[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3130509B2 - Tower suspension displacement type multi span suspension bridge - Google Patents

Tower suspension displacement type multi span suspension bridge

Info

Publication number
JP3130509B2
JP3130509B2 JP10331081A JP33108198A JP3130509B2 JP 3130509 B2 JP3130509 B2 JP 3130509B2 JP 10331081 A JP10331081 A JP 10331081A JP 33108198 A JP33108198 A JP 33108198A JP 3130509 B2 JP3130509 B2 JP 3130509B2
Authority
JP
Japan
Prior art keywords
tower
suspension bridge
span
bridge
stiffening girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10331081A
Other languages
Japanese (ja)
Other versions
JP2000154507A (en
Inventor
武史 江上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP10331081A priority Critical patent/JP3130509B2/en
Publication of JP2000154507A publication Critical patent/JP2000154507A/en
Application granted granted Critical
Publication of JP3130509B2 publication Critical patent/JP3130509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、塔頂変位抑制型
多径間吊橋に関し、特にメインケーブルと補剛桁を有効
活用して不均衡な外力に起因する中間塔の塔頂変位を抑
制して、建設費を格段に低減可能にしたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-span suspension bridge with suppressed top displacement, and more particularly, to effectively utilizing a main cable and a stiffening girder to suppress a top displacement of an intermediate tower caused by an unbalanced external force. The construction cost can be significantly reduced.

【0002】[0002]

【従来の技術】 吊橋は、一般に1対の主塔を有する3
径間吊橋と、1対の側塔と1以上の中間塔を有する4径
間以上の多径間吊橋とに大別される。建設されている殆
どの吊橋は3径間吊橋であるが、3径間吊橋では吊橋の
全長が長くなるのに応じてメインケーブルが太くなり、
建設費も増大する。多径間吊橋では、吊橋の全長が長く
なっても、その長さに応じてメインケーブルが太くなる
訳ではないが、複数の径間に不均衡に作用する外力(風
荷重や活荷重など)に起因して中間塔に大きな曲げモー
メントが作用するため、従来の多径間吊橋は、3径間吊
橋に比較して建設費が高価になる。
2. Description of the Related Art Suspension bridges generally have a pair of main towers.
It is roughly classified into a span suspension bridge and a multi-span suspension bridge having four or more spans having a pair of side towers and one or more intermediate towers. Most of the suspension bridges being constructed are three-span suspension bridges, but in three-span suspension bridges, the main cable becomes thicker as the total length of the suspension bridge increases.
Construction costs also increase. In a multi-span suspension bridge, even if the overall length of the suspension bridge becomes longer, the main cable does not become thicker in accordance with the length, but external forces (wind load, live load, etc.) acting unequally across multiple spans As a result, a large bending moment acts on the intermediate tower, so that the construction cost of the conventional multi-span suspension bridge is higher than that of the three-span suspension bridge.

【0003】この従来の多径間吊橋について説明する
と、図12、図13に示すように、多径間吊橋30は、
例えば、橋軸方向の両端付近に鉛直方向に立設された1
対の側塔31と、1対の側塔31間に立設された中間塔
32とを有し、1対の側塔31の塔頂31aと中間塔3
2の塔頂32aとを連続的に吊橋の両端側のアンカレッ
ジ33に連結するメインケーブル34を有する。メイン
ケーブル34は、塔頂31aと塔頂32aとの間におい
て懸垂線状に湾曲している。
[0003] The conventional multi-span suspension bridge will be described. As shown in Figs.
For example, 1 is installed vertically in the vicinity of both ends in the bridge axis direction.
A pair of side towers 31, an intermediate tower 32 erected between the pair of side towers 31, a top 31 a of the pair of side towers 31 and an intermediate tower 3
And a main cable 34 for continuously connecting the second tower top 32a to the anchorages 33 at both ends of the suspension bridge. The main cable 34 is curved in a catenary line between the tower top 31a and the tower top 32a.

【0004】側塔31と中間塔32との間、側塔31と
アンカレッジ33との間には補剛桁36が夫々水平状態
に配設され、これら4本の補剛桁36が側塔31と中間
塔32の高さ方向途中部の高さ位置にある。これら補剛
桁36は、メインケーブル34から所定間隔おきに吊る
されたハンガー34aに吊持され、それら補剛桁36の
端部は、タワーリンク35を介して、対応する側塔31
又は中間塔32に連結されて吊持され、補剛桁36はタ
ワーリンク35を介して橋軸方向へ多少は水平移動が可
能になっている。また、両端側の補剛桁36の陸地側端
部はローラ支持され、橋軸方向へ移動可能に構成されて
いる。
[0004] Stiffening girders 36 are horizontally arranged between the side tower 31 and the intermediate tower 32 and between the side tower 31 and the anchorage 33, respectively. It is at a height position in the middle of the height direction of the intermediate tower 31 and the intermediate tower 32. These stiffening girders 36 are hung on hangers 34 a suspended at predetermined intervals from the main cable 34, and the ends of the stiffening girders 36 are connected to the corresponding side tower 31 via a tower link 35.
Alternatively, the stiffener girder 36 is connected to and suspended from the intermediate tower 32, and the stiffening girder 36 can be horizontally moved to some extent in the bridge axis direction via the tower link 35. The land-side ends of the stiffening girders 36 at both ends are supported by rollers, and are configured to be movable in the bridge axis direction.

【0005】[0005]

【発明が解決しようとする課題】 上記の多径間吊橋3
0においては、側塔31の塔頂31aはメインケーブル
34によりアンカレッジ33に連結されて十分に拘束さ
れている。しかし、中間塔32の塔頂32aの両側のメ
インケーブルは、懸垂線状に湾曲して拘束性能が低いの
で、多数の車両が片方の中間支間にのみ停滞したような
場合にその偏載状の活荷重により、中間塔32の塔頂3
2aの変位が片方へ大きくなり、中間塔32に大きな曲
げモーメントが作用し、特に中間塔32の塔基部に作用
する曲げモーメントが異常に大きくなる。
[Problems to be Solved by the Invention] The above-mentioned multi-span suspension bridge 3
At 0, the top 31a of the side tower 31 is connected to the anchorage 33 by the main cable 34 and is sufficiently restrained. However, the main cables on both sides of the top 32a of the intermediate tower 32 are curved in a catenary line and have low binding performance. Due to the live load, the top 3 of the intermediate tower 32
The displacement of 2a increases to one side, and a large bending moment acts on the intermediate tower 32, and particularly, the bending moment acting on the tower base of the intermediate tower 32 becomes abnormally large.

【0006】その結果、中間塔32と側塔31の間の中
間支間における補剛桁36の撓みが大きくなり、車両や
電車等の安定走行の面で好ましくない。そこで、中間塔
32の塔頂32aの変位を小さくするために、中間塔3
2の断面を大きくして剛性を高める等の対策が考えられ
るが、中間塔32が著しく大型化し、建設費が巨額にな
り、経済性に欠ける。
As a result, the bending of the stiffening girder 36 between the intermediate towers 32 and the side towers 31 becomes large, which is not preferable in terms of stable running of vehicles and trains. Therefore, in order to reduce the displacement of the top 32a of the intermediate tower 32, the intermediate tower 3
Although measures such as increasing the cross section of 2 to increase rigidity are conceivable, the size of the intermediate tower 32 is remarkably increased, the construction cost becomes huge, and economic efficiency is lacking.

【0007】そこで、例えば、特開平1−287304
号公報に記載された多径間吊橋においては、塔頂同士を
連結し且つそれら塔頂をアンカレッジに連結するサグの
小さなトップケーブルをメインケーブルの他に設置し、
このトップケーブルにより中間塔の塔頂を強力に拘束す
ることで、中間塔の塔頂変位を抑制する技術が記載され
ている。しかし、このトップケーブルを設けた多径間吊
橋では、メインケーブル以外に、一方の側塔の塔頂から
他方の側塔の塔頂にわたるトップケーブルを設置しなけ
ればならないため、その建設費が多大になり、経済性に
欠ける。
Therefore, for example, Japanese Patent Application Laid-Open No. 1-287304
In the multi-span suspension bridge described in the publication, a small sag top cable connecting the tower tops and connecting those towers to the anchorage is installed in addition to the main cable,
A technique is described in which the top cable is strongly restrained by the top cable to suppress displacement of the top of the intermediate tower. However, in the multi-span suspension bridge provided with this top cable, the construction cost is high because the top cable from the top of one tower to the top of the other tower must be installed in addition to the main cable. And lacks economy.

【0008】本発明の目的は、多径間吊橋の建設費の増
大を招くことなく、中間塔の塔頂変位を格段に小さくす
ること、中間塔の荷重条件を著しく緩和し塔基部の曲げ
モーメントを小さくして中間塔の大型化を防止するこ
と、中間支間における補剛桁の撓みを小さくすること、
等である。
SUMMARY OF THE INVENTION An object of the present invention is to significantly reduce the top displacement of an intermediate tower without significantly increasing the construction cost of a multi-span suspension bridge, to significantly reduce the load conditions of the intermediate tower, and to reduce the bending moment of the tower base. To prevent the intermediate tower from being enlarged, and to reduce the deflection of the stiffening girder between the intermediate supports,
And so on.

【0009】[0009]

【課題を解決するための手段】 請求項1の塔頂変位抑
制型多径間吊橋は、1対の鉛直の側塔間に少なくとも1
本の鉛直の中間塔を立設してなる多径間吊橋において、
1対の側塔の塔頂と中間塔の塔頂とを吊橋の両端側のア
ンカレッジに連結するメインケーブルと、前記メインケ
ーブルにハンガーにて吊持され橋軸方向に荷重伝達可能
に連続する1つの連続補剛桁と、前記側塔と中間塔に連
続補剛桁の途中部を結合する結合機構と、前記連続補剛
桁の少なくとも一端を対応するアンカレッジに連結する
連結手段とを備え、前記中間塔と側塔又は中間塔の間の
中間支間において、メインケーブルのうちの支間中央部
分を連続補剛桁に荷重伝達可能に連結したことを特徴と
するものである。ここで、1対の側塔間に少なくとも1
本の中間塔が設けられるが、複数の中間塔が設けられる
場合もある。
According to the first aspect of the present invention, there is provided a multi-span suspension bridge with a suppressed top displacement, wherein at least one bridge is provided between a pair of vertical side towers.
In a multi-span suspension bridge with a vertical intermediate tower,
A main cable connecting the tops of the pair of side towers and the top of the intermediate tower to the anchorages at both ends of the suspension bridge; and a main cable that is hung by a hanger and continuous to be able to transmit a load in the bridge axis direction. One continuous stiffening girder, a coupling mechanism for connecting the middle part of the continuous stiffening girder to the side tower and the intermediate tower, and a connecting means for connecting at least one end of the continuous stiffening girder to a corresponding anchorage In the intermediate span between the intermediate tower and the side tower or the intermediate tower, a center portion of the main cable between the spans is connected to a continuous stiffening girder so that a load can be transmitted. Here, at least one between a pair of side towers
Although an intermediate tower is provided, a plurality of intermediate towers may be provided.

【0010】前記塔頂変位抑制型多径間吊橋に中間塔の
両側の中間支間に不均一な外力(偏載状の活荷重、不均
一な風荷重など)が作用すると、中間塔の両側において
メインケーブルの張力に差が生じるため、中間塔の塔頂
が橋軸方向の片方へ変位しようとする。しかし、橋軸方
向に荷重伝達可能に連続する1つの連続補剛桁が設けら
れており、この連続補剛桁の少なくとも一端が連結手段
により対応するアンカレッジに連結されているため、連
続補剛桁は橋軸方向に変位せず、橋軸方向にほぼ一定位
置を保持する。しかも、中間塔と側塔又は中間塔の間の
中間支間において、メインケーブルのうちの支間中央部
分を連続補剛桁に橋軸方向に荷重伝達可能に連結してあ
るため、そのメインケーブルのうちの支間中央部分も、
橋軸方向に変位することなくほぼ一定位置を保持する。
When non-uniform external force (unbalanced live load, non-uniform wind load, etc.) acts between the intermediate supports on both sides of the intermediate tower on the tower displacement suppressing type multi-span suspension bridge, both sides of the intermediate tower are affected. Due to the difference in the tension of the main cable, the top of the intermediate tower tries to displace to one side in the bridge axis direction. However, one continuous stiffening girder continuous to be able to transmit a load in the bridge axis direction is provided, and at least one end of the continuous stiffening girder is connected to the corresponding anchorage by the connecting means, so that the continuous stiffening girder is provided. The girder does not displace in the bridge axis direction and keeps a substantially constant position in the bridge axis direction. In addition, in the middle section between the intermediate tower and the side tower or the intermediate tower, the central part of the main cable is connected to the continuous stiffening girder so that the load can be transmitted in the bridge axis direction. The middle part of the span
Maintains a nearly constant position without displacement in the bridge axis direction.

【0011】つまり、中間塔の塔頂が橋軸方向の片方へ
変位しようとしても、メインケーブルと連続補剛桁とで
拘束されるから、中間塔の両側におけるメインケーブル
の張力差も大きくなることはなく、中間塔の塔頂が橋軸
方向へ大きく変位することがない。その結果、中間支間
における補剛桁部分の撓みが小さく維持されるうえ、中
間塔に作用する曲げモーメントも格段に小さくなるか
ら、中間塔として極端に高剛性のものを適用する必要が
ない。こうして、中間塔およびその基礎構造の建設費を
格段に低減できるし、大型の部材を殆ど追加する必要も
ないから、多径間吊橋の建設費を格段に低減することが
できる。
In other words, even if the top of the intermediate tower is displaced to one side in the bridge axis direction, the main cable and the continuous stiffening girder restrain it, so that the tension difference of the main cable on both sides of the intermediate tower increases. There is no significant displacement of the top of the intermediate tower in the bridge axis direction. As a result, the bending of the stiffening girder portion between the intermediate supports is kept small, and the bending moment acting on the intermediate tower is significantly reduced. Therefore, it is not necessary to use an extremely high rigidity intermediate tower. In this way, the construction cost of the intermediate tower and its basic structure can be significantly reduced, and since it is not necessary to add a large-sized member, the construction cost of the multi-span suspension bridge can be significantly reduced.

【0012】請求項2の塔頂変位抑制型多径間吊橋は、
1対の鉛直の側塔間に少なくとも1本の鉛直の中間塔を
立設してなる多径間吊橋において、1対の側塔の塔頂と
中間塔の塔頂とを吊橋の両端側のアンカレッジに連結す
るメインケーブルと、前記メインケーブルにハンガーに
て吊持され橋軸方向に荷重伝達可能に連結された複数の
補剛桁と、前記各補剛桁の端部を対応する側塔又は中間
塔に結合する結合機構と、前記複数の補剛桁の少なくと
も一端を対応するアンカレッジに連結する連結手段とを
備え、前記中間塔と側塔又は中間塔の間の中間支間にお
いて、メインケーブルのうちの支間中央部分を補剛桁に
橋軸方向に荷重伝達可能に連結したことを特徴とするも
のである。
[0012] The multi-span suspension bridge with suppressed tower top displacement according to claim 2 is
In a multi-span suspension bridge having at least one vertical intermediate tower erected between a pair of vertical side towers, the top of the pair of side towers and the top of the intermediate tower are connected at both ends of the suspension bridge. A main cable connected to the anchorage, a plurality of stiffeners suspended from the main cable by hangers and connected to be able to transmit a load in the bridge axis direction, and a side tower corresponding to an end of each stiffener. Or a coupling mechanism coupled to the intermediate tower, and coupling means for coupling at least one end of the plurality of stiffening girders to a corresponding anchorage, between the intermediate tower and the intermediate tower between the side tower or the intermediate tower, The central part of the span of the cable is connected to the stiffening girder so that the load can be transmitted in the bridge axis direction.

【0013】補剛桁が連続する1本の構造ではないが、
これら複数の補剛桁が橋軸方向に荷重伝達可能に連結さ
れているため、請求項1の連続補剛桁と同様に機能す
る。そして、複数の補剛桁の少なくとも一端が、連結手
段により対応するアンカレッジに連結されているため、
複数の補剛桁は、請求項1の連続補剛桁と同様に、橋軸
方向に殆ど移動しないように拘束される。そして、請求
項1と同様に、中間塔と側塔又は中間塔の間の中間支間
において、メインケーブルのうちの支間中央部分を補剛
桁に橋軸方向に荷重伝達可能に連結してある。
Although the stiffening girder is not a single continuous structure,
Since the plurality of stiffening girders are connected so that a load can be transmitted in the bridge axis direction, the stiffening girders function similarly to the continuous stiffening girder of the first aspect. And since at least one end of the plurality of stiffening girders is connected to the corresponding anchorage by the connecting means,
The plurality of stiffening girders are constrained to hardly move in the bridge axis direction, similarly to the continuous stiffening girder of claim 1. In the same manner as in the first aspect, between the intermediate tower and the side tower or the intermediate support between the intermediate towers, a central portion of the main cable between the supports is connected to the stiffening girder so that a load can be transmitted in the bridge axis direction.

【0014】従って、この塔頂変位抑制型多径間吊橋
も、基本的に請求項1の多径間吊橋と同様の作用を奏す
ることになる。その結果、中間塔の両側に不均一な外力
(偏載状の活荷重など)が作用した場合にも、中間支間
における補剛桁の撓みが小さく維持されるうえ、中間塔
に作用する曲げモーメントも格段に小さくなるから、中
間塔として極端に高剛性ものを適用する必要がない。そ
して、中間塔およびその基礎構造の建設費を格段に低減
できるし、大型の部材を殆ど追加する必要もないから、
多径間吊橋の建設費を格段に低減することができる。
Therefore, this tower top displacement suppressing type multi-span suspension bridge basically has the same effect as the multi-span suspension bridge of the first aspect. As a result, even when an uneven external force (such as an unbalanced live load) acts on both sides of the intermediate tower, the bending of the stiffening girder between the intermediate supports is kept small, and the bending moment acting on the intermediate tower is maintained. Also becomes extremely small, so that it is not necessary to apply an extremely high rigidity as the intermediate tower. And since the construction cost of the intermediate tower and its base structure can be significantly reduced and there is almost no need to add large-sized members,
The construction cost of the multi-span suspension bridge can be significantly reduced.

【0015】請求項3の塔頂変位抑制型多径間吊橋は、
1対の鉛直の側塔間に少なくとも1本の鉛直の中間塔を
立設してなる多径間吊橋において、1対の側塔の塔頂と
中間塔の塔頂とを吊橋の両端側のアンカレッジに連結す
るメインケーブルと、前記メインケーブルにハンガーに
て吊持された複数の補剛桁と、中間支間に配設された各
補剛桁の端部を対応する側塔又は中間塔に結合する結合
機構とを備え、前記中間塔と側塔又は中間塔の間の中間
支間において、メインケーブルのうちの支間中央部分を
補剛桁に橋軸方向に荷重伝達可能に連結したことを特徴
とするものである。
According to a third aspect of the present invention, there is provided a multi-span suspension bridge for suppressing top displacement.
In a multi-span suspension bridge having at least one vertical intermediate tower erected between a pair of vertical side towers, the top of the pair of side towers and the top of the intermediate tower are connected at both ends of the suspension bridge. A main cable connected to the anchorage, a plurality of stiffening girders suspended from the main cable by hangers, and an end of each stiffening girder disposed between the intermediate supports is provided in a corresponding side tower or intermediate tower. A coupling mechanism for coupling, wherein a central portion of the main cable between the intermediate tower and the side tower or the intermediate tower is connected to the stiffening girder so as to be able to transmit a load in the bridge axis direction. It is assumed that.

【0016】この塔頂変位抑制型多径間吊橋は、1対の
側塔はメインケーブルによりアンカレッジに強固に拘束
されていることに着目してなされたものであり、両岸側
の1対の補剛桁については、従来の3径間吊橋と同様の
構成を適用可能にしてある。中間支間に配設された各補
剛桁の端部が、結合機構により側塔又は中間塔に結合さ
れており、1対の側塔はメインケーブルによりアンカレ
ッジに強固に拘束されているため、両岸側の1対の補剛
桁以外の複数の補剛桁は、橋軸方向へ殆ど移動しないよ
うに拘束される。
This multi-span suspension bridge with suppressed tower top displacement is made by paying attention to the fact that a pair of side towers are firmly restrained by an anchorage by a main cable. For the stiffening girder, the same configuration as the conventional three-span suspension bridge can be applied. Since the end of each stiffening girder disposed between the intermediate supports is connected to the side tower or the intermediate tower by a coupling mechanism, and the pair of side towers is strongly restrained by the main cable to the anchorage, A plurality of stiffening girders other than a pair of stiffening girders on both sides are restrained so as to hardly move in the bridge axis direction.

【0017】そして、中間塔と側塔又は中間塔の間の中
間支間において、メインケーブルのうちの支間中央部分
を補剛桁に橋軸方向に荷重伝達可能に連結してあるた
め、この多径間吊橋も基本的に請求項1と同様の作用を
奏する。その結果、中間塔の両側に不均一な外力(偏載
状の活荷重など)が作用した場合にも、中間支間におけ
る補剛桁の撓みが小さく維持されるうえ、中間塔に作用
する曲げモーメントも格段に小さくなるから、中間塔と
して極端に高剛性ものを適用する必要がない。そして、
中間塔およびその基礎構造の建設費を格段に低減できる
し、大型の部材を殆ど追加する必要もないから、多径間
吊橋の建設費を格段に低減することができる。
In the intermediate span between the intermediate tower and the side tower or the intermediate tower, the central portion of the main cable is connected to the stiffening girder so that the load can be transmitted in the bridge axis direction. The suspension bridge basically has the same function as the first aspect. As a result, even when an uneven external force (such as an unbalanced live load) acts on both sides of the intermediate tower, the bending of the stiffening girder between the intermediate supports is kept small, and the bending moment acting on the intermediate tower is maintained. Also becomes extremely small, so that it is not necessary to apply an extremely high rigidity as the intermediate tower. And
The construction cost of the intermediate tower and its basic structure can be significantly reduced, and it is not necessary to add a large-sized member. Therefore, the construction cost of the multi-span suspension bridge can be significantly reduced.

【0018】請求項4の塔頂変位抑制型多径間吊橋は、
請求項1の発明において、前記アンカレッジに連結され
る連続補剛桁とアンカレッジとの間に熱変形を吸収可能
な熱変形吸収機構が介装されたことを特徴とするもので
ある。前記連続補剛桁の一端が対応するアンカレッジに
連結手段で連結されるが、熱変形吸収機構により補剛桁
の熱変形(熱膨張や熱収縮)を吸収するようにしてあ
る。熱変形吸収機構は、例えばオイルダンパー(ダッシ
ュポッドとも言う)を主体にして構成され、外力が通常
の速度で作用する場合等には拘束作用を奏し、熱変形な
どのように時間的に緩慢な変化には拘束作用を奏しない
ように構成するものとする。
[0018] According to the fourth aspect of the present invention, there is provided a multi-span suspension bridge for suppressing top displacement.
The invention according to claim 1, wherein a thermal deformation absorbing mechanism capable of absorbing thermal deformation is interposed between the continuous stiffening girder connected to the anchorage and the anchorage. One end of the continuous stiffening girder is connected to a corresponding anchorage by a connecting means, and a thermal deformation absorbing mechanism absorbs thermal deformation (thermal expansion or thermal contraction) of the stiffening girder. The thermal deformation absorbing mechanism is mainly composed of, for example, an oil damper (also referred to as a dash pod). When an external force acts at a normal speed, the thermal deformation absorbing mechanism exerts a restraining action, and is slow in time such as thermal deformation. It shall be configured so as not to exert a restricting effect on the change.

【0019】請求項5の塔頂変位抑制型多径間吊橋は、
請求項2の発明において、前記アンカレッジに連結され
る補剛桁とアンカレッジとの間に熱変形吸収機構が介装
されたことを特徴とするものである。複数の補剛桁の少
なくとも一端が連結手段によりアンカレッジに連結され
るが、請求項4と同様に、熱変形吸収機構により補剛桁
の熱変形(熱膨張や熱収縮)を吸収するようにしてあ
る。
[0019] The tower displacement control type multi span suspension bridge of claim 5 is
The invention according to claim 2 is characterized in that a thermal deformation absorbing mechanism is interposed between the stiffening girder connected to the anchorage and the anchorage. At least one end of each of the plurality of stiffening girders is connected to the anchorage by the connecting means, but the thermal deformation absorbing mechanism absorbs thermal deformation (thermal expansion and thermal contraction) of the stiffening girders. It is.

【0020】請求項6の塔頂変位抑制型多径間吊橋は、
請求項3の発明において、前記結合機構は、熱変形を吸
収可能な熱変形吸収機構を有することを特徴とするもの
である。補剛桁が熱変形すると、熱応力を受けるので、
それを防止する為に前記結合機構に熱変形を吸収可能な
熱変形吸収機構を設けてある。
According to a sixth aspect of the present invention, there is provided a multi-span suspension bridge for suppressing top displacement.
The invention according to claim 3 is characterized in that the coupling mechanism has a thermal deformation absorbing mechanism capable of absorbing thermal deformation. When the stiffening girder is thermally deformed, it receives thermal stress.
In order to prevent this, the coupling mechanism is provided with a thermal deformation absorbing mechanism capable of absorbing thermal deformation.

【0021】請求項7の塔頂変位抑制型多径間吊橋は、
請求項4〜6の何れか1項の発明において、前記熱変形
吸収機構がオイルダンパーからなることを特徴とするも
のである。オイルダンパーは熱変形など時間的に緩慢な
変化には非拘束として作用し、時間的に緩慢でない変化
には拘束として作用するため、熱変形吸収機構として好
適である。
According to a seventh aspect of the present invention, there is provided a multi-span suspension bridge for suppressing top displacement.
The invention according to any one of claims 4 to 6, wherein the thermal deformation absorbing mechanism comprises an oil damper. The oil damper acts as an unconstrained change over time, such as thermal deformation, and acts as a constraint on changes that are not slow over time. Therefore, the oil damper is suitable as a thermal deformation absorbing mechanism.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。この実施形態の塔頂変位抑
制型多径間吊橋は、請求項2の塔頂変位抑制型多径間吊
橋に対応するものである。図1に示すように、本発明の
実施形態に係る塔頂変位抑制型多径間吊橋1は、橋軸方
向の両端付近に鉛直向きに立設された1対の側塔2と、
1対の側塔2の間の中間地点に鉛直向きに立設された中
間塔3とを有し、1対の側塔2の塔頂2aと中間塔3の
塔頂3aとを連結するとともに、これら塔頂2a,3a
を両岸側のアンカレッジ4に連結する2本のメインケー
ブル5を備えている。これらメインケーブル5は、側塔
2と中間塔3の間の中間支間において懸垂線状に湾曲
し、中間支間における支間中央部分は補剛桁7の上面付
近に達している。
Embodiments of the present invention will be described below with reference to the drawings. The tower top displacement suppression type multi span suspension bridge of this embodiment corresponds to the tower top displacement suppression type multi span suspension bridge of claim 2. As shown in FIG. 1, a tower displacement suppressing type multi-span suspension bridge 1 according to an embodiment of the present invention includes a pair of side towers 2 erected vertically near both ends in the bridge axis direction,
An intermediate tower 3 erected vertically at an intermediate point between the pair of side towers 2, connecting the top 2 a of the pair of side towers 2 and the top 3 a of the intermediate tower 3 with , These tower tops 2a, 3a
And two main cables 5 for connecting the two to the anchorages 4 on both banks. These main cables 5 are curved in a catenary line between the intermediate towers between the side tower 2 and the intermediate tower 3, and a central portion of the intermediate span between the intermediate towers reaches near the upper surface of the stiffening girder 7.

【0023】図1、図2に示すように、側塔2と中間塔
3との間、側塔2とアンカレッジ4との間には、補剛桁
7が夫々水平姿勢に配設され、これら4本の補剛桁7
は、略直列的に配設されて側塔2と中間塔3の高さ方向
途中部の高さレベルに位置している。2本のメインケー
ブル5からはハンガー5aが所定小間隔おきに吊るさ
れ、各補剛桁7は複数のハンガー5aで吊持されてい
る。補剛桁7の端部を側塔2と中間塔3の高さ方向途中
部に結合する結合機構6として、側塔2と中間塔3の高
さ方向途中部にはブラケット6aとタワーリンク6bが
設けられ、各補剛桁7の端部は対応するタワーリンク6
bにブラケット6cを介してピン結合されている。隣接
する補剛桁7の端部同士は、リンク状の連結部材7cと
ピン部材7dにより橋軸方向に荷重伝達可能に連結され
ている。
As shown in FIGS. 1 and 2, between the side tower 2 and the intermediate tower 3 and between the side tower 2 and the anchorage 4, stiffening girders 7 are disposed in a horizontal posture, respectively. These four stiffening girders 7
Are arranged substantially in series and are located at a height level in the middle of the side tower 2 and the intermediate tower 3 in the height direction. Hangers 5a are suspended from the two main cables 5 at predetermined small intervals, and each stiffening girder 7 is suspended by a plurality of hangers 5a. A bracket 6a and a tower link 6b are provided at the middle of the side tower 2 and the middle tower 3 in the height direction as a connecting mechanism 6 for connecting the end of the stiffening girder 7 to the middle of the side tower 2 and the middle tower 3 in the height direction. Are provided, and the end of each stiffening girder 7 is provided with a corresponding tower link 6.
b is connected to the pin b via a bracket 6c. The ends of the adjacent stiffening girders 7 are connected by a link-like connecting member 7c and a pin member 7d so that a load can be transmitted in the bridge axis direction.

【0024】図1、図3に示すように、両岸側の補剛桁
7aの陸側端部はアンカレッジ4にローラ支持されると
ともに、この補剛桁7aの陸側端部は、連結手段として
の例えば1対のオイルダンパー8(熱変形吸収機構とし
てのオイルダンパー8でもある)により、アンカレッジ
4に連結されている。このオイルダンパー8は、熱変形
等の時間的に緩慢な変化に対しては非拘束となり、活荷
重や風荷重等の動的な外力に対しては拘束力を発揮す
る。
As shown in FIGS. 1 and 3, the land side end of the stiffening girder 7a on both sides is supported by rollers on the anchorage 4 and the land side end of the stiffening girder 7a is connected. For example, it is connected to the anchorage 4 by a pair of oil dampers 8 (which are also oil dampers 8 as a thermal deformation absorbing mechanism) as means. The oil damper 8 is not constrained with respect to a temporally slow change such as thermal deformation, and exerts a constraining force against a dynamic external force such as a live load or a wind load.

【0025】図4に示すように、中間塔3と側塔2との
間の中間支間において、各メインケーブル5の支間中央
部分即ち最下部は、1対のセンターステイケーブル9を
介して補剛桁7b(中間支間の補剛桁7)に橋軸方向に
荷重伝達可能に連結されている。これは、補剛桁7とメ
インケーブル5を介して中間塔3の塔頂3aに対する拘
束作用を増強する為である。但し、図4の構造に代えて
図5の構造を採用してもよい。図5に示す構造では、中
間塔3と側塔2との間の中間支間において、各メインケ
ーブル5の支間中央部分即ち最下部は、連結金具9Aを
介して補剛桁7bに橋軸方向に荷重伝達可能に連結され
ている。尚、連結金具9Aは補剛桁7bに溶接接合され
てもよく、複数のボルト等で固定されてもよい。
As shown in FIG. 4, in the intermediate section between the intermediate tower 3 and the side tower 2, the central portion between the main cables 5, that is, the lowermost part, is stiffened via a pair of center stay cables 9. It is connected to the girder 7b (the stiffening girder 7 between the intermediate supports) so that the load can be transmitted in the bridge axis direction. This is to enhance the restraining action on the top 3a of the intermediate tower 3 via the stiffening girder 7 and the main cable 5. However, the structure of FIG. 5 may be adopted instead of the structure of FIG. In the structure shown in FIG. 5, in the middle span between the intermediate tower 3 and the side tower 2, the center between the spans of the main cables 5, that is, the lowermost part, is connected to the stiffening girder 7 b via the connecting fitting 9 A in the bridge axis direction. It is connected so that the load can be transmitted. The connection fitting 9A may be welded to the stiffening girder 7b, or may be fixed with a plurality of bolts or the like.

【0026】次に、塔頂変位抑制型多径間吊橋1の作用
について説明する。4つの補剛桁7は直列的に並べて連
結部材7cとピン部材7dとで橋軸方向へ荷重伝達可能
に連結され、これら4つの補剛桁7の両岸側の両端部
は、夫々、アッカレッジ4にローラ支持されるとともに
オイルダンパー8によりアッカレッジ4に連結されてい
る。それ故、4つの補剛桁7の熱変形はオイルダンパー
8により確実に吸収されるが、活荷重や風荷重などの外
力が作用する際には、オイルダンパー8が拘束力を発揮
して4つの補剛桁7の両端をアッカレッジ4に対して拘
束する。こうして、4つの補剛桁7は橋軸方向へ移動す
ることなく、常にほぼ一定位置を維持する。
Next, the operation of the tower top displacement suppressing type multi-span suspension bridge 1 will be described. The four stiffening girders 7 are arranged in series and connected by a connecting member 7c and a pin member 7d so that a load can be transmitted in the bridge axis direction. The roller is supported by the college 4 and is connected to the college 4 by an oil damper 8. Therefore, the thermal deformation of the four stiffening girders 7 is surely absorbed by the oil damper 8, but when an external force such as a live load or a wind load acts, the oil damper 8 exerts a restraining force and exerts a restraining force. Both ends of the two stiffening girders 7 are restrained with respect to the carriage 4. Thus, the four stiffening girders 7 always maintain a substantially constant position without moving in the bridge axis direction.

【0027】しかも、中間支間において、メインケーブ
ル5の支間中央部分(最下部分)が補剛桁7bに橋軸方
向に荷重伝達可能に連結されているため、中間塔3の両
側におけるメインケーブル5の、前記支間中央部分の橋
軸方向への移動が生じることがない。従って、中間塔3
の両側に不均一な外力(活荷重や風荷重など)が作用し
たとしても、中間塔3の両側のメインケーブル5が橋軸
方向へ殆ど移動しないように拘束されているため、中間
塔3の塔頂3aが橋軸方向へ殆ど移動することがない。
In addition, since the central portion (lowermost portion) of the main cable 5 is connected to the stiffening girder 7b so as to transmit a load in the bridge axis direction, the main cables 5 on both sides of the intermediate tower 3 are provided. However, the center portion of the span does not move in the bridge axis direction. Therefore, the intermediate tower 3
The main cables 5 on both sides of the intermediate tower 3 are constrained to hardly move in the bridge axis direction even if an uneven external force (live load, wind load, etc.) acts on both sides of the intermediate tower 3. The tower top 3a hardly moves in the bridge axis direction.

【0028】こうして、メインケーブル5と、橋軸方向
に荷重伝達可能な4つの補剛桁7とオイルダンパー8を
介して中間塔3の塔頂3aを拘束する性能が強化された
結果、中間塔3の荷重条件が著しく緩和されて中間塔3
に作用する曲げモーメントが極端に小さくなる。それ
故、中間塔3の剛性を従来の多径間吊橋と比べて格段に
低減して断面を小型化し、全体として軽量化することが
でき、中間塔3とその基礎構造を建設する費用を格段に
低減することができる。そして、中間塔3の両側に不均
一な外力に起因する補剛桁7の撓みも格段に小さくなる
から、車両などの安定走行の面でも改善される。以上の
作用、効果は、大型の部材を追加したりすることなく達
成されるから、多径間吊橋1の建設費用を格段に低減す
ることができる。
As described above, the ability to restrain the top 3a of the intermediate tower 3 via the main cable 5, the four stiffening girders 7 capable of transmitting a load in the bridge axis direction, and the oil damper 8 is enhanced. The load condition of the intermediate tower 3 was remarkably relaxed.
Is extremely small. Therefore, the rigidity of the intermediate tower 3 can be significantly reduced as compared with the conventional multi-span suspension bridge, the cross-section can be reduced, and the overall weight can be reduced, and the cost of constructing the intermediate tower 3 and its basic structure can be significantly reduced. Can be reduced. Also, the deflection of the stiffening girder 7 due to uneven external force on both sides of the intermediate tower 3 is significantly reduced, so that stable running of a vehicle or the like is also improved. The above operations and effects can be achieved without adding a large-sized member, so that the construction cost of the multi-span suspension bridge 1 can be significantly reduced.

【0029】次に、前記塔頂変位抑制型多径間吊橋1を
部分的に変更した変更形態について説明する。但し、前
記実施形態と同じ部材には同一の符号を付して説明を省
略する。 1〕図6、図7に示す塔頂変位抑制型多径間吊橋1A
は、補剛桁7の端部同士を連結する連結部材7cとピン
部材7dが省略され、各補剛桁7の端部が対応する側塔
2又は中間塔3に結合機構6を介して連結されるととも
に、各補剛桁7の端部が熱変形吸収機構として機能する
オイルダンパー11を介して対応する側塔2又は中間塔
3に連結されている。その他は前記多径間吊橋1と同様
であり、多径間吊橋1と同様の構成に同一符号を付して
説明を省略する。オイルダンパー11は、通常の速度の
変化に対しては拘束作用を発揮し、熱変形のような緩慢
な変化に対しては拘束作用を発揮しないので、この塔頂
変位抑制型多径間吊橋1Aは、基本的に塔頂変位抑制型
多径間吊橋1と同様の作用を奏する。
Next, a modified embodiment in which the tower top displacement suppressing type multi-span suspension bridge 1 is partially modified will be described. However, the same members as those of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted. 1] Multi-span suspension bridge 1A shown in FIGS. 6 and 7
The connecting member 7c and the pin member 7d for connecting the ends of the stiffening girders 7 are omitted, and the end of each stiffening girder 7 is connected to the corresponding side tower 2 or intermediate tower 3 via the coupling mechanism 6. At the same time, the end of each stiffening girder 7 is connected to the corresponding side tower 2 or intermediate tower 3 via an oil damper 11 functioning as a thermal deformation absorbing mechanism. The other parts are the same as those of the multi-span suspension bridge 1, and the same components as those of the multi-span suspension bridge 1 are denoted by the same reference numerals and description thereof is omitted. Since the oil damper 11 exerts a restraining action against a normal speed change and does not exert a restraining action against a slow change such as thermal deformation, the tower top displacement suppressing type multi-span suspension bridge 1A Has basically the same action as the tower displacement control type multi-span suspension bridge 1.

【0030】2〕図8、図9に示す塔頂変位抑制型多径
間吊橋1Bは、請求項3の塔頂変位抑制型多径間吊橋に
対応するものである。この塔頂変位抑制型多径間吊橋1
Bには、前記塔頂変位抑制型多径間吊橋1の場合と同様
に、1対のメインケーブル5、4つの補剛桁12、多数
のハンガー5a、両岸のアンカレッジ4などが設けられ
ている。両岸側の補剛桁12aの構造は、従来の多径間
吊橋のものと同様の構造であり、補剛桁12aの端部
は、ブラケット10aとタワーリンク10bとで、側塔
2に連結されている。中間支間にある補剛桁12bの端
部は、結合機構としてのオイルダンパー11により対応
する側塔2又は中間塔3に橋軸方向に荷重伝達可能に連
結されている。中間支間において、メインケーブル5の
支間中央部分(最下部分)は、前記図4又は図5の構造
と同様の構造にて補剛桁12bに橋軸方向に荷重伝達可
能に連結されている。その他塔頂変位抑制型多径間吊橋
1と同様の構成に同一符号を付して説明を省略する。
2] The tower top displacement suppressing type multi-span suspension bridge 1B shown in FIGS. 8 and 9 corresponds to the tower top displacement suppressing type multi-span suspension bridge of claim 3. This tower top displacement control type multi span suspension bridge 1
B has a pair of main cables 5, four stiffening girders 12, a large number of hangers 5a, anchorages 4 on both banks, and the like, as in the case of the tower displacement suppressing type multi-span suspension bridge 1. ing. The structure of the stiffening girder 12a on both sides is the same as that of the conventional multi-span suspension bridge, and the end of the stiffening girder 12a is connected to the side tower 2 by the bracket 10a and the tower link 10b. Have been. The end of the stiffening girder 12b between the intermediate supports is connected to the corresponding side tower 2 or intermediate tower 3 by an oil damper 11 as a coupling mechanism so that a load can be transmitted in the bridge axis direction. Between the intermediate supports, the central portion (lowest portion) of the main cable 5 is connected to the stiffening girder 12b in a structure similar to the structure of FIG. 4 or 5 so as to be able to transmit a load in the bridge axis direction. In addition, the same components as those of the tower top displacement suppressing type multi-span suspension bridge 1 are denoted by the same reference numerals, and description thereof is omitted.

【0031】次に、塔頂変位抑制型多径間吊橋1Bの作
用について説明する。この塔頂変位抑制型多径間吊橋1
Bは、1対の側塔2はメインケーブル5によりアンカレ
ッジ4に強固に拘束されていることに着目してなされた
ものであり、両岸側の1対の補剛桁12aについては、
従来の3径間吊橋と同様の構成を適用可能にしてある。
中間支間に配設された各補剛桁12bの端部が、結合機
構により側塔2又は中間塔3に結合されており、1対の
側塔2はメインケーブル5によりアンカレッジ4に強固
に拘束されているため、両岸側の1対の補剛桁12a以
外の複数の補剛桁12bは、橋軸方向へ殆ど移動しない
ように拘束される。
Next, the operation of the tower top displacement suppressing type multi span suspension bridge 1B will be described. This tower top displacement control type multi span suspension bridge 1
B is made by paying attention to the fact that the pair of side towers 2 is firmly restrained to the anchorage 4 by the main cable 5, and for the pair of stiffening girders 12a on both banks,
The same configuration as the conventional three-span suspension bridge is applicable.
The end of each stiffening girder 12b disposed between the intermediate supports is connected to the side tower 2 or the intermediate tower 3 by a connecting mechanism, and the pair of side towers 2 is firmly connected to the anchorage 4 by the main cable 5. Because of the restraint, a plurality of stiffening girders 12b other than the pair of stiffening girders 12a on both banks are restrained so as to hardly move in the bridge axis direction.

【0032】そして、中間塔3と側塔2間の中間支間に
おいて、メインケーブル5のうちの支間中央部分を補剛
桁12bに橋軸方向に荷重伝達可能に連結してあるた
め、この塔頂変位抑制型多径間吊橋1Bも基本的に前記
塔頂変位抑制型多径間吊橋1と同様に作用する。その結
果、中間塔3の両側に不均一な外力(偏載状の活荷重な
ど)が作用した場合にも、中間支間における補剛桁12
bの撓みが小さく維持されるうえ、中間塔3に作用する
曲げモーメントも格段に小さくなるから、中間塔3とし
て極端に高剛性ものを適用する必要がない。そして、中
間塔3およびその基礎構造の建設費を格段に低減できる
し、大型の部材を殆ど追加する必要もないから、塔頂変
位抑制型多径間吊橋1Bの建設費を格段に低減すること
ができる。
In the middle span between the intermediate tower 3 and the side tower 2, the central portion of the main cable 5 is connected to the stiffening girder 12b so that the load can be transmitted in the bridge axis direction. The displacement suppression type multi-span suspension bridge 1B basically operates in the same manner as the tower top displacement suppression type multi-span suspension bridge 1. As a result, even when an uneven external force (such as an unbalanced live load) acts on both sides of the intermediate tower 3, the stiffening girders 12 between the intermediate supports can be used.
Since the bending of b is maintained small and the bending moment acting on the intermediate tower 3 is significantly reduced, it is not necessary to use an extremely high rigidity as the intermediate tower 3. Since the construction cost of the intermediate tower 3 and its basic structure can be significantly reduced, and there is almost no need to add a large-sized member, the construction cost of the tower displacement suppressing type multi-span suspension bridge 1B is significantly reduced. Can be.

【0033】3〕請求項1に記載の塔頂変位抑制型多径
間吊橋に対応する塔頂変位抑制型多径間吊橋について説
明する。図1に図示の塔頂変位抑制型多径間吊橋1にお
ける4つの補剛桁7の代わりに、図10、図11に示す
ように、全長に亙って連続する1本の連続補剛桁7Aを
採用した塔頂変位抑制型多径間吊橋1Cについて説明す
る。この1本の連続補剛桁7Aは、メインケーブル5に
ハンガー5aにて吊持され橋軸方向に荷重伝達可能に連
続している。この場合、連続補剛桁7Aの途中部は側塔
2と中間塔3とに前記実施形態と同様の結合機構6を介
して連結される。中間支間において、メインケーブル5
の支間中央部分を連続補剛桁7Aに橋軸方向に荷重伝達
可能に連結する構成、連続補剛桁7Aの少なくとも一端
をアッカレッジに連結する連結手段については前記塔頂
変位抑制型多径間吊橋1と同様である。その他、前記塔
頂変位抑制型多径間吊橋1と同様の構成に同一符号を付
して説明を省略する。
[3] A multi-span suspension bridge with a suppressed top displacement corresponding to the multi-span suspension bridge with a suppressed top displacement according to claim 1 will be described. Instead of the four stiffening girders 7 in the tower displacement suppressing type multi-span suspension bridge 1 shown in FIG. 1, one continuous stiffening girder continuous over the entire length as shown in FIGS. A description will be given of a tower top displacement suppressing type multi span suspension bridge 1C employing 7A. The single continuous stiffening girder 7A is hung by the hanger 5a on the main cable 5 and is continuous so that a load can be transmitted in the bridge axis direction. In this case, the middle part of the continuous stiffening girder 7A is connected to the side tower 2 and the intermediate tower 3 via the same coupling mechanism 6 as in the above embodiment. In the middle span, the main cable 5
And the connecting means for connecting at least one end of the continuous stiffening girder 7A to the anchorage is a multi-span of the tower top displacement suppressing type. Same as suspension bridge 1. In addition, the same reference numerals are given to the same components as those of the tower top displacement suppressing type multi-span suspension bridge 1, and the description is omitted.

【0034】この塔頂変位抑制型多径間吊橋1Cに中間
塔3の両側の中間支間に不均一な外力(偏載状の活荷
重、不均一な風荷重など)が作用すると、中間塔3の両
側においてメインケーブル5の張力に差が生じるため、
中間塔3の塔頂3aが橋軸方向の片方へ変位しようとす
る。しかし、橋軸方向に荷重伝達可能に連続する1つの
連続補剛桁が設けられており、こ連続補剛桁の少なくと
も一端が連結手段により対応するアンカレッジ4に連結
されているため、連続補剛桁は橋軸方向に変位せず、橋
軸方向にほぼ一定位置を保持する。しかも、中間塔3と
側塔2又は中間塔の間の中間支間において、メインケー
ブル5のうちの支間中央部分を連続補剛桁に荷重伝達可
能に連結してあるため、そのメインケーブル5のうちの
支間中央部分も、橋軸方向に変位することなくほぼ一定
位置を保持する。
When non-uniform external force (unbalanced live load, non-uniform wind load, etc.) is applied between the intermediate supports on both sides of the intermediate tower 3, the intermediate tower 3 is controlled. Because there is a difference in the tension of the main cable 5 on both sides of
The top 3a of the intermediate tower 3 is about to be displaced to one side in the bridge axis direction. However, since one continuous stiffening girder is provided so as to be able to transmit the load in the bridge axis direction, and at least one end of the continuous stiffening girder is connected to the corresponding anchorage 4 by the connecting means, the continuous stiffening girder is connected. The rigid girder does not displace in the bridge axis direction and keeps a substantially constant position in the bridge axis direction. In addition, in the intermediate span between the intermediate tower 3 and the side tower 2 or the intermediate tower, the central portion of the main cable 5 is connected to the continuous stiffening girder so that the load can be transmitted. The center part of the span also maintains a substantially constant position without being displaced in the bridge axis direction.

【0035】つまり、中間塔3の塔頂3aが橋軸方向の
片方へ変位しようとしても、メインケーブル5と連続補
剛桁とで拘束されるから、中間塔3の両側におけるメイ
ンケーブル5の張力差も大きくなることはなく、中間塔
3の塔頂が橋軸方向へ大きく変位することがない。その
結果、中間支間における補剛桁部分の撓みが小さく維持
されるうえ、中間塔に作用する曲げモーメントも格段に
小さくなるから、中間塔3として極端に高剛性ものを適
用する必要がない。
That is, even if the top 3a of the intermediate tower 3 is displaced in one direction in the bridge axis direction, the main cable 5 and the continuous stiffening girder restrict the top 3a. The difference does not increase, and the top of the intermediate tower 3 does not significantly displace in the bridge axis direction. As a result, the bending of the stiffening girder portion between the intermediate supports is kept small, and the bending moment acting on the intermediate tower is significantly reduced. Therefore, it is not necessary to use an extremely high rigidity as the intermediate tower 3.

【0036】こうして、中間塔3およびその基礎構造の
建設費を格段に低減できるし、大型の部材を殆ど追加す
る必要もないから、塔頂変位抑制型多径間吊橋の建設費
を格段に低減することができる。
In this way, the construction cost of the intermediate tower 3 and its basic structure can be significantly reduced, and since there is almost no need to add large-sized members, the construction cost of the tower displacement suppressing type multi-span suspension bridge is significantly reduced. can do.

【0037】4〕前記実施形態では、1本の中間塔3を
設けた塔頂変位抑制型多径間吊橋について説明したが、
両岸間の距離が大きな場合には、1対の側塔間に複数本
の中間塔が立設される場合もある。 5〕図1の塔頂変位抑制型多径間吊橋において、両岸側
の補剛桁7aのうち、一方の補剛桁7aの一端とアンカ
レッジ4との間にのみオイルダンパー8を設け、他方の
補剛桁7aの他端はローラ支持のみでアンカレッジ4に
支持させてもよい。
4) In the above embodiment, the description has been given of the tower displacement suppressing type multi-span suspension bridge provided with one intermediate tower 3.
When the distance between the banks is large, a plurality of intermediate towers may be erected between a pair of side towers. 5] In the tower displacement suppressing type multi-span suspension bridge of FIG. 1, the oil damper 8 is provided only between one end of one of the stiffening girders 7 a and the anchorage 4 among the stiffening girders 7 a on both banks, The other end of the other stiffening girder 7a may be supported by the anchorage 4 only by roller support.

【0038】6〕前記オイルダンパー8,11の代わり
に、ダッシュポッドを適用してもよく、これらオイルダ
ンパー8,11やダッシュポッドの代わりに、気温や補
剛桁の温度を検知する温度センサを有し、この温度セン
サで検出された温度に基づいて橋軸方向の熱応力を解消
するように作動する熱変位吸収装置(例えば、ナット部
材とスクリー軸とを含むスクリュー機構を主体とするも
の)を適用することも可能である。
6) A dash pod may be used in place of the oil dampers 8 and 11. Instead of the oil dampers 8, 11 and the dash pod, a temperature sensor for detecting air temperature or the temperature of the stiffening girder is used. A thermal displacement absorbing device that operates to eliminate thermal stress in the bridge axis direction based on the temperature detected by the temperature sensor (for example, a device mainly including a screw mechanism including a nut member and a screen shaft) It is also possible to apply

【0039】[0039]

【発明の効果】請求項1の発明によれば、前述のよう
に、中間塔の塔頂が橋軸方向の片方へ変位しようとして
も、メインケーブルと連続補剛桁とで拘束されるから、
中間塔の両側におけるメインケーブルの張力差も大きく
なることはなく、中間塔の塔頂が橋軸方向へ大きく変位
することがない。その結果、中間支間における補剛桁部
分の撓みが小さく維持されるうえ、中間塔に作用する曲
げモーメントも格段に小さくなるから、中間塔として極
端に高剛性ものを適用する必要がない。
According to the first aspect of the present invention, as described above, even if the top of the intermediate tower is displaced to one side in the bridge axis direction, it is restrained by the main cable and the continuous stiffening girder.
The difference in tension between the main cables on both sides of the intermediate tower does not increase, and the top of the intermediate tower does not significantly displace in the bridge axis direction. As a result, the bending of the stiffening girder portion between the intermediate supports is kept small, and the bending moment acting on the intermediate tower is significantly reduced. Therefore, it is not necessary to use an extremely high rigid intermediate tower.

【0040】こうして、中間塔およびその基礎構造の建
設費を格段に低減できるし、大型の部材を殆ど追加する
必要もないから、塔頂変位抑制型多径間吊橋の建設費を
格段に低減することができる。
In this way, the construction cost of the intermediate tower and its basic structure can be significantly reduced, and there is almost no need to add a large-sized member. Therefore, the construction cost of the tower displacement suppressing type multi-span suspension bridge is significantly reduced. be able to.

【0041】請求項2の発明によれば、前述のように、
複数の補剛桁が連続する1本の構造ではないが、これら
複数の補剛桁が橋軸方向に荷重伝達可能に連結されてい
るため、請求項1の連続補剛桁と同様に機能する。そし
て、複数の補剛桁の少なくとも一端が、連結手段により
対応するアンカレッジに連結されているため、複数の補
剛桁は、請求項1の連続補剛桁と同様に、橋軸方向に移
動することなく常に一定位置を保持する。この塔頂変位
抑制型多径間吊橋も、基本的に請求項1の塔頂変位抑制
型多径間吊橋と同様の効果を奏することになる。その結
果、中間塔の両側に不均一な外力(偏載状の活荷重な
ど)が作用した場合にも、中間支間における補剛桁の撓
みが小さく維持されるうえ、中間塔に作用する曲げモー
メントも格段に小さくなるから、中間塔として極端に高
剛性ものを適用する必要がない。
According to the second aspect of the present invention, as described above,
Although the plurality of stiffening girders are not a single continuous structure, the plurality of stiffening girders are connected so as to be able to transmit a load in the bridge axis direction, and thus function similarly to the continuous stiffening girder of claim 1. . Since at least one end of each of the plurality of stiffening girders is connected to the corresponding anchorage by the connecting means, the plurality of stiffening girders move in the bridge axis direction, similarly to the continuous stiffening girder of claim 1. And always maintain a constant position. This tower top displacement suppressing type multi span suspension bridge basically has the same effect as the tower top displacement suppressing type multi span suspension bridge of claim 1. As a result, even when an uneven external force (such as an unbalanced live load) acts on both sides of the intermediate tower, the bending of the stiffening girder between the intermediate supports is kept small and the bending moment acting on the intermediate tower Also becomes extremely small, so that it is not necessary to apply an extremely high rigidity as the intermediate tower.

【0042】そして、中間塔およびその基礎構造の建設
費を格段に低減できるし、大型の部材を殆ど追加する必
要もないから、塔頂変位抑制型多径間吊橋の建設費を格
段に低減することができる。
Since the construction cost of the intermediate tower and its basic structure can be significantly reduced, and there is no need to add a large-sized member, the construction cost of the tower displacement suppressing type multi-span suspension bridge is significantly reduced. be able to.

【0043】請求項3の発明によれば、前述のように、
中間支間に配設された各補剛桁の端部が、結合機構によ
り側塔又は中間塔に結合されており、1対の側塔はメイ
ンケーブルによりアンカレッジに強固に拘束されている
ため、両岸側の1対の補剛桁以外の複数の補剛桁は、橋
軸方向へ移動することなく常に一定位置を保持する。そ
して、中間塔と側塔又は中間塔の間の中間支間におい
て、メインケーブルのうちの支間中央部分を補剛桁に橋
軸方向に荷重伝達可能に連結してあるため、この塔頂変
位抑制型多径間吊橋も基本的に請求項1と同様に、中間
塔の両側に不均一な外力(偏載状の活荷重など)が作用
した場合にも、中間支間における補剛桁の撓みが小さく
維持されるうえ、中間塔に作用する曲げモーメントも格
段に小さくなるから、中間塔として極端に高剛性ものを
適用する必要がない。そして、中間塔およびその基礎構
造の建設費を格段に低減できるし、大型の部材を殆ど追
加する必要もないから、塔頂変位抑制型多径間吊橋の建
設費を格段に低減することができる。
According to the invention of claim 3, as described above,
Since the end of each stiffening girder disposed between the intermediate supports is connected to the side tower or the intermediate tower by a coupling mechanism, and the pair of side towers is strongly restrained by the main cable to the anchorage, A plurality of stiffening girders other than a pair of stiffening girders on both banks maintain a constant position without moving in the bridge axis direction. And, in the middle span between the middle tower and the side tower or the middle tower, the center part of the span of the main cable is connected to the stiffening girder so that the load can be transmitted in the bridge axis direction. In the case of a multi-span suspension bridge, the deflection of the stiffening girder between the intermediate supports is basically small even when an uneven external force (such as an unbalanced live load) acts on both sides of the intermediate tower. In addition, the bending moment acting on the intermediate tower is remarkably reduced, so that it is not necessary to apply an extremely rigid intermediate tower. And since the construction cost of the intermediate tower and its basic structure can be significantly reduced, and it is not necessary to add a large-sized member, the construction cost of the tower displacement suppressing type multi-span suspension bridge can be significantly reduced. .

【0044】請求項4の発明によれば、アンカレッジに
連結される連続補剛桁とアンカレッジとの間に熱変形を
吸収可能な熱変形吸収機構が介装されたため、前記連続
補剛桁の一端が対応するアンカレッジに連結手段で連結
されても、熱変形吸収機構により補剛桁の熱変形(熱膨
張や熱収縮)を吸収することができる。その他請求項1
と同様の効果を奏する。
According to the fourth aspect of the present invention, since the thermal deformation absorbing mechanism capable of absorbing thermal deformation is interposed between the continuous stiffening girder connected to the anchorage and the anchorage, the continuous stiffening girder is provided. Even if one end of the stiffener is connected to the corresponding anchorage by the connecting means, the thermal deformation absorbing mechanism can absorb the thermal deformation (thermal expansion or thermal contraction) of the stiffening girder. Other claim 1
It has the same effect as.

【0045】請求項5の発明によれば、アンカレッジに
連結される補剛桁とアンカレッジとの間に熱変形吸収機
構が介装されたので、複数の補剛桁の少なくとも一端が
連結手段によりアンカレッジに連結されても、請求項4
と同様に、熱変形吸収機構により補剛桁の熱変形(熱膨
張や熱収縮)を吸収することができる。その他請求項2
と同様の効果を奏する。
According to the fifth aspect of the present invention, since the heat deformation absorbing mechanism is interposed between the stiffening girder connected to the anchorage and the anchorage, at least one end of the plurality of stiffening girder is connected to the connecting means. Claim 4 when connected to the anchorage by
Similarly to the above, the thermal deformation (thermal expansion and thermal contraction) of the stiffening girder can be absorbed by the thermal deformation absorbing mechanism. Other claim 2
It has the same effect as.

【0046】請求項6の発明によれば、前記結合機構
は、熱変形を吸収可能な熱変形吸収機構を有するため、
補剛桁の熱変形を熱変形吸収機構で吸収することで、補
剛桁に熱応力が生じるのを確実に防止することができ
る。その他請求項3と同様の効果を奏する。
According to the sixth aspect of the present invention, since the coupling mechanism has a thermal deformation absorbing mechanism capable of absorbing thermal deformation,
By absorbing the thermal deformation of the stiffening girder by the thermal deformation absorbing mechanism, it is possible to reliably prevent the occurrence of thermal stress in the stiffening girder. The other effects are the same as those of the third aspect.

【0047】請求項7の発明によれば、前記熱変形吸収
機構がオイルダンパーからなるので、熱変形など時間的
に緩慢な変化には非拘束として作用させ、時間的に緩慢
でない変化には拘束として作用させることができる。そ
の他請求項4〜6の何れか1項と同様の効果を奏する。
According to the seventh aspect of the present invention, since the thermal deformation absorbing mechanism comprises an oil damper, the thermal deformation absorbing mechanism acts as a non-restraint for a time-dependent slow change such as a thermal deformation, and a restraint for a time-insensitive change. Can act as In addition, the same effect as any one of claims 4 to 6 can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の塔頂変位抑制型多径間吊橋
の全体側面図である。
FIG. 1 is an overall side view of a tower displacement suppressing type multi-span suspension bridge according to an embodiment of the present invention.

【図2】図1の多径間吊橋の結合機構の要部拡大図であ
る。
FIG. 2 is an enlarged view of a main part of a coupling mechanism of the multi-span suspension bridge of FIG. 1;

【図3】図1の多径間吊橋の連結手段の要部拡大図であ
る。
FIG. 3 is an enlarged view of a main part of a connecting means of the multi-span suspension bridge of FIG. 1;

【図4】メインケーブルの支間中央部分を補剛桁に連結
する構造の要部拡大図である。
FIG. 4 is an enlarged view of a main part of a structure for connecting a central portion of a main cable span to a stiffening girder.

【図5】メインケーブルの支間中央部分を補剛桁に連結
する構造の要部拡大図である。
FIG. 5 is an enlarged view of a main part of a structure for connecting a central portion of a main cable span to a stiffening girder.

【図6】変更形態に係る塔頂変位抑制型多径間吊橋の全
体側面図である。
FIG. 6 is an overall side view of a tower top displacement suppressing type multi-span suspension bridge according to a modified embodiment.

【図7】図6の多径間吊橋の結合機構の要部拡大図であ
る。
FIG. 7 is an enlarged view of a main part of a coupling mechanism of the multi-span suspension bridge of FIG. 6;

【図8】変更形態に係る塔頂変位抑制型多径間吊橋の全
体側面図である。
FIG. 8 is an overall side view of a tower-top displacement suppressing multi-span suspension bridge according to a modified embodiment.

【図9】図8の多径間吊橋の側塔における結合機構の
部拡大図である。
FIG. 9 is an enlarged view of a main part of a coupling mechanism in a side tower of the multi-span suspension bridge in FIG. 8;

【図10】変更形態に係る塔頂変位抑制型多径間吊橋の
全体側面図である。
FIG. 10 is an overall side view of a tower top displacement suppressing type multi-span suspension bridge according to a modified embodiment.

【図11】図10の多径間吊橋の結合機構の要部拡大図
である。
11 is an enlarged view of a main part of a coupling mechanism of the multi-span suspension bridge in FIG. 10;

【図12】従来の多径間吊橋の全体側面図である。FIG. 12 is an overall side view of a conventional multi-span suspension bridge.

【図13】図12の多径間吊橋の要部拡大図である。FIG. 13 is an enlarged view of a main part of the multi-span suspension bridge of FIG. 12;

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1対の鉛直の側塔間に少なくとも1本の
鉛直の中間塔を立設してなる多径間吊橋において、 1対の側塔の塔頂と中間塔の塔頂とを吊橋の両端側のア
ンカレッジに連結するメインケーブルと、 前記メインケーブルにハンガーにて吊持され橋軸方向に
荷重伝達可能に連続する1つの連続補剛桁と、 前記側塔と中間塔に連続補剛桁の途中部を結合する結合
機構と、 前記連続補剛桁の少なくとも一端を対応するアンカレッ
ジに連結する連結手段とを備え、 前記中間塔と側塔又は中間塔の間の中間支間において、
メインケーブルのうちの支間中央部分を連続補剛桁に橋
軸方向に荷重伝達可能に連結したことを特徴とする塔頂
変位抑制型多径間吊橋。
1. A multi-span suspension bridge comprising at least one vertical intermediate tower erected between a pair of vertical side towers, wherein a top of the pair of side towers and an intermediate tower are connected to each other. A main cable connected to the anchorages at both ends of the suspension bridge, one continuous stiffening girder suspended from the main cable by a hanger and continuous to be able to transmit a load in the bridge axis direction, and continuous to the side tower and the intermediate tower A coupling mechanism for coupling the middle part of the stiffening girder, and a coupling means for coupling at least one end of the continuous stiffening girder to a corresponding anchorage, between the intermediate tower and the intermediate support between the side tower or the intermediate tower. ,
A multi-span suspension bridge that suppresses tower top displacement, wherein a central portion of a main cable span is connected to a continuous stiffening girder so that a load can be transmitted in a bridge axis direction.
【請求項2】 1対の鉛直の側塔間に少なくとも1本の
鉛直の中間塔を立設してなる多径間吊橋において、 1対の側塔の塔頂と中間塔の塔頂とを吊橋の両端側のア
ンカレッジに連結するメインケーブルと、 前記メインケーブルにハンガーにて吊持され橋軸方向に
荷重伝達可能に連結された複数の補剛桁と、 前記各補剛桁の端部を対応する側塔又は中間塔に結合す
る結合機構と、 前記複数の補剛桁の少なくとも一端を対応するアンカレ
ッジに連結する連結手段とを備え、 前記中間塔と側塔又は中間塔の間の中間支間において、
メインケーブルのうちの支間中央部分を補剛桁に橋軸方
向に荷重伝達可能に連結したことを特徴とする塔頂変位
抑制型多径間吊橋。
2. A multi-span suspension bridge comprising at least one vertical intermediate tower erected between a pair of vertical side towers, wherein the top of the pair of side towers and the top of the intermediate tower are connected to each other. A main cable connected to the anchorages at both ends of the suspension bridge; a plurality of stiffening girders suspended from the main cable by hangers and connected so as to be able to transmit a load in the bridge axis direction; and an end of each stiffening girder. A coupling mechanism for coupling the corresponding side tower or intermediate tower, and coupling means for coupling at least one end of the plurality of stiffening girders to the corresponding anchorage, between the intermediate tower and the side tower or intermediate tower In the middle span,
A multi-span suspension bridge with suppressed tower top displacement, wherein a central portion of a main cable span is connected to a stiffening girder so that a load can be transmitted in a bridge axis direction.
【請求項3】 1対の鉛直の側塔間に少なくとも1本の
鉛直の中間塔を立設してなる多径間吊橋において、 1対の側塔の塔頂と中間塔の塔頂とを吊橋の両端側のア
ンカレッジに連結するメインケーブルと、 前記メインケーブルにハンガーにて吊持された複数の補
剛桁と、 中間支間に配設された各補剛桁の端部を対応する側塔又
は中間塔に結合する結合機構とを備え、 前記中間塔と側塔又は中間塔の間の中間支間において、
メインケーブルのうちの支間中央部分を補剛桁に橋軸方
向に荷重伝達可能に連結したことを特徴とする塔頂変位
抑制型多径間吊橋。
3. A multi-span suspension bridge in which at least one vertical intermediate tower is erected between a pair of vertical side towers, wherein the top of the pair of side towers and the top of the intermediate tower are connected to each other. A main cable connected to the anchorages at both ends of the suspension bridge; a plurality of stiffening girders suspended from the main cable by hangers; and a corresponding side of an end of each stiffening girder disposed between the intermediate supports. Comprising a coupling mechanism coupled to the tower or the intermediate tower, between the intermediate tower and the intermediate tower between the side tower or the intermediate tower,
A multi-span suspension bridge with suppressed tower top displacement, wherein a central portion of a main cable span is connected to a stiffening girder so that a load can be transmitted in a bridge axis direction.
【請求項4】 前記アンカレッジに連結される連続補剛
桁とアンカレッジとの間に熱変形を吸収可能な熱変形吸
収機構が介装されたことを特徴とする請求項1に記載の
塔頂変位抑制型多径間吊橋。
4. The tower according to claim 1, wherein a thermal deformation absorbing mechanism capable of absorbing thermal deformation is interposed between the continuous stiffening girder connected to the anchorage and the anchorage. Multi-span suspension bridge with suppressed top displacement.
【請求項5】 前記アンカレッジに連結される補剛桁と
アンカレッジとの間に熱変形吸収機構が介装されたこと
を特徴とする請求項2に記載の塔頂変位抑制型多径間吊
橋。
5. The tower top displacement suppressing type multi span according to claim 2, wherein a thermal deformation absorbing mechanism is interposed between the stiffening girder connected to the anchorage and the anchorage. suspension bridge.
【請求項6】 前記結合機構は、熱変形を吸収可能な熱
変形吸収機構を有することを特徴とする請求項3に記載
の塔頂変位抑制型多径間吊橋。
6. The multi-span suspension bridge of claim 3, wherein the coupling mechanism has a thermal deformation absorbing mechanism capable of absorbing thermal deformation.
【請求項7】 前記熱変形吸収機構がオイルダンパーか
らなることを特徴とする請求項4〜6の何れか1項に記
載の塔頂変位抑制型多径間吊橋。
7. The multi-span suspension bridge of claim 4, wherein the thermal deformation absorbing mechanism comprises an oil damper.
JP10331081A 1998-11-20 1998-11-20 Tower suspension displacement type multi span suspension bridge Expired - Fee Related JP3130509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10331081A JP3130509B2 (en) 1998-11-20 1998-11-20 Tower suspension displacement type multi span suspension bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10331081A JP3130509B2 (en) 1998-11-20 1998-11-20 Tower suspension displacement type multi span suspension bridge

Publications (2)

Publication Number Publication Date
JP2000154507A JP2000154507A (en) 2000-06-06
JP3130509B2 true JP3130509B2 (en) 2001-01-31

Family

ID=18239647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10331081A Expired - Fee Related JP3130509B2 (en) 1998-11-20 1998-11-20 Tower suspension displacement type multi span suspension bridge

Country Status (1)

Country Link
JP (1) JP3130509B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102619162A (en) * 2012-03-23 2012-08-01 中铁大桥勘测设计院集团有限公司 Self-balancing windproof device for large-span bridge

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090060642A1 (en) 2005-07-15 2009-03-05 Sekisui Chemical Co., Ltd. Joint connection
KR101007015B1 (en) 2008-05-28 2011-01-12 주식회사 휴먼브릿지 The distance maintain apparatus of the sidewalk suspension bridge
CN106436551B (en) * 2016-09-02 2018-01-23 广西大学 Anchor suspension bridge in inclined shaft transmission tower
CN108265627B (en) * 2018-03-06 2024-04-19 江苏法尔胜缆索有限公司 Rope strand saddle entering restraint device suitable for suspension bridge main cable deep saddle groove
CN108221639B (en) * 2018-03-08 2024-05-24 中交武汉港湾工程设计研究院有限公司 Three tower suspension bridge girder installation construction structures
CN113202025A (en) * 2021-03-24 2021-08-03 中交第二航务工程局有限公司 Multi-station installation method for main beam of steel truss girder suspension bridge
CN112982180B (en) * 2021-05-18 2021-08-24 中铁大桥科学研究院有限公司 Intelligent monitoring method for stage construction of ultra-large span cable-stayed bridge
CN115948976B (en) * 2022-12-19 2023-06-20 中交公路规划设计院有限公司 Longitudinal combined toughness constraint system and method for large-span suspension bridge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102619162A (en) * 2012-03-23 2012-08-01 中铁大桥勘测设计院集团有限公司 Self-balancing windproof device for large-span bridge
CN102619162B (en) * 2012-03-23 2014-09-17 中铁大桥勘测设计院集团有限公司 Self-balancing windproof device for large-span bridge

Also Published As

Publication number Publication date
JP2000154507A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
CN101424071B (en) Supporting system of long span stayed-cable bridge
JP3130509B2 (en) Tower suspension displacement type multi span suspension bridge
KR101095959B1 (en) Absorbing earthquake joint for bridge structure
CN211522851U (en) Bridge anti-seismic and anti-falling beam support
JPH02290405A (en) Radial supporting device for outer shell member
US6609265B1 (en) Seismic proof articulating bridge deck expansion joint
JP6126932B2 (en) Function-separated vibration control structure for bridges
JP4232454B2 (en) Damping structure of bridge
WO1994015145A1 (en) Vertical buckstay/leveler attachment to a horizontal buckstay
JP2000304202A (en) Method and structure damping vibration of boiler body
JPH0539606A (en) Vibration control device of main tower
JP6791890B2 (en) Boiler structure
CN114214923B (en) Bridge damping cantilever system
CN112064492B (en) Vertical vibration damping of girder and vertical damping device and large-span bridge
JP2020117998A (en) Sliding base isolation device and bridge
KR101697830B1 (en) Appartus for decreasing girder deformation of long-span bridge and its construction method
JPH062804A (en) Anti-vibration device for boiler
JP2003090011A (en) Terminal supporting structure of aqueduct
CN203360997U (en) Bridge with rigid hinges
CN218233138U (en) Buffering formula steel member that bridge building used
KR101192503B1 (en) Expansion joint to control distances among rails and energy released during earthquake motion
CN210369566U (en) Large-span roof truss structure
JP2001003982A (en) Non-resonant semi-active base isolating structure and base isolating method
JPS5941215Y2 (en) Movable bearing with shock absorber
JP2001012002A (en) Construction of opening and closing portion for opening and closing roof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees