JP3123184B2 - Novel crystal of dichlorotin phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the same - Google Patents
Novel crystal of dichlorotin phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the sameInfo
- Publication number
- JP3123184B2 JP3123184B2 JP04027448A JP2744892A JP3123184B2 JP 3123184 B2 JP3123184 B2 JP 3123184B2 JP 04027448 A JP04027448 A JP 04027448A JP 2744892 A JP2744892 A JP 2744892A JP 3123184 B2 JP3123184 B2 JP 3123184B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- dichlorotin phthalocyanine
- layer
- crystal
- phthalocyanine crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、電荷発生材料として有
用なジクロロスズフタロシアニンの新規な結晶とその製
造方法、およびそれを用いた電子写真感光体に関する。
さらに詳しくは、感光層を構成する電荷発生材料と結着
樹脂が特定の組み合わせにかかる電子写真感光体に関す
るものである。The present invention relates to a novel crystal and manufacturing method thereof useful dichlorotin phthalocyanine as a charge generating material, and relates to an electrophotographic photoreceptor using the same.
More specifically, the charge generating material to the binder resin constituting the photosensitive layer is a <br/> shall relates to a electrophotographic photoreceptor according to the particular combination.
【0002】[0002]
【従来の技術】フタロシアニンは、塗料、印刷インキ、
触媒あるいは電子材料として有用な材料であり、特に近
年は、電子写真感光体用材料、光記録用材料および光電
変換材料について、広範に検討がなされている。電子写
真感光体についてみると、近年、従来提案された有機光
導電材料の感光波長域を近赤外の半導体レーザーの波長
(780〜830nm)にまで伸ばし、レーザープリン
ター等のデジタル記録用感光体として使用することの要
求が高まっており、この観点から、スクエアリリウム化
合物(特開昭49−105536号および同58−21
416号公報)、トリフェニルアミン系トリスアゾ化合
物(特開昭61−151659号公報)、フタロシアニ
ン化合物(特開昭48−34189号および同57−1
48745号公報)等が、半導体レーザー用光導電材料
として提案されている。2. Description of the Related Art Phthalocyanines are used in paints, printing inks,
It is a useful material as a catalyst or an electronic material. In recent years, in particular, materials for electrophotographic photosensitive members, optical recording materials, and photoelectric conversion materials have been extensively studied. Regarding electrophotographic photoreceptors, in recent years, the photosensitive wavelength range of organic photoconductive materials proposed conventionally has been extended to the wavelength of near-infrared semiconductor lasers (780 to 830 nm), and as a photoreceptor for digital recording such as a laser printer. There is an increasing demand for its use. From this viewpoint, squarylium compounds (JP-A-49-105536 and JP-A-58-21) can be used.
416), triphenylamine-based trisazo compounds (JP-A-61-151659), and phthalocyanine compounds (JP-A-48-34189 and 57-1).
No. 48745) has been proposed as a photoconductive material for a semiconductor laser.
【0003】半導体レーザー用感光材料として、有機光
導電材料を使用する場合は、まず、感光波長域が長波長
まで伸びていること、次に、形成される感光体の感度、
耐久性がよいこと等が要求される。しかし、上記の有機
光導電材料はこれらの諸条件を十分に満足するものでは
ない。これらの欠点を克服するために、前記の有機光導
電材料について、結晶型と電子写真特性の関係が検討さ
れており、特にフタロシアニン化合物に関しては多くの
報告がなされている。When an organic photoconductive material is used as a photosensitive material for a semiconductor laser, first, the photosensitive wavelength range extends to a long wavelength, and then, the sensitivity of the photosensitive member to be formed is determined.
Good durability is required. However, the above-mentioned organic photoconductive material does not sufficiently satisfy these conditions. In order to overcome these drawbacks, the relationship between the crystal type and the electrophotographic properties of the organic photoconductive material has been studied, and many reports have been made particularly on phthalocyanine compounds.
【0004】一般に、フタロシアニン化合物は、製造方
法、処理方法の違いにより多数の結晶型を示し、この結
晶型の違いはフタロシアニン化合物の光電変換特性に大
きな影響を及ぼすことが知られている。フタロシアニン
化合物の結晶型については、例えば、銅フタロシアニン
についてみると、安定系のβ型以外に、α、ε、π、
x、ρ、γ、δ等の結晶型が知られており、これらの結
晶型は、機械的歪力、硫酸処理、有機溶剤処理および熱
処理等により、相互に転移が可能であることが知られて
いる(例えば、米国特許第2,770,629号、同第
3,160,635号、同第3,708,292号およ
び同第3,357,989号明細書)。また、特開昭5
0−38543号公報には、銅フタロシアニンの結晶型
の違いと電子写真感度との関係について記載されてい
る。また、特開昭62−119547号公報には、ジハ
ロゲノスズフタロシアニンを電荷発生材料として用いた
電子写真感光体が記載されており、特開平1−1440
57号公報には、X線回折スペクトルで特定の回折ピー
クを有するスズフタロシアニン化合物およびそれを用い
た電子写真感光体が記載されている。[0004] In general, phthalocyanine compounds exhibit a large number of crystal forms depending on the production method and treatment method, and it is known that this difference in crystal type greatly affects the photoelectric conversion characteristics of the phthalocyanine compound. Regarding the crystal form of the phthalocyanine compound, for example, when looking at copper phthalocyanine, in addition to the stable β form, α, ε, π,
Crystal forms such as x, ρ, γ, and δ are known, and it is known that these crystal forms can be mutually transformed by mechanical strain, sulfuric acid treatment, organic solvent treatment, heat treatment, and the like. (Eg, U.S. Pat. Nos. 2,770,629, 3,160,635, 3,708,292, and 3,357,989). Also, Japanese Patent Application Laid-Open
Japanese Patent Publication No. 0-38543 describes the relationship between the difference in crystal form of copper phthalocyanine and the electrophotographic sensitivity. Japanese Patent Application Laid-Open No. Sho 62-11947 describes an electrophotographic photoreceptor using dihalogenostin phthalocyanine as a charge generating material.
No. 57 describes a tin phthalocyanine compound having a specific diffraction peak in an X-ray diffraction spectrum and an electrophotographic photoreceptor using the same.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来提
案されている上記のフタロシアニン化合物は、感光材料
として使用した場合の光感度と耐久性の点で未だ十分満
足のいくものではなかった。、また、その製造に際して
も、結晶型の変換操作が複雑であったり、結晶型の制御
が難しい等の問題があった。ところで、ジクロロスズフ
タロシアニンは、結着樹脂中に分散して使用する際の分
散性や分散液の塗布性が悪く、感光体として利用する場
合、感度特性や電荷保持性に問題があり、また画質上も
カブリや黒点等の欠陥を生じ、十分満足できる特性を具
備してなかった。However, the phthalocyanine compounds proposed hitherto have not been sufficiently satisfactory in light sensitivity and durability when used as a photosensitive material. Also, in the production thereof, there have been problems such as a complicated crystal type conversion operation and difficulty in controlling the crystal type. By the way, dichlorotin phthalocyanine has poor dispersibility and dispersibility when used by dispersing in a binder resin, and when used as a photoreceptor, there is a problem in sensitivity characteristics and charge retention, and image quality is poor. Defects such as fogging and black spots also occurred in the upper part, and did not have sufficiently satisfactory characteristics.
【0006】一方、従来提案されているスズフタロシア
ニン化合物は、溶剤に対する結晶型の安定性が悪く、溶
剤に分散した時および分散液を塗布して感光層を形成し
た後の状態において、結晶型をそのまま長期間維持する
ことができず、電荷発生材料として使用した場合、未だ
十分満足のいくものではなかった。すなわち、ジクロロ
スズフタロシアニン化合物の一次粒径が微細にすぎる
と、溶剤中での結晶型の安定性が悪く、他の結晶型に転
移しやすい難点がある。逆に、その一次粒径が大きくな
ると、それを用いて形成される電子写真感光体は、その
感度、安定性が著しく低下するという問題があった。ま
た、ジクロロスズフタロシアニン化合物の結晶性の安定
性は分散溶剤に大きく依存するという問題もある。この
点については、本発明者等が新たに製造したジクロロス
ズフタロシアニン結晶も同様に、溶剤に対する結晶型の
安定性が悪く、容易に他の結晶型に転移する難点があ
り、それを用いて形成される電子写真感光体において
は、十分な電子写真特性を発揮させることが困難であっ
た。On the other hand, the conventionally proposed tin phthalocyanine compound has poor crystal form stability with respect to a solvent, and exhibits a crystal form when dispersed in a solvent and after a dispersion is applied to form a photosensitive layer. It could not be maintained for a long period of time, and when used as a charge generating material, it was still not satisfactory enough. That is, if the primary particle size of the dichlorotin phthalocyanine compound is too fine, the stability of the crystal form in the solvent is poor, and there is a problem that the crystal is easily transferred to another crystal form. Conversely, when the primary particle size increases, the sensitivity and stability of the electrophotographic photoreceptor formed by using the primary particle size decrease significantly. There is also a problem that the stability of the crystallinity of the dichlorotin phthalocyanine compound largely depends on the dispersion solvent. Regarding this point, the dichlorotin phthalocyanine crystal newly produced by the present inventors also has a disadvantage in that the stability of the crystal form with respect to the solvent is poor, and there is a difficulty that the crystal form is easily transferred to another crystal form. However, it is difficult for the electrophotographic photosensitive member to exhibit sufficient electrophotographic characteristics.
【0007】本発明は、従来の技術における上述のよう
な問題を解決するためになされたものである。すなわ
ち、本発明の目的は、長波長域に感度を有する電荷発生
材料として有用なジクロロスズフタロシアニンの新規な
結晶とその製造方法を提供することにある。本発明の他
の目的は、上記ジクロロスズフタロシアニン結晶を電荷
発生材料として、高い感度と耐久性を有する電子写真感
光体を提供することにあり、さらに、一層優れた感度特
性を有し、電荷保持性が良好で、画質欠陥が少ないとい
う画像特性の改善された電子写真感光体を提供しようと
するものである。 The present invention has been made to solve the above-mentioned problems in the prior art. That is, an object of the present invention is to provide a novel crystal of dichlorotin phthalocyanine useful as a charge generation material having sensitivity in a long wavelength region, and a method for producing the same. Another object of the present invention is to provide an electrophotographic photoreceptor having high sensitivity and durability by using the above-mentioned dichlorotin phthalocyanine crystal as a charge generation material, and further having more excellent sensitivity characteristics, sex is good, Ru der seeks to provide an improved electrophotographic photoreceptor of the image characteristics of the image quality with few defects.
【0008】[0008]
【課題を解決するための手段】本発明者等は、優れた感
光特性を有する電荷発生材料を探索すると共に、この電
荷発生材料と感光層を形成する際に用いる結着樹脂およ
び分散溶剤との組み合わせについて鋭意研究を重ねてき
た。その結果、合成によって得られるジクロロスズフタ
ロシアニンを簡単な処理を行うことによって製造される
新規な結晶は、電荷発生材料として有用であることを見
出した。また、この新規な結晶を感光層に含有する電子
写真感光体は、高い感度と耐久性を有し、感光層を構成
する結着樹脂として特定の樹脂と上記結晶とを組み合わ
せると、感光体の作製時に結晶の分散性や分散液の塗布
性を損なうことなく、一層優れた感度特性を有し、電荷
保持特性が良好で、画質欠陥が少ないことを見出した。
さらに、上記新規な結晶と特定の分散溶剤よりなる電子
写真感光体用塗布液は、ジクロロスズフタロシアニンの
結晶型を変化させることなくその結晶を溶剤中に分散さ
せることが可能になるだけでなく、塗布液から形成され
る感光層中のジクロロスズフタロシアニンの結晶型を長
期間にわたって維持することが可能になるため、上記新
規な結晶固有の感光特性がそのまま発現できることを見
出した。このような知見に基づいて、本発明は完成され
たものである。Means for Solving the Problems The present inventors have searched for a charge-generating material having excellent photosensitive characteristics, and have investigated the relationship between the charge-generating material and a binder resin and a dispersing solvent used in forming a photosensitive layer. I have been studying the combination. As a result, they have found that a novel crystal produced by subjecting dichlorotin phthalocyanine obtained by synthesis to a simple treatment is useful as a charge generation material. Further, the electrophotographic photoreceptor containing this novel crystal in the photosensitive layer has high sensitivity and durability, and when a specific resin is combined with the above crystal as a binder resin constituting the photosensitive layer, the photoreceptor becomes The present inventors have found that they have more excellent sensitivity characteristics, good charge retention characteristics, and few image quality defects without impairing the dispersibility of crystals and the applicability of the dispersion during the production.
Furthermore, the coating liquid for an electrophotographic photosensitive member comprising the novel crystal and a specific dispersing solvent can not only disperse the crystal in the solvent without changing the crystal form of dichlorotin phthalocyanine, The present inventors have found that since the crystal form of dichlorotin phthalocyanine in the photosensitive layer formed from the coating solution can be maintained for a long period of time, the above-described photosensitive characteristics unique to the novel crystal can be directly expressed. The present invention has been completed based on such findings.
【0009】すなわち、本発明は、X線回折スペクトル
におけるブラッグ角度(2θ±0.2°)が8.5°、
11.2°、14.5°および27.2°に強い回折ピ
ークを有するジクロロスズフタロシアニンの新規な結晶
にある。同時に、本発明は、ジクロロスズフタロシアニ
ンを無機塩と共に機械的に粉砕するかまたは粉砕した後
溶剤処理して、上記ジクロロスズフタロシアニンの新規
な結晶を製造する方法にある。本発明は、また、上記ジ
クロロスズフタロシアニン結晶を少なくとも1種以上含
有する感光層を導電性支持体上に被覆してなる電子写真
感光体にあり、感光層はジクロロスズフタロシアニン結
晶ならびにポリビニルアセタール系樹脂、塩化ビニル−
酢酸ビニル系共重合体、フェノキシ樹脂および変性エー
テル型ポリエステル樹脂から選ばれる少なくとも1種よ
りなる結着樹脂を含有する電荷発生層と電荷輸送層とを
順次積層した積層構造のものが特に好ましい。 That is, according to the present invention, the Bragg angle (2θ ± 0.2 °) in the X-ray diffraction spectrum is 8.5 °,
The novel crystals of dichlorotin phthalocyanine have strong diffraction peaks at 11.2 °, 14.5 ° and 27.2 °. At the same time, the present invention is a method for producing novel crystals of the above dichlorotin phthalocyanine by mechanically pulverizing dichlorotin phthalocyanine together with an inorganic salt or after pulverizing the dichlorotin phthalocyanine with a solvent. The present invention also relates to an electrophotographic photoreceptor obtained by coating a photosensitive support containing at least one kind of the above-mentioned dichlorotin phthalocyanine crystal on a conductive support, wherein the photosensitive layer comprises a dichlorotin phthalocyanine crystal and a polyvinyl acetal resin. , Vinyl chloride
Vinyl acetate copolymer, have in particular preferred that the phenoxy resin and modified ether type polyester selected from resins containing a binder resin consisting of at least one charge generation layer and a charge transport layer and sequentially stacked laminated structure .
【0010】以下、本発明について詳述する。本発明の
X線回折スペクトルにおけるブラッグ角度(2θ±0.
2°)が8.5°、11.2°、14.5°および2
7.2°に強い回折ピークを有するジクロロスズフタロ
シアニン結晶は、公知の方法で合成されるジクロスズフ
タロシアニン結晶をボールミル、乳鉢、アトライター、
ロールミル、ホモミキサー、サンドミル、ニーダー等で
機械的に粉砕することにより製造することができる。粉
砕の際に、食塩、ぼう硝等の無機塩の磨砕助剤を用いる
ことに非常に効率よく、粒径の整った本発明の結晶型に
転移させることができる。磨砕助剤はジクロロスズフタ
ロシアニン結晶に対し、0.5〜20倍、好ましくは1
〜10倍用いる。本発明は、機械的に粉砕されたジクロ
ロスズフタロシアニンを、トルエン、ジクロロメタン、
テトラヒドロフラン(THF)、メチルエチルケトン
(MEK)等の有機溶剤でさらに溶剤処理を行ってもよ
く、この溶剤処理により、さらに結晶性、粒径の整った
本発明の最も好ましいジクロロスズフタロシアニン結晶
を得ることができる。溶剤処理は、必要に応じて、ガラ
スビーズ、スチールビーズ等の磨砕メディア等でミリン
グしながら行ってもよい。Hereinafter, the present invention will be described in detail. In the X-ray diffraction spectrum of the present invention, the Bragg angle (2θ ± 0.
2 °) are 8.5 °, 11.2 °, 14.5 ° and 2
Dichlorotin phthalocyanine crystal having a strong diffraction peak at 7.2 ° is obtained by diclos phthalocyanine crystal synthesized by a known method using a ball mill, a mortar, an attritor,
It can be manufactured by mechanically pulverizing with a roll mill, a homomixer, a sand mill, a kneader or the like. In the pulverization, the use of a grinding aid for inorganic salts such as sodium chloride and sodium sulfate can be performed very efficiently, and the crystal form of the present invention having a uniform particle size can be transferred. The grinding aid is 0.5 to 20 times, preferably 1 to 20 times the dichlorotin phthalocyanine crystal.
Use up to 10 times. The present invention relates to mechanically pulverized dichlorotin phthalocyanine, toluene, dichloromethane,
Further solvent treatment may be carried out with an organic solvent such as tetrahydrofuran (THF) or methyl ethyl ketone (MEK). By this solvent treatment, it is possible to obtain the most preferred dichlorotin phthalocyanine crystal of the present invention, which has more crystallinity and particle size. it can. The solvent treatment may be performed while milling with grinding media such as glass beads and steel beads as necessary.
【0011】次に、上記の処理方法により得られるジク
ロロスズフタロシアニン結晶を感光層における電荷発生
材料として作製される電子写真感光体について説明す
る。本発明の電子写真感光体は、感光層が単層構造のも
のでもあるいは電荷発生層と電荷輸送層とに機能分離さ
れた積層構造のものでもよい。感光層が積層構造を有す
る場合において、電荷発生層は上記ジクロロスズフタロ
シアニン結晶および結着樹脂から構成される。図1ない
し図4は、本発明の電子写真感光体を模式的に示す断面
図である。図1において、電荷発生層1およびその上に
積層された電荷輸送層2からなる感光層が導電性支持体
3上に被覆されている。図2においては、電荷発生層1
と導電性支持体3の間に下引層4が介在しており、ま
た、図3においては、感光層の表面に保護層5が被覆さ
れている。さらに、図4においては、下引層4と保護層
5の両者が積層されている。以下、単層構造からなる感
光層の説明を途中に加えながら、上記層1〜5について
詳細に説明する。Next, an electrophotographic photosensitive member manufactured by using the dichlorotin phthalocyanine crystal obtained by the above-described processing method as a charge generating material in a photosensitive layer will be described. The electrophotographic photoreceptor of the present invention may have a single-layer photosensitive layer or a laminated structure in which a charge generation layer and a charge transport layer are functionally separated. When the photosensitive layer has a laminated structure, the charge generation layer is composed of the dichlorotin phthalocyanine crystal and a binder resin. 1 to 4 are cross-sectional views schematically showing the electrophotographic photosensitive member of the present invention. In FIG. 1, a photosensitive layer composed of a charge generation layer 1 and a charge transport layer 2 laminated thereon is coated on a conductive support 3. In FIG. 2, the charge generation layer 1
An undercoat layer 4 is interposed between the conductive layer 3 and the conductive support 3, and in FIG. 3, the surface of the photosensitive layer is covered with a protective layer 5. Further, in FIG. 4, both the undercoat layer 4 and the protective layer 5 are laminated. Hereinafter, the layers 1 to 5 will be described in detail while adding a description of the photosensitive layer having a single-layer structure in the middle.
【0012】本発明の電子写真感光体における電荷発生
層1は、結着樹脂を有機溶剤に溶解した溶液に前記ジク
ロロスズフタロシアニン結晶を分散させて塗布液を調製
し、この塗布液を導電性支持体3または下引層4上に塗
布することによって形成される。使用する結着樹脂は広
範な樹脂から選択することができる。好ましい結着樹脂
としては、例えば、ポリビニルブチラール樹脂、ポリビ
ニルホルマール樹脂、ブチラールの一部がホルマールや
アセトアセタール等で変性された部分アセタール化ポリ
ビニルブチラール樹脂等のポリビニルアセタール系樹
脂、ポリアリレート樹脂(ビスフェノールAとフタル酸
の重縮合体等)、ポリカーボネート樹脂、ポリエステル
樹脂、変性エーテル型ポリエステル樹脂、フェノキシ樹
脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポ
リ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、
メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド
樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポ
リウレタン樹脂、エポキシ樹脂、シリコン樹脂、ポリビ
ニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼ
インや、塩化ビニル−酢酸ビニル共重合体、ヒドロキシ
ル変性塩化ビニル−酢酸ビニル共重合体、カルボキシル
変性塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢
酸ビニル−無水マイレン酸共重合体等の塩化ビニル−酢
酸ビニル系共重合体、スチレン−ブタジエン共重合体、
塩化ビニリデン−アクリロニトリル共重合体、スチレン
−アルキッド樹脂、シリコン−アルキッド樹脂、フェノ
ール−ホルムアルデヒド樹脂等の絶縁性樹脂をあげるこ
とができる。また、ポリ-N- ビニルカルバゾール、ポリ
ビニルアントラセン、ポリビニルピレン等の有機光導電
性ポリマーから選択することもできる。しかし、これら
の絶縁性樹脂あるいは有機光導電性ポリマーに限定され
るものではない。またこれらの結着樹脂は単独または2
種以上混合して用いることができる。The charge generation layer 1 in the electrophotographic photoreceptor of the present invention is prepared by dispersing the dichlorotin phthalocyanine crystal in a solution in which a binder resin is dissolved in an organic solvent to prepare a coating solution. It is formed by applying on the body 3 or the undercoat layer 4. The binder resin used can be selected from a wide range of resins. Preferred binder resins include, for example, polyvinyl acetal resins such as polyvinyl butyral resin, polyvinyl formal resin, partially acetalized polyvinyl butyral resin in which a part of butyral is modified with formal or acetoacetal, and polyarylate resin (bisphenol A). And phthalic acid), polycarbonate resins, polyester resins, modified ether type polyester resins, phenoxy resins, polyvinyl chloride resins, polyvinylidene chloride resins, polyvinyl acetate resins, polystyrene resins, acrylic resins,
Methacryl resin, polyacrylamide resin, polyamide resin, polyvinyl pyridine resin, cellulose resin, polyurethane resin, epoxy resin, silicone resin, polyvinyl alcohol resin, polyvinyl pyrrolidone resin, casein, vinyl chloride-vinyl acetate copolymer, hydroxyl-modified chloride Vinyl-vinyl acetate copolymer, carboxyl-modified vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-based copolymer such as vinyl chloride-vinyl acetate-maleic anhydride copolymer, styrene-butadiene copolymer,
Examples include insulating resins such as vinylidene chloride-acrylonitrile copolymer, styrene-alkyd resin, silicon-alkyd resin, and phenol-formaldehyde resin. Further, it can be selected from organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene, and polyvinylpyrene. However, it is not limited to these insulating resins or organic photoconductive polymers. These binder resins can be used alone or in combination.
A mixture of more than one species can be used.
【0013】前記ジクロロスズフタロシアニン結晶を分
散させる分散溶剤としては、結着樹脂に対する溶解性が
良好で、下引層4を溶解しないものから選択するのが好
ましい。具体的な有機溶剤としては、メタノール、エタ
ノール、n−プロパノール、i−プロパノール、n−ブ
タノール、ベンジルアルコール等のアルコール類、アセ
トン、MEK、シクロヘキサノン等のケトン類、ジメチ
ルホルムアミド(DMF)、ジメチルアセトアミド等の
アミド類、ジメチルスルホキシド等のスルホキシド類、
ジオキサン、ジエチルエーテル、メチルセロソルブ、エ
チルセロソルブ等の環状または直鎖状のエーテル類、酢
酸メチル、酢酸エチル、酢酸n−プロピル、酢酸i−プ
ロピル、酢酸n−ブチル、酢酸i−ブチル、酢酸sec
−ブチル、酢酸tert−ブチル、酢酸n−アミル、酢
酸i−アミル、プロピオン酸メチル、プロピオン酸エチ
ル、プロピオン酸n−ブチル、酪酸エチル等のエステル
類、ジクロロメタン、クロロホルム、四塩化炭素、ジク
ロロエチレン、トリクロロエチレン等の脂肪族ハロゲン
化炭化水素類、リグロイン等の鉱油、ベンゼン、トルエ
ン、キシレン等の芳香族炭化水素類、ジクロロベンゼン
等の芳香族ハロゲン化炭化水素類などを単独または2種
以上混合して用いることができる。The dispersing solvent for dispersing the dichlorotin phthalocyanine crystal is preferably selected from those which have good solubility in the binder resin and do not dissolve the undercoat layer 4. Specific organic solvents include alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol and benzyl alcohol, ketones such as acetone, MEK, cyclohexanone, dimethylformamide (DMF), dimethylacetamide and the like. Amides, sulfoxides such as dimethyl sulfoxide,
Cyclic or linear ethers such as dioxane, diethyl ether, methyl cellosolve and ethyl cellosolve, methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, acetic acid sec
Esters such as -butyl, tert-butyl acetate, n-amyl acetate, i-amyl acetate, methyl propionate, ethyl propionate, n-butyl propionate, ethyl butyrate, dichloromethane, chloroform, carbon tetrachloride, dichloroethylene, trichloroethylene Such as aliphatic halogenated hydrocarbons, mineral oils such as ligroin, aromatic hydrocarbons such as benzene, toluene and xylene, and aromatic halogenated hydrocarbons such as dichlorobenzene are used alone or in combination of two or more. be able to.
【0014】前記ジクロロスズフタロシアニン結晶と結
着樹脂との配合比(重量)についてみれば、40:1〜
1:20、好ましくは10:1〜1:10の範囲であ
る。ジクロロスズフタロシアニン結晶の比率が高すぎる
場合には塗布液の安定性が低下し、一方、低すぎる場合
には感光体の感度が低下するので、上記範囲に設定する
のが好ましい。また、塗布液を構成する各成分の配合比
(重量)についてみれば、感光層が後述の単層構造の場
合も同様であるが、通常、ジクロロスズフタロシアニン
結晶1〜5部:結着樹脂1〜5部:分散溶剤40〜12
0部の範囲が好ましい。本発明では、分散によってジク
ロロスズフタロシアニンの結晶型が変化するような条件
は採用することができないが、ジクロロスズフタロシア
ニン結晶を分散させる装置としては、ボールミル、アト
ライター、サンドグラインダーミル、ダイノーミル、ペ
イントシェイカー、ホモミキサー等があげられる。この
際、粒子を0.5μm以下、好ましくは0.2μm以
下、最も好ましくは0.03〜0.15μmの粒子サイ
ズに微細化することが有効である。ジクロロスズフタロ
シアニン結晶の一次粒径が0.01μm未満であると、
溶剤中での結晶型の安定性が悪く、他の結晶型に転移し
やすく、一方、その一時粒径が0.5μmより大粒径の
ものが混在すると、それを用いて形成される電子写真感
光体の感度、安定性が著しく低下するので、結晶の粒子
サイズは0.01〜0.5μmの範囲が適当である。The compounding ratio (weight) of the dichlorotin phthalocyanine crystal to the binder resin is 40: 1 to 40: 1.
It is in the range of 1:20, preferably 10: 1 to 1:10. If the ratio of the dichlorotin phthalocyanine crystal is too high, the stability of the coating solution is reduced. On the other hand, if the ratio is too low, the sensitivity of the photoreceptor is reduced. The composition ratio (weight) of each component constituting the coating liquid is the same when the photosensitive layer has a single-layer structure described below. However, usually, 1 to 5 parts of dichlorotin phthalocyanine crystal: binder resin 1 -5 parts: dispersing solvent 40-12
A range of 0 parts is preferred. In the present invention, a condition in which the crystal form of dichlorotin phthalocyanine changes due to dispersion cannot be adopted.However, as a device for dispersing the dichlorotin phthalocyanine crystal, a ball mill, an attritor, a sand grinder mill, a dyno mill, a paint shaker And a homomixer. At this time, it is effective to reduce the particle size to 0.5 μm or less, preferably 0.2 μm or less, and most preferably 0.03 to 0.15 μm. When the primary particle size of the dichlorotin phthalocyanine crystal is less than 0.01 μm,
The stability of the crystal form in the solvent is poor, and it is easy to transfer to another crystal form. On the other hand, when the temporary particle size is larger than 0.5 μm, the electrophotography formed using it is mixed. Since the sensitivity and stability of the photoreceptor are significantly reduced, the crystal particle size is suitably in the range of 0.01 to 0.5 μm.
【0015】上記のようにして調製される塗布液の塗布
方法としては、浸漬コーティング法、スプレーコーティ
ング法、スピンコーティング法、ビードコーティング
法、ブレードコーティング法、ローラーコーティング
法、カーテンコーティング法等のコーティング法を採用
することができる。また、塗布液の乾燥は、室温におけ
る指触乾燥後、30〜200℃の温度で5分〜2時間の
範囲で静止または送風下で加熱乾燥するのが好ましい。
そして、電荷発生層1の膜厚は、通常0.015〜5μ
m、好ましくは0.1〜2.0μmが適当である。The coating method prepared as described above includes a coating method such as a dip coating method, a spray coating method, a spin coating method, a bead coating method, a blade coating method, a roller coating method, and a curtain coating method. Can be adopted. In addition, the drying of the coating liquid is preferably performed by touch drying at room temperature and then heating and drying at 30 to 200 ° C. for 5 minutes to 2 hours in a still or blowing condition.
The thickness of the charge generation layer 1 is usually 0.015 to 5 μm.
m, preferably 0.1 to 2.0 μm.
【0016】本発明においては、前記した結着樹脂のう
ち、ジクロロスズフタロシアニン結晶を結着樹脂に分散
する際の分散性、分散液の塗布性や感光体の感度特性、
電荷保持特性、画質特性等の点から、ポリビニルアセタ
ール系樹脂、塩化ビニル−酢酸ビニル系共重合体、フェ
ノキシ樹脂および変性エーテル型ポリエステル樹脂から
選ばれる少なくとも1種より選択することが好ましい。
また、前記した分散溶剤のうち、ジクロロスズフタロシ
アニン結晶を溶剤に分散する時にその結晶型を変化させ
ることがないばかりでなく、分散液の塗布後も長期間に
わたって元の結晶型を維持する作用のある酢酸エステル
系溶剤を選択することが好ましい。特に、これらの結着
樹脂および分散溶剤よりなる結着樹脂溶液にジクロロス
ズフタロシアニン結晶を分散させた塗布液が最も好まし
い。In the present invention, among the binder resins described above, dispersibility when dispersing dichlorotin phthalocyanine crystals in the binder resin, applicability of the dispersion and sensitivity characteristics of the photoreceptor,
It is preferable to select from at least one selected from polyvinyl acetal-based resins, vinyl chloride-vinyl acetate-based copolymers, phenoxy resins, and modified ether-type polyester resins from the viewpoints of charge retention characteristics, image quality characteristics, and the like.
In addition, among the above-mentioned dispersion solvents, not only does not change the crystal form when dispersing the dichlorotin phthalocyanine crystal in the solvent, but also has the effect of maintaining the original crystal form for a long time after the application of the dispersion. It is preferable to select a certain acetate-based solvent. In particular, a coating liquid in which dichlorotin phthalocyanine crystals are dispersed in a binder resin solution containing these binder resin and a dispersing solvent is most preferable.
【0017】本発明の電子写真感光体は、感光層が積層
構造を有する場合、電荷発生材料1上に電荷輸送材料を
適当な結着樹脂中に含有させて電荷輸送層2が被覆され
ている。電荷輸送材料としては、2,5−ビス−(p−
ジエチルアミノフェニル)−1,3,4−オキサジアゾ
ール等のオキサジアゾール誘導体、1,3,5−トリフ
ェニルピラゾリン、1−[ピリジル−(2)]−3−
(p−ジエチルアミノスチリル)−5−(p−ジエチル
アミノフェニル)ピラゾリン等のピラゾリン誘導体、ト
リフェニルアミン、ジベンジルアニリン等の芳香族第三
級モノアミノ化合物、N,N′−ジフェニル−N,N′
−ビス−(m−トリル)ベンジジン等の芳香族第三級ジ
アミノ化合物、3−(p−ジエチルアミノフェニル)−
5,6−ジ−(p−メトキシフェニル)−1,2,4−
トリアジン等の1,2,4−トリアジン誘導体、4−ジ
エチルアミノベンズアルデヒド 2,2−ジフェニルヒドラ
ゾン等のヒドラゾン誘導体、2−フェニル−4−スチリ
ルキナゾリン等のキナゾリン誘導体、6−ヒドロキシ−
2,3−ジ−(p−メトキシフェニル)ベンゾフラン等
のベンゾフラン誘導体、p−(2,2−ジフェニルビニ
ル)−N,N−ジフェニルアニリン等のα−スチルベン
誘導体、トリフェニルメタン誘導体、Journal
of Imaging Science,29,7〜1
0(1985)に記載されているエナミン誘導体、カル
バゾール、N−エチルカルバゾール、ポリ−N−ビニル
カルバゾール、ハロゲン化ポリ−N−ビニルカルバゾー
ル、ポリグリシジルカルバゾール、ポリ−γ−カルバゾ
ールエチルグルタメートおよびその誘導体、さらには、
アントラセン、ピレン、フェナントレン等の多環芳香族
化合物、インドール、イミダゾール等の含窒素複素環化
合物、ポリビニルアントラセン、ポリ−9−ビニルフェ
ニルアントラセン、ポリビニルピレン、ポリビニルアク
リジン、ポリビニルアセナフチレン、ピレン−ホルムア
ルデヒド樹脂、エチルカルバゾール−ホルムアルデヒド
樹脂等の公知の電荷輸送材料を用いることができるが、
これらに限定されるものではない。また、これらの電荷
輸送材料は単独または2種以上混合して用いられ、電荷
輸送材料がポリマーの場合はそれ自体で層を形成しても
よい。In the electrophotographic photoreceptor of the present invention, when the photosensitive layer has a laminated structure, the charge transporting material 2 is coated on the charge generating material 1 by incorporating the charge transporting material into an appropriate binder resin. . As the charge transport material, 2,5-bis- (p-
Oxadiazole derivatives such as diethylaminophenyl) -1,3,4-oxadiazole, 1,3,5-triphenylpyrazoline, 1- [pyridyl- (2)]-3-
Pyrazoline derivatives such as (p-diethylaminostyryl) -5- (p-diethylaminophenyl) pyrazoline; aromatic tertiary monoamino compounds such as triphenylamine and dibenzylaniline; N, N'-diphenyl-N, N '
Aromatic tertiary diamino compounds such as -bis- (m-tolyl) benzidine; 3- (p-diethylaminophenyl)-
5,6-di- (p-methoxyphenyl) -1,2,4-
1,2,4-triazine derivatives such as triazine, hydrazone derivatives such as 4-diethylaminobenzaldehyde 2,2-diphenylhydrazone, quinazoline derivatives such as 2-phenyl-4-styrylquinazoline, 6-hydroxy-
Benzofuran derivatives such as 2,3-di- (p-methoxyphenyl) benzofuran, α-stilbene derivatives such as p- (2,2-diphenylvinyl) -N, N-diphenylaniline, triphenylmethane derivatives, Journal
of Imaging Science, 29, 7-1
0 (1985), carbazole, N-ethylcarbazole, poly-N-vinylcarbazole, halogenated poly-N-vinylcarbazole, polyglycidylcarbazole, poly-γ-carbazoleethylglutamate and derivatives thereof, Moreover,
Polycyclic aromatic compounds such as anthracene, pyrene and phenanthrene, nitrogen-containing heterocyclic compounds such as indole and imidazole, polyvinylanthracene, poly-9-vinylphenylanthracene, polyvinylpyrene, polyvinylacridine, polyvinylacenaphthylene and pyrene-formaldehyde resin A known charge transport material such as ethyl carbazole-formaldehyde resin can be used,
It is not limited to these. These charge transporting materials may be used alone or as a mixture of two or more types. When the charge transporting material is a polymer, a layer may be formed by itself.
【0018】電荷輸送層2を形成する結着樹脂として
は、ポリカーボネート樹脂、ポリエステル樹脂、メタク
リル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩
化ビニリデン樹脂、ポリスチレン樹脂、ポリ酢酸ビニル
樹脂、ポリビニルブチラール等のポリビニルアセタール
系樹脂、スチレン−ブタジエン共重合体、塩化ビニリデ
ン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニ
ル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸
共重合体等の塩化ビニル−酢酸ビニル系共重合体、シリ
コン樹脂、シリコン−アルキッド樹脂、フェノール−ホ
ルムアルデヒド樹脂、スチレン−アルキッド樹脂、ポリ
−N−ビニルカルバゾール樹脂など、前記電荷発生層1
に使用されるものと同様の樹脂が使用できる。電荷輸送
層2は、上記電荷輸送材料と結着樹脂および前記電荷発
生層1を形成する際に用いる有機溶剤と同様のものを用
いて塗布液を調製した後、前記したコーティング法と同
様の手段により塗布液を塗布して形成することができ
る。その際、電荷輸送材料と結着樹脂との配合比(重
量)は、10:1〜1:5が好ましい。また、電荷輸送
層2の膜厚は、一般的には5〜50μm程度、好ましく
は10〜30μmが適当ある。The binder resin forming the charge transport layer 2 includes polycarbonate resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl acetate resin, polyvinyl butyral, and the like. Vinyl chloride-vinyl acetate copolymers such as polyvinyl acetal resin, styrene-butadiene copolymer, vinylidene chloride-acrylonitrile copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer The charge generation layer 1 such as a polymer, silicone resin, silicone-alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, poly-N-vinylcarbazole resin, etc.
The same resins as those used in the above can be used. The charge transporting layer 2 is prepared by using the same charge transporting material and binder resin and the same organic solvent as that used for forming the charge generating layer 1 to prepare a coating solution. Can be formed by applying a coating liquid. At that time, the mixing ratio (weight) of the charge transporting material and the binder resin is preferably from 10: 1 to 1: 5. The thickness of the charge transport layer 2 is generally about 5 to 50 μm, preferably 10 to 30 μm.
【0019】本発明の感光層が単層構造を有する場合に
おいては、感光層はジクロロスズフタロシアニン結晶お
よび電荷輸送材料が結着樹脂に分散された光導電層より
なる。電荷輸送材料、結着樹脂および分散溶剤は前記と
同様なものが使用され、前記と同様の方法に従って光導
電層が形成される。その場合、結着樹脂は、前記と同様
の理由により、ポリビニルアセタール系樹脂、塩化ビニ
ル−酢酸ビニル系共重合体、フェノキシ樹脂および変性
エーテル型ポリエステル樹脂から選ばれる少なくとも1
種より選択することが最も好ましく、分散溶剤は酢酸エ
ステル系溶剤を選択することが好ましい。そして、ジク
ロロスズフタロシアニン結晶と電荷輸送材料との配合比
(重量)は1:10〜10:1、電荷輸送材料と結着樹
脂との配合比(重量)は1:20〜5:1程度に設定す
るのが適当である。When the photosensitive layer of the present invention has a single-layer structure, the photosensitive layer comprises a photoconductive layer in which a dichlorotin phthalocyanine crystal and a charge transport material are dispersed in a binder resin. The same charge transporting material, binder resin and dispersion solvent as described above are used, and the photoconductive layer is formed according to the same method as described above. In this case, for the same reason as described above, the binder resin is at least one selected from a polyvinyl acetal resin, a vinyl chloride-vinyl acetate copolymer, a phenoxy resin and a modified ether polyester resin.
It is most preferable to select from the species, and it is preferable to select an acetate-based solvent as the dispersion solvent. The compounding ratio (weight) of the dichlorotin phthalocyanine crystal to the charge transporting material is 1:10 to 10: 1, and the compounding ratio (weight) of the charge transporting material to the binder resin is about 1:20 to 5: 1. It is appropriate to set.
【0020】導電性支持体3としては、電子写真感光体
として使用することが可能なものならば、いかなるもの
も使用することができる。具体的には、アルミニウム、
ニッケル、クロム、ステンレス鋼等の金属類、アルミニ
ウム、チタニウム、ニッケル、クロム、ステンレス鋼、
金、バナジウム、酸化スズ、酸化インジウム、ITO等
の薄膜を被覆したプラスチックフィルムなどあるいは導
電性付与剤を塗布または含浸させた紙、プラスチックフ
ィルムなどがあげられる。これらの導電性支持体3は、
ドラム状、シート状、プレート状等、適宜の形状のもの
として使用されるが、これらに限定されるものではな
い。さらに必要に応じて、導電性支持体3の表面は、画
質に影響のない範囲で各種の処理を行ってもよく、例え
ば、表面の酸化処理や薬品処理および着色処理または砂
目立て等の乱反射処理などを施してもよい。As the conductive support 3, any one can be used as long as it can be used as an electrophotographic photosensitive member. Specifically, aluminum,
Metals such as nickel, chromium, stainless steel, aluminum, titanium, nickel, chromium, stainless steel,
Examples include a plastic film coated with a thin film of gold, vanadium, tin oxide, indium oxide, ITO, or the like, or a paper or plastic film coated or impregnated with a conductivity imparting agent. These conductive supports 3
It is used as an appropriate shape such as a drum shape, a sheet shape, and a plate shape, but is not limited thereto. Further, if necessary, the surface of the conductive support 3 may be subjected to various treatments within a range that does not affect the image quality. For example, the surface may be subjected to an oxidation treatment, a chemical treatment, a coloring treatment, or a irregular reflection treatment such as graining. And so on.
【0021】本発明においては、導電性支持体3と感光
層の間にさらに下引層4が介在してもよい。この下引層
4は積層構造からなる感光層の帯電時において導電性支
持体3から感光層への電荷の注入を阻止すると共に、感
光層を導電性支持体3に対して一体的に接着保持させる
接着層としての作用、あるいは場合によっては、導電性
支持体3の光の反射光防止作用等を示す。上記下引層4
を形成する材料としては、ポリエチレン樹脂、ポリプロ
ピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミ
ド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール
樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリ
イミド樹脂、塩化ビニリデン樹脂、ポリビニルアセター
ル樹脂、塩化ビニル−酢酸ビニル共重合体、ポリビニル
アルコール樹脂、ポリアクリル酸樹脂、ポリアクリルア
ミド樹脂、ポリビニルピロリドン樹脂、ポリビニルピリ
ジン樹脂、水溶性ポリエステル樹脂、ニトロセルロース
等のセルロースエステル樹脂、セルロースエーテル樹
脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、ス
ターチアセテート、アミノ澱粉、ジルコニウムキレート
化合物等の有機ジルコニウム化合物、チタニルキレート
化合物、チタニルアルコキシド化合物等の有機チタニル
化合物、シランカップリング剤などを用いることができ
る。下引層4を形成する際に採用する塗布方法として
は、ブレードコーティング法、スピンコーティング法、
スプレーコーティング法、浸漬コーティング法、ビード
コーティング法、ローラーコーティング法、カーテンコ
ーティング法等の通常の方法があげられる。下引層4の
膜厚は、0.01〜10μm、好ましくは0.05〜2
μmが適当である。In the present invention, an undercoat layer 4 may be further interposed between the conductive support 3 and the photosensitive layer. The undercoat layer 4 prevents charge injection from the conductive support 3 into the photosensitive layer during charging of the photosensitive layer having a laminated structure, and also holds the photosensitive layer integrally adhered to the conductive support 3. The conductive support 3 has a function as an adhesive layer to be formed, or, in some cases, a function of preventing the conductive support 3 from reflecting light. The above-mentioned undercoat layer 4
As a material for forming, polyethylene resin, polypropylene resin, acrylic resin, methacrylic resin, polyamide resin, vinyl chloride resin, vinyl acetate resin, phenol resin, polycarbonate resin, polyurethane resin, polyimide resin, vinylidene chloride resin, polyvinyl acetal resin, Vinyl chloride-vinyl acetate copolymer, polyvinyl alcohol resin, polyacrylic acid resin, polyacrylamide resin, polyvinylpyrrolidone resin, polyvinylpyridine resin, water-soluble polyester resin, cellulose ester resin such as nitrocellulose, cellulose ether resin, casein, gelatin Organic zirconium compounds such as polyglutamic acid, starch, starch thiacetate, amino starch, zirconium chelate compound, titanyl chelate compound, titanyl Kokishido compound such as an organic titanyl compound of a silane coupling agent can be used. The coating method employed when forming the undercoat layer 4 includes a blade coating method, a spin coating method,
Conventional methods such as spray coating, dip coating, bead coating, roller coating, curtain coating and the like can be mentioned. The thickness of the undercoat layer 4 is 0.01 to 10 μm, preferably 0.05 to 2 μm.
μm is appropriate.
【0022】本発明は、さらに必要に応じて、感光層の
表面に保護層5を被覆してもよい。この保護層5は、積
層構造からなる感光層の帯電時の電荷輸送層2の化学的
変質を防止すると共に、感光層の機械的強度を改善する
ために被覆される。上記保護層5には適当な結着樹脂中
に導電性材料が含有されている。導電性材料としては、
ジメチルフェロセン等のメタロセン化合物、N,N′−
ジフェニル−N,N′−ビス−(m−トリル)ベンジジ
ン等の芳香族アミノ化合物、酸化アンチモン、酸化ス
ズ、酸化チタン、酸化インジウム、酸化スズ−酸化アン
チモン等の金属酸化物などを用いることができるが、こ
れらに限定されるものではない。また、この保護層5に
用いる結着樹脂としては、ポリアミド樹脂、ポリウレタ
ン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン
樹脂、ポリカーボネート樹脂、ポリビニルケトン樹脂、
ポリスチレン樹脂、ポリアクリルアミド樹脂等の公知の
樹脂を用いることができる。上記保護層5はその電気抵
抗が109〜1014Ω・cmとなるように構成すること
が好ましい。電気抵抗が1014Ω・cmより高くなると
残留電位が上昇しカブリの多い複写物となってしまい、
一方、109 Ω・cmより低くなると画像のボケ、解像
力の低下が生じてしまう。また、保護層は像露光に照射
される光の透過を実質上妨げないように構成されなけれ
ばならない。保護層5を形成する際に採用する塗布方法
としては、ブレードコーティング法、スピンコーティン
グ法、スプレーコーティング法、浸漬コーティング法、
ビードコーティング法、ローラーコーティング法、カー
テンコーティング法等の通常の方法を用いることができ
る。この保護層5の膜厚は、0.5〜20μm、好まし
くは1〜10μmが適当である。In the present invention, if necessary, the surface of the photosensitive layer may be coated with a protective layer 5. The protective layer 5 is coated so as to prevent the charge transport layer 2 from being chemically deteriorated when the photosensitive layer having a laminated structure is charged and to improve the mechanical strength of the photosensitive layer. The protective layer 5 contains a conductive material in a suitable binder resin. As a conductive material,
Metallocene compounds such as dimethylferrocene, N, N'-
Aromatic amino compounds such as diphenyl-N, N'-bis- (m-tolyl) benzidine; metal oxides such as antimony oxide, tin oxide, titanium oxide, indium oxide, and tin oxide-antimony oxide can be used. However, the present invention is not limited to these. The binder resin used for the protective layer 5 includes polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate resin, polyvinylketone resin,
Known resins such as polystyrene resin and polyacrylamide resin can be used. The protective layer 5 is preferably configured so that its electric resistance is 10 9 to 10 14 Ω · cm. If the electric resistance is higher than 10 14 Ω · cm, the residual potential rises, resulting in a fogged copy,
On the other hand, when it is lower than 10 9 Ω · cm, blurring of an image and reduction in resolution occur. In addition, the protective layer must be configured so as not to substantially hinder the transmission of light applied to image exposure. The coating method employed when forming the protective layer 5 includes a blade coating method, a spin coating method, a spray coating method, a dip coating method,
Conventional methods such as a bead coating method, a roller coating method, and a curtain coating method can be used. The thickness of the protective layer 5 is suitably 0.5 to 20 μm, preferably 1 to 10 μm.
【0023】[0023]
【実施例】以下、実施例によって本発明を具体的に説明
する。なお、実施例および比較例において、「部」は重
量部を意味する。 合成例1 フタロニトリル50gおよび無水塩化第二スズ27gを
1−クロルナフタレン350ml中に添加し、195°
Cにおいて5時間反応させた後、生成物を濾別した。1
−クロルナフタレン、アセトン、メタノール、水で洗浄
し、減圧乾燥してジクロロスズフタロシアニン結晶1
8.3g(27%)を得た。得られたジクロロスズフタ
ロシアニン結晶の粉末X線回折図を図5に示す。The present invention will be specifically described below with reference to examples. In Examples and Comparative Examples, “parts” means parts by weight. Synthesis Example 1 50 g of phthalonitrile and 27 g of anhydrous stannic chloride were added to 350 ml of 1-chloronaphthalene, and 195 ° was added.
After reacting at C for 5 hours, the product was filtered off. 1
-Washed with chlornaphthalene, acetone, methanol and water, dried under reduced pressure and dried to obtain dichlorotin phthalocyanine crystal 1
8.3 g (27%) were obtained. FIG. 5 shows a powder X-ray diffraction pattern of the obtained dichlorotin phthalocyanine crystal.
【0024】合成例2 フタロニトリル64gおよび無水塩化第一スズ26gを
1−クロルナフタレン70ml中に添加し、200°C
において4時間反応させた後、100℃に冷却し、DM
F100mlを加え、30分間攪拌した。その後、生成
物を濾別し、メタノール、水で洗浄し、減圧乾燥してジ
クロロスズフタロシアニン79g(90%)を得た。得
られたジクロロスズフタロシアニン結晶の粉末X線回折
図を図6に示す。Synthesis Example 2 64 g of phthalonitrile and 26 g of anhydrous stannous chloride were added to 70 ml of 1-chloronaphthalene.
And then cooled to 100 ° C.
100 ml of F was added and stirred for 30 minutes. Thereafter, the product was separated by filtration, washed with methanol and water, and dried under reduced pressure to obtain 79 g (90%) of dichlorotin phthalocyanine. FIG. 6 shows a powder X-ray diffraction pattern of the obtained dichlorotin phthalocyanine crystal.
【0025】実施例1 合成例1で得られたジクロロスズフタロシアニン5gを
食塩10gおよびメノウボール(20mmφ)500g
と共にメノウ製ポット(容量500ml)に入れ、遊星
型ボールミル(フリッチュ社製:P−5製)にて400
rpmで10時間粉砕した。得られたジクロロスズフタ
ロシアニン結晶の粒径は0.05〜0.08μmの均一
なものであった。その粉末X線回折図を図7に示す。Example 1 5 g of the dichlorotin phthalocyanine obtained in Synthesis Example 1 was mixed with 10 g of salt and 500 g of agate ball (20 mmφ).
Together with an agate pot (capacity: 500 ml) and 400 in a planetary ball mill (Fritsch: P-5).
Milled for 10 hours at rpm. The resulting dichlorotin phthalocyanine crystals had a uniform particle size of 0.05 to 0.08 μm. The powder X-ray diffraction pattern is shown in FIG.
【0026】実施例2 合成例2で得られたジクロロスズフタロシアニン5gを
用いた以外は、実施例1と同様にして粉砕処理した。得
られたジクロロスズフタロシアニン結晶の結晶型および
粒径は実施例1と同様であった。Example 2 A pulverization treatment was carried out in the same manner as in Example 1 except that 5 g of dichlorotin phthalocyanine obtained in Synthesis Example 2 was used. The crystal form and particle size of the obtained dichlorotin phthalocyanine crystal were the same as in Example 1.
【0027】実施例3 実施例1で得られたジクロロスズフタロシアニン結晶
0.5gをTHF15mlおよびガラスビーズ(1mm
φ)30gと共に室温下24時間ミリング処理した後、
ガラスビーズを濾別し、乾燥してジクロロスズフタロシ
アニン結晶0.45gを得た。得られたジクロロスズフ
タロシアニン結晶の粒径は0.05〜0.1μmの均一
なものであった。その粉末X線回折図を図8に示す。Example 3 0.5 g of the dichlorotin phthalocyanine crystal obtained in Example 1 was mixed with 15 ml of THF and glass beads (1 mm).
φ) After milling at room temperature for 24 hours with 30g,
The glass beads were separated by filtration and dried to obtain 0.45 g of dichlorotin phthalocyanine crystals. The resulting dichlorotin phthalocyanine crystals had a uniform particle size of 0.05 to 0.1 μm. FIG. 8 shows the powder X-ray diffraction pattern.
【0028】実施例4 THFの代わりに酢酸n−ブチルを用いた以外は、実施
例3と同様にして溶剤処理した。得られたジクロロスズ
フタロシアニン結晶の粒径は0.05〜0.1μmの均
一なものであり、その粉末X線回折図は図8と同様であ
った。Example 4 A solvent treatment was carried out in the same manner as in Example 3 except that n-butyl acetate was used instead of THF. The obtained dichlorotin phthalocyanine crystals had a uniform particle size of 0.05 to 0.1 μm, and the powder X-ray diffraction pattern was the same as that in FIG.
【0029】実施例5 磨砕助剤として食塩を用いなかった以外は、実施例1と
同様にして粉砕処理した。得られたジクロロスズフタロ
シアニン結晶の粉末X線回折図は図7と同様であった
が、無機塩を用いずに粉砕処理した結晶の粒径は、0.
05〜0.08μmのものに0.5μm前後のものが混
在して不均一であった。Example 5 A pulverization treatment was performed in the same manner as in Example 1 except that no salt was used as a grinding aid. The powder X-ray diffraction pattern of the obtained dichlorotin phthalocyanine crystal was the same as that of FIG. 7, but the particle size of the crystal pulverized without using an inorganic salt was 0.1%.
Those having a size of about 0.5 μm were mixed with those having a size of from 0.5 to 0.08 μm, and were non-uniform.
【0030】実施例6 実施例5で得られたジクロロスズフタロシアニン結晶
0.5gを用いた以外は、実施例3と同様に処理した。
得られたジクロロスズフタロシアニン結晶の粉末X線回
折図は図8と同様であったが、その粒径は0.05〜
0.2μmの不均一なものであった。Example 6 The procedure of Example 3 was repeated except that 0.5 g of the dichlorotin phthalocyanine crystal obtained in Example 5 was used.
The powder X-ray diffraction pattern of the obtained dichlorotin phthalocyanine crystal was similar to that of FIG.
It was 0.2 μm inhomogeneous.
【0031】実施例7 粉砕時間を30時間とした以外は、実施例1と同様にし
て粉砕処理した。得られたジクロロスズフタロシアニン
結晶の粒径は0.01〜0.03μmであり、実施例1
のものより小粒径化して均一であった。その粉末X線回
折図を図9に示す。Example 7 A pulverization treatment was performed in the same manner as in Example 1 except that the pulverization time was changed to 30 hours. The particle size of the obtained dichlorotin phthalocyanine crystal was 0.01 to 0.03 μm.
The particle size was smaller than that of the sample and was uniform. The powder X-ray diffraction pattern is shown in FIG.
【0032】比較例1 合成例1で得られたジクロロスズフタロシアニン結晶1
gを氷冷下に0〜5℃で濃硫酸30ml中に徐々に添加
して溶解させ、少量の不溶物を濾別した後、氷水500
ml中に激しく撹拌しながら滴下した。次いで、生成し
た沈澱物を濾別し、洗浄液が中性になるまで水で繰り返
し洗浄した後、減圧乾燥してジクロロスズフタロシアニ
ン結晶0.76gを得た。得られたジクロロスズフタロ
シアニン結晶の粉末X線回折図を図10に示す。Comparative Example 1 Dichlorotin phthalocyanine crystal 1 obtained in Synthesis Example 1
g of ice-cooled ice-cooled water at 0 to 5 ° C in 30 ml of concentrated sulfuric acid.
The solution was added dropwise to the resulting solution with vigorous stirring. Next, the formed precipitate was separated by filtration, washed repeatedly with water until the washing liquid became neutral, and dried under reduced pressure to obtain 0.76 g of dichlorotin phthalocyanine crystals. FIG. 10 shows an X-ray powder diffraction pattern of the obtained dichlorotin phthalocyanine crystal.
【0033】実施例8 実施例1で得られたジクロロスズフタロシアニン結晶1
部をポリビニルブチラール(積水化学社製:エスレック
BM−S)1部およびシクロヘキサノン100部と混合
し、ガラスビーズと共にペイントシェーカーで1時間処
理して上記結晶が分散した塗布液を調製した。次いで、
アルミニウム基板を導電性支持体3として、その上に上
記塗布液を浸漬コーティング法で塗布し、100℃にお
いて5分間加熱乾燥し、膜厚0.2μmの電荷発生層1
を形成した。Example 8 Dichlorotin phthalocyanine crystal 1 obtained in Example 1
The mixture was mixed with 1 part of polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd .: ESLEC BM-S) and 100 parts of cyclohexanone, and treated with glass beads for 1 hour using a paint shaker to prepare a coating liquid in which the crystals were dispersed. Then
An aluminum substrate is used as a conductive support 3, and the above-mentioned coating solution is applied thereon by dip coating, and dried by heating at 100 ° C. for 5 minutes to form a charge generation layer 1 having a thickness of 0.2 μm.
Was formed.
【0034】次に、下記構造式(1)Next, the following structural formula (1)
【化1】 で示されるN,N′−ジフェニル−N,N′−ビス−
(m−トリル)ベンジジン2部とEmbedded image N, N'-diphenyl-N, N'-bis-
(M-tolyl) benzidine 2 parts
【0035】下記構造式(2)The following structural formula (2)
【化2】 で示されるポリ[1,1−ジ−(p−フェニレン)シク
ロヘキサンカーボネート]3部とをクロロベンゼン20
部に溶解し、得られた塗布液を電荷発生層1が形成され
たアルミニウム基板上に浸漬コーティング法で塗布し、
120℃において1時間加熱乾燥して膜厚20μmの電
荷輸送層2を形成した。Embedded image And 3 parts of poly [1,1-di- (p-phenylene) cyclohexane carbonate] represented by
And applying the obtained coating solution to the aluminum substrate on which the charge generation layer 1 is formed by dip coating.
The resultant was dried by heating at 120 ° C. for 1 hour to form a charge transport layer 2 having a thickness of 20 μm.
【0036】このようにして作製された電子写真感光体
の電子写真特性を下記のようにして測定した。静電複写
紙試験装置(川口電機社製:エレクトロスタティックア
ナライザーEPA−8100)を用いて、常温常湿(2
0℃、40%RH)の環境下に−6KVのコロナ放電に
より感光体を帯電させた後、タングステンランプの光
を、モノクロメーターを用いて800nmの単色光に分
光し、感光体表面上で1μW/cm2 になるように調整
し、照射した。そして、その初期表面電位V0 (ボル
ト)、V0 の1/2になるまでの半減露光量E1/2 (e
rg/cm2 )を測定し、その後10luxのタングス
テン光を1秒間感光体表面上に照射し、残留電位V
R(ボルト)を測定した。さらに、上記の帯電、露光を
1000回繰り返した後のV0 、E1/2 、VR を測定し
た。その結果を下記の実施例9〜12および比較例2、
3と併せて後記の表1に示す。The electrophotographic characteristics of the thus produced electrophotographic photosensitive member were measured as follows. Using an electrostatic copying paper test apparatus (manufactured by Kawaguchi Electric Co., Ltd .: Electrostatic Analyzer EPA-8100), room temperature and normal humidity (2
After charging the photoconductor by a corona discharge of -6 KV in an environment of 0 ° C. and 40% RH), the light of the tungsten lamp is split into 800 nm monochromatic light using a monochromator, and 1 μW on the photoconductor surface. / Cm 2 and irradiation. Then, the half-exposure amount E 1/2 (e) until the initial surface potential V 0 (volts) becomes 1/2 of V 0.
rg / cm 2 ), and then irradiate the surface of the photoreceptor with 10 lux of tungsten light for 1 second.
R (volts) was measured. Furthermore, the above charge, V 0, E 1/2 after repeating 1000 times the exposure was measured V R. The results are shown in Examples 9 to 12 and Comparative Example 2 below.
The results are shown in Table 1 below.
【0037】実施例9〜12 実施例3〜6でそれぞれ得られたジクロロスズフタロシ
アニンを用いた以外は、実施例8と同様の方法で電荷発
生層1および電荷輸送層2を形成して電子写真感光体を
作製し、電子写真特性を同様の方法で評価した。Examples 9 to 12 Except that the dichlorotin phthalocyanine obtained in each of Examples 3 to 6 was used, a charge generation layer 1 and a charge transport layer 2 were formed in the same manner as in Example 8, and electrophotography was performed. A photoreceptor was prepared, and the electrophotographic characteristics were evaluated by the same method.
【0038】比較例2 合成例1で得られたジクロロスズフタロシアニン結晶を
用いた以外は、実施例8と同様の方法で電荷発生層1お
よび電荷輸送層2を形成して電子写真感光体を作製し、
電子写真特性を同様の方法で評価した。Comparative Example 2 A charge generating layer 1 and a charge transport layer 2 were formed in the same manner as in Example 8 except that the dichlorotin phthalocyanine crystal obtained in Synthesis Example 1 was used to prepare an electrophotographic photosensitive member. And
Electrophotographic properties were evaluated in a similar manner.
【0039】比較例3 比較例1で得られたジクロロスズフタロシアニン結晶を
用いた以外は、実施例8と同様の方法で電荷発生層1お
よび電荷輸送層2を形成して電子写真感光体を作製し、
電子写真特性を同様の方法で評価した。Comparative Example 3 A charge generating layer 1 and a charge transporting layer 2 were formed in the same manner as in Example 8 except that the dichlorotin phthalocyanine crystal obtained in Comparative Example 1 was used to produce an electrophotographic photosensitive member. And
Electrophotographic properties were evaluated in a similar manner.
【0040】[0040]
【表1】 [Table 1]
【0041】実施例13 アルミニウム基板上にアルコール可溶性ナイロン樹脂
(大日本インキ化学社製:ラッカマイドL−5003)
1部とメタノール10部からなる溶液を浸漬コーティン
グ法で塗布し、120℃において10分間加熱乾燥して
膜厚0.5μmの下引層4を形成した。次いで、実施例
1で得られたジクロロスズフタロシアニン結晶1部をポ
リビニルブチラール樹脂(積水化学社製:エスレックB
M−S)1部および酢酸n−ブチル100部と混合し、
ガラスビーズと共にペイントシェーカーで1時間処理し
て上記結晶を樹脂溶液中に分散させた。得られた塗布液
を浸漬コーティング法で上記下引層4上に塗布し、10
0℃において10分間加熱乾燥して膜厚0.15μmの
電荷発生層1を形成した。なお、分散後の上記ジクロロ
スズフタロシアニン結晶の結晶型はX線回折によって分
散前の結晶型と比較して変化していないことを確認し
た。次に、上記電荷発生層1上に実施例8と同様にして
電荷輸送層2を形成した。Example 13 Alcohol-soluble nylon resin (Lacamide L-5003, manufactured by Dainippon Ink and Chemicals, Inc.) on an aluminum substrate
A solution consisting of 1 part and 10 parts of methanol was applied by a dip coating method, and dried by heating at 120 ° C. for 10 minutes to form an undercoat layer 4 having a thickness of 0.5 μm. Next, 1 part of the dichlorotin phthalocyanine crystal obtained in Example 1 was replaced with a polyvinyl butyral resin (Slec B, manufactured by Sekisui Chemical Co., Ltd.).
MS) 1 part and 100 parts of n-butyl acetate,
The crystal was dispersed in a resin solution by treating with a glass shaker for 1 hour using a paint shaker. The obtained coating solution is applied onto the undercoat layer 4 by a dip coating method,
The resultant was dried by heating at 0 ° C. for 10 minutes to form a charge generation layer 1 having a thickness of 0.15 μm. It should be noted that the crystal form of the dichlorotin phthalocyanine crystal after dispersion was not changed by X-ray diffraction as compared with the crystal form before dispersion. Next, a charge transport layer 2 was formed on the charge generation layer 1 in the same manner as in Example 8.
【0042】このようにして作製された電子写真感光体
の電子写真特性を下記のようにして測定した。静電複写
紙試験装置(川口電機製:エレクトロスタティックアナ
ライザーEPA−8100)を用いて、常温常湿(20
℃、40%RH)の環境下に−6KVのコロナ放電によ
り感光体を帯電させた後、タングステンランプの光を、
モノクロメーターを用いて800nmの単色光に分光
し、感光体表面上で1μW/cm2 になるように調節
し、照射した。そして、その初期表面電位VO (ボル
ト)、半減露光量E1/2 (erg/cm2 )を測定し、
その後10luxの白色光を感光体表面上に1秒間照射
し、残留電位VR (ボルト)を測定した。さらに、上記
の帯電、露光を1000回繰り返した後のVO 、
E1/2 、VR を測定した。電荷発生層1を構成するジク
ロロスズフタロシアニン結晶と結着樹脂および上記の測
定結果を、下記の実施例14〜19および比較例4〜7
と併せて後記の表2に示す。The electrophotographic characteristics of the thus produced electrophotographic photosensitive member were measured as follows. Using an electrostatic copying paper test apparatus (manufactured by Kawaguchi Electric Co., Ltd .: Electrostatic Analyzer EPA-8100), a normal temperature and normal humidity (20
After charging the photoreceptor by a corona discharge of −6 KV in an environment of 40 ° C., 40% RH), the light of a tungsten lamp is
The light was split into monochromatic light of 800 nm using a monochromator, adjusted to 1 μW / cm 2 on the surface of the photoreceptor, and irradiated. Then, the initial surface potential V O (volt) and the half-life exposure amount E 1/2 (erg / cm 2 ) were measured.
Thereafter, the surface of the photoreceptor was irradiated with 10 lux of white light for 1 second, and the residual potential V R (volt) was measured. Furthermore, V O after repeating the above charging and exposure 1000 times,
E 1/2, was measured V R. The dichlorotin phthalocyanine crystal constituting the charge generation layer 1 and the binder resin and the measurement results described above were used in Examples 14 to 19 and Comparative Examples 4 to 7 below.
The results are shown in Table 2 below.
【0043】実施例14 電荷発生層1を構成する前記ポリビニルブチラール樹脂
の代わりにポリエステル樹脂(東洋紡社製:バイロン2
00)1部を用いた以外は、実施例13と同様の感光体
を作製し、同様の測定を行った。Example 14 A polyester resin (manufactured by Toyobo: Viron 2) was used in place of the polyvinyl butyral resin constituting the charge generation layer 1.
00) A photoconductor was prepared in the same manner as in Example 13 except that 1 part was used, and the same measurement was performed.
【0044】比較例4 実施例1で得られたジクロロスズフタロシアニン結晶の
代わりに合成例1で得られたジクロロスズフタロシアニ
ン結晶を用いた以外は、実施例13と同様の感光体を作
製し、同様の測定を行った。Comparative Example 4 A photoconductor was prepared in the same manner as in Example 13, except that the dichlorotin phthalocyanine crystal obtained in Synthesis Example 1 was used instead of the dichlorotin phthalocyanine crystal obtained in Example 1, Was measured.
【0045】比較例5 実施例1で得られたジクロロスズフタロシアニン結晶の
代わりに比較例1で得られたジクロロスズフタロシアニ
ン結晶を用いた以外は、実施例13と同様の感光体を作
製し、同様の測定を行った。Comparative Example 5 A photoconductor was prepared in the same manner as in Example 13, except that the dichlorotin phthalocyanine crystal obtained in Comparative Example 1 was used instead of the dichlorotin phthalocyanine crystal obtained in Example 1. Was measured.
【0046】実施例15 アルミニウム基板上にアルコール可溶性ナイロン樹脂
(東レ社製:CM−8000)1部とメタノール10部
からなる溶液を浸漬コーティング法で塗布し、110℃
において10分間加熱乾燥して膜厚0.1μmの下引層
4を形成した。次いで、実施例3で得られたジクロロス
ズフタロシアニン結晶1部を部分ホルマール化ポリビニ
ルブチラール樹脂(積水化学社製:エスレックBX−
2)1部およびシクロヘキサノン100部と混合し、ガ
ラスビーズと共にペイントシェーカーで1時間処理して
上記結晶を樹脂溶液中に分散させた。得られた塗布液を
浸漬コーティング法で上記下引層4上に塗布し、120
℃において10分加熱乾燥して膜厚0.2μmの電荷発
生層1を形成した。なお、分散後の上記ジクロロスズフ
タロシアニン結晶の結晶型はX線回折によって分散前の
結晶型と比較して変化していないことを確認した。Example 15 A solution consisting of 1 part of an alcohol-soluble nylon resin (manufactured by Toray Industries, Ltd .: CM-8000) and 10 parts of methanol was applied on an aluminum substrate by dip coating at 110 ° C.
For 10 minutes to form an undercoat layer 4 having a thickness of 0.1 μm. Next, 1 part of the dichlorotin phthalocyanine crystal obtained in Example 3 was partially formalized to a polyvinyl butyral resin (manufactured by Sekisui Chemical: Eslec BX-
2) 1 part and 100 parts of cyclohexanone were mixed, and treated with a glass shaker for 1 hour using a paint shaker to disperse the crystals in the resin solution. The obtained coating solution is applied on the undercoat layer 4 by a dip coating method,
The resultant was dried by heating at 10 ° C. for 10 minutes to form a charge generation layer 1 having a thickness of 0.2 μm. It should be noted that the crystal form of the dichlorotin phthalocyanine crystal after dispersion was not changed by X-ray diffraction as compared with the crystal form before dispersion.
【0047】そして、前記構造式(1)で示されるN,
N′−ジフェニル−N,N′−ビス−(m−トリル)ベ
ンジジンの代わりに下記構造式(3)Then, N, represented by the structural formula (1),
Instead of N'-diphenyl-N, N'-bis- (m-tolyl) benzidine, the following structural formula (3)
【化3】 で示されるN,N′−ビス−(p−トリル)−N,N′
−ビス−(p−エチルフェニル)−3,3′−ジメチル
ベンジジン2部を用いた以外は、実施例13と同様の電
荷輸送層2を形成し、作製された感光体ついて実施例1
3と同様の測定を行った。Embedded image N, N'-bis- (p-tolyl) -N, N '
A charge transport layer 2 was formed in the same manner as in Example 13 except that 2 parts of -bis- (p-ethylphenyl) -3,3'-dimethylbenzidine was used.
The same measurement as in Example 3 was performed.
【0048】実施例16 電荷発生層1を構成する前記部分ホルマール化ポリビニ
ルブチラール樹脂の代わりにポリメチルメタクリレート
樹脂(デュポン社製:エルバサイト2021)1部を用
いた以外は、実施例15と同様の感光体を作製し、実施
例13と同様の測定を行った。Example 16 The same procedure as in Example 15 was carried out except that 1 part of a polymethyl methacrylate resin (manufactured by DuPont: Elvacite 2021) was used in place of the partially formalized polyvinyl butyral resin constituting the charge generation layer 1. A photoconductor was prepared, and the same measurement as in Example 13 was performed.
【0049】比較例6 実施例3で得られたジクロロスズフタロシアニン結晶の
代わりに比較例1で得られたジクロロスズフタロシアニ
ン結晶を用いた以外は、実施例15と同様の感光体を作
製し、実施例13と同様の測定を行った。Comparative Example 6 A photoconductor was prepared in the same manner as in Example 15, except that the dichlorotin phthalocyanine crystal obtained in Comparative Example 1 was used instead of the dichlorotin phthalocyanine crystal obtained in Example 3. The same measurement as in Example 13 was performed.
【0050】実施例17 ジルコニウム化合物(マツモト製薬社製:オルガチック
スZC540)10部およびシラン化合物(日本ユンカ
ー社製:A1110)1部とi−プロパノール40部お
よびブタノール20部からなる溶液をアルミニウム基板
上に浸漬コーティング法で塗布し、160℃において1
0分間加熱乾燥して膜厚0.1μmの下引層4を形成し
た。次いで、実施例4で得られたジクロロスズフタロシ
アニン結晶1部を塩化ビニル−酢酸ビニル共重合体(ユ
ニオンカーバイト社製:VMCH)1部および酢酸n−
ブチル100部と混合し、ガラスビーズと共にペイント
シェーカーで1時間処理して上記結晶を共重合体溶液中
に分散させた。得られた塗布液を浸漬コーティング法で
上記下引層4上に塗布し、100℃において10分間加
熱乾燥して膜厚0.2μmの電荷発生層1を形成した。
なお、分散後の上記ジクロロスズフタロシアニン結晶の
結晶型はX線回折によって分散前の結晶型と比較して変
化していないことを確認した。そして、実施例15と同
様の電荷輸送層2を形成し、作製された感光体について
実施例13と同様の測定を行った。Example 17 A solution comprising 10 parts of a zirconium compound (manufactured by Matsumoto Pharmaceutical Co., Ltd .: Organix ZC540), 1 part of a silane compound (manufactured by Japan Junker Co., Ltd .: A1110), 40 parts of i-propanol and 20 parts of butanol was placed on an aluminum substrate. At 160 ° C. by dip coating.
By heating and drying for 0 minutes, an undercoat layer 4 having a thickness of 0.1 μm was formed. Next, 1 part of the dichlorotin phthalocyanine crystal obtained in Example 4 was combined with 1 part of a vinyl chloride-vinyl acetate copolymer (manufactured by Union Carbide: VMCH) and n-acetate acetate.
The crystals were mixed with 100 parts of butyl and treated with a glass shaker for 1 hour on a paint shaker to disperse the crystals in the copolymer solution. The obtained coating solution was applied on the undercoat layer 4 by a dip coating method, and dried by heating at 100 ° C. for 10 minutes to form a charge generation layer 1 having a thickness of 0.2 μm.
It should be noted that the crystal form of the dichlorotin phthalocyanine crystal after dispersion was not changed by X-ray diffraction as compared with the crystal form before dispersion. Then, the same charge transport layer 2 as in Example 15 was formed, and the same measurement as in Example 13 was performed on the manufactured photoreceptor.
【0051】実施例18 電荷発生層1を構成する前記塩化ビニル−酢酸ビニル共
重合体の代わりにフェノキシ樹脂(ユニオンカーバイド
社製:PKHH)1部とシクロヘキサノン100部を用
いた以外は、実施例17と同様の感光体を作製し、同様
の測定を行った。Example 18 Example 17 was repeated except that 1 part of a phenoxy resin (manufactured by Union Carbide: PKHH) and 100 parts of cyclohexanone were used instead of the vinyl chloride-vinyl acetate copolymer constituting the charge generating layer 1. The same photoreceptor was prepared and the same measurement was performed.
【0052】実施例19 電荷発生層1を構成する前記塩化ビニル−酢酸ビニル共
重合体の代わりに変性エーテル型ポリエステル樹脂(富
士写真フィルム社製:STAFIX NLC−2)1部
とシクロヘキサノン100部を用いた以外は、実施例1
7と同様の感光体を作製し、同様の測定を行った。Example 19 Instead of the vinyl chloride-vinyl acetate copolymer constituting the charge generating layer 1, 1 part of a modified ether type polyester resin (STAFIX NLC-2, manufactured by Fuji Photo Film Co., Ltd.) and 100 parts of cyclohexanone were used. Example 1 except for
A photoreceptor similar to that of Example 7 was produced, and the same measurement was performed.
【0053】比較例7 実施例4で得られたジクロロスズフタロシアニン結晶の
代わりに比較例1で得られたジクロロスズフタロシアニ
ン結晶を用いた以外は、実施例17と同様の感光体を作
製し、同様の測定を行った。Comparative Example 7 A photoconductor was prepared in the same manner as in Example 17, except that the dichlorotin phthalocyanine crystal obtained in Comparative Example 1 was used instead of the dichlorotin phthalocyanine crystal obtained in Example 4, Was measured.
【0054】[0054]
【表2】 [Table 2]
【0055】実施例20〜24 実施例13、15、17〜19と同一の条件でドラム型
感光体を作製し、この電子写真用感光体を半導体レーザ
ープリンター(富士ゼロックス社製:FX XP−1
5)に装着して複写画像を形成し、複写を1万回繰り返
した。その結果を下記の表3に示す。Examples 20 to 24 A drum type photoreceptor was manufactured under the same conditions as in Examples 13, 15, 17 to 19, and this electrophotographic photoreceptor was mounted on a semiconductor laser printer (Fuji Xerox: FX XP-1).
5), a copied image was formed, and copying was repeated 10,000 times. The results are shown in Table 3 below.
【0056】比較例8〜10 比較例5〜7と同一の条件でドラム型感光体を作製し、
実施例20と同様の評価を行った。その結果を表3に示
す。Comparative Examples 8 to 10 A drum-type photosensitive member was manufactured under the same conditions as Comparative Examples 5 to 7,
The same evaluation as in Example 20 was performed. Table 3 shows the results.
【0057】[0057]
【表3】 [Table 3]
【0058】比較例11 分散溶剤をTHFに代えた以外は、実施例13と同様に
して感光体用塗布液を調製した。そして、分散後の前記
ジクロロスズフタロシアニン結晶の結晶型をX線回折に
よって確認したところ、分散前の結晶型と比較して変化
していることが判明した。このジクロロスズフタロシア
ニン結晶が分散した塗布液のX線回折図を図12に示
す。次いで、実施例13と同様にして電子写真感光体を
作製し、同様に電子写真特性を測定した。その結果を表
4に示す。この電子写真感光体の吸収スペクトルを図1
1に示す。Comparative Example 11 A coating solution for a photoreceptor was prepared in the same manner as in Example 13 except that THF was used as the dispersion solvent. Then, when the crystal form of the dichlorotin phthalocyanine crystal after dispersion was confirmed by X-ray diffraction, it was found that the crystal form had changed compared to the crystal form before dispersion. FIG. 12 shows an X-ray diffraction diagram of the coating solution in which the dichlorotin phthalocyanine crystals are dispersed. Next, an electrophotographic photosensitive member was prepared in the same manner as in Example 13, and the electrophotographic characteristics were measured in the same manner. Table 4 shows the results. FIG. 1 shows the absorption spectrum of this electrophotographic photosensitive member.
It is shown in FIG.
【0059】比較例12 分散溶剤をクロロベンゼンに代えた以外は、実施例13
と同様にして感光体用塗布液を調製した。そして、分散
後の前記ジクロロスズフタロシアニン結晶の結晶型をX
線回折によって確認したところ、分散前の結晶型と比較
して変化していることが判明した。このジクロロスズフ
タロシアニン結晶が分散した塗布液のX線回折図を図1
3に示す。次いで、実施例13と同様にして電子写真感
光体を作製し、同様に電子写真特性を測定した。その結
果を表4に示す。Comparative Example 12 Example 13 was repeated except that chlorobenzene was used as the dispersing solvent.
A coating solution for a photoreceptor was prepared in the same manner as described above. Then, the crystal form of the dichlorotin phthalocyanine crystal after dispersion is changed to X
When confirmed by line diffraction, it was found to be different from the crystal form before dispersion. FIG. 1 shows an X-ray diffraction diagram of the coating solution in which the dichlorotin phthalocyanine crystal was dispersed.
3 is shown. Next, an electrophotographic photosensitive member was prepared in the same manner as in Example 13, and the electrophotographic characteristics were measured in the same manner. Table 4 shows the results.
【0060】[0060]
【表4】 [Table 4]
【0061】[0061]
【発明の効果】本発明によれば、公知の方法で合成され
るジクロロスズフタロシアニンを、無機塩と共に機械的
に粉砕するかまたはその後さらに溶剤処理するという簡
単な処理で、特定のブラッグ角に強い回折ピークを有す
るジクロロスズフタロシアニンの新規な結晶を製造する
ことができる。この新規な結晶は、感光波長域が長波長
まで伸びているため、半導体レーザーを利用するプリン
ター等の電子写真感光体用電荷発生材料として非常に有
用である。また、上記のジクロロスズフタロシアニン結
晶を用いて作製される本発明の電子写真感光体は、高感
度で、残留電位が低く、帯電性が高く、かつ繰り返し複
写操作よる変動が少ないことから、耐久性に優れてい
る。しかも、電荷発生材料としてジクロロスズフタロシ
アニン結晶とその結着樹脂としてポリビニルアセタール
系樹脂または塩化ビニル−酢酸ビニル系共重合体とを感
光層に含有する電子写真感光体は、一層感度が高く、電
荷保持性が良好で、画質欠陥が少ないので、画質特性に
著しく優れている。 According to the present invention, dichlorotin phthalocyanine synthesized by a known method is resistant to a specific Bragg angle by a simple treatment of mechanically pulverizing it with an inorganic salt or further treating it with a solvent. New crystals of dichlorotin phthalocyanine having a diffraction peak can be produced. This novel crystal is very useful as a charge generation material for an electrophotographic photoreceptor such as a printer using a semiconductor laser because the photosensitive wavelength range extends to a long wavelength. Further, the electrophotographic photoreceptor of the present invention produced using the above-mentioned dichlorotin phthalocyanine crystal has high durability, low residual potential, high chargeability, and little variation due to repeated copying operations, Is excellent. Moreover, an electrophotographic photosensitive member containing a dichlorotin phthalocyanine crystal as a charge generating material and a polyvinyl acetal-based resin or a vinyl chloride-vinyl acetate-based copolymer as a binder resin in the photosensitive layer has higher sensitivity and has higher charge retention. It has excellent properties and has few image quality defects, and thus has remarkably excellent image quality characteristics .
【図1】 本発明にかかる電子写真感光体の模式的断面
図を示す。FIG. 1 is a schematic cross-sectional view of an electrophotographic photosensitive member according to the present invention.
【図2】 本発明にかかる電子写真感光体の別の模式的
断面図を示す。FIG. 2 shows another schematic sectional view of the electrophotographic photosensitive member according to the present invention.
【図3】 本発明にかかる電子写真感光体の他の模式的
断面図を示す。FIG. 3 shows another schematic cross-sectional view of the electrophotographic photosensitive member according to the present invention.
【図4】 本発明にかかる電子写真感光体のさらに他の
模式的断面図を示す。FIG. 4 shows still another schematic cross-sectional view of the electrophotographic photosensitive member according to the present invention.
【図5】 合成例1で得られたジクロロスズフタロシア
ニン結晶の粉末X線回折図を示す。5 shows a powder X-ray diffraction pattern of the dichlorotin phthalocyanine crystal obtained in Synthesis Example 1. FIG.
【図6】 合成例2で得られたジクロロスズフタロシア
ニン結晶の粉末X線回折図を示す。6 shows a powder X-ray diffraction pattern of the dichlorotin phthalocyanine crystal obtained in Synthesis Example 2. FIG.
【図7】 実施例1で得られたジクロロスズフタロシア
ニン結晶の粉末X線回折図を示す。7 shows a powder X-ray diffraction pattern of the dichlorotin phthalocyanine crystal obtained in Example 1. FIG.
【図8】 実施例3で得られたジクロロスズフタロシア
ニン結晶の粉末X線回折図を示す。8 shows a powder X-ray diffraction pattern of the dichlorotin phthalocyanine crystal obtained in Example 3. FIG.
【図9】 実施例7で得られたジクロロスズフタロシア
ニン結晶の粉末X線回折図を示す。9 shows a powder X-ray diffraction pattern of the dichlorotin phthalocyanine crystal obtained in Example 7. FIG.
【図10】 比較例1で得られたジクロロスズフタロシ
アニン結晶の粉末X線回折図を示す。10 shows a powder X-ray diffraction pattern of the dichlorotin phthalocyanine crystal obtained in Comparative Example 1. FIG.
【図11】 比較例11で作製された電子写真感光体の
吸収スペクトル図を示す。11 shows an absorption spectrum of the electrophotographic photoreceptor produced in Comparative Example 11. FIG.
【図12】 比較例11で調製された感光体用塗布液の
X線回折図を示す。FIG. 12 shows an X-ray diffraction diagram of a coating solution for a photoreceptor prepared in Comparative Example 11.
【図13】 比較例12で調製された感光体用塗布液の
X線回折図を示す。13 shows an X-ray diffraction diagram of a coating solution for a photoreceptor prepared in Comparative Example 12. FIG.
1‥‥電荷発生層、2‥‥電荷輸送層、3‥‥導電性支
持体、4‥‥下引層、5‥‥保護層。1) charge generation layer, 2) charge transport layer, 3) conductive support, 4) undercoat layer, 5) protective layer.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯島 正和 神奈川県南足柄市竹松1600番地 富士ゼ ロックス株式会社竹松事業所内 (72)発明者 坂口 泰生 神奈川県南足柄市竹松1600番地 富士ゼ ロックス株式会社竹松事業所内 (72)発明者 真下 清和 神奈川県南足柄市竹松1600番地 富士ゼ ロックス株式会社竹松事業所内 (56)参考文献 特開 昭62−127843(JP,A) 特開 平3−61952(JP,A) 特開 平3−174543(JP,A) 特開 平2−97959(JP,A) 特開 平1−133790(JP,A) 特開 平3−73961(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09B 67/50 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masakazu Iijima 1600 Takematsu, Minamiashigara-shi, Kanagawa Prefecture Inside the Fujimatsu Rocks Co., Ltd. In-house (72) Inventor Seiwa Mashita 1600 Takematsu, Minamiashigara-shi, Kanagawa Prefecture Fuji Xerox Co., Ltd. Takematsu Office (56) References JP-A-62-127843 (JP, A) JP-A-3-61952 (JP, A) JP-A-3-174543 (JP, A) JP-A-2-97959 (JP, A) JP-A-1-133790 (JP, A) JP-A-3-73961 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C09B 67/50
Claims (7)
角(2θ±0.2°)が8.5°、11.2°、14.
5°および27.2°に強い回折ピークを有することを
特徴とするジクロロスズフタロシアニン結晶。1. In an X-ray diffraction spectrum, a Bragg angle (2θ ± 0.2 °) is 8.5 °, 11.2 °, and 14.
A dichlorotin phthalocyanine crystal having strong diffraction peaks at 5 ° and 27.2 °.
共に機械的に粉砕するかまたは粉砕した後溶剤処理する
ことを特徴とする請求項1に記載のジクロロスズフタロ
シアニン結晶の製造方法。2. The method for producing a dichlorotin phthalocyanine crystal according to claim 1, wherein the dichlorotin phthalocyanine is mechanically pulverized together with an inorganic salt or is pulverized and then subjected to a solvent treatment.
アニン結晶を含有する感光層を導電性支持体上に被覆し
てなることを特徴とする電子写真感光体。3. An electrophotographic photosensitive member comprising a photosensitive layer containing the dichlorotin phthalocyanine crystal according to claim 1 coated on a conductive support.
アセタール系樹脂、塩化ビニル−酢酸ビニル系共重合
体、フェノキシ樹脂および変性エーテル型ポリエステル
樹脂から選ばれる少なくとも1種を含有する請求項3に
記載の電子写真感光体。4. The photosensitive layer according to claim 3, wherein the binder resin contains at least one selected from a polyvinyl acetal resin, a vinyl chloride-vinyl acetate copolymer, a phenoxy resin and a modified ether type polyester resin. The electrophotographic photosensitive member according to the above.
ルブチラール樹脂、ポリビニルホルマール樹脂および部
分アセタール化ポリビニルブチラール樹脂から選ばれる
1種または2種以上よりなる請求項4に記載の電子写真
感光体。5. The electrophotographic photoreceptor according to claim 4, wherein the polyvinyl acetal-based resin comprises one or more selected from a polyvinyl butyral resin, a polyvinyl formal resin and a partially acetalized polyvinyl butyral resin.
化ビニル−酢酸ビニル共重合体、ヒドロキシル変性塩化
ビニル−酢酸ビニル共重合体およびカルボキシル変性塩
化ビニル−酢酸ビニル共重合体から選ばれる1種または
2種以上よりなる請求項4に記載の電子写真感光体。6. The vinyl chloride-vinyl acetate copolymer is one selected from a vinyl chloride-vinyl acetate copolymer, a hydroxyl-modified vinyl chloride-vinyl acetate copolymer and a carboxyl-modified vinyl chloride-vinyl acetate copolymer. 5. The electrophotographic photoreceptor according to claim 4, comprising at least two types.
順次積層した積層構造からなり、ジクロロスズフタロシ
アニン結晶と結着樹脂とを上記電荷発生層に含有するこ
とを特徴とする請求項4に記載の電子写真感光体。7. The charge generating layer according to claim 4, wherein the photosensitive layer has a laminated structure in which a charge generating layer and a charge transporting layer are sequentially laminated, and a dichlorotin phthalocyanine crystal and a binder resin are contained in the charge generating layer. The electrophotographic photosensitive member according to the above.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04027448A JP3123184B2 (en) | 1991-09-27 | 1992-01-20 | Novel crystal of dichlorotin phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the same |
US08/001,515 US5338636A (en) | 1991-09-27 | 1993-01-06 | Dichlorotin phthalocyanine crystal electrophotographic photoreceptor using the same, and coating composition for electrophotographic photoreceptor |
US08/240,483 US5463043A (en) | 1991-09-27 | 1994-05-10 | Process for producing a dichlorotin phthalocyanine crystal |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3-274872 | 1991-09-27 | ||
JP27487291 | 1991-09-27 | ||
JP04027448A JP3123184B2 (en) | 1991-09-27 | 1992-01-20 | Novel crystal of dichlorotin phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05140473A JPH05140473A (en) | 1993-06-08 |
JP3123184B2 true JP3123184B2 (en) | 2001-01-09 |
Family
ID=26365365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04027448A Expired - Fee Related JP3123184B2 (en) | 1991-09-27 | 1992-01-20 | Novel crystal of dichlorotin phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3123184B2 (en) |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2865020B2 (en) | 1994-06-10 | 1999-03-08 | 富士ゼロックス株式会社 | Novel charge transporting polymer and organic electronic device using the same |
JP2827976B2 (en) * | 1994-10-18 | 1998-11-25 | 富士ゼロックス株式会社 | Organic electronic devices using charge transporting copolyester |
US5639581A (en) * | 1994-10-24 | 1997-06-17 | Fuji Xerox Co., Ltd. | Charge transporting polymer, process for producing the same, and organic electronic device containing the same |
US5654119A (en) * | 1995-04-06 | 1997-08-05 | Fuji Xerox Co., Ltd. | Organic electronic device comprising charge-transporting polyester and image forming apparatus |
US5731118A (en) * | 1995-08-25 | 1998-03-24 | Fuji Xerox Co., Ltd. | Charge transporting random copolyester resin, process for producing the same and organic electronic device using the same |
JP3058069B2 (en) * | 1995-10-18 | 2000-07-04 | 富士ゼロックス株式会社 | Novel charge transporting polymer and organic electronic device using the same |
US5677097A (en) * | 1996-01-18 | 1997-10-14 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor |
JP3797168B2 (en) | 2001-09-20 | 2006-07-12 | 富士ゼロックス株式会社 | Image forming method |
JP2003149950A (en) | 2001-11-09 | 2003-05-21 | Fuji Xerox Co Ltd | Image forming device |
JP4192713B2 (en) | 2003-07-25 | 2008-12-10 | 富士ゼロックス株式会社 | Arylamine compound, charge transport material, electrophotographic photosensitive member, image forming apparatus, and process cartridge |
JP2008076657A (en) * | 2006-09-20 | 2008-04-03 | Fuji Xerox Co Ltd | Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and image forming apparatus |
JP2008076656A (en) | 2006-09-20 | 2008-04-03 | Fuji Xerox Co Ltd | Electrophotographic photoreceptor, process cartridge and image forming apparatus |
JP2008096923A (en) | 2006-10-16 | 2008-04-24 | Fuji Xerox Co Ltd | Image forming apparatus and process cartridge |
JP4872601B2 (en) | 2006-10-27 | 2012-02-08 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP4872600B2 (en) | 2006-10-27 | 2012-02-08 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, method for manufacturing electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP4957239B2 (en) | 2006-12-27 | 2012-06-20 | 富士ゼロックス株式会社 | Image forming apparatus |
JP2008216812A (en) | 2007-03-06 | 2008-09-18 | Fuji Xerox Co Ltd | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP4905228B2 (en) | 2007-04-09 | 2012-03-28 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP2008262050A (en) | 2007-04-12 | 2008-10-30 | Fuji Xerox Co Ltd | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
US8679709B2 (en) | 2007-06-28 | 2014-03-25 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, process cartridge, image forming apparatus, and film forming coating solution |
JP2009156970A (en) | 2007-12-25 | 2009-07-16 | Fuji Xerox Co Ltd | Charging member cleaning member, method of producing charging member cleaning member, charging device, process cartridge and image forming apparatus |
JP4618311B2 (en) | 2008-03-19 | 2011-01-26 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP4666051B2 (en) | 2008-10-24 | 2011-04-06 | 富士ゼロックス株式会社 | Charging member, charging device, process cartridge, and image forming apparatus |
JP5345831B2 (en) | 2008-12-16 | 2013-11-20 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
US8273511B2 (en) | 2008-12-25 | 2012-09-25 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, manufacturing method of electrophotographic photoreceptor, processing cartridge, and image forming apparatus |
JP4702447B2 (en) | 2008-12-25 | 2011-06-15 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP2010217438A (en) | 2009-03-16 | 2010-09-30 | Fuji Xerox Co Ltd | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP4900413B2 (en) | 2009-03-27 | 2012-03-21 | 富士ゼロックス株式会社 | Image forming apparatus and process cartridge |
JP2010231077A (en) | 2009-03-27 | 2010-10-14 | Fuji Xerox Co Ltd | Electrophotographic photoreceptor, process cartridge, and image forming device |
JP2011008117A (en) | 2009-06-26 | 2011-01-13 | Fuji Xerox Co Ltd | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP5428574B2 (en) | 2009-06-26 | 2014-02-26 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, image forming apparatus, and process cartridge |
JP5560755B2 (en) | 2010-02-10 | 2014-07-30 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP5598013B2 (en) | 2010-02-19 | 2014-10-01 | 富士ゼロックス株式会社 | Image carrier for image forming apparatus, process cartridge, and image forming apparatus |
JP5540962B2 (en) | 2010-07-15 | 2014-07-02 | 富士ゼロックス株式会社 | Image carrier for image forming apparatus, process cartridge, and image forming apparatus |
JP5659643B2 (en) | 2010-09-10 | 2015-01-28 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, method for producing electrophotographic photoreceptor, image forming apparatus, and process cartridge |
US8748070B2 (en) | 2011-01-28 | 2014-06-10 | Fuji Xerox Co., Ltd. | Thiol group-containing charge transporting material, thiol group-containing charge transporting material-dissolving solution, photoelectric conversion device, electrophotographic photoreceptor, image forming apparatus, and process cartridge |
US9389525B2 (en) | 2011-03-09 | 2016-07-12 | Fuji Xerox Co., Ltd. | Fluorine-containing resin particle dispersion, method for preparing fluorine-containing resin particle dispersion, coating liquid which contains fluorine-containing resin particles, method for preparing coating film which contains fluorine-containing resin particles, coating film which contains fluorine-containing resin particles, molded body, electrophotographic photoreceptor, method for preparing electrophotographic photoreceptor, image forming apparatus, and process cartridge |
JP5724518B2 (en) | 2011-03-28 | 2015-05-27 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, image forming apparatus, and process cartridge |
JP5724519B2 (en) | 2011-03-28 | 2015-05-27 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, image forming apparatus, and process cartridge |
JP2013037289A (en) | 2011-08-10 | 2013-02-21 | Fuji Xerox Co Ltd | Electrophotographic photoreceptor, image forming device, and process cartridge |
JP5861525B2 (en) | 2012-03-26 | 2016-02-16 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, image forming apparatus, and process cartridge |
JP6123714B2 (en) | 2014-03-19 | 2017-05-10 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP2015184462A (en) | 2014-03-24 | 2015-10-22 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP2017062401A (en) | 2015-09-25 | 2017-03-30 | 富士ゼロックス株式会社 | Cylindrical member for electrophotographic photoreceptor, electrophotographic photoreceptor, image forming apparatus, process cartridge, and manufacturing method for cylindrical member for electrophotographic photoreceptor |
JP2017062400A (en) | 2015-09-25 | 2017-03-30 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP6794631B2 (en) | 2016-02-19 | 2020-12-02 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP2017161778A (en) | 2016-03-10 | 2017-09-14 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, image forming apparatus, and conductive substrate for electrophotographic photoreceptor |
JP2018017929A (en) | 2016-07-28 | 2018-02-01 | 富士ゼロックス株式会社 | Conductive support body for electrophotographic photoreceptor, electrophotographic photoreceptor, process cartridge and image forming apparatus |
JP6801283B2 (en) | 2016-08-01 | 2020-12-16 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, image forming apparatus |
JP6737081B2 (en) | 2016-09-02 | 2020-08-05 | 富士ゼロックス株式会社 | Image forming device |
JP6838324B2 (en) | 2016-09-05 | 2021-03-03 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, image forming apparatus |
JP2018049060A (en) | 2016-09-20 | 2018-03-29 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP2018049148A (en) | 2016-09-21 | 2018-03-29 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, and image formation device |
JP2018054707A (en) | 2016-09-26 | 2018-04-05 | 富士ゼロックス株式会社 | Image forming apparatus and process cartridge |
JP6759949B2 (en) | 2016-10-04 | 2020-09-23 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP6825382B2 (en) | 2017-01-23 | 2021-02-03 | 富士ゼロックス株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP6935674B2 (en) | 2017-03-22 | 2021-09-15 | 富士フイルムビジネスイノベーション株式会社 | Electrophotographic photosensitive member, process cartridge, and image forming apparatus |
JP2019061146A (en) | 2017-09-27 | 2019-04-18 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP2019061094A (en) | 2017-09-27 | 2019-04-18 | 富士ゼロックス株式会社 | Image forming apparatus |
JP2019061073A (en) | 2017-09-27 | 2019-04-18 | 富士ゼロックス株式会社 | Image forming apparatus and image forming method |
JP2019061091A (en) | 2017-09-27 | 2019-04-18 | 富士ゼロックス株式会社 | Image forming device and unit for image forming device |
US20190302632A1 (en) | 2018-04-03 | 2019-10-03 | Fuji Xerox Co., Ltd. | Electrophotographic photoreceptor, electrophotographic photoreceptor for positive charging, process cartridge, and image forming apparatus |
JP2019184700A (en) | 2018-04-04 | 2019-10-24 | 富士ゼロックス株式会社 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
EP3582012A1 (en) | 2018-06-15 | 2019-12-18 | Fuji Xerox Co., Ltd | Dispersant attached polytetrafluoroethylene particle, composition, layered material, electrophotographic photoreceptor, process cartridge, and image forming apparatus |
JP2022150036A (en) | 2021-03-25 | 2022-10-07 | 富士フイルムビジネスイノベーション株式会社 | Electrophotographic photoreceptor, process cartridge, and image forming apparatus |
-
1992
- 1992-01-20 JP JP04027448A patent/JP3123184B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05140473A (en) | 1993-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3123184B2 (en) | Novel crystal of dichlorotin phthalocyanine, method for producing the same, and electrophotographic photoreceptor using the same | |
JP3166293B2 (en) | Novel hydroxygallium phthalocyanine crystal, photoconductive material comprising the new crystal, and electrophotographic photoreceptor using the same | |
JP3123185B2 (en) | Novel crystal of chlorogallium phthalocyanine, photoconductive material comprising the new crystal, and electrophotographic photoreceptor using the same | |
JP3166283B2 (en) | Method for producing novel crystals of hydroxygallium phthalocyanine | |
US5463043A (en) | Process for producing a dichlorotin phthalocyanine crystal | |
US5508395A (en) | Hydroxygallium phthalocyanine crystal, process for preparing same | |
JP3635786B2 (en) | Electrophotographic photoreceptor | |
JP3139126B2 (en) | Electrophotographic photoreceptor and method of manufacturing the same | |
JP3028004B2 (en) | Method for producing novel crystal of chlorogallium phthalocyanine and electrophotographic photoreceptor using the crystal | |
JP3838385B2 (en) | Electron withdrawing group-containing hydroxygallium phthalocyanine crystal and electrophotographic photoreceptor using the same | |
JP3097293B2 (en) | Electrophotographic photoreceptor | |
JP2850665B2 (en) | Electrophotographic photoreceptor | |
JP3225172B2 (en) | Method for producing undercoat liquid for electrophotographic photoreceptor and electrophotographic photoreceptor using the same | |
JP2813813B2 (en) | Electrophotographic photoreceptor | |
JP3084882B2 (en) | Electrophotographic photoreceptor | |
JPH10148954A (en) | Electrophotographic photoreceptor and electrophotographic process | |
JP3617195B2 (en) | Chlorogallium tetra-2,3-pyridinoporphyrazine crystal, photoconductive material, and electrophotographic photoreceptor using the same | |
JP2001166508A (en) | Electrophotographic photoreceptor | |
JP2751749B2 (en) | Electrophotographic photoreceptor | |
JPH07247441A (en) | Chlorogallium phthalocyanine crystal, its production and electrophotographic receptor using the same | |
JPH06234937A (en) | Phthalocyanine crystal mixture, its production, and electrophotographic photoreceptor made using the same | |
JP2965400B2 (en) | Dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the same | |
JP2586858B2 (en) | Novel crystal of hydroxyindium phthalocyanine and electrophotographic photoreceptor using the same | |
JP2541031B2 (en) | Dichlorotin phthalocyanine crystal and electrophotographic photoreceptor using the same | |
JPH0695405A (en) | Electrophotographic sensitive body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |