJECTION OR PRESSED PIECES. | |
JP3093262B2 (en) | Composition for use in a resin injection molding method, comprising a low molecular weight compound forming a hybrid network | |
KR102725512B1 (en) | Process of Epoxy Resins Modified Vinylester Resins for Glass fiber Pultrusion using Unsaturated Polyester Oligomers | |
JP2961610B2 (en) | Method for producing resin composition and molded article | |
JP3467884B2 (en) | Oligomer excellent in curability, method for producing the oligomer, curable resin composition using the oligomer, and cured product obtained by curing the composition | |
JP3538481B2 (en) | Unsaturated polyester, method for producing the same, and unsaturated polyester resin composition | |
JPH0236212A (en) | Unsaturated vinyl ester resin and thickening composition thereof | |
JP2832529B2 (en) | Manufacturing method of molded products | |
JP3005982B2 (en) | Fiber reinforced unsaturated polyester resin composition | |
JP2850234B2 (en) | Resin composition | |
JPH0284417A (en) | Fiber-reinforced unsaturated polyester resin composition | |
JPH08104800A (en) | Sheet molding compound | |
KR101044073B1 (en) | Unsaturated polyesther-based water-in-oil type emulsion | |
EP0052881B1 (en) | Curable molding composition and its use for producing thermoset fiber-reinforced molded articles | |
JPS5921327B2 (en) | Half-ester of organic polyol and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |