JP3125661B2 - Steel continuous casting method - Google Patents
Steel continuous casting methodInfo
- Publication number
- JP3125661B2 JP3125661B2 JP07343304A JP34330495A JP3125661B2 JP 3125661 B2 JP3125661 B2 JP 3125661B2 JP 07343304 A JP07343304 A JP 07343304A JP 34330495 A JP34330495 A JP 34330495A JP 3125661 B2 JP3125661 B2 JP 3125661B2
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- magnetic field
- mold
- immersion nozzle
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous Casting (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電磁力によって鋳
型内での溶鋼流動を制御し、高品質の鋳片を製造する鋼
の連続鋳造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting steel for producing a high quality slab by controlling the flow of molten steel in a mold by electromagnetic force.
【0002】[0002]
【従来の技術】鋼の連続鋳造において、一般に鋳型内の
溶鋼流速、特に鋳型内溶鋼表面直下の溶鋼流速は、モー
ルドパウダーや脱酸生成物であるアルミナを主体とする
介在物の巻き込みにより発生する鋳片の欠陥と強い関係
があることが知られている。このため溶鋼表面直下の溶
鋼流速を制御する試みが数多く提案されている。これら
の試みは大別すると、浸漬ノズルの吐出口の形状を改善
するものと、電磁力を利用して溶鋼流動を制御しようと
する方法がある。2. Description of the Related Art In continuous casting of steel, the flow velocity of molten steel in a mold, particularly the flow velocity of molten steel immediately below the surface of molten steel in a mold, is generally generated by inclusion of mold powder and inclusions mainly composed of alumina which is a deoxidation product. It is known that there is a strong relationship with slab defects. For this reason, many attempts to control the flow velocity of the molten steel just below the surface of the molten steel have been proposed. These attempts can be roughly classified into those that improve the shape of the discharge port of the immersion nozzle and those that attempt to control the flow of molten steel by using electromagnetic force.
【0003】本発明は後者に属するものである。電磁力
を利用した方法の一つとして特開昭62−252650
公報(以下、従来技術1と記す)には、浸漬ノズルの左
右の溶鋼レベル差を検出して、電磁撹拌でレベル差をな
くすように電磁撹拌の方向、溶鋼を動かすための推進力
を調整することにより、高品質鋳片を安定して製造する
方法が開示されている。[0003] The present invention belongs to the latter. Japanese Patent Application Laid-Open No. 62-252650 discloses a method using electromagnetic force.
In the official gazette (hereinafter referred to as prior art 1), the level difference of molten steel on the left and right of the immersion nozzle is detected, and the direction of electromagnetic stirring and the driving force for moving the molten steel are adjusted so as to eliminate the level difference by electromagnetic stirring. Thus, a method for stably producing high quality cast slabs has been disclosed.
【0004】又、特開平4−9255号公報(以下、従
来技術2と記す)には、鋳片の幅方向に複数の渦流式レ
ベル計を設け、鋳型外側には電磁力付与装置を設けて、
湯面レベル差が許容範囲を超えたとき、湯面の盛り上が
りを抑制する電磁力を作用させることにより、パウダー
の巻き込みや介在物を低減させる方法が開示されてい
る。In Japanese Patent Application Laid-Open No. Hei 4-9255 (hereinafter referred to as prior art 2), a plurality of eddy current level meters are provided in the width direction of a slab, and an electromagnetic force applying device is provided outside the mold. ,
A method is disclosed in which when a level difference of a molten metal level exceeds an allowable range, an electromagnetic force for suppressing swelling of the molten metal level is applied to reduce entrapment of powder and inclusions.
【0005】[0005]
【発明が解決しようとしている課題】しかしながら、通
常、鋳型内溶鋼表面にレベル差が生じた場合には、レベ
ル差を検出した時点において、すでに溶鋼表面には渦の
発生等によるモールドパウダーの巻き込み現象が発生し
ている。上記の従来技術1、及び従来技術2共に、溶鋼
表面のレベル差を検出した後に電磁撹拌の方向や溶鋼の
推進力を調整しているので、即ち、モールドパウダーの
巻き込みが発生してから対策を取っているので、根本的
にモールドパウダーの巻き込みの発生を防止することが
できない。従って、これらの技術では、モールドパウダ
ーの巻き込みを完全に防止することはできない。However, usually, when a level difference occurs on the surface of molten steel in a mold, at the time when the level difference is detected, the phenomenon of entrainment of the mold powder due to generation of a vortex or the like on the surface of the molten steel. Has occurred. In both the prior art 1 and the prior art 2, the direction of the electromagnetic stirring and the propulsive force of the molten steel are adjusted after detecting the level difference on the surface of the molten steel, that is, measures must be taken after the entrainment of the mold powder occurs. Therefore, the occurrence of entrapment of the mold powder cannot be fundamentally prevented. Therefore, these techniques cannot completely prevent the entrapment of the mold powder.
【0006】本発明は、上記の課題を解決するためにな
されたものであって、鋳型内の溶鋼表面の盛り上がりの
発生や急激な流速変動から生じるモールドパウダーの巻
き込みを防止して、高品質の鋳片を製造することを目的
にする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is intended to prevent the occurrence of swelling of the surface of molten steel in a mold and the entrainment of mold powder caused by a sudden change in flow velocity, thereby achieving high quality. The purpose is to produce slabs.
【0007】[0007]
【課題を解決するための手段】請求項1に係わる発明
は、浸漬ノズルの両側で浸漬ノズルの吐出口と平行な鋳
型の外壁に鋳型を挟んで磁極の同極を対向させ、その磁
場を鋳型の幅方向に移動させる移動磁場印加装置と、浸
漬ノズルの両側に配置され鋳型内溶鋼表面近傍の流速を
非接触で測定する溶鋼流速測定装置とを用いて、浸漬ノ
ズルの両側の溶鋼流速測定装置で測定される流速方向が
浸漬ノズルに対して対称な方向になり、かつ測定される
流速値の絶対値が0.3m/秒以下となるように移動磁
場印加装置の磁場強度と移動磁場方向とを制御すること
を特徴とする鋼の連続鋳造方法である。According to the first aspect of the present invention, the same poles of the magnetic poles are opposed to each other on both sides of the immersion nozzle by sandwiching the mold on the outer wall of the mold parallel to the discharge port of the immersion nozzle. Using a moving magnetic field application device that moves in the width direction of the immersion nozzle, and a molten steel flow velocity measurement device that is arranged on both sides of the immersion nozzle and measures the flow velocity near the surface of the molten steel in the mold in a non-contact manner, the molten steel flow velocity measurement device on both sides of the immersion nozzle The magnetic field strength of the moving magnetic field applying device and the moving magnetic field direction are set such that the flow velocity direction measured in the step becomes symmetric with respect to the immersion nozzle, and the absolute value of the measured flow velocity value is 0.3 m / sec or less. And a continuous casting method for steel.
【0008】請求項2に係わる発明は、前記請求項1の
発明において、浸漬ノズルの両側に配置された溶鋼流速
測定装置の流速値の差が、0.05m/秒以下になるよ
うに移動磁場印加装置の磁場強度と移動磁場方向とを制
御することを特徴とする鋼の連続鋳造方法である。According to a second aspect of the present invention, in the first aspect of the present invention, the moving magnetic field is set so that the difference between the flow velocity values of the molten steel flow velocity measuring devices disposed on both sides of the immersion nozzle is 0.05 m / sec or less. A continuous casting method for steel, comprising controlling a magnetic field strength of an application device and a moving magnetic field direction.
【0009】請求項3に係わる発明は、前記請求項1又
は請求項2の発明において、前記移動磁場印加装置がそ
れぞれ左右で独立して制御が可能であることを特徴とす
る鋼の連続鋳造方法である。According to a third aspect of the present invention, in the method of the first or second aspect, the moving magnetic field applying device can be independently controlled on the left and right sides independently. It is.
【0010】発明者等は連続鋳造鋳型の水モデル実験を
行い、次のことを見出した。鋳型短辺に向かって流れる
浸漬ノズルからの溶鋼吐出流は、直線的に流れるのでは
なく、鋳型長辺面の間を蛇行しながら鋳型短辺に到達し
て、上昇流と下降流に分岐する。この蛇行する流れは、
所謂、付着噴流と呼ばれる現象であり、溶鋼の流動によ
り生じた負圧により、一方の鋳型の長辺面に噴流が付着
するものの、鋳型の長辺面との抵抗により噴流は、この
鋳型長辺面から離脱して、反対側の鋳型長辺面の付着噴
流となる。これが繰り返し発生する。従って、浸漬ノズ
ルの2つの溶鋼吐出口から均等に溶鋼流が流出しても、
溶鋼表面に到達するには左右で若干の時間差が生じる。
この時間差がモールドパウダーを溶鋼中に巻き込む原因
の一つである。この対策としては、この時間差を制御し
解消するか、予め蛇行しない溶鋼吐出流を形成させるこ
とが必要である。The present inventors conducted a water model experiment on a continuous casting mold and found the following. The molten steel discharge flow from the immersion nozzle flowing toward the short side of the mold does not flow linearly, but reaches the short side of the mold while meandering between the long sides of the mold, and branches into an upward flow and a downward flow. . This meandering flow is
This is a so-called adhesion jet, and the jet adheres to the long side surface of one of the molds due to the negative pressure generated by the flow of the molten steel, but the jet flows due to the resistance with the long side surface of the mold. It separates from the surface and becomes an attached jet on the opposite long side of the mold. This occurs repeatedly. Therefore, even if the molten steel flow flows out equally from the two molten steel discharge ports of the immersion nozzle,
There is a slight time difference between the left and right to reach the molten steel surface.
This time difference is one of the causes of the mold powder being caught in the molten steel. As a countermeasure, it is necessary to control and eliminate the time difference or to form a molten steel discharge flow that does not meander in advance.
【0011】鋳型長辺面の間での溶鋼吐出流の蛇行を防
止するために、磁場分布を鋳片の幅方向に移動させる移
動磁場印加装置において、鋳型の厚み方向に図2に示す
ように磁場の異極を対向させると、溶鋼流が磁束に突き
当たって流れるので蛇行が発生し、パウダー等を溶鋼中
に巻き込むことになる。そこで本発明では図1に示すよ
うに磁場の同極を対向させて溶鋼流の進行方向の磁束を
増加させることにした。こうすることにより溶鋼流を横
切る磁束は生ぜず、溶鋼流が磁束に沿って流れるので蛇
行は防止される。図中の実線の矢印は磁束の方向を示
し、破線の矢印は磁場の移動方向を示す。又、一点鎖線
は溶鋼流の方向を示す。In order to prevent the molten steel discharge flow from meandering between the long sides of the mold, in a moving magnetic field applying device for moving the magnetic field distribution in the width direction of the slab, as shown in FIG. When the opposite poles of the magnetic field are opposed to each other, the flow of the molten steel abuts against the magnetic flux and flows, so that meandering occurs and the powder or the like is involved in the molten steel. Therefore, in the present invention, as shown in FIG. 1, the same polarity of the magnetic field is opposed to increase the magnetic flux in the traveling direction of the molten steel flow. By doing so, no magnetic flux crossing the molten steel flow is generated, and meandering is prevented because the molten steel flow flows along the magnetic flux. In the drawing, solid arrows indicate the direction of magnetic flux, and broken arrows indicate the direction of movement of the magnetic field. The dashed line indicates the direction of the molten steel flow.
【0012】浸漬ノズルから吐出された溶鋼流は対向す
る鋳型短辺の内壁近傍の凝固シェルに衝突し上昇流と下
降流に別れ、上昇流は凝固シェルに沿って上昇し、鋳型
短辺周辺の溶鋼表面では鋳型中心方向への流れとなる。
一方、浸漬ノズル周囲の溶鋼表面では、左右の鋳型短辺
から鋳型中心に向かう流れが衝突すること、更に、浸漬
ノズルにアルミナ付着防止として吹き込むAr等の不活
性ガスの浮上に溶鋼が追随して流動するので、浸漬ノズ
ル周囲の溶鋼表面では流れの方向は一定せず、複雑な流
れとなる。The molten steel flow discharged from the immersion nozzle collides with the solidified shell near the inner wall on the opposite short side of the mold and separates into an ascending flow and a descending flow. On the surface of molten steel, it flows toward the center of the mold.
On the other hand, on the molten steel surface around the immersion nozzle, the flow from the short sides of the left and right molds toward the center of the mold collides, and the molten steel follows the floating of the inert gas such as Ar blown into the immersion nozzle to prevent the adhesion of alumina. Since it flows, the flow direction is not constant on the surface of the molten steel around the immersion nozzle, and the flow is complicated.
【0013】図1において、鋳型内溶鋼表面の流れの方
向が、左右の鋳型短辺から鋳型中心に向かう方向を流れ
の正とし、逆の方向を負として、左右の表面流速と鋳片
の品質の関係を図7に示す。図7から明らかなように、
流速の絶対値が0.3m/秒を越えると品質は劣化す
る。従って、本発明は浸漬ノズルの両側の溶鋼流速測定
装置の流速値が浸漬ノズルに対して対称な方向になり、
かつ流速値の絶対値の範囲が0.3m/秒以下になるよ
うに、移動磁場印加装置の磁場強度と移動磁場方向を制
御することにより、鋳型内溶鋼表面での溶鋼流速を浸漬
ノズルの両側で低い値にできるので、鋳型内の溶鋼表面
に渦や盛り上がりの発生がなく、鋳型内での溶鋼の流動
が安定して、モールドパウダーの巻き込みが防止でき、
高品質の鋳片を得ることができる。In FIG. 1, the flow direction of the molten steel surface in the mold is such that the direction from the short sides of the left and right molds toward the center of the mold is defined as the positive direction of the flow, and the opposite direction is defined as the negative direction. Is shown in FIG. As is clear from FIG.
If the absolute value of the flow velocity exceeds 0.3 m / sec, the quality deteriorates. Therefore, in the present invention, the flow velocity values of the molten steel flow velocity measuring devices on both sides of the immersion nozzle are in directions symmetric with respect to the immersion nozzle,
By controlling the magnetic field strength and the moving magnetic field direction of the moving magnetic field applying device so that the absolute value range of the flow velocity value is 0.3 m / sec or less, the flow velocity of the molten steel on the surface of the molten steel in the mold is controlled on both sides of the immersion nozzle. , The vortex and swelling do not occur on the surface of the molten steel in the mold, the flow of the molten steel in the mold is stable, and the entrainment of mold powder can be prevented.
High quality slabs can be obtained.
【0014】図6は矩形鋳型で移動磁場印加装置を制御
しない従来の鋳造条件で、溶鋼の表面流速を浸漬ノズル
の左右で測定した場合、左右の溶鋼の表面流速の差と薄
鋼板まで圧延して確認された品質欠陥の関係を示したも
のである。尚、溶鋼の表面流速は鋳片の鋳造幅の1/4
の距離だけ浸漬ノズルから鋳型の短辺側に離れた左右の
対称な位置で測定した。これより明らかなごとくその絶
対値の差が0.05m/秒を越えると品質は悪化する。FIG. 6 shows a conventional casting condition in which a moving magnetic field applying device is not controlled by a rectangular mold. When the surface flow velocity of molten steel is measured on the left and right sides of the immersion nozzle, the difference between the surface flow velocity of the left and right molten steels and the rolling to a thin steel plate are performed. It shows the relationship of the quality defects confirmed by the above. The surface velocity of the molten steel is 1/4 of the casting width of the slab.
Was measured at a symmetrical left and right position separated from the immersion nozzle by the distance of 浸漬 to the short side of the mold. As is apparent from this, if the difference between the absolute values exceeds 0.05 m / sec, the quality deteriorates.
【0015】又、図8に示すように溶鋼の表面流速差と
溶鋼の表面流速を移動磁場印加装置で制御し、溶鋼の表
面流速の絶対値を0.3m/秒以下の範囲内にし、溶鋼
の表面流速差を0.05m/秒以内にすることで、品質
は更に安定することがわかった。As shown in FIG. 8, the difference between the surface velocities of the molten steel and the surface velocities of the molten steel are controlled by a moving magnetic field applying device so that the absolute value of the surface velocities of the molten steel is within a range of 0.3 m / sec or less. It was found that the quality was further stabilized by making the surface flow velocity difference of 0.05 m / sec or less.
【0016】但し、この最適値は鋼種によって変化し、
この範囲より広い鋼種もあるが、少なくともこの範囲内
であれば、すべての鋼種を満足する。However, this optimum value varies depending on the type of steel.
Some steel types are wider than this range, but at least within this range, all steel types are satisfied.
【0017】鋳型内の溶鋼の表面流速は浸漬ノズルに近
いと溶鋼の表面流速が不規則で一定値とならず、溶鋼の
表面流速の代表値となりえず、又、鋳型の短辺に近いと
浸漬ノズルからの吐出流が短辺鋳型に衝突した上昇流の
影響で変動が大きくて溶鋼の表面流速の代表値となりえ
ない。従って、溶鋼流速計の位置は浸漬ノズルから鋳造
幅の1/6〜1/3の距離離れた位置で行い、望ましく
は溶鋼表面流速の変動が少ない鋳造幅の1/4の距離の
近傍で測定することが好ましい。If the surface velocity of the molten steel in the mold is close to the immersion nozzle, the surface velocity of the molten steel is irregular and cannot be constant, and cannot be a representative value of the surface velocity of the molten steel. The discharge flow from the immersion nozzle fluctuates greatly under the influence of the upward flow colliding with the short side mold, and cannot be a representative value of the surface velocity of the molten steel. Therefore, the position of the molten steel anemometer should be set at a distance of 1/6 to 1/3 of the casting width from the immersion nozzle, and preferably measured near the distance of 1/4 of the casting width where the fluctuation of the molten steel surface flow rate is small. Is preferred.
【0018】以上に示した溶鋼流の制御を行うために
は、移動磁場印加装置は浸漬ノズルの左右で、それぞれ
独立して制御可能であれば望ましい。In order to control the flow of molten steel as described above, it is desirable that the moving magnetic field applying device can be independently controlled on the left and right sides of the immersion nozzle.
【0019】[0019]
【発明の実施の形態】本発明の実施の形態を図面により
説明する。Embodiments of the present invention will be described with reference to the drawings.
【0020】図1は本発明の実施の形態の連続鋳造機鋳
型近傍の平面図である。1は鋳型長辺、2は鋳型短辺、
3及び5は左側の移動磁場印加装置、4及び6は右側の
移動磁場印加装置、7は左側の溶鋼の表面流速計、8は
右側の溶鋼の表面流速計、9は浸漬ノズル、10は溶鋼
表面直下の溶鋼の流れを示す。左側の移動磁場印加装置
3、5と、右側の移動磁場印加装置4、6とは、独立に
移動磁場方向、及び磁場強度を制御可能としている。移
動磁場印加装置3、5、及び4、6のN,Sは磁極を示
し、移動磁場印加装置は鋳型の厚み方向に同極を対向さ
せている。FIG. 1 is a plan view showing the vicinity of a continuous casting machine mold according to an embodiment of the present invention. 1 is the long side of the mold, 2 is the short side of the mold,
3 and 5 are moving magnetic field applying devices on the left, 4 and 6 are moving magnetic field applying devices on the right, 7 is a surface velocimeter for molten steel on the left, 8 is a surface velocimeter for molten steel on the right, 9 is an immersion nozzle, and 10 is molten steel. The flow of molten steel just below the surface is shown. The moving magnetic field applying devices 3 and 5 on the left and the moving magnetic field applying devices 4 and 6 on the right can independently control the moving magnetic field direction and the magnetic field strength. N and S of the moving magnetic field applying devices 3, 5, and 4 and 6 indicate magnetic poles, and the moving magnetic field applying devices face the same pole in the thickness direction of the mold.
【0021】磁極から発生する磁束は、鋳型短辺から浸
漬ノズルの方向に一定の速度で移動する。磁束は直流で
はなく交流であるために、最大の磁束密度は鋳型短辺か
ら浸漬ノズル方向に移動した後には、逆方向の最大の磁
束が鋳型短辺から浸漬ノズル方向に移動する。このよう
な鋳型短辺から浸漬ノズル方向へ移動する移動磁場は、
誘導電流を溶鋼内に発生させ、溶鋼を移動磁場方向に動
かす駆動力となる。磁場強度の制御は移動磁場印加装置
への供給電流を増減させることで、磁束密度を増減させ
行う。The magnetic flux generated from the magnetic pole moves at a constant speed from the short side of the mold toward the immersion nozzle. Since the magnetic flux is not a direct current but an alternating current, the maximum magnetic flux density moves from the short side of the mold toward the immersion nozzle, and then the maximum magnetic flux in the opposite direction moves from the short side of the mold toward the immersion nozzle. The moving magnetic field moving from the short side of the mold toward the immersion nozzle is
An induced current is generated in the molten steel and serves as a driving force for moving the molten steel in the moving magnetic field direction. The magnetic field strength is controlled by increasing or decreasing the current supplied to the moving magnetic field applying device, thereby increasing or decreasing the magnetic flux density.
【0022】タンディッシュ(図示せず)から浸漬ノズ
ル9を介して鋳型に鋳造される溶鋼の吐出流は、鋳型短
辺2に衝突して下降流と上昇流とに分離し、上昇流は鋳
型短辺2に沿って上昇して、鋳型内溶鋼表面では鋳型短
辺から浸漬ノズルの方向に向かう流れとなる。又、浸漬
ノズル9にアルミナ付着防止のために吹き込むAr等の
不活性ガスが、浸漬ノズル9の吐出口を通過した途端に
溶鋼中で鋳型短辺2に向かって浮上を開始する。この不
活性ガスの浮上に伴い、溶鋼も鋳型短辺2に向かう流れ
を形成する。The discharge flow of the molten steel cast from the tundish (not shown) into the mold through the immersion nozzle 9 collides with the short side 2 of the mold and separates into a downward flow and an upward flow. It rises along the short side 2 and flows toward the direction of the immersion nozzle from the short side of the mold on the surface of the molten steel in the mold. Further, an inert gas such as Ar blown into the immersion nozzle 9 to prevent the adhesion of alumina starts floating in the molten steel toward the short side 2 of the mold as soon as passing through the discharge port of the immersion nozzle 9. With the floating of the inert gas, the molten steel also forms a flow toward the mold short side 2.
【0023】以上のように、鋳型内溶鋼表面では、鋳型
短辺2から浸漬ノズル9に向かう流れと、浸漬ノズル9
から鋳型短辺2に向かう流れとが打ち消しあい、表面流
速の測定位置においては、流速の大きい方向の流れの方
向で、流速としては差分が測定される。As described above, on the surface of the molten steel in the mold, the flow from the short side 2 of the mold toward the immersion nozzle 9 and the immersion nozzle 9
And the flow toward the mold short side 2 cancels out, and at the measurement position of the surface flow velocity, the difference is measured as the flow velocity in the direction of the flow with the larger flow velocity.
【0024】この流れを溶鋼流速測定装置7、8で測定
し、流れの向きが浸漬ノズルに対して対称な方向にな
り、かつ測定される流速値の絶対値が0.3m/秒以下
となるように、更に望ましくは、左右の流速差が0.0
5m/秒以下となるように、図3に示す制御フローで、
移動磁場印加装置の磁場強度と移動磁場方向とを制御す
る。This flow is measured by the molten steel flow velocity measuring devices 7 and 8, and the flow direction is symmetrical with respect to the immersion nozzle, and the absolute value of the measured flow velocity value is 0.3 m / sec or less. More preferably, the difference between the left and right flow rates is 0.0
In the control flow shown in FIG.
The magnetic field strength of the moving magnetic field applying device and the moving magnetic field direction are controlled.
【0025】[0025]
【実施例】本実施例は低炭素アルミキルド鋼のスラブを
鋳造した例である。鋳造したスラブは幅1200mm、
厚み220mmで、鋳造速度は1.0m/minから
2.0m/minとし、移動磁場印加装置の周波数は鋳
造速度が1.0m/minで0.5Hz、鋳造速度が
1.5m/minで1.0Hz、鋳造速度が2.0m/
minで2.0Hzの3条件である。即ち、磁束密度は
鋳造速度が1.0m/minで最大0.036T、1.
5m/minで最大0.042T、2.0m/minで
最大0.046Tの条件で行った。移動磁場印加装置の
周波数は0.5Hzから10.0Hzまで可変できる移
動磁場印加装置である。溶鋼流速計の位置は浸漬ノズル
から300mm離れた左右対称の位置とした。This embodiment is an example in which a slab of low carbon aluminum killed steel is cast. The cast slab is 1200mm wide,
At a thickness of 220 mm, the casting speed is 1.0 m / min to 2.0 m / min, and the frequency of the moving magnetic field applying device is 0.5 Hz at a casting speed of 1.0 m / min and 1 at a casting speed of 1.5 m / min. 2.0Hz, casting speed 2.0m /
There are three conditions of 2.0 Hz in min. That is, the magnetic flux density is 0.036T at the maximum at a casting speed of 1.0 m / min.
The test was performed under the conditions of a maximum of 0.042 T at 5 m / min and a maximum of 0.046 T at 2.0 m / min. The frequency of the moving magnetic field applying device is a moving magnetic field applying device that can be varied from 0.5 Hz to 10.0 Hz. The position of the molten steel flow meter was symmetrical at a distance of 300 mm from the immersion nozzle.
【0026】又、比較例を同一サイズのスラブを以下の
水準で鋳造することで実施した。移動磁場印加装置の周
波数は、鋳造速度が1.0m/minで0.5Hz、磁
束密度は0.036Tの一定、鋳造速度が1.5m/m
inで1.0Hz、磁束密度は0.042Tの一定、鋳
造速度が2.0m/minで2.0Hz、磁束密度は
0.048Tの一定の3条件を行なった。The comparative example was carried out by casting slabs of the same size at the following levels. The frequency of the moving magnetic field applying device is 0.5 Hz at a casting speed of 1.0 m / min, the magnetic flux density is constant at 0.036 T, and the casting speed is 1.5 m / m.
Three conditions of 1.0 Hz in, constant magnetic flux density of 0.042 T, casting speed of 2.0 Hz at 2.0 m / min, and constant magnetic flux density of 0.048 T were performed.
【0027】又、本発明で用いた溶鋼の表面流速計は移
動する導電性の測定対象物体に対して垂直に磁場を発生
させ、測定対象物体と垂直な少なくとも2つの磁場成分
を、測定対象物体の移動方向において異なった位置、か
つ磁場が対称となる位置で検出された、少なくとも2か
所の磁場の差分信号に基づいて、測定対称物体の流速を
測定する装置で示される交流磁場型の流速センサーであ
る。The molten steel surface anemometer used in the present invention generates a magnetic field perpendicular to the moving conductive object to be measured, and generates at least two magnetic field components perpendicular to the object to be measured. An AC magnetic field type flow velocity indicated by an apparatus for measuring the flow velocity of an object to be measured based on a differential signal of at least two magnetic fields detected at different positions in the moving direction of the object and at a position where the magnetic field is symmetric. It is a sensor.
【0028】図4に本実施例における左右同時に測定し
た溶鋼表面の流速測定値を示す。図4に示すように左右
の溶鋼表面流速の絶対値は0.3m/秒以下で、かつ流
速差は0.05m/秒以下に制御されていることが判
る。FIG. 4 shows the measured values of the flow velocity on the molten steel surface measured simultaneously on the left and right sides in this embodiment. As shown in FIG. 4, it can be seen that the absolute values of the left and right molten steel surface flow velocities are controlled to 0.3 m / sec or less and the flow velocity difference is controlled to 0.05 m / sec or less.
【0029】図5に示すように本発明の実施例では、最
終製品である冷延コイルでの品質欠陥のインデックス
が、比較例に比べて70%低減した。又、品質欠陥のイ
ンデックスの幅も狭くなり、良好な表面性状の鋳片が得
られた。As shown in FIG. 5, in the embodiment of the present invention, the index of the quality defect in the cold rolled coil as the final product is reduced by 70% as compared with the comparative example. Further, the width of the index of the quality defect was narrowed, and a slab having good surface properties was obtained.
【0030】[0030]
【発明の効果】本発明によれば、浸漬ノズルの両側で浸
漬ノズルの吐出口と平行な鋳型の外壁に鋳型を挟んで磁
極の同極を対向させ、その磁場を鋳型の幅方向に移動さ
せる移動磁場印加装置と、浸漬ノズルの両側に配置され
鋳型内溶鋼表面近傍の流速を非接触で測定する溶鋼流速
測定装置とを配置して、移動磁場印加装置の磁場強度と
移動磁場方向とを制御し、鋳型内溶鋼表面の溶鋼流を、
浸漬ノズルに対して対称な方向で、流速値の範囲を0.
3m/秒以下にし、且つ左右の速度差を0.05m/秒
以下にすることで、溶鋼流の蛇行を防止し、高品質の鋳
片を安定して製造することができる。According to the present invention, the same poles of the magnetic poles are opposed to the outer wall of the mold parallel to the discharge port of the immersion nozzle on both sides of the immersion nozzle, and the magnetic field is moved in the width direction of the mold. Controlling the magnetic field strength and moving magnetic field direction of the moving magnetic field applying device by arranging the moving magnetic field applying device and the molten steel flow velocity measuring device arranged on both sides of the immersion nozzle and measuring the flow velocity near the surface of the molten steel in the mold in a non-contact manner And the molten steel flow on the molten steel surface in the mold
In the direction symmetrical with respect to the immersion nozzle, the range of the flow velocity value is set to 0.
By setting the speed to 3 m / sec or less and the speed difference between the left and right to 0.05 m / sec or less, meandering of the molten steel flow can be prevented, and a high-quality slab can be stably manufactured.
【図1】本発明の実施の形態の溶鋼表面近傍の磁場の移
動方向と磁束密度と溶鋼の流れとの関係を示す平面図で
ある。FIG. 1 is a plan view showing a relationship between a moving direction of a magnetic field near a molten steel surface, a magnetic flux density, and a flow of molten steel according to an embodiment of the present invention.
【図2】従来例の溶鋼表面近傍の磁場の移動方向と磁束
密度と溶鋼の流れとの関係を示す平面図である。FIG. 2 is a plan view showing a relationship between a moving direction of a magnetic field near a molten steel surface, a magnetic flux density, and a flow of molten steel in a conventional example.
【図3】本発明の実施例の制御フロー図である。FIG. 3 is a control flowchart of the embodiment of the present invention.
【図4】本発明の実施例での左側の溶鋼表面の流速値と
右側の溶鋼表面の流速値との関係を示す図である。FIG. 4 is a diagram showing a relationship between a flow velocity value on the left molten steel surface and a flow velocity value on the right molten steel surface in the example of the present invention.
【図5】実施例及び従来例と品質欠陥のインデックスと
の関係を示す図である。FIG. 5 is a diagram showing a relationship between an example and a conventional example and a quality defect index.
【図6】従来の左右の溶鋼表面の流速差と品質欠陥のイ
ンデックスとの関係を示す図である。FIG. 6 is a diagram showing a conventional relationship between a flow velocity difference between left and right molten steel surfaces and a quality defect index.
【図7】本発明の右側の溶鋼表面の流速値、左側の溶鋼
表面の流速値と品質欠陥の関係を示す図である。FIG. 7 is a diagram showing the relationship between the flow velocity value on the right molten steel surface, the flow velocity value on the left molten steel surface and quality defects according to the present invention.
【図8】本発明の流動制御した場合の右側の溶鋼表面の
流速値及び左側の溶鋼表面の流速値と品質欠陥との関係
を示す図である。FIG. 8 is a diagram showing the relationship between the flow velocity value on the right molten steel surface, the flow velocity value on the left molten steel surface, and quality defects when the flow is controlled according to the present invention.
1 鋳型長辺 2 鋳型短辺 3、5 左側移動磁場印加装置 4、6 右側移動磁場印加装置 7 左側の溶鋼の表面流速計 8 右側の溶鋼の表面流速計 9 浸漬ノズル 10 溶鋼の流れ Reference Signs List 1 Mold long side 2 Mold short side 3, 5 Left moving magnetic field applying device 4, 6 Right moving magnetic field applying device 7 Left molten steel surface velocimeter 8 Right molten steel surface velocimeter 9 Immersion nozzle 10 Flow of molten steel
───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 典子 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平7−241649(JP,A) 特開 平6−604(JP,A) 特開 平5−329595(JP,A) 特開 昭63−60056(JP,A) 特開 平4−319051(JP,A) 特開 平7−24559(JP,A) 特開 平7−112252(JP,A) 特開 平9−168847(JP,A) 特開 平8−187557(JP,A) 特開 平4−9255(JP,A) 特開 平9−155515(JP,A) 特開 平9−47853(JP,A) 特開 平8−327648(JP,A) 特開 平8−197196(JP,A) 特開 平8−141711(JP,A) 特開 平8−108257(JP,A) 特開 平7−290214(JP,A) 特開 平5−38559(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/115 B22D 11/04 311 B22D 11/16 104 ────────────────────────────────────────────────── ─── Continued on the front page (72) Noriko Kubo, Inventor Nippon Kokan Co., Ltd. 1-2-1, Marunouchi, Chiyoda-ku, Tokyo (56) References JP-A-7-241649 (JP, A) JP-A-6 -604 (JP, A) JP-A-5-329595 (JP, A) JP-A-63-60056 (JP, A) JP-A-4-319905 (JP, A) JP-A-7-24559 (JP, A) JP-A-7-112252 (JP, A) JP-A-9-168847 (JP, A) JP-A-8-187557 (JP, A) JP-A-4-9255 (JP, A) 155515 (JP, A) JP-A-9-47853 (JP, A) JP-A 8-327648 (JP, A) JP-A 8-197196 (JP, A) JP-A 8-141711 (JP, A) JP-A-8-108257 (JP, A) JP-A-7-290214 (JP, A) JP-A-5-38559 (JP , A) (58) Field surveyed (Int. Cl. 7 , DB name) B22D 11/115 B22D 11/04 311 B22D 11/16 104
Claims (3)
する鋼の連続鋳造方法において、浸漬ノズルの両側で浸
漬ノズルの吐出口と平行な鋳型の外壁に鋳型を挟んで磁
極の同極を対向させ、その磁場を鋳型の幅方向に移動さ
せる移動磁場印加装置と、浸漬ノズルの両側に配置され
鋳型内溶鋼表面近傍の流速を非接触で測定する溶鋼流速
測定装置とを用いて、浸漬ノズルの両側の溶鋼流速測定
装置で測定される流速方向が浸漬ノズルに対して対称な
方向になり、かつ測定される流速値の絶対値が0.3m
/秒以下となるように移動磁場印加装置の磁場強度と移
動磁場方向とを制御することを特徴とする鋼の連続鋳造
方法。In a continuous casting method of steel for controlling the flow of molten steel in an electroforming mold by an electromagnetic force, the same polarity of a magnetic pole is sandwiched between outer sides of the casting mold on both sides of an immersion nozzle and parallel to a discharge port of the immersion nozzle. Using a moving magnetic field applying device that opposes and moves the magnetic field in the width direction of the mold, and a molten steel flow velocity measuring device that is arranged on both sides of the immersion nozzle and measures the flow velocity near the molten steel surface in the mold in a non-contact manner, the immersion nozzle The flow velocity direction measured by the molten steel flow velocity measurement device on both sides is symmetric with respect to the immersion nozzle, and the absolute value of the measured flow velocity value is 0.3 m.
A continuous casting method for steel, characterized in that the magnetic field strength and the moving magnetic field direction of the moving magnetic field applying device are controlled so as to be not more than / sec.
測定装置の流速値の差が、0.05m/秒以下になるよ
うに移動磁場印加装置の磁場強度と移動磁場方向とを制
御することを特徴とする請求項1記載の鋼の連続鋳造方
法。2. A method for controlling a magnetic field intensity and a moving magnetic field direction of a moving magnetic field applying device such that a difference between flow speed values of molten steel flow speed measuring devices disposed on both sides of an immersion nozzle is 0.05 m / sec or less. The continuous casting method for steel according to claim 1, wherein:
独立して制御が可能であることを特徴とする請求項1又
は2に記載の鋼の連続鋳造方法。3. The continuous casting method for steel according to claim 1, wherein the moving magnetic field applying devices can be independently controlled on the left and right sides.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07343304A JP3125661B2 (en) | 1995-12-28 | 1995-12-28 | Steel continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07343304A JP3125661B2 (en) | 1995-12-28 | 1995-12-28 | Steel continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09182943A JPH09182943A (en) | 1997-07-15 |
JP3125661B2 true JP3125661B2 (en) | 2001-01-22 |
Family
ID=18360489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07343304A Expired - Fee Related JP3125661B2 (en) | 1995-12-28 | 1995-12-28 | Steel continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3125661B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH079971A (en) * | 1993-06-29 | 1995-01-13 | Tokyo Buhin Kogyo Kk | Antiskid braking device for vehicle |
US11606930B2 (en) | 2007-11-19 | 2023-03-21 | Spectrum Brands, Inc. | Toothed pet grooming tool with fur ejecting mechanism |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4380171B2 (en) | 2002-03-01 | 2009-12-09 | Jfeスチール株式会社 | Flow control method and flow control device for molten steel in mold and method for producing continuous cast slab |
JP5044981B2 (en) * | 2006-05-12 | 2012-10-10 | Jfeスチール株式会社 | Steel continuous casting method |
-
1995
- 1995-12-28 JP JP07343304A patent/JP3125661B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH079971A (en) * | 1993-06-29 | 1995-01-13 | Tokyo Buhin Kogyo Kk | Antiskid braking device for vehicle |
US11606930B2 (en) | 2007-11-19 | 2023-03-21 | Spectrum Brands, Inc. | Toothed pet grooming tool with fur ejecting mechanism |
Also Published As
Publication number | Publication date |
---|---|
JPH09182943A (en) | 1997-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101047826B1 (en) | Control systems, computer program products, apparatus and methods | |
JP3125661B2 (en) | Steel continuous casting method | |
JPH09168847A (en) | Method for continuously casting steel | |
JPH105957A (en) | Detecting method for fluid of molten steel in continuous casting mold and controlling method thereof | |
JP3252769B2 (en) | Flow control method of molten steel in continuous casting mold | |
JP2611594B2 (en) | Method of manufacturing slab for steel slab | |
JP3099157B2 (en) | Continuous casting method | |
JP3252768B2 (en) | Flow control method of molten steel in continuous casting mold | |
CN1330439C (en) | Control system, computer program product, device and method | |
JP3240927B2 (en) | Method for controlling molten steel flow in continuous casting mold | |
JPH02200362A (en) | Method for predicting and restraining nozzle clogging in continuous casting apparatus | |
JP4591156B2 (en) | Steel continuous casting method | |
JP2895580B2 (en) | Level control method of molten metal level in mold in continuous casting | |
JPH10193047A (en) | Method for controlling flow of molten steel in continuous casting mold | |
JPH10109145A (en) | Method for controlling fluidity of molten steel in continuous casting mold for steel | |
JP2001047195A (en) | Continuous casting method | |
JP3111344B2 (en) | Flow control method in nozzle for molten steel ladle | |
JPS63104758A (en) | Control method for molten surface for continuous casting | |
JPH0484650A (en) | Method for restraining drift of molten steel in continuous casting mold | |
JPH09192803A (en) | Method for continuously casting steel | |
JP2962788B2 (en) | Control method of drift of molten steel in continuous casting mold | |
JP2803536B2 (en) | Continuous casting method of molten metal and immersion nozzle | |
JPH0673722B2 (en) | Continuous casting method | |
JPH09150243A (en) | Continuous casting method | |
JPH06126409A (en) | Method for supplying molten steel into slab continuous casting mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001003 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071102 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081102 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |